JP2004059680A - Thermally shrinkable polyester-based film - Google Patents

Thermally shrinkable polyester-based film Download PDF

Info

Publication number
JP2004059680A
JP2004059680A JP2002218088A JP2002218088A JP2004059680A JP 2004059680 A JP2004059680 A JP 2004059680A JP 2002218088 A JP2002218088 A JP 2002218088A JP 2002218088 A JP2002218088 A JP 2002218088A JP 2004059680 A JP2004059680 A JP 2004059680A
Authority
JP
Japan
Prior art keywords
film
shrinkage
mol
shrinkable polyester
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002218088A
Other languages
Japanese (ja)
Other versions
JP3971261B2 (en
Inventor
Kazuhiro Nishiwaki
西脇 一弘
Yasuhiro Tomita
冨田 康弘
Yasunari Shigematsu
重松 靖得
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2002218088A priority Critical patent/JP3971261B2/en
Publication of JP2004059680A publication Critical patent/JP2004059680A/en
Application granted granted Critical
Publication of JP3971261B2 publication Critical patent/JP3971261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermally shrinkable polyester film which can be used for labels using low temperature shrinkers, even when the transportation and storage conditions of the product are the same as those for general packaging materials, and can further reduce the wrinkles, warp and irregular shrinkage of the film, when shrunk. <P>SOLUTION: This thermally shrinkable polyester film is characterized in that the shrinkage rate of the film in its main shrinkage direction is ≥20%, when the film is dipped in 70°C hot water for five seconds and further that the decrease of the shrinkage rate is ≤10%, after the film is stored at 30°C and in a relative humidity of 35% for 30 days. A resin used as the raw material of the thermally shrinkable polyester film is an ethylene terephthalate-based copolyester comprising 85 to 95 mol. % of terephthalic acid and 15 to 5 mol. % of isophthalic acid as a dicarboxylic acid component and ≥55 mol. % of ethylene glycol as a diol component. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、熱収縮性ポリエステル系フィルムに係り、詳しくはボトルの収縮ラベル等として好適に使用できる熱収縮性ポリエステル系フィルムに関するものである。
【0002】
【従来の技術】
熱収縮性フィルムをボトルの収縮ラベル等として使用する際、フィルムの皺、歪み、収縮斑等を少なく抑え、収縮仕上がりを良くするためには収縮率を大きくする必要がある。ポリエステル系樹脂を主たる材料とした熱収縮性ポリエステル系フィルムは、室温での剛性が高く、透明性に優れ、PVC(ポリ塩化ビニル)やSBS(スチレン・ブタジエンブロック共重合体)からなる熱収縮性フィルムに比べると自然収縮率は低い。しかし、一般包装資材に比べると収縮率の経時変化が大きく、輸送や保管条件、または保管期間への制限が多かった。即ち、輸送及び保冷時冷暗所に置くことが必要で、この様な管理ができていないと収縮率が低下し、加熱収縮時に収縮斑や皺が発生し易く、収縮仕上がり性に劣る傾向が見られた。なお、自然収縮とは、常温よりやや高い温度、例えば夏場において、フィルムが本来の使用前に収縮してしまうことを意味する。
【0003】
【発明が解決しようとする課題】
最近の熱収縮性フィルムにおけるラベリング工程では、内容物を容器に充填した後にフィルムのシュリンクを行うことが主流となりつつあり、この方法では内容物の温度上昇による品質低下を回避するとともに、コストダウンのためPETボトルの薄肉化を進めている。そのためにシュリンク時の温度を下げ、ボトルの変形を防ぐことも要望されている。
【0004】
従来の熱収縮性ポリエステル系フィルムは、保管中の経時変化により、70℃近辺の収縮率が低下することに起因してシュリンク時にフィルムの皺、歪み、収縮斑などが発生し易いという問題点を抱えていた。そこで、なるべく低温から収縮が開始し、高収縮であり収縮仕上がりの優れたものであるとともに、輸送や保管に特殊な管理を必要としない熱収縮性ポリエステル系フィルムが切望されている。
【0005】
本発明は、前記の問題に鑑みてなされたものであって、その目的は製品の輸送及び保管条件を一般包装資材と同等にしても、低温のシュリンカーでラベリングができ、収縮時のフィルムの皺、歪み、収縮斑を少なくすることができる熱収縮性ポリエステル系フィルムを提供することにある。
【0006】
【課題を解決するための手段】
本願発明者は前記問題点を解決するため、種々検討の結果、70℃の温水に5秒間浸漬したときにおけるフィルムの収縮率を特定の数値以上にするとともに、その収縮率の経時変化を少なくすることによって前記問題点を解決することができることを見出し、本発明を完成するに至った。
【0007】
