JP2004061279A - Energy saving evaluation apparatus - Google Patents

Energy saving evaluation apparatus Download PDF

Info

Publication number
JP2004061279A
JP2004061279A JP2002219589A JP2002219589A JP2004061279A JP 2004061279 A JP2004061279 A JP 2004061279A JP 2002219589 A JP2002219589 A JP 2002219589A JP 2002219589 A JP2002219589 A JP 2002219589A JP 2004061279 A JP2004061279 A JP 2004061279A
Authority
JP
Japan
Prior art keywords
voltage
power
load
saving
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002219589A
Other languages
Japanese (ja)
Inventor
Naoya Yamada
山田 直也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP2002219589A priority Critical patent/JP2004061279A/en
Publication of JP2004061279A publication Critical patent/JP2004061279A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an energy saving evaluation apparatus for accurately evaluating an energy saving effect. <P>SOLUTION: The energy saving evaluation apparatus is provided with a voltage controller for regulating a first voltage from a power supply connected to a primary side, an evaluation target load connected to a secondary side of the voltage controller and supplied with a second voltage regulated by the voltage controller, a first measuring load connected to the primary side of the voltage controller, supplied with the first voltage and making a first current flow, a second measuring load connected to the secondary side of the voltage controller, supplied with the second voltage and making a second current flow, a first power analyzer for calculating a first power consumption of the first measuring load for a predetermined period and a second power analyzer for calculating a second power consumption of the second measuring load for the predetermined period. The second measuring load has the same rating as the first measuring load. The first and second power consumptions are used for evaluating the evaluated load. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、分電盤の照明負荷設備を対象に節電器(電力制御装置)を設置したことによる節電効果を正確に把握するための省エネルギー評価装置に関するものである。
【0002】
【従来の技術】
図4は、従来の省エネルギー評価装置を示す回路構成図であり、図5は、節電器の1次側および2次側の電圧の時間的変化を示す波形図である。
【0003】
図4において、1は電圧を調整する節電器4の1次側の単相3線式(例えば1φ3W、210/105V)のR相、N相、T相それぞれの電源ラインを示す。また、2は節電器4の2次側の単相3線式ラインをそれぞれ示す。
【0004】
また、1次側のR相の電源ライン1とN相の電源ライン1との線間電圧(R相側電圧)はVRN1、N相の電源ライン1とT相の電源ライン1との線間電圧(T相側電圧)はVTN1とし、2次側の線間電圧はそれぞれVRN2、VTN2とする。
【0005】
2次側の単相3線式ライン2は照明負荷3に接続され、照明負荷3に電圧が印加される。
【0006】
電気室から分電盤に供給される電圧は時間的および季節的な需要電力の大きさに左右されるため、一般的に変動が激しい。したがって、照明負荷3等に給電している分電盤の1次側に省エネルギーを目的に接続された節電器4の出力電圧についても、入力電圧よりも数ボルト低い状態で通常変動している。
【0007】
図5において、11は、1次側のR相側電圧VRN1、12は、2次側のR相側電圧VRN2、13は、N相のゼロ電位レベルを示し、1次側のR相側電圧VRN1(11)および2次側のR相側電圧VRN2(12)は、それぞれ時間的な変動を呈する。
【0008】
例えば、節電器4で設定された節電電圧を4Vとし、1次側のR相側電圧VRN1(11)は、例えば105V前後を変動するものとすると、2次側のR相側電圧VRN2(12)は101V前後で変動する。これはT相側電圧VTN1、VTN2についても同様である。
【0009】
照明負荷3等に給電する分電盤は節電器4の2次側に設置されており、その給電電圧は、R相側において、節電器設置前はVRN1(例えば105V前後で変動)であり、節電器設置後はVRN2(101V前後で変動)となる。なお、T相側の給電電圧も同様である。
【0010】
節電器4を設置したことによりどの程度の省エネ効果があるかどうかを評価するために、照明負荷3の消費電力量を計測する電力解析器5を接続し、2電力計法の原理で電力計測することが通常行われている。
【0011】
図4において、電力解析器5は、一方の接続端子を電圧信号線6のワニ口クリップ(図示せず)などにより、節電器4と照明負荷3との間の2次側の単相3線式ライン2にそれぞれ接続し、他方の接続端子を電流信号線7の先端のクランプCT8、9により、2次側の単相3線式ライン2のR相、T相にセットすることにより接続する。