前記の目的を達成するため、請求項1に記載の発明の熱収縮性ポリエステル系フィルムは、70℃の温水に5秒間浸漬したときにおけるフィルムの主収縮方向の収縮率が20%以上であり、30℃かつ相対湿度35%で30日間保管した後の前記収縮率の低下、(低下分の絶対値)が10%以下である。収縮率の特性が前記条件を満足するポリエステル系フィルムを生産することにより、製品の輸送及び保管条件を一般包装資材と同等にしても、低温のシュリンカーでラベリングができ、収縮時のフィルムの皺、歪み、収縮斑を少なくすることができる。
【0008】
請求項2に記載の発明では、請求項1に記載の発明において、前記フィルムの素材となる樹脂は、ジカルボン酸成分がテレフタル酸85〜95mol%、イソフタル酸15〜5mol%で、ジオール成分がエチレングリコール55mol%以上であるエチレンテレフタレート系共重合ポリエステルである。この発明では、前記フィルムの収縮率を前記特定の値に調整することが容易になる。
【0009】
請求項3に記載の発明では、請求項2に記載の発明において、前記フィルムは、フィルム面内の最大屈折率nγが1.640以下である。この発明では、最大屈折率nγが1.640より大きなフィルムに比較して、収縮仕上がりがより良好になる。
【0010】
【発明の実施の形態】
以下、本発明を具体化した実施の形態を説明する。
本発明のポリエステル系フィルムでは、70℃の温水に5秒間浸漬したときにおける主収縮方向の収縮率が20%以上とし、かつ30℃、相対湿度35%で30日間保管した後の収縮率の低下が10%以下とする必要がある。これには、以下に示すようなTg(ガラス転移温度)を下げた材料を使用するとともに、延伸による配向が大きくならないように、その延伸条件を制御する必要がある。
【0011】
本発明の熱収縮性ポリエステル系フィルムにおいては、上記の収縮特性を発現させるために材料特性も工夫したほうが良い。
本来ポリエステル系樹脂は結晶性樹脂であり、フィルムを延伸することによって配向結晶化してしまう。熱収縮性フィルムを使用する場合は、通常、印刷及び溶剤を用いた製袋工程が伴う。そこで、印刷適性及び溶剤シール性を向上させるために構成材料自体の結晶性を下げることが必要となる。しかし、構成材料の樹脂を完全に非晶性としてしまうと、熱収縮性フィルムとして十分に要求特性を満足させることが困難となる。従って、適度な結晶性を付与させることが重要である。
【0012】
非晶性のポリエステル系フィルムでは、その粘弾性特性に応じて急激な収縮カーブの立ち上がりと、非常に高い収縮応力を有している。一方、適度な結晶性を付与させることによって、高温時での収縮率が低減されるために、結果的に収縮カーブ曲線が緩やかになり収縮仕上がり性を向上させることが期待できる。
【0013】
さらに、結晶性を付与させることによって延伸後のフィルムの厚み精度に影響を及ぼす。延伸加工条件によっても厚み精度を向上させる方法はいくつかあるが、最も厚み精度に影響するのは構成材料の樹脂の結晶性である。
【0014】
延伸加工の初期の段階において、加熱されるフィルムを部分的に見た場合、不均一な温度分布を示すことがある。この場合、より高い温度の個所から延伸が開始される。使用する樹脂が非晶性樹脂の場合、延伸されて薄くなった個所がより延伸され、フィルム全体が不均一な延伸となる。
【0015】
一方、結晶性がある場合、初期に延伸された部分は薄くなるとともに配向結晶化により延伸応力が大きくなるので、非延伸部分が延伸され易くなる。その結果、フィルム全体で均一延伸されることによって厚み精度が向上する。
【0016】
本発明フィルムの素材となるポリエステル樹脂は、ジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコールを主成分とするエチレンテレフタレート系共重合ポリエステルが好適に用いられる。共重合成分としては、ジカルボン酸としてイソフタル酸、アジピン酸、セバシン酸等、ジオール成分としてネオペンチルグリコール、ジエチレングリコール、1,4−シクロヘキサンジメタノール、1,4−ブタンジオールなどを用いた共重合ポリエステルが工業的に容易に入手でき、かつ収縮性も良好で好ましい。
【0017】
本発明において用いる共重合ポリエステルにおいては、ジカルボン酸成分100モル%およびジオール成分100モル%の合計量200モル%中、共重合成分が合計20モル%以上、より好ましくは30モル%以上とするのがよい。共重合成分が合計20モル%未満の共重合ポリエステルはフィルムにした際の結晶化度が高くなり、収縮仕上がり、溶剤シール性が劣るので好ましくない。
【0018】
本発明フィルムにおいて、上述した粘弾性特性を付与させるためには、ポリエーテルを共重合したポリブチレンテレフタレートをブレンドすることが好ましい。ポリブチレンテレフタレート自体でもTgは非常に低く、配合することによってTgを下げる効果は十分に期待できるが、ポリブチレンテレフタレートの添加量のみで、より低温収縮性を付与させる場合、上記に示した通り、結晶性が上昇しすぎてしまい、溶剤シール性、インキ密着性が低下し易い。
【0019】
特に、ポリエーテルのなかでもポリアルキレングリコール(例えば、ポリテトラメチレングリコール)が、重合面や品質面から最も良好である。なお、上記ポリエーテルをポリブチレンテレフタレート中に共重合することにより粘弾性特性を満足させるだけではなくTgを下げる効果も期待できることから最も良好な組成の1つである。
【0020】
ポリブチレンテレフタレート中のポリアルキレングリコール含有量はジオール成分中0.3〜10モル%が好ましく、より好ましくは0.5〜3モル%である。ポリアルキレングリコールユニットが0.3モル%未満ではポリブチレンテレフタレート単体の場合と同様な物性となる。一方、10モル%を超える場合、他の混合樹脂との相溶性が悪くなり透明性の低下をもたらし易い。
【0021】
なお、本発明フィルムの極限粘度は0.5以上、好ましくは0.6以上がよい。フィルムの極限粘度が0.5未満であると耐破断性が低下し易い。
また本発明のフィルムでは、フィルムの易滑性を向上させるため、有機滑材、無機滑材などの微粒子を含有させてもよく、静防剤等を練り込み方法やコーティング方法によって付与させることも可能である。本発明に使用される原料は各成分をもつポリエステル樹脂を混合した状態で使用されるにとどまらず、重合段階において上記内容と同等のポリエステルを作成し、使用することもできる。
【0022】
つぎに本発明フィルムの製造法を具体的に説明するが、下記製造法には限定されない。重縮合反応によって得られた共重合ポリエステルを混合し、200〜320℃の温度で溶融押出する。押出に際しては、Tダイ法、チューブラ法などの方法を採用してもよい。
【0023】
Tダイ法を用いた場合、押出後、表面温度15〜80℃のキャスティングドラム上で急冷して、厚さ30〜300μmの未延伸フィルムを形成する。得られた未延伸フィルムを、加熱縦延伸ロールを用いて、ロール温度60〜120℃にて1.0〜2.0倍、好ましくは1.0〜1.5倍延伸する、縦延伸後、テンターを用いて延伸温度60〜120℃にて1.7〜7.0倍延伸し、60〜100℃の温度で熱処理して巻き取る。
【0024】
ここで、前記フィルムの諸特性のうち、収縮特性は主に延伸倍率と延伸温度に依存するので、主収縮方向の収縮率を上げるという面からは高倍率、低温延伸が好ましい。一方収縮応力も延伸温度に主に依存し、高倍率、低温延伸ほど収縮能力が大きくなり、また延伸後の熱処理(アニーリング、特に弛緩熱処理)の影響もある。収縮率の温度依存性をよりなだらかに設定するためには、やや高温での延伸を行いつつ延伸倍率を調整するのが一つの方法であり、延伸後のフィルムの平坦性改良や収縮率調整のために熱処理を行う場合にはポリエステルの結晶化を促進しない低温で行うことである。それにより、加熱収縮時初期のフィルムの挙動に大きく影響する収縮応力を低く抑え、なだらかな収縮特性を示すフィルムを得ることが可能になる。具体的な温度条件は使用するポリエステルの種類に応じて適宜設定することができる。
【0025】
また、本発明においては、前記延伸工程中、延伸前または延伸後に、フィルムの片面または両面にコロナ放電処理などの表面活性化処理を施してフィルムの印刷層に対する接着性を向上させることも可能である。また上記延伸工程中、延伸前または延伸後に、フィルムの接着性、帯電防止性、滑り性、遮光性などを向上させることも可能である。さらに、例えば芯層に上記ポリエステル樹脂を用い、表層に結晶化度を該ポリエステル樹脂よりも下げた共重合ポリエステル樹脂層を設ける等、共押出法等による積層フィルムとすることもできる。
【0026】
(実施例)
以下、実施例及び比較例によりさらに詳しく説明するが、本発明はこれらに限定されるものではない。
【0027】
(実施例1)
ジカルボン酸成分がテレフタル酸、ジオール成分がエチレングリコールであり、共重合成分が1,4−シクロヘキサンジメタノール21mol%、イソフタル酸10mol%の共重合ポリエステル樹脂に滑材として平均粒径2.4μmの無定形シリカを0.2wt%加えて共重合ポリエステル樹脂Aを調製した。ジカルボン酸成分がテレフタル酸、ジオール成分が1,4−ブタンジオールであり、共重合成分がイソフタル酸7mol%、ポリテトラメチレンエーテルグリコール(数平均分子量1000)2mol%である共重合ポリブチレンテレフタレート樹脂Bを調製した。そして、共重合ポリエステル樹脂Aと共重合ポリブチレンテレフタレート樹脂Bとを80:20の割合で混合し、260℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度83℃の雰囲気下で、横方向に4倍の延伸倍率で一軸延伸し、次いで熱処理を行って厚さ50μmのフィルムを得た。このフィルム中のエチレングリコールの割合はジオール成分100mol%中63.2mol%である。なお、前記無定形シリカは、富士シリシア社製、サイリシア320を使用した。以下の実施例及び比較例においても同じである。
【0028】
(実施例2)
共重合ポリエステル樹脂Aに代えて、共重合成分がイソフタル酸11mol%、1,4−シクロヘキサンジメタノール20.5mol%の共重合ポリエステル樹脂に平均粒径2.4μmの無定形シリカを0.2wt%加えた共重合ポリエステル樹脂Cを使用した。そして、共重合ポリエステル樹脂Cと共重合ポリブチレンテレフタレート樹脂Bとを75:25の割合で混合し、250℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度80℃の雰囲気下で、横方向に4倍の延伸倍率で一軸延伸し、次いで熱処理を行って厚さ50μmのフィルムを得た。このフィルム中のエチレングリコールの割合はジオール成分100mol%中59.6mol%である。
【0029】
(実施例3)
共重合ポリエステル樹脂Aに代えて、共重合成分がイソフタル酸11.5mol%、1,4−シクロヘキサンジメタノール19.5mol%の共重合ポリエステル樹脂に平均粒径2.4μmの無定形シリカを0.2wt%加えた共重合ポリエステル樹脂Dを使用した。また、共重合ポリブチレンテレフタレート樹脂Bに代えて、共重合成分がイソフタル酸5mol%である共重合ポリブチレンテレフタレート樹脂Eを使用した。そして、共重合ポリエステル樹脂Dと共重合ポリブチレンテレフタレート樹脂Eとを70:30の割合で混合し、250℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度82℃の雰囲気下で、横方向に4倍の延伸倍率で一軸延伸し、次いで熱処理を行って厚さ50μmのフィルムを得た。このフィルム中のエチレングリコールの割合はジオール成分100mol%中56.3mol%である。
【0030】
(比較例1)
共重合ポリエステル樹脂Aに代えて、共重合成分がイソフタル酸9.5mol%、1,4−シクロヘキサンジメタノール22mol%の共重合ポリエステル樹脂に平均粒径2.4μmの無定形シリカを0.2wt%加えた共重合ポリエステル樹脂Fを使用した。また、共重合ポリブチレンテレフタレート樹脂Bに代えて、ジカルボン酸成分がテレフタル酸、ジオール成分が1,4−ブタンジオールであるポリブチレンテレフタレート樹脂Gを使用した。そして、共重合ポリエステル樹脂Fとポリブチレンテレフタレート樹脂Gとを85:15の割合で混合し、250℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度90℃の雰囲気下で、横方向に4倍の延伸倍率で一軸延伸し、次いで熱処理を行って厚さ50μmのフィルムを得た。
【0031】
(比較例2)
ポリブチレンテレフタレート樹脂Gに代えて、共重合成分がイソフタル酸10mol%である共重合ポリブチレンテレフタレート樹脂Hを使用した。そして、共重合ポリエステル樹脂Fとポリブチレンテレフタレート樹脂Hとを85:15の割合で混合し、250℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度85℃の雰囲気下で、横方向に4倍の延伸倍率で一軸延伸し、次いで熱処理を行って厚さ50μmのフィルムを得た。
【0032】
(比較例3)
比較例1と同様に共重合ポリエステル樹脂Fとポリブチレンテレフタレート樹脂Gとを85:15の割合で混合し、250℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度85℃の雰囲気下で、横方向に4倍の延伸倍率で一軸延伸し、次いで熱処理を行って厚さ50μmのフィルムを得た。
【0033】
(フィルムの特性の評価方法)
前記各実施例及び比較例で調製されたフィルムについて、以下に示す(1)〜(4)の特性評価を行った。
【0034】
(1)主収縮方向の収縮率
延伸方向に150mmその直角方向に25mmの大きさに切り出したポリエステルフィルムに標線を間隔100mm設けて70℃の温水に5秒間浸漬し、下式により求めた。
【0035】
収縮率(%)={(L−L’)/L}×100
L:収縮前の標線間距離(mm) L’:収縮後の標線間距離(mm)
(2)30℃、相対湿度35%×30日間後の収縮率の経時変化
フィルムを温度30℃±1℃、相対湿度35%±2%に制御した恒温恒湿器内に30日間エージングした後、取り出した。エージング前後のサンプルについて上記(1)の方法にて70℃の温水に5秒間浸漬した後の収縮率を測定し、エージング前後の収縮率の差を算出した。
【0036】
(3)最大屈折率 nγ
アタゴ光学社製アッベ屈折計を用い、フィルム面内の屈折率の最大値、即ち一軸延伸フィルムの延伸方向の屈折率nγを求めた。屈折率の測定は、ナトリウムD線を用い、23℃で行った。
【0037】
(4)低温ラベリング性
格子目を入れたフィルムを円筒状にしてペットボトルに被せ、蒸気シュリンクトンネルを通過させてボトルに装着し、収縮外観を評価した。蒸気シュリンクの温度は、65〜70℃にて実施した。ラベルの格子目の歪みが無く、密着性も優れて美しい仕上がりのものを(○)、歪み、皺などが僅かにあるが実用上、支障が無いものを(△)、完全な収縮不足もしくは仕上がり性が完全に実用レベルに達しないものを(×)とした。
【0038】
各フィルムの特性の評価結果を表1に示した。
【0039】
【表1】