【0012】
省エネ効果を評価する場合、まず、節電器設置前の段階、もしくは節電器5において節電モードを実施しない直送状態で、照明負荷3に印加される電圧と、照明負荷3を流れる電流とを計測する。
【0013】
電圧および電流は、図5のように、時刻t11から時刻t12までの所定期間T(例えば24時間)の間計測し、電圧値、電流値、所定期間Tに基づいて、所定期間Tにおける消費電力量Wを算出する。
【0014】
次に、節電器設置後、所定の節電モード(例えば4Vの節電)で節電を実施し、照明負荷3に印加される電圧と、照明負荷3を流れる電流とを計測する。
【0015】
節電実施前と同様に、電圧および電流は、図5のように、時刻t21から時刻t22までの所定期間Tの間計測し、所定期間Tにおける消費電力量Wを算出する。なお、時刻t11から時刻t12までの期間Tと、時刻t21から時刻t22までの期間Tとは同じ長さとする(例えば24時間)。
【0016】
電力解析器5でそれぞれの消費電力量が算出されると、作業者は式(1)、(2)により、電力の削減率(節電率、省エネ率)αを算出して、節電器導入による省エネ効果を評価していた。
【0017】
削減電力量ΔW = W − W            ・・・(1)
節電率α = ΔW ÷ W              ・・・(2)
【0018】
【発明が解決しようとする課題】
従来の省エネルギー評価装置は以上のように、節電前後において電力解析器5の計測時間が同じであっても、節電器設置前と設置後の異なる時間帯(計測タイミング)で電力計測を実施するので、節電器4の入出力電圧の変動により、本来数%〜10%程度ある省エネ効果が±1〜3%の絶対誤差が発生してしまうという問題点があった。
【0019】
この発明は上記のような問題点を解決するためになされたもので、省エネ効果を正確に評価することのできる省エネルギー評価装置を得ることを目的とする。
【0020】
【課題を解決するための手段】
この発明に係る省エネルギー評価装置は、1次側に接続された電源からの第1の電圧を調整する電圧制御装置と、電圧制御装置の2次側に接続され、電圧制御装置で調整された第2の電圧が印加される評価対象負荷と、電圧制御装置の1次側に接続され、第1の電圧が印加されて第1の電流が流れる第1の計測用負荷と、電圧制御装置の2次側に接続され、第2の電圧が印加されて第2の電流が流れる第2の計測用負荷と、所定期間の間に計測される第1の電圧および第1の電流に基づいて、第1の計測用負荷の第1の電力消費量を算出する第1の電力解析装置と、所定期間の間に計測される第2の電圧および第2の電流に基づいて、第2の計測用負荷の第2の電力消費量を算出する第2の電力解析装置とを備え、第2の計測用負荷は、第1の計測用負荷と同定格の負荷で構成され、第1および第2の電力消費量は、評価対象負荷の評価に用いられるものである。
【0021】
また、この発明に係る省エネルギー評価装置は、1次側に接続された電源からの第1の電圧を所定の削減率で調整する電圧制御装置と、電圧制御装置の2次側に接続され、電圧制御装置で調整された第2の電圧が印加される評価対象負荷と、削減率と、所定期間の間に計測される第2の電圧および電流とに基づいて、評価対象負荷のエネルギー削減の評価値を算出する電力解析装置と、評価値を表示する省エネ監視装置とを備えたものである。
【0022】
【発明の実施の形態】
実施の形態1.
以下、図面を参照しながら、この発明の実施の形態1について詳細に説明する。
【0023】
図1は、この発明の実施の形態1の省エネルギー評価装置を示す回路構成図であり、図2は、節電器の1次側および2次側の電圧の時間的変化を示す波形図である。
【0024】
なお、図1において、前述(図4参照)と同様のものについては、同一符号を付して詳述を省略する。
【0025】
図1において、21、31は、省エネ評価の試験時において臨時的にセットされるダミー照明負荷(第1の計測用負荷、第2の計測用負荷)であり、その負荷仕様は多くの照明負荷を代表する2台の同定格の照明器具である。ダミー照明負荷21、31は、電圧信号線22、32によって節電器(電力制御装置)4の1次側、2次側の各相にそれぞれ接続されて給電点灯される。
【0026】
また、ダミー照明負荷21、31の所定期間の電力消費量を計測する電力解析器(第1の電力解析装置、第2の電力解析装置)23、33は、一方の接続端子を電圧信号線24、34によって接続し、他方の接続端子を、電流信号線25、35のクランプCT26、27、36、37によりR相およびT相への電圧信号線22、32にセットすることにより接続する。
【0027】
100V系の節電器4の節電タップ(節電モード)は、例えば0、2、4、6Vなどの複数のタップ(モード)を有しており、設定する2次側電圧を例えば100Vとした時、1次側の電源電圧が105Vの時は4Vタップ、106Vの時は6Vタップが自動的に選択され、照明負荷(評価対象負荷)3への2次側電圧が制御される。
【0028】
すなわち、節電器4は、1次側の電源電圧の変動に応じて節電モードを選択し、2次側電圧が設定値になるように制御する。
【0029】
次に、この発明の実施の形態1による動作について説明する。
図2において、時刻tから時刻tまでの所定期間T(例えば24時間)において、電力解析器23は、1次側のダミー照明負荷21に印加される電圧と、電圧に対応してダミー照明負荷21に流れる電流とを計測し、電圧値、電流値および所定期間Tに基づいて、ダミー照明負荷21の消費電力量W11を算出する。
【0030】
また、1次側の電力解析器23と同時間帯の時刻tから時刻tまでの所定期間T(例えば24時間)において、電力解析器33は、2次側のダミー照明負荷31に印加される電圧と、電圧に対応してダミー照明負荷31に流れる電流とを計測し、電圧値、電流値および所定期間Tに基づいて、ダミー照明負荷31の消費電力量W21を算出する。
【0031】
同時間帯の1次側のダミー照明負荷21と2次側のダミー照明負荷31との消費電力量がそれぞれ計測されると、作業者は、それぞれの消費電力量に基づいて、式(1)、(2)を準用して節電率αを算出し、節電率αに基づいて省エネ効果の評価を行う。
【0032】
前述のように1次側の電源電圧は変動が激しく、変動に応じて節電器4の節電モードも切り替えられるため、節電器タップ制御により連動される1次側と2次側との電圧差も常に変動する。したがって、同一期間の間に、1次側と2次側との消費電力量を計測することにより、正しい節電状態を計測することができる。
【0033】
このように、対象となる白熱電灯や蛍光灯と同種類であって、同定格のダミー照明負荷を2つ用意し、節電器4の設置工事後に省エネ効果を計測したい時、一方のダミー照明負荷21を節電器4の1次側に接続し、他方のダミー照明負荷31を2次側に接続することにより、それぞれのダミー照明負荷の電力計測を同じ時間帯で行うことができ、1次側、2次側の電圧の変動に関わらず、正確な省エネ効果を計量、評価することができる。
【0034】
したがって、この省エネ効果を踏まえて、節電器の1次側電圧の変動に連動した2次側電圧の変動における、多くの照明負荷設備の節電量を正確に把握することができる。