Figure 2004059680
表1から、ポリエステル系フィルムのうち主収縮方向の収縮率と、30℃、相対湿度35%×30日間後の収縮率との差である低下(経時変化量)とが、本発明の要件を満たす実施例1〜実施例3では30日経過後の低温ラベリング性(収縮仕上がり)が優れていることが分かる。また、前記要件に加えて最大屈折率nγの要件を満足する場合は、低温ラベリング性がより向上することが分かる。これに対して発明の要件を満たさない比較例1〜3についてみると、収縮仕上がりに劣ることが分かる。
【0040】
この実施の形態では以下の効果を有する。
(1) 熱収縮性ポリエステル系フィルムは、70℃の温水に5秒間浸漬したときにおけるフィルムの主収縮方向の収縮率が20%以上であり、30℃かつ相対湿度35%で30日間保管した後の前記収縮率の低下が10%以下である。従って、収縮率の特性が前記条件を満足するポリエステル系フィルムを生産することにより、製品の輸送及び保管条件を一般包装資材と同等にしても、低温のシュリンカーでラベリングができ、収縮時のフィルムの皺、歪み、収縮斑を少なくすることができる。
【0041】
(2) 熱収縮性ポリエステル系フィルムの素材となる樹脂は、ジカルボン酸成分がテレフタル酸85〜95mol%、イソフタル酸15〜5mol%で、ジオール成分がエチレングリコール55mol%以上であるエチレンテレフタレート系共重合ポリエステルである。この発明では、前記フィルムの収縮率を前記特定の値に調整することが容易になる。
【0042】
(3) 熱収縮性ポリエステル系フィルムは、フィルム面内の最大屈折率nγが1.640以下である。この場合、最大屈折率nγが1.640より大きなフィルムに比較して、収縮仕上がりがより良好になる。
【0043】
(4) フィルムの材料となるポリエステル系樹脂として、全てのジカルボン酸成分とジオール成分とを同時に共重合させた共重合ポリエステル系樹脂を使用するのではなく、共重合ポリエチレンテレフタレート樹脂と、共重合ポリブチレンテレフタレート樹脂とを混合して、各成分を調製した。従って、各成分が所望の割合で含まれるポリエステル系樹脂の調整が容易となる。
【0044】
(5) ポリエステル系樹脂に滑材が添加されているため、フィルムの延伸などが円滑に行われる。
実施の形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
【0045】
〇 フィルムの材料として、共重合ポリエチレンテレフタレート樹脂と共重合ポリブチレンテレフタレート樹脂とを混合する代わりに、各ジカルボン酸成分及びジオール成分を所定量含む共重合エステルを製造してその共重合体を使用してもよい。
【0046】
○ 滑材として無定形シリカ以外の滑材を使用してもよい。
○ 滑材はポリエステル樹脂の組成によっては、なくてもよい。
前記実施の形態から把握される請求項記載以外の技術的思想(発明)について、以下に記載する。
【0047】
(1) 請求項2又は請求項3に記載の発明において、前記フィルムの素材となる樹脂は、ジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコールを主成分とする共重合エチレンテレフタレート樹脂と、ジカルボン酸成分としてテレフタル酸、ジオール成分として1,4−ブタンジオールを主成分とする共重合ポリブチレンテレフタレート樹脂との混合物である。
【0048】
(2) 請求項2、請求項3及び前記技術的思想(1)のいずれか一項に記載の発明において、前記フィルムは温度80〜83℃で横方向の延伸倍率が3.8〜4.2倍の一軸延伸と熱処理とが施されている。
【0049】
【発明の効果】
以上、詳述したように、請求項1〜請求項3に記載の発明の熱収縮性ポリエステルフィルムによれば、製品の輸送及び保管条件を一般包装資材と同等にしても、低温のシュリンカーでラベリングができ、収縮時のフィルムの皺、歪み、収縮斑を少なくすることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-shrinkable polyester film, and more particularly to a heat-shrinkable polyester film that can be suitably used as a shrink label for a bottle.
[0002]
[Prior art]
When a heat-shrinkable film is used as a shrinkable label for bottles, it is necessary to increase the shrinkage in order to suppress wrinkles, distortion, shrinkage spots, etc. of the film and improve the shrinkage finish. Heat-shrinkable polyester film made mainly of polyester resin has high rigidity at room temperature, excellent transparency, and heat-shrinkability made of PVC (polyvinyl chloride) and SBS (styrene-butadiene block copolymer). The natural shrinkage is lower than that of the film. However, compared to general packaging materials, the shrinkage rate was significantly changed over time, and there were many restrictions on transportation and storage conditions or storage periods. That is, it is necessary to place in a cool and dark place at the time of transportation and cooling, and if such management is not performed, the shrinkage rate is reduced, and shrinkage spots and wrinkles are easily generated at the time of heat shrinkage, and there is a tendency that the shrinkage finish is inferior. Was. The natural shrinkage means that the film shrinks at a temperature slightly higher than room temperature, for example, in summer, before the film is used.
[0003]
[Problems to be solved by the invention]
In recent labeling processes for heat-shrinkable films, shrinking the film after filling the contents into a container is becoming the mainstream, and this method avoids the quality deterioration due to the temperature rise of the contents and reduces costs. Therefore, PET bottles are being made thinner. Therefore, it is also required to lower the temperature at the time of shrinkage and prevent the bottle from being deformed.
[0004]
The conventional heat-shrinkable polyester film has a problem that, due to a change with time during storage, a shrinkage rate around 70 ° C. is reduced, so that wrinkles, distortions, shrinkage spots and the like of the film are likely to occur at the time of shrinking. I was holding it. Therefore, a heat-shrinkable polyester film which starts shrinking at a low temperature as much as possible, has high shrinkage and excellent shrinkage finish, and does not require special management for transportation and storage has been desired.
[0005]
The present invention has been made in view of the above-mentioned problem, and the purpose is to label the product with a low-temperature shrinker even when the conditions for transporting and storing the product are the same as those for general packaging materials, and to reduce the shrinkage of the film. An object of the present invention is to provide a heat-shrinkable polyester film that can reduce wrinkles, distortions, and shrinkage spots.
[0006]
[Means for Solving the Problems]
As a result of various studies, the inventors of the present application have made the results of various studies that, when immersed in 70 ° C. warm water for 5 seconds, increase the shrinkage of the film to a specific value or more, and reduce the time-dependent change in the shrinkage. As a result, they have found that the above problems can be solved, and have completed the present invention.
[0007]
In order to achieve the above object, the heat-shrinkable polyester film of the invention according to claim 1 has a shrinkage ratio in the main shrinkage direction of the film of not less than 20% when immersed in 70 ° C warm water for 5 seconds, The decrease in the shrinkage after storage at 30 ° C. and a relative humidity of 35% for 30 days (absolute value of the decrease) is 10% or less. By producing a polyester film having shrinkage characteristics satisfying the above conditions, even if the conditions for transporting and storing the product are equivalent to those of general packaging materials, labeling can be performed with a low-temperature shrinker, and wrinkling of the film during shrinkage can be achieved. , Distortion and shrinkage spots can be reduced.
[0008]
According to a second aspect of the present invention, in the first aspect of the invention, the resin used as the material of the film has a dicarboxylic acid component of 85 to 95 mol% of terephthalic acid, 15 to 5 mol% of isophthalic acid, and a diol component of ethylene. It is an ethylene terephthalate-based copolymerized polyester having a glycol content of 55 mol% or more. In this invention, it is easy to adjust the shrinkage of the film to the specific value.
[0009]
According to a third aspect of the present invention, in the second aspect of the present invention, the film has a maximum refractive index nγ in the film plane of 1.640 or less. According to the present invention, the shrinkage finish becomes better as compared with a film having a maximum refractive index nγ larger than 1.640.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
In the polyester film of the present invention, the shrinkage in the main shrinkage direction when immersed in warm water at 70 ° C. for 5 seconds is 20% or more, and the decrease in shrinkage after storage at 30 ° C. and 35% relative humidity for 30 days. Must be 10% or less. For this purpose, it is necessary to use a material having a lowered Tg (glass transition temperature) as described below and to control the stretching conditions so that the orientation by stretching is not increased.
[0011]
In the heat-shrinkable polyester film of the present invention, it is better to devise material properties in order to exhibit the above-mentioned shrinkage properties.
A polyester resin is a crystalline resin by nature, and is oriented and crystallized by stretching a film. When a heat-shrinkable film is used, usually, printing and a bag making process using a solvent are involved. Therefore, it is necessary to lower the crystallinity of the constituent material itself in order to improve printability and solvent sealability. However, if the constituent resin is made completely amorphous, it becomes difficult to sufficiently satisfy the required properties as a heat-shrinkable film. Therefore, it is important to impart appropriate crystallinity.
[0012]
An amorphous polyester film has a sharp rise in shrinkage curve and very high shrinkage stress in accordance with its viscoelastic properties. On the other hand, by imparting appropriate crystallinity, the shrinkage rate at high temperature is reduced, and as a result, it is expected that the shrinkage curve curve becomes gentle and the shrinkage finish is improved.
[0013]
Further, by imparting crystallinity, the thickness accuracy of the stretched film is affected. There are several methods for improving the thickness accuracy depending on the stretching conditions, but the most influential on the thickness accuracy is the crystallinity of the constituent resin material.
[0014]
When the film to be heated is partially viewed in the initial stage of the stretching process, the film may show an uneven temperature distribution. In this case, the stretching is started from a higher temperature. When the resin to be used is an amorphous resin, the stretched and thinned portions are further stretched, and the entire film becomes unevenly stretched.
[0015]
On the other hand, when there is crystallinity, the initially stretched portion becomes thinner and the stretching stress increases by oriented crystallization, so that the non-stretched portion is easily stretched. As a result, the thickness is improved by uniform stretching of the entire film.
[0016]
As the polyester resin used as the material of the film of the present invention, an ethylene terephthalate copolymer polyester containing terephthalic acid as a dicarboxylic acid component and ethylene glycol as a diol component as a main component is preferably used. As the copolymerization component, a copolymerized polyester using isophthalic acid, adipic acid, sebacic acid or the like as a dicarboxylic acid, neopentyl glycol, diethylene glycol, 1,4-cyclohexanedimethanol, 1,4-butanediol or the like as a diol component is used. It is easily available industrially and has good shrinkability, which is preferable.
[0017]
In the copolyester used in the present invention, the total amount of the dicarboxylic acid component and the diol component is 200 mol%, and the total amount of the copolymer components is at least 20 mol%, more preferably at least 30 mol%. Is good. Copolymerized polyesters having a total of less than 20 mol% of copolymerized components are not preferred because the degree of crystallinity when formed into a film is high, the shrinkage finish is poor, and the solvent sealability is poor.
[0018]
In order to impart the above-mentioned viscoelastic properties to the film of the present invention, it is preferable to blend polybutylene terephthalate obtained by copolymerizing polyether. Polybutylene terephthalate itself has a very low Tg, and the effect of lowering Tg by blending can be expected sufficiently.However, when only low-temperature shrinkage is imparted with only the added amount of polybutylene terephthalate, as described above, The crystallinity is excessively increased, and the solvent sealability and ink adhesion are likely to be reduced.
[0019]
In particular, among polyethers, polyalkylene glycol (for example, polytetramethylene glycol) is the best in terms of polymerization and quality. It is one of the best compositions because copolymerization of the above polyether in polybutylene terephthalate not only satisfies the viscoelastic properties but also can expect an effect of lowering Tg.
[0020]
The content of the polyalkylene glycol in the polybutylene terephthalate is preferably from 0.3 to 10 mol%, more preferably from 0.5 to 3 mol%, in the diol component. If the amount of the polyalkylene glycol unit is less than 0.3 mol%, the physical properties are the same as those of the polybutylene terephthalate alone. On the other hand, if it exceeds 10 mol%, the compatibility with other mixed resins becomes poor, and the transparency tends to be lowered.
[0021]
The intrinsic viscosity of the film of the present invention is 0.5 or more, preferably 0.6 or more. If the intrinsic viscosity of the film is less than 0.5, the rupture resistance tends to decrease.
Further, in the film of the present invention, in order to improve the lubricity of the film, fine particles such as an organic lubricant and an inorganic lubricant may be contained, and an antistatic agent or the like may be provided by a kneading method or a coating method. It is possible. The raw material used in the present invention is not limited to being used in a state where a polyester resin having each component is mixed, but it is also possible to prepare and use a polyester equivalent to the above in the polymerization stage.
[0022]
Next, the method for producing the film of the present invention will be specifically described, but is not limited to the following method. The copolymerized polyester obtained by the polycondensation reaction is mixed and melt-extruded at a temperature of 200 to 320 ° C. Upon extrusion, a method such as a T-die method or a tubular method may be employed.
[0023]
When the T-die method is used, after extrusion, it is rapidly cooled on a casting drum having a surface temperature of 15 to 80 ° C to form an unstretched film having a thickness of 30 to 300 µm. The obtained unstretched film is stretched 1.0 to 2.0 times, preferably 1.0 to 1.5 times at a roll temperature of 60 to 120 ° C. using a heated longitudinal stretching roll. The film is stretched 1.7 to 7.0 times at a stretching temperature of 60 to 120 ° C using a tenter, and is heat-treated at a temperature of 60 to 100 ° C and wound up.
[0024]
Here, among the various characteristics of the film, since the shrinkage characteristics mainly depend on the stretching ratio and the stretching temperature, high-magnification and low-temperature stretching are preferable from the viewpoint of increasing the shrinkage in the main shrinkage direction. On the other hand, the shrinkage stress mainly depends on the stretching temperature, and the higher the draw ratio and the lower the temperature, the greater the shrinkage ability, and there is also the effect of heat treatment (annealing, particularly relaxation heat treatment) after stretching. In order to set the temperature dependence of the shrinkage rate more smoothly, one method is to adjust the draw ratio while performing stretching at a relatively high temperature, and to improve the flatness of the film after stretching and adjust the shrinkage rate. Therefore, when heat treatment is performed, the heat treatment is performed at a low temperature that does not promote crystallization of the polyester. Thereby, the shrinkage stress which largely affects the behavior of the film at the time of heat shrinkage can be suppressed to be low, and a film having gentle shrinkage characteristics can be obtained. Specific temperature conditions can be appropriately set according to the type of polyester used.
[0025]
In the present invention, during the stretching step, before or after the stretching, one or both sides of the film may be subjected to a surface activation treatment such as a corona discharge treatment to improve the adhesion of the film to the print layer. is there. In the stretching step, before or after the stretching, it is also possible to improve the adhesiveness, antistatic property, slipperiness, light-shielding property and the like of the film. Furthermore, a laminated film may be formed by a co-extrusion method or the like, for example, by using the polyester resin for the core layer and providing a copolymerized polyester resin layer having a lower crystallinity than the polyester resin for the surface layer.
[0026]
(Example)
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[0027]
(Example 1)
A dicarboxylic acid component is terephthalic acid, a diol component is ethylene glycol, and a copolymer component is a 1,4-cyclohexanedimethanol 21 mol%, isophthalic acid 10 mol% copolymerized polyester resin having an average particle size of 2.4 μm as a lubricant. Copolymerized polyester resin A was prepared by adding 0.2 wt% of regular silica. A copolymerized polybutylene terephthalate resin B in which the dicarboxylic acid component is terephthalic acid, the diol component is 1,4-butanediol, and the copolymerization component is 7 mol% of isophthalic acid and 2 mol% of polytetramethylene ether glycol (number average molecular weight 1000). Was prepared. Then, the copolymerized polyester resin A and the copolymerized polybutylene terephthalate resin B were mixed at a ratio of 80:20, melt-extruded at 260 ° C., and rapidly cooled to obtain an unstretched film. The obtained unstretched film was uniaxially stretched by a tenter in a transverse direction at a stretching temperature of 83 ° C. at a stretching ratio of 4 times, and then heat-treated to obtain a film having a thickness of 50 μm. The ratio of ethylene glycol in this film was 63.2 mol% in 100 mol% of the diol component. As the amorphous silica, Sylysia 320 manufactured by Fuji Silysia Ltd. was used. The same applies to the following examples and comparative examples.
[0028]
(Example 2)
Instead of the copolyester resin A, 0.2 wt% of amorphous silica having an average particle size of 2.4 μm was added to a copolyester resin having a copolymer component of 11 mol% of isophthalic acid and 20.5 mol% of 1,4-cyclohexanedimethanol. The added copolyester resin C was used. Then, copolymerized polyester resin C and copolymerized polybutylene terephthalate resin B were mixed at a ratio of 75:25, melt-extruded at 250 ° C., and quenched to obtain an unstretched film. The obtained unstretched film was uniaxially stretched by a tenter in an atmosphere at a stretching temperature of 80 ° C. at a stretching ratio of 4 times in the transverse direction, and then heat-treated to obtain a film having a thickness of 50 μm. The ratio of ethylene glycol in this film was 59.6 mol% in 100 mol% of the diol component.
[0029]
(Example 3)