【0035】
なお、節電器4の2次側電圧が一定値となるタイプの節電器4であっても、正確な省エネ効果を計量、評価することができる。
【0036】
実施の形態2.
なお、上記実施の形態1にて得られた省エネ効果の評価結果を踏まえて、様々な省エネ指標を算出してもよい。
【0037】
図3は、この発明の実施の形態2の省エネルギー評価装置を示す回路構成図である。なお、図3において、前述(図1、図4参照)と同様のものについては、同一符号を付して詳述を省略する。
【0038】
図3において、図1におけるダミー照明負荷撤去後、電圧信号線6および電流信号線7により、節電器4の2次側に、消費電力量や省エネ指標を算出する電力解析器55を接続する。
【0039】
また、電力解析器55には、省エネ指標を表示させる表示させる省エネ監視盤(省エネ監視装置)10を接続する。
さらに、電力解析器55には、前述の実施の形態1によって算出された節電率(省エネ率)αを設定する。
【0040】
次に、この発明の実施の形態2による動作について説明する。
所定期間Tにおける節電器4の1次側の消費電力量をW11、同一時間帯での2次側の消費電力量をW21とすると、節電率αは、式(1)および式(2)を準用して、式(3)のように表すことができる。
【0041】
節電率α = (W11 − W21) ÷ W11   ・・・(3)
【0042】
さらに、削減電力量ΔWは、式(4)のように表すことができる。
【0043】
削減電力量ΔW = W21 × { α / (1 − α)}・・・(4)
【0044】
電力解析器55は、所定期間T(例えば24時間)における消費電力量W21を計測すると、消費電力量W21の計測値と設定された節電率αとに基づいて、式(4)により削減電力量ΔWを算出する。
【0045】
例えば、節電後、1ヶ月の間、照明負荷3の消費電力量を計測し、その計測値が10,000kWhであり、電力解析器55に設定された節電率αが8%であるとすると、電力解析器55は、式(4)に各値を代入し、式(5)のように削減電力量ΔWを算出する。
【0046】

Figure 2004061279
【0047】
電力解析器55はさらに、電力単価や、地球環境と関連するCO排出量の原単位が設定され、削減電気料金や、削減CO排出量などの様々な省エネ指標を算出する。
【0048】
例えば、月の削減電力量ΔWが870kWh、電力単価を12円/kWhとすると、削減電気料金は、10,440円/月となる。
【0049】
さらに、CO排出原単位を0.30kg/kWhとすると、削減CO排出量は261kg/月となる。
【0050】
省エネ監視盤10は、電力解析器55で算出された省エネ指標を表示させ、作業者は表示された省エネ指標を確認しながら、その評価を行う。
【0051】
このように、節電率αをあらかじめ電力解析器55に設定することにより、節電率に基づいた削減量を電力量や電気料金などの様々な省エネルギー量に換算でき、換算した省エネルギー量をモニタリングすることができるので、省エネルギーの評価がビジブルとなって、省エネルギーの啓蒙に役立てることができる。
【0052】
また、省エネ導入の経済効果を評価することもでき、また、省エネ機器導入後の定期的な評価フォローもすることができる。
【0053】
【発明の効果】
以上のように、この発明によれば、1次側に接続された電源からの第1の電圧を調整する電圧制御装置と、電圧制御装置の2次側に接続され、電圧制御装置で調整された第2の電圧が印加される評価対象負荷と、電圧制御装置の1次側に接続され、第1の電圧が印加されて第1の電流が流れる第1の計測用負荷と、電圧制御装置の2次側に接続され、第2の電圧が印加されて第2の電流が流れる第2の計測用負荷と、所定期間の間に計測される第1の電圧および第1の電流に基づいて、第1の計測用負荷の第1の電力消費量を算出する第1の電力解析装置と、所定期間の間に計測される第2の電圧および第2の電流に基づいて、第2の計測用負荷の第2の電力消費量を算出する第2の電力解析装置とを備え、第2の計測用負荷は、第1の計測用負荷と同定格の負荷で構成され、第1および第2の電力消費量は、評価対象負荷の評価に用いられるので、1次側、2次側の電圧の変動に関わらず、正確な省エネ効果を計量、評価することのできる省エネルギー評価装置が得られる効果がある。
【0054】
また、この発明によれば、1次側に接続された電源からの第1の電圧を所定の削減率で調整する電圧制御装置と、電圧制御装置の2次側に接続され、電圧制御装置で調整された第2の電圧が印加される評価対象負荷と、削減率と、所定期間の間に計測される第2の電圧および電流とに基づいて、評価対象負荷のエネルギー削減の評価値を算出する電力解析装置と、評価値を表示する省エネ監視装置とを備えたので、節電率に基づいた削減量を様々な評価値に換算でき、省エネルギーの評価がビジブルとなる省エネルギー評価装置が得られる効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1の省エネルギー評価装置を示す回路構成図である。
【図2】節電器の1次側および2次側の電圧の時間的変化を示す波形図である。
【図3】この発明の実施の形態2の省エネルギー評価装置を示す回路構成図である。
【図4】従来の省エネルギー評価装置を示す回路構成図である。
【図5】節電器の1次側および2次側の電圧の時間的変化を示す波形図である。
【符号の説明】
1 電源ライン、2 単相3線式ライン、3 照明負荷、4 節電器、6 電圧信号線、7 電流信号線、8、9 クランプCT、10 省エネ監視盤、11節電器の1次側のR相側電圧、12 節電器の2次側のR相側電圧、13 N相のゼロ電位レベル、21 ダミー照明負荷、22 電圧信号線、23 電力解析器、24 電圧信号線、25 電流信号線、26、27 クランプCT、31ダミー照明負荷、32 電圧信号線、33 電力解析器、34 電圧信号線、35 電流信号線、36、37 クランプCT、55 電力解析器。[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy saving evaluation device for accurately grasping a power saving effect caused by installing a power saving device (power control device) for a lighting load facility of a distribution board.
[0002]
[Prior art]
FIG. 4 is a circuit configuration diagram showing a conventional energy saving evaluation device, and FIG. 5 is a waveform diagram showing temporal changes in voltages on the primary side and the secondary side of the power saving device.
[0003]