Instead of copolymerized polyester resin A, a copolymerized polyester resin containing 11.5 mol% of isophthalic acid and 19.5 mol% of 1,4-cyclohexanedimethanol was added with amorphous silica having an average particle size of 2.4 μm. The copolyester resin D to which 2 wt% was added was used. Further, instead of the copolymerized polybutylene terephthalate resin B, a copolymerized polybutylene terephthalate resin E having a copolymer component of 5 mol% of isophthalic acid was used. Then, copolymerized polyester resin D and copolymerized polybutylene terephthalate resin E were mixed at a ratio of 70:30, melt-extruded at 250 ° C., and quenched to obtain an unstretched film. The obtained unstretched film was uniaxially stretched by a tenter in an atmosphere at a stretching temperature of 82 ° C. at a stretching ratio of 4 times in the transverse direction, and then heat-treated to obtain a film having a thickness of 50 μm. The ratio of ethylene glycol in this film was 56.3 mol% in 100 mol% of the diol component.
[0030]
(Comparative Example 1)
Instead of the copolyester resin A, 0.2 wt% of amorphous silica having an average particle diameter of 2.4 μm was added to a copolyester resin having a copolymerization component of 9.5 mol% of isophthalic acid and 22 mol% of 1,4-cyclohexanedimethanol. The added copolyester resin F was used. Further, instead of the copolymerized polybutylene terephthalate resin B, a polybutylene terephthalate resin G in which the dicarboxylic acid component was terephthalic acid and the diol component was 1,4-butanediol was used. Then, the copolymerized polyester resin F and the polybutylene terephthalate resin G were mixed at a ratio of 85:15, melt-extruded at 250 ° C., and quenched to obtain an unstretched film. The obtained unstretched film was uniaxially stretched by a tenter in an atmosphere at a stretching temperature of 90 ° C. at a stretching ratio of 4 times in the transverse direction, and then heat-treated to obtain a film having a thickness of 50 μm.
[0031]
(Comparative Example 2)
Instead of the polybutylene terephthalate resin G, a copolymerized polybutylene terephthalate resin H having a copolymer component of 10 mol% of isophthalic acid was used. Then, the copolymerized polyester resin F and the polybutylene terephthalate resin H were mixed at a ratio of 85:15, melt-extruded at 250 ° C., and quenched to obtain an unstretched film. The obtained unstretched film was uniaxially stretched by a tenter in a transverse direction at a stretching temperature of 85 ° C. at a stretching ratio of 4 times in the transverse direction, and then heat-treated to obtain a film having a thickness of 50 μm.
[0032]
(Comparative Example 3)
As in Comparative Example 1, copolymerized polyester resin F and polybutylene terephthalate resin G were mixed at a ratio of 85:15, melt-extruded at 250 ° C., and quenched to obtain an unstretched film. The obtained unstretched film was uniaxially stretched by a tenter in a transverse direction at a stretching temperature of 85 ° C. at a stretching ratio of 4 times, and then heat-treated to obtain a 50 μm thick film.
[0033]
(Method of evaluating film properties)
With respect to the films prepared in the above Examples and Comparative Examples, the following property evaluations (1) to (4) were performed.
[0034]
(1) Shrinkage ratio in the main shrinkage direction A polyester film cut into a size of 150 mm in a stretching direction and 25 mm in a direction perpendicular to the stretch direction was immersed in warm water of 70 ° C. for 5 seconds with a mark of 100 mm provided at intervals of 100 mm.
[0035]
Shrinkage (%) = {(LL ′) / L} × 100
L: distance between mark lines before contraction (mm) L ': distance between mark lines after contraction (mm)
(2) Temporal change in shrinkage after 30 ° C., 35% relative humidity × 30 days After aging the film in a thermo-hygrostat controlled at a temperature of 30 ° C. ± 1 ° C. and a relative humidity of 35% ± 2% for 30 days. I took it out. The shrinkage rate of the sample before and after aging was measured by immersing it in warm water at 70 ° C. for 5 seconds by the method (1), and the difference in shrinkage rate before and after aging was calculated.
[0036]
(3) Maximum refractive index nγ
Using an Abbe refractometer manufactured by Atago Optical Co., the maximum value of the refractive index in the film plane, that is, the refractive index nγ in the stretching direction of the uniaxially stretched film was determined. The measurement of the refractive index was performed at 23 ° C. using a sodium D line.
[0037]
(4) Low-temperature labeling film The film with the grids was formed into a cylindrical shape, covered with a plastic bottle, passed through a steam shrink tunnel, mounted on the bottle, and evaluated for shrinkage appearance. The steam shrink was performed at a temperature of 65 to 70 ° C. Labels with no lattice distortion and excellent adhesion with beautiful finish (○), those with slight distortion and wrinkles but no practical problems (△), complete shrinkage or finish Those whose properties did not completely reach the practical level were designated as (x).
[0038]
Table 1 shows the evaluation results of the characteristics of each film.
[0039]
[Table 1]
Figure 2004059680
From Table 1, the reduction (time-dependent change) which is the difference between the shrinkage rate in the main shrinkage direction and the shrinkage rate after 30 days at 30 ° C. and a relative humidity of 35% among the polyester-based films indicates the requirement of the present invention. It can be seen that in Examples 1 to 3 satisfying, the low-temperature labeling property (finished shrinkage) after 30 days has been excellent. In addition, when the requirement of the maximum refractive index nγ is satisfied in addition to the requirement, it is understood that the low-temperature labeling property is further improved. On the other hand, in Comparative Examples 1 to 3, which do not satisfy the requirements of the invention, it can be seen that the shrinkage finish is inferior.
[0040]
This embodiment has the following effects.
(1) The heat-shrinkable polyester film has a shrinkage in the main shrinkage direction of not less than 20% when immersed in warm water of 70 ° C. for 5 seconds, and is stored at 30 ° C. and 35% relative humidity for 30 days. Is not more than 10%. Therefore, by producing a polyester film whose shrinkage characteristics satisfy the above conditions, even if the conditions for transporting and storing the product are equivalent to those of general packaging materials, labeling can be performed with a low-temperature shrinker, and the film during shrinkage can be formed. Wrinkles, distortions and shrinkage spots can be reduced.
[0041]
(2) Ethylene terephthalate copolymer in which the dicarboxylic acid component is 85 to 95 mol% of terephthalic acid and 15 to 5 mol% of isophthalic acid and the diol component is 55 mol% or more of ethylene glycol Polyester. In this invention, it is easy to adjust the shrinkage of the film to the specific value.
[0042]
(3) The heat-shrinkable polyester film has an in-plane maximum refractive index nγ of 1.640 or less. In this case, as compared with a film having a maximum refractive index nγ larger than 1.640, the shrinkage finish becomes better.
[0043]
(4) Instead of using a copolymerized polyester resin obtained by simultaneously copolymerizing all dicarboxylic acid components and diol components as the polyester resin used as a material of the film, a copolymerized polyethylene terephthalate resin and a copolymerized Each component was prepared by mixing with butylene terephthalate resin. Therefore, it becomes easy to adjust the polyester resin containing each component at a desired ratio.
[0044]
(5) Since the lubricant is added to the polyester resin, stretching of the film and the like can be performed smoothly.
The embodiment is not limited to the above, and may be embodied as follows, for example.
[0045]
材料 As a film material, instead of mixing a copolymerized polyethylene terephthalate resin and a copolymerized polybutylene terephthalate resin, a copolymerized ester containing a predetermined amount of each dicarboxylic acid component and a diol component is produced and the copolymer is used. You may.
[0046]
○ A lubricant other than amorphous silica may be used as the lubricant.
○ The lubricant may not be necessary depending on the composition of the polyester resin.
The technical ideas (inventions) other than the claims described in the embodiments will be described below.
[0047]
(1) In the invention according to claim 2 or 3, the resin used as the material of the film is a copolymerized ethylene terephthalate resin containing terephthalic acid as a dicarboxylic acid component and ethylene glycol as a diol component as main components, and It is a mixture with a copolymerized polybutylene terephthalate resin containing terephthalic acid as an acid component and 1,4-butanediol as a diol component as main components.
[0048]
(2) In the invention described in any one of claims 2, 3, and the technical idea (1), the film has a transverse stretching ratio of 3.8 to 4.0 at a temperature of 80 to 83 ° C. Double uniaxial stretching and heat treatment are performed.
[0049]
【The invention's effect】
As described above in detail, according to the heat-shrinkable polyester film of the invention according to claims 1 to 3, even if the conditions for transporting and storing the product are equivalent to those of general packaging materials, the shrinkage at a low temperature is sufficient. Labeling can be performed, and wrinkles, distortion and shrinkage spots of the film during shrinkage can be reduced.

Claims (3)

70℃の温水に5秒間浸漬したときにおけるフィルムの主収縮方向の収縮率が20%以上であり、30℃かつ相対湿度35%で30日間保管した後の前記収縮率の低下が10%以下であることを特徴とする熱収縮性ポリエステル系フィルム。The shrinkage in the main shrinkage direction of the film when immersed in warm water at 70 ° C. for 5 seconds is 20% or more, and the decrease in the shrinkage after storage at 30 ° C. and 35% relative humidity for 30 days is 10% or less. A heat-shrinkable polyester film characterized by the following. 前記フィルムの素材となる樹脂は、ジカルボン酸成分がテレフタル酸85〜95mol%、イソフタル酸15〜5mol%で、ジオール成分がエチレングリコール55mol%以上であるエチレンテレフタレート系共重合ポリエステルである請求項1に記載の熱収縮性ポリエステル系フィルム。The resin as a material of the film is an ethylene terephthalate-based copolymer polyester having a dicarboxylic acid component of 85 to 95 mol% of terephthalic acid and 15 to 5 mol% of isophthalic acid, and a diol component of 55 mol% or more of ethylene glycol. The heat-shrinkable polyester film according to the above. 前記フィルムは、フィルム面内の最大屈折率nγが1.640以下である請求項2に記載の熱収縮性ポリエステル系フィルム。The heat-shrinkable polyester film according to claim 2, wherein the film has a maximum in-plane refractive index nγ of 1.640 or less.
JP2002218088A 2002-07-26 2002-07-26 Heat-shrinkable polyester film Expired - Fee Related JP3971261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218088A JP3971261B2 (en) 2002-07-26 2002-07-26 Heat-shrinkable polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218088A JP3971261B2 (en) 2002-07-26 2002-07-26 Heat-shrinkable polyester film