In FIG. 4, reference numeral 1 denotes a single-phase three-wire (for example, 1φ3W, 210 / 105V) R-phase, N-phase, and T-phase power supply lines on the primary side of the power saving device 4 for adjusting the voltage. Reference numeral 2 denotes a single-phase three-wire line on the secondary side of the power saving device 4.
[0004]
The line voltage (R-phase side voltage) between the primary-side R-phase power line 1 and the N-phase power line 1 is V RN1 , and the line between the N-phase power line 1 and the T-phase power line 1 The inter-line voltage (T-phase side voltage) is V TN1 , and the secondary-side line voltages are V RN2 and V TN2 , respectively.
[0005]
The single-phase three-wire line 2 on the secondary side is connected to a lighting load 3, and a voltage is applied to the lighting load 3.
[0006]
Since the voltage supplied from the electric room to the distribution board depends on the temporal and seasonal power demand, the voltage generally fluctuates greatly. Therefore, the output voltage of the power saving device 4 connected for the purpose of energy saving to the primary side of the distribution board supplying the lighting load 3 and the like usually fluctuates in a state several volts lower than the input voltage.
[0007]
In FIG. 5, reference numeral 11 denotes a primary-side R-phase voltage V RN1 , 12 denotes a secondary-side R-phase voltage V RN2 , and 13 denotes an N-phase zero potential level, and a primary-side R phase The side voltage V RN1 (11) and the secondary-side R-phase side voltage V RN2 (12) exhibit temporal fluctuations.
[0008]
For example, assuming that the power saving voltage set by the power saving device 4 is 4 V and the primary-side R-phase side voltage V RN1 (11) fluctuates, for example, around 105 V, the secondary-side R-phase side voltage V RN2 (12) fluctuates around 101V. This is the same for the T-phase voltages V TN1 and V TN2 .
[0009]
The power distribution board for supplying power to the lighting load 3 and the like is installed on the secondary side of the power saving device 4, and the power supply voltage is V RN1 (for example, fluctuates around 105 V) on the R phase side before the power saving device is installed. After the power saving device is installed, V RN2 (varies around 101 V). The same applies to the power supply voltage on the T-phase side.
[0010]
In order to evaluate how much energy saving effect is achieved by installing the power saving device 4, a power analyzer 5 for measuring the power consumption of the lighting load 3 is connected, and the power is measured by the principle of the two wattmeter method. That is usually done.
[0011]
In FIG. 4, a power analyzer 5 has one connection terminal connected to an alligator clip (not shown) of a voltage signal line 6 or the like, and a secondary-side single-phase three-wire between the power saving device 4 and the lighting load 3. The current signal line 7 is connected to each other by setting the other connection terminal to the R-phase and T-phase of the secondary-side single-phase three-wire type line 2 by the clamps CT8 and CT9 at the tip of the current signal line 7, respectively. .
[0012]
When evaluating the energy saving effect, first, the voltage applied to the lighting load 3 and the current flowing through the lighting load 3 are measured in a stage before the power saving device is installed or in a direct delivery state where the power saving mode is not performed in the power saving device 5. .
[0013]
Voltage and current, as shown in FIG. 5, measured for a predetermined time period T from the time t 11 to time t 12 (e.g. 24 hours), the voltage value, current value, based on a predetermined period T, in a predetermined period T calculating a power consumption amount W 1.
[0014]
Next, after the power saving device is installed, power saving is performed in a predetermined power saving mode (for example, power saving of 4 V), and a voltage applied to the lighting load 3 and a current flowing through the lighting load 3 are measured.
[0015]
As before the power saving embodiment, the voltage and current, as in FIG. 5, measured for a predetermined time period T from the time t 21 to time t 22, calculates the power consumption W 2 in a predetermined period T. Note that the period T from the time t 11 to time t 12, the period T from the time t 21 to time t 22 to the same length (e.g., 24 hours).
[0016]
When the respective power consumptions are calculated by the power analyzer 5, the operator calculates the power reduction rate (power saving rate, energy saving rate) α according to the equations (1) and (2), We evaluated energy saving effect.
[0017]
Reduced power amount ΔW = W 1 −W 2 (1)
Power saving rate α = ΔW W W 1 ... (2)
[0018]
[Problems to be solved by the invention]
As described above, the conventional energy-saving evaluation device performs power measurement in different time zones (measurement timing) before and after installation of the power saver even if the measurement time of the power analyzer 5 is the same before and after power saving. In addition, there is a problem that an energy saving effect which is originally several% to 10% and an absolute error of ± 1 to 3% occur due to a fluctuation of an input / output voltage of the power saving device 4.
[0019]
The present invention has been made to solve the above problems, and has as its object to obtain an energy saving evaluation device capable of accurately evaluating the energy saving effect.
[0020]
[Means for Solving the Problems]
An energy-saving evaluation device according to the present invention includes a voltage control device that adjusts a first voltage from a power supply connected to a primary side, and a voltage control device that is connected to a secondary side of the voltage control device and adjusted by the voltage control device. A load to be evaluated to which the voltage 2 is applied, a first measurement load connected to the primary side of the voltage control device, to which the first voltage is applied and the first current flows, A second measuring load connected to the next side, to which a second voltage is applied and a second current flows, and a first voltage and a first current measured during a predetermined period. A first power analysis device that calculates a first power consumption of the first measurement load; and a second measurement load based on the second voltage and the second current measured during a predetermined period. And a second power analyzer that calculates a second power consumption of the second power consumption. It consists of loading of same ratings and measuring the load, first and second power consumption, and is used to evaluate the evaluation object load.
[0021]
Further, an energy saving evaluation device according to the present invention includes a voltage control device that adjusts a first voltage from a power supply connected to a primary side at a predetermined reduction rate, and a voltage control device connected to a secondary side of the voltage control device. Evaluation of energy reduction of the load to be evaluated based on the load to be evaluated to which the second voltage adjusted by the control device is applied, the reduction rate, and the second voltage and current measured during a predetermined period. It is provided with a power analysis device for calculating a value and an energy saving monitoring device for displaying an evaluation value.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to the drawings.
[0023]
FIG. 1 is a circuit configuration diagram showing an energy saving evaluation apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a waveform diagram showing temporal changes in voltages on the primary side and the secondary side of the power saving device.
[0024]
In FIG. 1, the same components as those described above (see FIG. 4) are denoted by the same reference numerals, and detailed description is omitted.
[0025]
In FIG. 1, reference numerals 21 and 31 denote dummy lighting loads (a first measuring load and a second measuring load) which are temporarily set during a test of an energy saving evaluation. Are two lighting fixtures of the same rating. The dummy lighting loads 21 and 31 are connected to the primary and secondary phases of the power saving device (power control device) 4 by voltage signal lines 22 and 32, respectively, and are turned on and supplied with power.
[0026]
In addition, power analyzers (first power analyzer, second power analyzer) 23 and 33 that measure the power consumption of the dummy lighting loads 21 and 31 during a predetermined period are connected to one of the connection terminals by a voltage signal line 24. , 34, and the other connection terminal is connected by setting the voltage signal lines 22, 32 to the R-phase and the T-phase by the clamps CT26, 27, 36, 37 of the current signal lines 25, 35.
[0027]
The power saving tap (power saving mode) of the power saving device 4 of the 100V system has a plurality of taps (modes) such as, for example, 0, 2, 4, and 6V. When the secondary voltage to be set is, for example, 100V, When the primary power supply voltage is 105 V, a 4 V tap is automatically selected, and when the primary power supply voltage is 106 V, a 6 V tap is automatically selected, and the secondary voltage to the lighting load (evaluation load) 3 is controlled.
[0028]
That is, the power saving device 4 selects the power saving mode in accordance with the fluctuation of the power supply voltage on the primary side, and controls so that the secondary voltage becomes the set value.
[0029]
Next, an operation according to the first embodiment of the present invention will be described.
2, in a predetermined time period T from the time t 1 to time t 2 (e.g. 24 hours), the power analyzer 23, the voltage applied to the primary side of the dummy illumination load 21, in response to the voltage dummy and a current flowing to the lighting load 21 is measured and the voltage value, based on current value and the predetermined period T, calculates a power consumption amount W 11 of the dummy lighting load 21.
[0030]
Further, applied in the predetermined period T of the power analyzer 23 of the primary side from the time t 1 in the same time slot to time t 2 (e.g. 24 hours), the power analyzer 33, the dummy lighting load 31 of the secondary side a voltage, to measure the current flowing corresponding to the voltage to the dummy lighting load 31, the voltage value, based on current value and the predetermined period T, calculates a power consumption amount W 21 of the dummy lighting load 31.
[0031]
When the power consumption amounts of the primary-side dummy lighting load 21 and the secondary-side dummy lighting load 31 in the same time zone are measured, the operator calculates the expression (1) based on the respective power consumption amounts. , (2) are applied mutatis mutandis to calculate the power saving rate α, and the energy saving effect is evaluated based on the power saving rate α.
[0032]
As described above, the power supply voltage on the primary side fluctuates greatly, and the power saving mode of the power saving device 4 is also switched according to the fluctuation. Therefore, the voltage difference between the primary side and the secondary side linked by the power saving tap control is also reduced. Always fluctuates. Therefore, the correct power saving state can be measured by measuring the power consumption on the primary side and the secondary side during the same period.
[0033]
As described above, when two dummy lighting loads of the same type and the same rating as the target incandescent lamp or fluorescent lamp are prepared and the energy saving effect is to be measured after the installation work of the power saving device 4, one of the dummy lighting loads is required. 21 is connected to the primary side of the power saving device 4 and the other dummy lighting load 31 is connected to the secondary side, so that the power measurement of each dummy lighting load can be performed in the same time zone. In addition, the accurate energy saving effect can be measured and evaluated regardless of the fluctuation of the secondary voltage.
[0034]
Therefore, based on this energy saving effect, it is possible to accurately grasp the power saving amount of many lighting load equipments in the fluctuation of the secondary voltage linked to the fluctuation of the primary voltage of the power saving device.
[0035]
In addition, even if it is a type of the power saving device 4 in which the secondary voltage of the power saving device 4 becomes a constant value, the accurate energy saving effect can be measured and evaluated.
[0036]
Embodiment 2 FIG.
Various energy-saving indices may be calculated based on the evaluation results of the energy-saving effect obtained in the first embodiment.
[0037]
FIG. 3 is a circuit configuration diagram showing an energy saving evaluation apparatus according to Embodiment 2 of the present invention. In FIG. 3, the same components as those described above (see FIGS. 1 and 4) are denoted by the same reference numerals, and detailed description is omitted.
[0038]
In FIG. 3, after removing the dummy lighting load in FIG. 1, a power analyzer 55 for calculating the power consumption and the energy saving index is connected to the secondary side of the power saving device 4 by the voltage signal line 6 and the current signal line 7.
[0039]
The power analyzer 55 is connected to an energy-saving monitoring panel (an energy-saving monitoring device) 10 for displaying an energy-saving index.
Further, in the power analyzer 55, the power saving rate (energy saving rate) α calculated according to the first embodiment is set.
[0040]
Next, an operation according to the second embodiment of the present invention will be described.
Assuming that the power consumption on the primary side of the power saving device 4 in the predetermined period T is W 11 and the power consumption on the secondary side in the same time zone is W 21 , the power saving rate α is expressed by the equations (1) and (2). ) Can be applied as shown in equation (3).
[0041]
Power saving rate α = (W 11 −W 21 ) ÷ W 11 (3)
[0042]
Further, the reduced power amount ΔW can be expressed as in Expression (4).
[0043]
Power reduction amount ΔW = W 21 × {α / (1 - α)} ··· (4)
[0044]
Power analyzer 55, when measuring the power consumption W 21 in a predetermined period T (e.g., 24 hours), on the basis of the power-saving ratio α and that has been set and the measured value of the power consumption W 21, reduced by the formula (4) The power amount ΔW is calculated.
[0045]
For example, assuming that the power consumption of the lighting load 3 is measured for one month after the power saving, the measured value is 10,000 kWh, and the power saving rate α set in the power analyzer 55 is 8%. The power analyzer 55 substitutes each value into Expression (4) and calculates the reduced power amount ΔW as in Expression (5).
[0046]
Figure 2004061279
[0047]
The power analyzer 55 further sets an electric power unit price and a basic unit of CO 2 emission related to the global environment, and calculates various energy saving indexes such as a reduced electricity rate and a reduced CO 2 emission.
[0048]
For example, if the monthly reduced power amount ΔW is 870 kWh and the power unit price is 12 yen / kWh, the reduced electricity rate is 10,440 yen / month.
[0049]
Furthermore, if the CO 2 emission intensity is 0.30 kg / kWh, the reduced CO 2 emission is 261 kg / month.
[0050]
The energy-saving monitoring panel 10 displays the energy-saving index calculated by the power analyzer 55, and the operator evaluates the energy-saving index while checking the displayed energy-saving index.
[0051]
As described above, by setting the power saving rate α in the power analyzer 55 in advance, it is possible to convert the reduction amount based on the power saving rate into various energy saving amounts such as an electric power amount and an electricity rate, and to monitor the converted energy saving amount. Therefore, the evaluation of energy saving becomes visible and can be used for enlightenment of energy saving.
[0052]
In addition, it is possible to evaluate the economic effect of introducing energy-saving equipment, and also to perform regular evaluation follow-up after introducing energy-saving equipment.
[0053]
【The invention's effect】
As described above, according to the present invention, the voltage controller that adjusts the first voltage from the power supply connected to the primary side and the voltage controller that is connected to the secondary side of the voltage controller and are adjusted by the voltage controller A load to be evaluated to which the second voltage is applied, a first measurement load connected to the primary side of the voltage control device, to which the first voltage is applied and the first current flows, and a voltage control device And a second measurement load connected to the second side of the second circuit, to which a second voltage is applied and a second current flows, and a first voltage and a first current measured during a predetermined period. A first power analysis device that calculates a first power consumption of a first measurement load, and a second measurement based on a second voltage and a second current measured during a predetermined period. A second power analyzer that calculates a second power consumption of the load for measurement, wherein the second load for measurement includes Since the first and second power consumptions are used for evaluating the load to be evaluated, the energy saving effect is accurate regardless of the primary and secondary voltage fluctuations. There is an effect that an energy-saving evaluation device capable of measuring and evaluating the energy can be obtained.
[0054]
Further, according to the present invention, a voltage control device that adjusts the first voltage from the power supply connected to the primary side at a predetermined reduction rate, and a voltage control device that is connected to the secondary side of the voltage control device and An evaluation value of energy reduction of the load to be evaluated is calculated based on the load to be evaluated to which the adjusted second voltage is applied, the reduction rate, and the second voltage and current measured during a predetermined period. Power analyzer and energy-saving monitoring device that displays the evaluation value, so that the amount of reduction based on the power saving rate can be converted into various evaluation values, and an energy-saving evaluation device that makes energy-saving evaluation visible There is.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram showing an energy saving evaluation device according to a first embodiment of the present invention.
FIG. 2 is a waveform diagram showing temporal changes in voltages on a primary side and a secondary side of a power saving device.
FIG. 3 is a circuit configuration diagram showing an energy saving evaluation apparatus according to Embodiment 2 of the present invention.
FIG. 4 is a circuit configuration diagram showing a conventional energy saving evaluation device.
FIG. 5 is a waveform diagram showing temporal changes in voltages on a primary side and a secondary side of the power saving device.
[Explanation of symbols]
Reference Signs List 1 power line, 2 single-phase three-wire line, 3 lighting load, 4 power saving device, 6 voltage signal line, 7 current signal line, 8, 9 clamp CT, 10 energy saving monitoring panel, 11 primary power saving R Phase-side voltage, 12 R-phase voltage on the secondary side of the power saver, 13 N-phase zero potential level, 21 dummy lighting load, 22 voltage signal line, 23 power analyzer, 24 voltage signal line, 25 current signal line, 26, 27 clamp CT, 31 dummy lighting load, 32 voltage signal line, 33 power analyzer, 34 voltage signal line, 35 current signal line, 36, 37 clamp CT, 55 power analyzer.

Claims (2)

1次側に接続された電源からの第1の電圧を調整する電圧制御装置と、
前記電圧制御装置の2次側に接続され、前記電圧制御装置で調整された第2の電圧が印加される評価対象負荷と、
前記電圧制御装置の1次側に接続され、前記第1の電圧が印加されて第1の電流が流れる第1の計測用負荷と、
前記電圧制御装置の2次側に接続され、前記第2の電圧が印加されて第2の電流が流れる第2の計測用負荷と、
所定期間の間に計測される前記第1の電圧および前記第1の電流に基づいて、前記第1の計測用負荷の第1の電力消費量を算出する第1の電力解析装置と、
前記所定期間の間に計測される前記第2の電圧および前記第2の電流に基づいて、前記第2の計測用負荷の第2の電力消費量を算出する第2の電力解析装置と
を備え、
前記第2の計測用負荷は、前記第1の計測用負荷と同定格の負荷で構成され、前記第1および第2の電力消費量は、前記評価対象負荷の評価に用いられることを特徴とする省エネルギー評価装置。
A voltage controller for adjusting a first voltage from a power supply connected to the primary side;
A load to be evaluated, which is connected to a secondary side of the voltage control device and to which a second voltage adjusted by the voltage control device is applied;
A first measurement load connected to a primary side of the voltage control device, to which the first voltage is applied and a first current flows;
A second measurement load connected to a secondary side of the voltage control device, to which the second voltage is applied and a second current flows;
A first power analysis device that calculates a first power consumption of the first measurement load based on the first voltage and the first current measured during a predetermined period;
A second power analyzer that calculates a second power consumption of the second measurement load based on the second voltage and the second current measured during the predetermined period. ,
The second measurement load is configured with a load having the same rating as the first measurement load, and the first and second power consumptions are used for evaluating the evaluation target load. Energy-saving evaluation device.
1次側に接続された電源からの第1の電圧を所定の削減率で調整する電圧制御装置と、
前記電圧制御装置の2次側に接続され、前記電圧制御装置で調整された第2の電圧が印加される評価対象負荷と、
前記削減率と、前記所定期間の間に計測される前記第2の電圧および前記電流とに基づいて、前記評価対象負荷のエネルギー削減の評価値を算出する電力解析装置と、
前記評価値を表示する省エネ監視装置と
を備えたことを特徴とする省エネルギー評価装置。
A voltage controller that adjusts a first voltage from a power supply connected to the primary side at a predetermined reduction rate;
A load to be evaluated, which is connected to a secondary side of the voltage control device and to which a second voltage adjusted by the voltage control device is applied;
A power analysis device that calculates an evaluation value of energy reduction of the evaluation target load based on the reduction rate and the second voltage and the current measured during the predetermined period;
An energy-saving evaluation device, comprising: an energy-saving monitoring device that displays the evaluation value.
JP2002219589A 2002-07-29 2002-07-29 Energy saving evaluation apparatus Pending JP2004061279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219589A JP2004061279A (en) 2002-07-29 2002-07-29 Energy saving evaluation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219589A JP2004061279A (en) 2002-07-29 2002-07-29 Energy saving evaluation apparatus

Publications (1)

Publication Number Publication Date
JP2004061279A true JP2004061279A (en) 2004-02-26

Family

ID=31940451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219589A Pending JP2004061279A (en) 2002-07-29 2002-07-29 Energy saving evaluation apparatus

Country Status (1)

Country Link
JP (1) JP2004061279A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007504A1 (en) * 2009-07-13 2011-01-20 パナソニック株式会社 Washing machine and program therefor
JP2011019554A (en) * 2009-07-13 2011-02-03 Panasonic Corp Washing machine and program thereof
WO2012008402A1 (en) * 2010-07-13 2012-01-19 株式会社エヌ・ティ・ティ・ドコモ Power monitor/control system using power strip
WO2017033282A1 (en) * 2015-08-25 2017-03-02 三菱電機株式会社 Control device, event information display method and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007504A1 (en) * 2009-07-13 2011-01-20 パナソニック株式会社 Washing machine and program therefor
JP2011019554A (en) * 2009-07-13 2011-02-03 Panasonic Corp Washing machine and program thereof
CN102471975A (en) * 2009-07-13 2012-05-23 松下电器产业株式会社 Washing machine and program therefor
WO2012008402A1 (en) * 2010-07-13 2012-01-19 株式会社エヌ・ティ・ティ・ドコモ Power monitor/control system using power strip
WO2017033282A1 (en) * 2015-08-25 2017-03-02 三菱電機株式会社 Control device, event information display method and program
JPWO2017033282A1 (en) * 2015-08-25 2018-03-15 三菱電機株式会社 Control device, event information display method and program

Similar Documents

Publication Publication Date Title
US6326773B1 (en) Power conversion apparatus
US8519681B2 (en) Apparatus and method for generating a metering voltage output for a voltage regulator using a microprocessor
Altıntaş et al. A new flicker contribution tracing method based on individual reactive current components of multiple EAFs at PCC
JP2007248104A (en) Method for determining ratio and polarity of current transformer, and its device
US7541800B2 (en) Methods and systems for detecting DC influence in a current sensor
JP2006300729A (en) Electronic watthour meter
McIlroy Direct-reading electric analyzer for pipeline networks
JP2004061279A (en) Energy saving evaluation apparatus
Felix et al. Design and Implementation of a Solar Energy Measurement and Monitoring System
US20030090257A1 (en) Method and apparatus for load testing electrical systems
CN111879991A (en) Test device for primary through-flow secondary pressurization and excitation small current
RU2670715C9 (en) Stand for testing ac and dc motors
Mukaila et al. Design and Construction of A Single-Phase Power Factor Meter
JP2008020322A (en) Device and method for detecting short-circuit of electrical installation
CN108761248A (en) A kind of cable pressure connection terminal temperature-rise test device and method
CN108802527B (en) Excitation small current closed loop test trolley
JP7467495B2 (en) Validation of Fundamental-only Energy Measurement
Turkuzan et al. Illumination based flickermeter designed for flicker analysis of electric arc furnace plants
JP5452972B2 (en) Wiring connection inspection method and inspection device for integrated watt-hour meter
Bingham Harmonics-understanding the facts
Yusrizal et al. Performance of energy saving lamps on power quality and luminous properties under voltage decreasing 240V–100V
JP2000083378A (en) Power converter
RU2782047C1 (en) Method for identifying the source of higher harmonics
CN207867016U (en) Mutual inductor comprehensive tester
US20040263138A1 (en) Watt Power Device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110