Publications (2)

Publication Number Publication Date
JP2004059680A true JP2004059680A (en) 2004-02-26
JP3971261B2 JP3971261B2 (en) 2007-09-05

Family

ID=31939381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218088A Expired - Fee Related JP3971261B2 (en) 2002-07-26 2002-07-26 Heat-shrinkable polyester film

Country Status (1)

Country Link
JP (1) JP3971261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101176689B1 (en) * 2007-12-21 2012-08-23 코오롱인더스트리 주식회사 Thermo-shrinkable polyester film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101176689B1 (en) * 2007-12-21 2012-08-23 코오롱인더스트리 주식회사 Thermo-shrinkable polyester film

Also Published As

Publication number Publication date
JP3971261B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP7254730B2 (en) Copolyester raw materials for amorphous films, heat-shrinkable polyester films, heat-shrinkable labels, and packages
EP2058357B1 (en) Heat-shrinkable polyester film, process for production thereof, and package comprising the film
EP0349960B1 (en) Shrinkable polyester film
KR101639101B1 (en) Heat shrinkable polyester film, method for producing same, and packaged material
US8722161B2 (en) Heat shrinkable polyester film, method for producing same, and packaged body
JP2001081210A (en) Heat-shrinkable polyester-based film and its preparation
JPH0733064B2 (en) Polyester shrink film
WO2012053821A2 (en) Heat-shrinkable polyester film
JP3509079B2 (en) Cavity-containing heat-shrinkable polyester film
JP4232004B2 (en) Biaxially oriented polyester film
JP3939470B2 (en) Heat-shrinkable polyester film
JP3379189B2 (en) Heat-shrinkable polyester film
WO2020026972A1 (en) Copolyester raw material for amorphous film, heat-shrinkable polyester-based film, heat-shrinkable label, and package
JPH08244114A (en) Polyester type shrinkable film
JPH0732478A (en) Delustered heat shrinkable polyester film
JP3960741B2 (en) Heat-shrinkable polyester multilayer film
JPH05254015A (en) Polyester-based shrink film
JP4224177B2 (en) Polyester multilayer shrink film and use thereof
JP3971261B2 (en) Heat-shrinkable polyester film
JPH1171473A (en) Thermally shrinkable polyester-based film
JP2004051888A (en) Heat shrinkable polyester film
JPH05138737A (en) Polyester type shrunk film
JP4250383B2 (en) Heat-shrinkable polyester film
JP2001181416A (en) Heat-shrinkable polyester film
JP2002080618A (en) Heat-shrinkable polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060524

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060706

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060801

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3971261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees