JP2004059186A - Reformation soil supply device for soil reformation, and self-propelled soil reforming machine with the same - Google Patents

Reformation soil supply device for soil reformation, and self-propelled soil reforming machine with the same Download PDF

Info

Publication number
JP2004059186A
JP2004059186A JP2002217188A JP2002217188A JP2004059186A JP 2004059186 A JP2004059186 A JP 2004059186A JP 2002217188 A JP2002217188 A JP 2002217188A JP 2002217188 A JP2002217188 A JP 2002217188A JP 2004059186 A JP2004059186 A JP 2004059186A
Authority
JP
Japan
Prior art keywords
soil
improved
hopper
supply device
conveyor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002217188A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sekiguchi
関口 芳浩
Yasuhiro Yoshida
吉田 泰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2002217188A priority Critical patent/JP2004059186A/en
Publication of JP2004059186A publication Critical patent/JP2004059186A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reformation soil supply device for soil reformation capable of stably and quantitatively supplying reformation soil in hard clay blocks. <P>SOLUTION: A carrying conveyor 6 is disposed under a hopper 2 for charging the reformation soil T, a discharge port 5 is provided at a discharge part at a lower part of the hopper 2, and close to it, an endless belt body 10 to compose a scraping mechanism 8 is provided in the hopper 2. The endless belt body 10 comprises a start wheel 12 provided at one end part of a frame 11, a guide wheel 14 provided at the other end part, and a belt 15 comprising a plurality of articulation bodies 16 wound around the start wheel 12 and the guide wheel 14. The endless belt body 10 is disposed to be vertical, with the start wheel 12 on the upper side. An angle α formed by a straight part 17 to get in contact with the reformation soil T and an upper surface 7 of the conveyor 6 is set at about 90° from a scraping direction toward the straight part 17. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、土質改良用被改良土供給装置に関し、特には硬くて粘性の高い被改良土を安定して供給するための被改良土供給装置、及びそれを搭載した自走式土質改良機に関する。
【0002】
【従来の技術】
従来、土木建築工事等において、掘削後の埋め戻しに使えない、軟弱で支持力の弱い残土に、所定の割合の土質改良材を添加して混合し、支持力の強い土壌に改良することが行われている。この残土(被改良土)に所定の割合の土質改良材を添加し、効率的に土壌改良するために、一定量の被改良土を連続的に供給しながら所定の割合の土質改良材を連続的に添加する方法がとられている。そのためには、被改良土を連続的に定量供給することが重要である。
【0003】
一定量の被改良土を連続的に供給する方法としては、特開平9−195265号公報および特開平11−165878号公報に開示されたものがある。図9はそれらの土質改良用の被改良土供給装置70の概略図である。図9において、ホッパ2の下方には、被改良土を搬送するコンベヤ6が設けられている。ホッパ2の下方排出部には、搬送される被改良土Tの、コンベヤ6の上面7からの高さHを規定する排出口5が形成されている。排出口5近傍のホッパ2内には、複数個の突起部材72を有する掻き出しロータ71が設けられており、この掻き出しロータ71は回転駆動されている。排出口5の外側には土質改良材供給装置53が配設されており、そのシュータ57はコンベヤ6上に開口して所定量の土質改良材を排出するようになっている。
【0004】
次に作動について説明する。図9において、図示しない油圧ショベル等の積込機によりホッパ2内に投入された被改良土Tは、コンベヤ6により矢印方向に搬送される。そして排出口5近傍では、被改良土Tはさらに矢印方向に回転駆動される掻き出しロータ71により排出口5側に掻き出されて白矢印の方向に進み、排出口5でコンベヤ6の上面7からの高さHを規定されてホッパ2の外に送り出される。したがって、コンベヤ6の搬送速度を定めれば被改良土Tの時間当りの供給量は規定される。次に土質改良材供給装置53は所定量の土質改良材Kをシュータ57から被改良土T上に添加する。これにより所定の混合比の被改良土と土質改良材とが連続的に供給される。その後、この被改良土と土質改良材とは図示しない混合機等で混合され、改良土となる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記構成においては以下のような問題点がある。
被改良土が硬い粘土の塊の場合には、掻き出しロータ71とコンベヤ6との間に土のブリッジが形成され、被改良土が所定量ずつ排出されないという問題がある。図10は、その状態を示す説明図である。図9のものと同一部材には同一符号を付して説明は省略し、異なる部分についてのみ説明する。図10において、掻き出しロータ71の回転中心Pから上方の部分では、被改良土Tには突起部材72により搬送方向と逆向きの力が加えられ、斜め下向きの白矢印Eの力が発生する。また、ベルトコンベヤ6上の被改良土Tには、矢印に示すベルトコンベヤ6の搬送方向の力と、被改良土Tの重力の反力との合力である斜め上向きの白矢印Fの力が発生する。この力EとFとにより図のハッチングに示すブリッジが形成され、被改良土Tとコンベヤ6との間でスリップが起き、所定量の被改良土Tが供給されないという問題がある。
図11は、ホッパ2の正面断面図である。図11において、ホッパ2の上部の、開口部3の夾角βは鈍角(例えば140°)であり、開口部3の下部に設けられ、かつ下方のコンベヤ6に向けて開口するガイド部4は略垂直である。このホッパ2に硬い粘土の塊の被改良土Tを入れた場合、矢印に示すような斜め方向の力が発生するので、図のハッチングに示すように、開口部3にブリッジが形成される。このため、被改良土Tがガイド部4に落下せず、被改良土Tが所定量ずつ供給されないという問題がある。
【0006】
本発明は、上記の問題点に着目してなされたものであり、土質にかかわらず、所定量の被改良土を安定して供給可能な土質改良用被改良土供給装置およびそれを搭載した自走式土質改良機を提供することを目的としている。
【0007】
【課題を解決するための手段、作用及び効果】
上記の目的を達成するために、第1発明は、土質改良用被改良土供給装置において、被改良土を投入するホッパと、前記ホッパの下方に配置され、被改良土を搬送するコンベヤと、前記ホッパに設けられ、被改良土を前記コンベヤと共働して掻き出し方向に供給する掻き出し機構とを備え、前記掻き出し機構は帯状無端体である構成としている。
【0008】
第1発明によると、掻き出し機構を帯状無端体としたため、掻き出し部の上部の被改良土を掻き出し方向の反対方向に押し戻す力が加わらないようにすることができる。したがって、被改良土が硬い粘土であっても、掻き出し機構部とコンベヤとの間に被改良土のブリッジができることはなく、被改良土を安定して供給することができる。
【0009】
第2発明は、第1発明において、前記帯状無端体は、複数個の連接体により構成されている。
【0010】
第2発明によると、第1発明の作用及び効果を有し、さらに個々の連接体はそれぞれ揺動、振動するので、粘土質被改良土の付着を防止できる。
【0011】
第3発明は、第1又は第2発明において、前記帯状無端体に被改良土と接触する直線部を設け、その直線部と前記コンベヤの上面との成す角度は、0°より大きい角度で約90°未満である構成としている。
【0012】
第3発明によると、第1、第2の発明の作用、効果に加え、被改良土に掻き出し方向と反対方向の力が加わることを、より確実に防止できる。したがって、被改良土が硬い粘土であっても掻き出し機構部とコンベヤとの間にブリッジができることを確実に防止できる。
【0013】
第4発明は、土質改良用被改良土供給装置において、被改良土を投入するホッパと、前記ホッパの下方に配置され、被改良土を搬送するコンベヤと、前記ホッパに設けられ、被改良土を前記コンベヤと共働して掻き出し方向に供給する掻き出し機構とを備え、前記掻き出し機構は、複数個の掻き出しロータを、順次上方に配置した構成としている。
【0014】
第4発明によると、複数個の掻き出しロータの位置を、順次上方に設けることにより、下方の定量供給用の掻き出しロータの上部の被改良土に、掻き出し方向の反対方向に押し戻す力が加わらないようにすることができる。したがって、被改良土が硬い粘土であっても掻き出し機構部とコンベヤとの間に被改良土のブリッジができることはなく、被改良土を安定して供給できる。
【0015】
第5発明は、第4発明において、前記上方に位置する掻き出しロータは、前記ホッパに着脱自在である構成としている。
【0016】
第5発明によると、被改良土が一般土質の場合には掻き出しロータを1個として作業し、やや粘性のある被改良土の場合には、その上方に掻き出しロータを追加することができる。したがって、各種の土質に対して最適状態で容易に対応が可能であり、作業性、汎用性の向上が図れる。
【0017】
第6発明は、第4発明において、前記上方に位置する掻き出しロータは、前記ホッパに着脱可能な第2のホッパに装着され、前記第2のホッパは、ほぼ垂直に対向する側壁面を有する開口部と、前記ホッパの上面を覆うほぼ水平な上面部とを有する構成としている。
【0018】
第6発明によると、コンベヤに向けた開口部に、ほぼ垂直に対向する側壁面を設けたため、被改良土が粘土質であっても落下し易いとともに、上面部を平面にしたためブリッジができにくい。また、第2のホッパを着脱可能にしたため、被改良土が一般土質の場合には掻き出しロータを1個として一般土質に最適な状態で作業できる。さらに、被改良土が硬くてねばりのある粘土質の場合には掻き出しロータと第2のホッパとを追加することによりブリッジの生成を防止するとともに被改良土のコンベヤへの落下を容易にし、安定した定量供給を可能とすることができる。したがって、土質に応じてそれぞれ最適な状態で作業可能であり、作業性、汎用性の向上が図れる。
【0019】
第7発明は、自走式土質改良機において、被改良土を投入するホッパと、前記ホッパの下方に配置され、被改良土を搬送するコンベヤと、前記ホッパに設けられ、被改良土を前記コンベヤと共働して供給する帯状無端体、又は順次上方に配置した複数個の掻き出しロータと、ほぼ垂直に対向する側壁面を有する開口部と、前記ホッパの上面を覆うほぼ水平な上面部とを有し、前記ホッパに着脱可能な第2のホッパとを有する土質改良用被改良土供給装置を備えた構成としている。
【0020】
第7発明によると、自走式土質改良機に、被改良土が一般土質であっても、硬い粘土質であっても安定して供給可能な土質改良用被改良土供給装置を搭載したため、任意の作業現場で、各種の土質に対応して効率的に作業することができる。そのため、自走式土質改良機の稼働率が向上すると共に、作業コストの低減が図れる。
【0021】
【発明の実施の形態】
以下に本発明に係る土質改良用被改良土供給装置の実施形態について図面を参照して詳述する。
【0022】
図1は、第1実施形態の土質改良用被改良土供給装置1の側面断面図、図2は図1のA−A矢視図である。図1、図2において、被改良土Tを貯溜するホッパ2の下方には被改良土Tを搬送するコンベヤ6が配置され、ホッパ2の下部の排出部には、被改良土Tのコンベヤ6の上面7からの高さHを規定する排出口5が形成されている。コンベヤ6はリンク式コンベヤ又はベルトコンベヤである。排出口5の近傍の、ホッパ2内には掻き出し機構8を構成する帯状無端体10が設けられている。帯状無端体10は、フレーム11の一端部に設けられ、かつ油圧モータ13により駆動される起動輪12と、他端部に設けられた誘導輪14と、起動輪12および誘導輪14に掛け回された、複数個の連接体16をピン連結したベルト15とを有している。帯状無端体10は、起動輪12側を上方にして略直立して配置され、フレーム11の両側面に固設されたアーム20,20の両端部が、ホッパ2の開口部3に設けられたブラケット21,21にボルト22で締着されていて、このアーム20,20を介して支持されている。帯状無端体10には被改良土Tと接触する直線部(ホッパ内方に対面する側の直線部)17が設けられており、この直線部17とコンベヤ6の上面7との成す角度αは、0°より大きい角度で、約90°未満である。
【0023】
次に作動について説明する。図1において、油圧ショベル等の積込機によりホッパ2に積み込まれた被改良土Tは、コンベヤ6が矢印方向に駆動されると白矢印aの方向に搬送される。また、起動輪12が矢印方向に回転駆動されると、ベルト15の直線部17に接する被改良土Tには白矢印bのような下向きの力が加えられる。したがって、帯状無端体10とコンベヤ6との間にブリッジが形成されることは無く、コンベヤ6の上面7に加わる被改良土Tの力は増加して搬送する力は大きくなる。さらに、帯状無端体10の下部では白矢印cのように排出口5の方向に掻き出す力が加えられるので、被改良土Tは白矢印dの方向に大きな力で押し出され、高さHで安定して供給される。
【0024】
本発明は上記のような構成としたため、以下のような効果が得られる。
被改良土には、コンベヤの搬送方向と逆方向の力が加わらないため、被改良土が硬い粘土の塊であっても帯状無端体とコンベヤとの間にブリッジが形成されることは無い。また、ベルトの直線部により被改良土に下向きの力が加わるため、被改良土をコンベヤに押し付ける力が大きくなる。そのため、被改良土とコンベヤとの間の摩擦力が増大し、被改良土とベルトとの間でスリップが発生する恐れは少なく、大きな力で搬送される。したがって、所定量の被改良土を安定して供給することができる。
帯状無端体の起動輪を上方に位置させたため、起動輪の歯と連接体との間に石等を噛み込むことは無く、この帯状無端体は円滑に駆動され、故障の恐れも少ない。
【0025】
図3は、第2実施形態の土質改良用被改良土供給装置1aの側面断面図である。第1実施形態のものと同一部材には同一符号を付して説明は省略し、異なる部分についてのみ説明する。帯状無端体10の被改良土Tと接する直線部17と、コンベヤ6の上面7との成す角度αは約45°である。したがって、被改良土Tには白矢印のように掻き出し方向に向かって斜め方向に力が加えられ、排出口5に被改良土Tを送り込む力を増加させることができ、一層安定した状態で被改良土Tを定量供給できる。
【0026】
図4は第3実施形態の土質改良用被改良土供給装置1bの側面断面図であり、図5は図4のB−B矢視図(正面断面図)である。第1実施形態のものと同一部材には同一符号を付して説明は省略し、異なる部分についてのみ説明する。
図4において、ホッパ2の排出口5の近傍に設けられた第1掻き出しロータ30の前方に第2掻き出しロータ31を設け、掻き出し機構8を構成している。第1掻き出しロータ30及び第2掻き出しロータ31は、ロータ32の周囲に複数個の突起部材33を有している。第2掻き出しロータ31の突起部材33の下端部とコンベヤ6の上面7との間隔Cは、第1掻き出しロータ30の中心Pの、コンベヤ6の上面7からの距離Dとほぼ同じである。
図5において、第1掻き出しロータ30はホッパ2のガイド部4に回転自在に取付けられている。第2掻き出しロータ31は両端部をブラケット34,34に一体的に回転自在に支持され、ブラケット34,34はホッパ2の開口部3に着脱自在に取付けられている。第1掻き出しロータ30および第2掻き出しロータ31は図4に示す矢印のように同一方向に回転駆動される。
【0027】
次に、作動について説明する。第1掻き出しロータ30と第2掻き出しロータ31とを駆動すると、被改良土Tは白矢印に示す方向に掻き出される。このとき、第2掻き出しロータ31があるため、第1掻き出しロータ30の上部には、掻き出し方向と反対方向の力は発生せず、被改良土Tが硬い粘土の塊でも、第1掻き出しロータ30とコンベヤ6との間にブリッジができることは無い。また、第2掻き出しロータ31の位置は高いため、第2掻き出しロータ31とコンベヤ6との間にブリッジができることは無い。したがって、被改良土Tを安定して定量供給することができる。なお、本実施形態では掻き出しロータは2個であるが、掻き出しロータは3個以上取付けてもよい。
【0028】
前述のように、図11に示すように、被改良土が硬い粘土の塊の場合にはホッパ2の開口部3にブリッジが形成され、下部のガイド部4に被改良土が落下せず、被改良土が定量供給されないという問題がある。図6はこの問題を解決するために考案された第4実施形態の土質改良用被改良土供給装置1cの正面断面図である。図5に示す第3実施形態のものと同一部材には同一符号を付して説明は省略し、異なる部分についてのみ説明する。
図6において、ホッパ2の開口部3には、ホッパ2のガイド部4と同一幅の、ほぼ垂直に対向する側壁面41,41と、上部のほぼ水平な一対の上面部42,42とを有する第2のホッパ40が、ボルト43により着脱自在に締着され、上面部42,42はホッパ2の開口部3を覆っている。第2のホッパ40の、側壁面41,41の間には第2掻き出しロータ31が回転自在に取付けられ、第2のホッパ40と一体的に構成されている。
【0029】
図7は、第2のホッパ40とホッパ2との分離状態を示す斜視図である。図7に示すように、ホッパ2のガイド部4には第1掻き出しロータ30が回転自在に取付けられている。第2のホッパ40は前述のようにほぼ水平な上面部42と、ほぼ垂直な側壁面41とを有し、側壁面41,41には第2掻き出しロータ31が回転自在に取付けられている。第2のホッパ40はホッパ2の上面を覆うように組み付けられ、ボルト43で締着される。
【0030】
次に第2のホッパ40の作用について説明する。第2のホッパ40は上面部42がほぼ水平なため、積載された被改良土には上向きの力が発生する。したがって、被改良土が硬い粘土の塊であってもブリッジが形成されることは無い、また、ほぼ垂直な側壁面41を設けたため被改良土は落下し易い。万一落下しない場合には油圧ショベルのバケット等で下に押し付けて落下させることもできる。さらに上面部42上に溜まった被改良土を、前述のバケット等で側壁面41,41の間に落とし込むこともでき、硬い粘土の塊であっても安定して定量供給することができる。
【0031】
なお、第2のホッパ40は第1、第2実施形態の帯状無端体10と組み合わせてもよい。
【0032】
図8は本発明の土質改良用被改良土供給装置の一例として、帯状無端体10を備えた土質改良用被改良土供給装置1を搭載した自走式土質改良機50の側面図である。図8において、走行用履帯51を有するフレーム52の前方部には被改良土を投入するホッパ2が搭載されている。ホッパ2は、帯状無端体10を備えている。ホッパ2の下方にはコンベヤ6が配設されており、ホッパ2の後方には土質改良材供給装置53が設けられている。フレーム52の中央部には、コンベヤ6で搬送された被改良土と土質改良材とを破砕、混合する解砕機54が搭載されている。フレーム52の後方部には製品搬出用の搬出用コンベヤ55が設けられている。なお、56はエンジン等の駆動装置である。
【0033】
次に、作動について説明する。図8において、図示しない油圧ショベル等の積込機によってホッパ2内に投入された被改良土は、コンベヤ6及び帯状無端体10の共働によってホッパ2から定量供給される。次に、土質改良材供給装置53は所定量の土質改良材を、前記コンベヤ6で供給される被改良土の上に添加し、これが解砕機54によって解砕、混合され、改良土が生産される。生産された改良土は、搬出コンベヤ55により機外に搬出される。本機は自走式であるため、任意の作業現場に移動可能である。
【0034】
本構成によれば、硬い粘土の塊の被改良土であっても、安定して連続的に定量供給可能な土質改良用被改良土供給装置を自走式土質改良機に搭載した。そのため、任意の作業現場で土質改良作業を行うことができ、しかも各種の土質の被改良土に対応可能であり、作業効率、稼働率および汎用性を向上でき、作業コストを低減できる。
【0035】
上記実施形態においては、自走式土質改良機に前述の第1実施形態の土質改良用被改良土供給装置1を搭載しているが、第2実施形態、第3実施形態および第4実施形態の土質改良用被改良土供給装置1a,1b,1cを搭載してもよい。
【図面の簡単な説明】
【図1】本発明の第1実施形態の被改良土供給装置の側面断面図である。
【図2】図1のA−A矢視図である。
【図3】本発明の第2実施形態の被改良土供給装置の側面断面図である。
【図4】本発明の第3実施形態の被改良土供給装置の側面断面図である。
【図5】図4のB−B矢視図である。
【図6】本発明の第4実施形態の被改良土供給装置の正面断面図である。
【図7】ホッパと第2のホッパの構成を示す斜視図である。
【図8】本発明の被改良土供給装置を搭載した自走式土質改良機の側面図である。
【図9】従来の被改良土供給装置の側面断面図である。
【図10】従来の被改良土供給装置の問題点を説明するための側面断面図である。
【図11】従来の被改良土供給装置の問題点を説明するための正面断面図である。
【符号の説明】
1,1a,1b,1c…土質改良用被改良土供給装置、2…ホッパ、3…開口部、4…ガイド部、5…排出口、6…コンベヤ、7…上面、8…掻き出し機構、10…帯状無端体、11…フレーム、12…起動輪、13…油圧モータ、14…誘導輪、15…ベルト、16…連接体、17…直線部、20…アーム、21,34…ブラケット、30…第1掻き出しロータ、31…第2掻き出しロータ、32…ロータ、33…突起部材、40…第2のホッパ、41…側壁面、42…上面部、44…開口部、50…自走式土質改良機、51…走行用履帯、52…フレーム、53…土質改良材供給装置、54…解砕機、55…搬出用コンベヤ、56…駆動装置、57…シュータ、71…掻き出しロータ、72…突起部材。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improved soil supply device for soil improvement, and more particularly to an improved soil supply device for stably supplying hard and viscous soil to be improved, and a self-propelled soil improvement machine equipped with the same. .
[0002]
[Prior art]
Conventionally, in civil engineering construction work, etc., it is possible to add a predetermined ratio of soil improvement material to soft and weak supporting soil that can not be used for backfilling after excavation and mix it to improve soil with strong supporting capacity. Is being done. A predetermined ratio of the soil improvement material is added to the remaining soil (the soil to be improved), and a predetermined amount of the soil improvement material is continuously supplied while a constant amount of the soil to be improved is continuously supplied to efficiently improve the soil. The method of adding is used. For that purpose, it is important to continuously supply the soil to be improved.
[0003]
As a method for continuously supplying a fixed amount of the soil to be improved, there are methods disclosed in JP-A-9-195265 and JP-A-11-165878. FIG. 9 is a schematic view of the improved soil supply device 70 for improving the soil quality. In FIG. 9, a conveyor 6 for transporting the soil to be improved is provided below the hopper 2. A discharge port 5 for defining a height H of the conveyed soil T to be conveyed from the upper surface 7 of the conveyor 6 is formed in a lower discharge portion of the hopper 2. A scraping rotor 71 having a plurality of projecting members 72 is provided in the hopper 2 near the discharge port 5, and the scraping rotor 71 is driven to rotate. A soil improving material supply device 53 is provided outside the discharge port 5, and the shooter 57 is opened on the conveyor 6 to discharge a predetermined amount of the soil improving material.
[0004]
Next, the operation will be described. In FIG. 9, the soil T to be improved, which has been introduced into the hopper 2 by a loading machine such as a hydraulic shovel (not shown), is conveyed by the conveyor 6 in the direction of the arrow. In the vicinity of the discharge port 5, the soil to be improved T is further scraped toward the discharge port 5 by a scraping rotor 71 that is driven to rotate in the direction of the arrow, advances in the direction of the white arrow, and from the upper surface 7 of the conveyor 6 at the discharge port 5. Is sent out of the hopper 2 with a predetermined height H. Therefore, if the conveying speed of the conveyor 6 is determined, the supply amount of the soil to be improved T per hour is determined. Next, the soil improving material supply device 53 adds a predetermined amount of the soil improving material K from the shooter 57 onto the soil to be improved T. As a result, the soil to be improved and the soil improving material having a predetermined mixing ratio are continuously supplied. Thereafter, the soil to be improved and the soil improvement material are mixed by a mixer or the like (not shown) to form an improved soil.
[0005]
[Problems to be solved by the invention]
However, the above configuration has the following problems.
When the soil to be improved is a hard clay mass, a bridge of soil is formed between the scraping rotor 71 and the conveyor 6, and there is a problem that the soil to be improved is not discharged by a predetermined amount. FIG. 10 is an explanatory diagram showing this state. The same members as those in FIG. 9 are denoted by the same reference numerals, description thereof will be omitted, and only different portions will be described. In FIG. 10, in a portion above the rotation center P of the scraping rotor 71, a force in a direction opposite to the transport direction is applied to the improved soil T by the protrusion member 72, and a force of a diagonally downward white arrow E is generated. On the soil T to be improved on the belt conveyor 6, a force of a diagonally upward white arrow F which is a resultant force of the force in the conveying direction of the belt conveyor 6 shown by the arrow and the reaction force of the gravity of the soil T to be improved is shown. appear. The bridges shown by hatching in the figure are formed by the forces E and F, causing a slip between the soil T to be improved and the conveyor 6, and there is a problem that a predetermined amount of the soil T is not supplied.
FIG. 11 is a front sectional view of the hopper 2. In FIG. 11, the included angle β of the opening 3 at the upper part of the hopper 2 is an obtuse angle (for example, 140 °), and the guide part 4 provided at the lower part of the opening 3 and opening toward the lower conveyor 6 is substantially formed. Vertical. When the hard soil to be improved T is put into the hopper 2, a diagonal force as shown by an arrow is generated, so that a bridge is formed in the opening 3 as shown by hatching in the figure. For this reason, there is a problem that the soil to be improved T does not fall on the guide portion 4 and the soil to be improved T is not supplied by a predetermined amount.
[0006]
The present invention has been made in view of the above-mentioned problems, and has an improved soil supply device for improving soil quality capable of stably supplying a predetermined amount of soil to be improved irrespective of the soil quality, and a self-installed soil-supplying device equipped with the same. It aims to provide a traveling soil improvement machine.
[0007]
Means for Solving the Problems, Functions and Effects
In order to achieve the above object, a first aspect of the present invention relates to a soil improvement target soil supply device, wherein a hopper for charging the soil to be improved, and a conveyor disposed below the hopper and transporting the soil to be improved, A scraping mechanism provided in the hopper to supply the soil to be improved in the scraping direction in cooperation with the conveyor, wherein the scraping mechanism is a belt-shaped endless body.
[0008]
According to the first invention, since the scraping mechanism is a belt-like endless body, it is possible to prevent a force for pushing back the soil to be improved above the scraping portion in a direction opposite to the scraping direction. Therefore, even if the soil to be improved is hard clay, the soil to be improved is not bridged between the scraping mechanism and the conveyor, and the soil to be improved can be supplied stably.
[0009]
In a second aspect based on the first aspect, the strip-shaped endless body is constituted by a plurality of connecting bodies.
[0010]
According to the second aspect of the present invention, it has the functions and effects of the first aspect of the present invention, and furthermore, since each connecting member swings and vibrates, it is possible to prevent the adhesion of the clay improved soil.
[0011]
According to a third aspect of the present invention, in the first or second aspect, a straight portion that contacts the soil to be improved is provided on the endless belt-like body, and an angle formed by the straight portion and the upper surface of the conveyor is an angle greater than 0 °. The angle is less than 90 °.
[0012]
According to the third invention, in addition to the functions and effects of the first and second inventions, it is possible to more reliably prevent a force in a direction opposite to the scraping direction from being applied to the soil to be improved. Therefore, even if the soil to be improved is hard clay, it is possible to reliably prevent a bridge from being formed between the scraping mechanism and the conveyor.
[0013]
According to a fourth aspect of the present invention, there is provided an improved soil supply apparatus for improving soil quality, wherein a hopper for charging the soil to be improved, a conveyor disposed below the hopper for transporting the soil to be improved, and a soil provided on the hopper, And a scraping mechanism which cooperates with the conveyor to supply the scraping material in a scraping direction. The scraping mechanism has a structure in which a plurality of scraping rotors are sequentially arranged upward.
[0014]
According to the fourth aspect of the present invention, by sequentially providing the positions of the plurality of scraping rotors in the upper portion, a force for pushing back in the opposite direction to the scraping direction is not applied to the improved soil on the lower portion of the scraping rotor for quantitative supply. Can be Therefore, even if the soil to be improved is hard clay, the soil to be improved is not bridged between the scraping mechanism and the conveyor, and the soil to be improved can be supplied stably.
[0015]
In a fifth aspect based on the fourth aspect, the scraping rotor positioned above is detachable from the hopper.
[0016]
According to the fifth invention, when the soil to be improved is general soil, one scraping rotor is used, and when the soil to be improved is slightly viscous, the scraping rotor can be added above the soil. Therefore, it is possible to easily cope with various types of soil in an optimum state, and workability and versatility can be improved.
[0017]
In a sixth aspect based on the fourth aspect, the scraping rotor positioned above is mounted on a second hopper detachable from the hopper, and the second hopper is provided with an opening having a substantially vertically opposed side wall surface. And a substantially horizontal upper surface that covers the upper surface of the hopper.
[0018]
According to the sixth aspect, the opening facing the conveyor is provided with substantially vertically opposed side walls, so that even if the soil to be improved is clay-based, it is easy to fall, and the upper surface is made flat so that it is difficult to form a bridge. . In addition, since the second hopper is made detachable, when the soil to be improved is general soil, one scraping rotor can be used to work in an optimum state for general soil. Further, in the case where the soil to be improved is a hard and sticky clay, addition of a scraping rotor and a second hopper prevents the formation of bridges and facilitates the drop of the soil to be improved onto the conveyor, thereby stabilizing the soil. It is possible to provide a fixed quantity supply. Therefore, work can be performed in an optimum state according to soil properties, and workability and versatility can be improved.
[0019]
A seventh invention is a self-propelled soil improvement machine, wherein a hopper for charging the soil to be improved, a conveyor disposed below the hopper and configured to transport the soil to be improved, and the soil provided on the hopper is provided. A belt-shaped endless body to be supplied in cooperation with the conveyor, or a plurality of scraping rotors sequentially arranged above, an opening having side walls facing substantially vertically, and a substantially horizontal upper surface covering the upper surface of the hopper; And a second soil hopper that can be attached to and detached from the hopper.
[0020]
According to the seventh invention, the self-propelled soil improvement machine is equipped with an improved soil supply device for soil improvement that can stably supply even if the soil to be improved is general soil or hard clay. It is possible to work efficiently at any work site corresponding to various types of soil. Therefore, the operation rate of the self-propelled soil improvement machine is improved, and the working cost can be reduced.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an improved soil supply device for improving soil quality according to the present invention will be described in detail with reference to the drawings.
[0022]
FIG. 1 is a side sectional view of an improved soil supply device 1 for soil improvement according to a first embodiment, and FIG. 2 is a view taken along the line AA in FIG. 1. 1 and 2, a conveyor 6 for transporting the soil T to be improved is disposed below the hopper 2 for storing the soil T to be improved, and a conveyor 6 for the soil T to be improved is provided at a discharge portion below the hopper 2. A discharge port 5 for defining a height H from the upper surface 7 of the nozzle is formed. The conveyor 6 is a link conveyor or a belt conveyor. A strip-shaped endless body 10 constituting the scraping mechanism 8 is provided in the hopper 2 near the discharge port 5. The belt-shaped endless body 10 is provided at one end of a frame 11 and driven by a hydraulic motor 13, a guide wheel 14 provided at the other end, and looped around the start wheel 12 and the guide wheel 14. And a belt 15 formed by connecting a plurality of connecting members 16 with pins. The belt-shaped endless body 10 is disposed substantially upright with the starting wheel 12 side facing upward, and both ends of arms 20, 20 fixed to both side surfaces of the frame 11 are provided in the opening 3 of the hopper 2. The brackets 21 and 21 are fastened with bolts 22 and are supported via the arms 20 and 20. The belt-shaped endless body 10 is provided with a straight portion (a straight portion facing the inside of the hopper) 17 that comes into contact with the soil T to be improved, and the angle α formed between the straight portion 17 and the upper surface 7 of the conveyor 6 is , At angles greater than 0 ° and less than about 90 °.
[0023]
Next, the operation will be described. In FIG. 1, the soil to be improved T loaded on the hopper 2 by a loading machine such as a hydraulic shovel is conveyed in the direction of the white arrow a when the conveyor 6 is driven in the direction of the arrow. When the starting wheel 12 is driven to rotate in the direction of the arrow, a downward force as indicated by a white arrow b is applied to the soil to be improved T that is in contact with the linear portion 17 of the belt 15. Therefore, no bridge is formed between the belt-shaped endless body 10 and the conveyor 6, and the force of the improved soil T applied to the upper surface 7 of the conveyor 6 increases, and the conveying force increases. Further, since a force for scraping in the direction of the discharge port 5 is applied to the lower part of the strip-shaped endless body 10 as shown by the white arrow c, the soil to be improved T is extruded with a large force in the direction of the white arrow d and is stable at the height H. Supplied as
[0024]
Since the present invention is configured as described above, the following effects can be obtained.
Since no force is applied to the soil to be improved in a direction opposite to the conveying direction of the conveyor, no bridge is formed between the belt-shaped endless body and the conveyor even if the soil to be improved is a hard clay mass. In addition, since a downward force is applied to the soil to be improved by the straight portion of the belt, the force for pressing the soil to be improved against the conveyor increases. For this reason, the frictional force between the soil to be improved and the conveyor increases, and there is little possibility that slippage occurs between the soil to be improved and the belt, and the belt is conveyed with a large force. Therefore, it is possible to stably supply a predetermined amount of the soil to be improved.
Since the starting wheel of the belt-shaped endless body is positioned above, the stone or the like does not bite between the teeth of the starting wheel and the connecting body, and the belt-shaped endless body is driven smoothly, and there is little possibility of failure.
[0025]
FIG. 3 is a side cross-sectional view of an improved soil supply device 1a for soil improvement according to a second embodiment. The same members as those of the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and only different portions will be described. The angle α formed between the straight portion 17 of the belt-shaped endless body 10 that comes into contact with the soil T to be improved and the upper surface 7 of the conveyor 6 is about 45 °. Therefore, a force is applied to the soil T to be improved in a diagonal direction toward the scraping direction as indicated by a white arrow, and the force for feeding the soil T to the discharge port 5 can be increased. Improved soil T can be supplied quantitatively.
[0026]
FIG. 4 is a side sectional view of an improved soil supply device for soil improvement 1b according to a third embodiment, and FIG. 5 is a view taken in the direction of arrows BB (a front sectional view) of FIG. The same members as those of the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and only different portions will be described.
In FIG. 4, a second scraping rotor 31 is provided in front of a first scraping rotor 30 provided near the discharge port 5 of the hopper 2 to constitute a scraping mechanism 8. The first scraping rotor 30 and the second scraping rotor 31 have a plurality of projecting members 33 around the rotor 32. The distance C between the lower end of the protrusion member 33 of the second scraping rotor 31 and the upper surface 7 of the conveyor 6 is substantially the same as the distance D of the center P of the first scraping rotor 30 from the upper surface 7 of the conveyor 6.
In FIG. 5, the first scraping rotor 30 is rotatably attached to the guide portion 4 of the hopper 2. Both ends of the second scraping rotor 31 are rotatably supported integrally with brackets 34, 34, and the brackets 34, 34 are detachably attached to the opening 3 of the hopper 2. The first scraping rotor 30 and the second scraping rotor 31 are driven to rotate in the same direction as indicated by the arrow shown in FIG.
[0027]
Next, the operation will be described. When the first scraping rotor 30 and the second scraping rotor 31 are driven, the soil T to be improved is scraped in the direction indicated by the white arrow. At this time, since the second scraping rotor 31 is provided, no force in the direction opposite to the scraping direction is generated above the first scraping rotor 30, and even if the soil to be improved T is a hard lump of clay, the first scraping rotor 30 may be used. There is no bridge between the conveyor and the conveyor. Further, since the position of the second scraping rotor 31 is high, no bridge is formed between the second scraping rotor 31 and the conveyor 6. Therefore, it is possible to stably supply the soil T to be improved. In the present embodiment, the number of scraping rotors is two, but three or more scraping rotors may be attached.
[0028]
As described above, as shown in FIG. 11, when the soil to be improved is a hard clay mass, a bridge is formed in the opening 3 of the hopper 2 and the soil to be improved does not fall into the lower guide portion 4, There is a problem that the soil to be improved is not supplied quantitatively. FIG. 6 is a front sectional view of an improved soil supply device 1c for soil improvement according to a fourth embodiment devised to solve this problem. The same members as those of the third embodiment shown in FIG. 5 are denoted by the same reference numerals, description thereof will be omitted, and only different portions will be described.
In FIG. 6, the opening 3 of the hopper 2 is provided with substantially perpendicularly facing side walls 41, 41 having the same width as the guide 4 of the hopper 2, and a pair of upper, substantially horizontal upper surfaces 42, 42. The second hopper 40 is detachably fastened by bolts 43, and the upper surfaces 42, 42 cover the opening 3 of the hopper 2. A second scraping rotor 31 is rotatably mounted between the side wall surfaces 41, 41 of the second hopper 40, and is integrally formed with the second hopper 40.
[0029]
FIG. 7 is a perspective view showing a state in which the second hopper 40 and the hopper 2 are separated. As shown in FIG. 7, a first scraping rotor 30 is rotatably attached to the guide portion 4 of the hopper 2. As described above, the second hopper 40 has a substantially horizontal upper surface portion 42 and a substantially vertical side wall surface 41, and the second scraping rotor 31 is rotatably mounted on the side wall surfaces 41, 41. The second hopper 40 is assembled so as to cover the upper surface of the hopper 2 and fastened with bolts 43.
[0030]
Next, the operation of the second hopper 40 will be described. Since the upper surface portion 42 of the second hopper 40 is substantially horizontal, an upward force is generated on the loaded soil to be improved. Therefore, even if the soil to be improved is a hard clay mass, no bridge is formed, and since the substantially vertical side wall surface 41 is provided, the soil to be improved easily falls. If it does not fall, it can be dropped by pressing it down with a bucket or the like of a hydraulic shovel. Further, the soil to be improved accumulated on the upper surface portion 42 can be dropped between the side wall surfaces 41, 41 by the above-described bucket or the like, and even a hard clay mass can be stably supplied in a constant amount.
[0031]
Note that the second hopper 40 may be combined with the band-shaped endless body 10 of the first and second embodiments.
[0032]
FIG. 8 is a side view of a self-propelled soil conditioner 50 equipped with the soil condition improved soil supply device 1 having the band-shaped endless body 10 as an example of the soil condition improved soil supply device of the present invention. In FIG. 8, a hopper 2 for charging the soil to be improved is mounted on a front portion of a frame 52 having a crawler belt 51 for traveling. The hopper 2 includes a belt-shaped endless body 10. A conveyor 6 is provided below the hopper 2, and a soil improving material supply device 53 is provided behind the hopper 2. A crusher 54 that crushes and mixes the soil to be improved and the soil improvement material conveyed by the conveyor 6 is mounted at the center of the frame 52. An unloading conveyor 55 for unloading products is provided behind the frame 52. Reference numeral 56 denotes a driving device such as an engine.
[0033]
Next, the operation will be described. In FIG. 8, the soil to be improved, which has been put into the hopper 2 by a loading machine such as a hydraulic shovel (not shown), is supplied from the hopper 2 in a fixed amount by the cooperation of the conveyor 6 and the band-shaped endless body 10. Next, the soil improvement material supply device 53 adds a predetermined amount of the soil improvement material onto the soil to be improved supplied by the conveyor 6, and this is crushed and mixed by the crusher 54 to produce the improved soil. You. The produced improved soil is carried out of the machine by the carry-out conveyor 55. Since this machine is self-propelled, it can be moved to any work site.
[0034]
According to this configuration, a self-propelled soil improvement machine is provided with an improved soil supply device for soil improvement capable of stably and continuously supplying a fixed amount of hard clay lump even when the soil is to be improved. Therefore, soil improvement work can be performed at any work site, and it is possible to cope with various types of soil to be improved, thereby improving work efficiency, availability, and versatility, and reducing work costs.
[0035]
In the above embodiment, the self-propelled soil improvement machine is equipped with the improved soil supply device 1 for soil improvement of the first embodiment described above, but the second, third, and fourth embodiments The improved soil supply device 1a, 1b, 1c for improving soil quality may be mounted.
[Brief description of the drawings]
FIG. 1 is a side sectional view of an improved soil supply device according to a first embodiment of the present invention.
FIG. 2 is a view as viewed in the direction of arrows AA in FIG. 1;
FIG. 3 is a side sectional view of an improved soil supply device according to a second embodiment of the present invention.
FIG. 4 is a side sectional view of an improved soil supply device according to a third embodiment of the present invention.
FIG. 5 is a view taken in the direction of arrows BB in FIG. 4;
FIG. 6 is a front sectional view of an improved soil supply device according to a fourth embodiment of the present invention.
FIG. 7 is a perspective view showing a configuration of a hopper and a second hopper.
FIG. 8 is a side view of a self-propelled soil conditioner equipped with the improved soil supply device of the present invention.
FIG. 9 is a side sectional view of a conventional improved soil supply device.
FIG. 10 is a side sectional view for explaining a problem of the conventional improved soil supply device.
FIG. 11 is a front sectional view for explaining a problem of the conventional improved soil supply device.
[Explanation of symbols]
1, 1a, 1b, 1c: improved soil supply device for soil improvement, 2: hopper, 3: opening, 4: guide, 5: discharge port, 6: conveyor, 7: upper surface, 8: scraping mechanism, 10 ... Band-shaped endless body, 11 ... Frame, 12 ... Starting wheel, 13 ... Hydraulic motor, 14 ... Induction wheel, 15 ... Belt, 16 ... Linking body, 17 ... Linear part, 20 ... Arm, 21, 34 ... Bracket, 30 ... First scraping rotor, 31 Second scraping rotor, 32 Rotor, 33 Projecting member, 40 Second hopper, 41 Side wall surface, 42 Top surface, 44 Opening, 50 Self-propelled soil improvement 51, a crawler for traveling, 52, a frame, 53, a feeder for soil improvement material, 54, a crusher, 55, a conveyor for unloading, 56, a driving device, 57, a shooter, 71, a scraping rotor, 72, a projection member.

Claims (7)

土質改良用被改良土供給装置において、
被改良土を投入するホッパ(2)と、
前記ホッパ(2)の下方に配置され、被改良土を搬送するコンベヤ(6)と、
前記ホッパ(2)に設けられ、被改良土を前記コンベヤ(6)と共働して掻き出し方向に供給する掻き出し機構(8)とを備え、
前記掻き出し機構(8)は帯状無端体(10)である
ことを特徴とする土質改良用被改良土供給装置。
In the improved soil supply device for soil improvement,
A hopper (2) for charging the soil to be improved,
A conveyor (6) disposed below the hopper (2) for transporting the soil to be improved;
A scraping mechanism (8) provided on the hopper (2) and supplying the soil to be improved in the scraping direction in cooperation with the conveyor (6);
The improved soil supply device for soil improvement, wherein the scraping mechanism (8) is a belt-shaped endless body (10).
請求項1記載の土質改良用被改良土供給装置において、
前記帯状無端体(10)は、複数個の連接体(16)により構成されている。
ことを特徴とする土質改良用被改良土供給装置。
The improved soil supply device for soil improvement according to claim 1,
The endless body (10) is composed of a plurality of connecting bodies (16).
An improved soil supply device for soil improvement.
請求項1又は2記載の土質改良用被改良土供給装置において、
前記帯状無端体(10)に被改良土と接触する直線部(17)を設け、その直線部(17)と前記コンベヤ(6)の上面(7)との成す角度(α)は、0°より大きい角度で約90°未満である
ことを特徴とする土質改良用被改良土供給装置。
The improved soil supply device for soil improvement according to claim 1 or 2,
An angle (α) formed between the straight portion (17) and the upper surface (7) of the conveyor (6) is 0 °. An improved soil supply device for soil improvement wherein the angle is greater than about 90 ° at a greater angle.
土質改良用被改良土供給装置において、
被改良土を投入するホッパ(2)と、
前記ホッパ(2)の下方に配置され、被改良土を搬送するコンベヤ(6)と、
前記ホッパ(2)に設けられ、被改良土を前記コンベヤ(6)と共働して掻き出し方向に供給する掻き出し機構(8)とを備え、
前記掻き出し機構(8)は、複数個の掻き出しロータ(30,31)を、順次上方に配置した
ことを特徴とする土質改良用被改良土供給装置。
In the improved soil supply device for soil improvement,
A hopper (2) for charging the soil to be improved,
A conveyor (6) disposed below the hopper (2) for transporting the soil to be improved;
A scraping mechanism (8) provided on the hopper (2) and supplying the soil to be improved in the scraping direction in cooperation with the conveyor (6);
The improved soil supply device for improving soil quality, wherein the scraping mechanism (8) has a plurality of scraping rotors (30, 31) arranged sequentially upward.
請求項4記載の土質改良用被改良土供給装置において、
前記上方に位置する掻き出しロータ(31)は、前記ホッパ(2)に着脱自在である
ことを特徴とする土質改良用被改良土供給装置。
The improved soil supply device for soil improvement according to claim 4,
The improved soil supply device for soil improvement, wherein the scraping rotor (31) located above is detachable from the hopper (2).
請求項4記載の土質改良用被改良土供給装置において、
前記上方に位置する掻き出しロータ(31)は、
前記ホッパ(2)に着脱可能な第2のホッパ(40)に装着され、前記第2のホッパ(40)は、ほぼ垂直に対向する側壁面(41)を有する開口部(44)と、
前記ホッパ(2)の上面を覆うほぼ水平な上面部(42)とを有する
ことを特徴とする土質改良用被改良土供給装置。
The improved soil supply device for soil improvement according to claim 4,
The scraping rotor (31) located above is
An opening (44) mounted on a second hopper (40) that is detachable from the hopper (2), the second hopper (40) having a substantially vertically opposed side wall surface (41);
An improved soil supply device for improving soil quality, comprising: a substantially horizontal upper surface portion (42) covering an upper surface of the hopper (2).
自走式土質改良機において、
被改良土を投入するホッパ(2)と、
前記ホッパ(2)の下方に配置され、被改良土を搬送するコンベヤ(6)と、
前記ホッパ(2)に設けられ、被改良土を前記コンベヤ(6)と共働して掻き出し方向に供給する帯状無端体(10)、又は順次上方に配置した複数個の掻き出しロータ(30,31)と、
ほぼ垂直に対向する側壁面(41)を有する開口部(44)と、前記ホッパ(2)の上面を覆うほぼ水平な上面部(42)とを有し、前記ホッパ(2)に着脱可能な第2のホッパ(40)と
を有する土質改良用被改良土供給装置(1,1a,1b,1c)を搭載した
ことを特徴とする自走式土質改良機。
In self-propelled soil improvement machine,
A hopper (2) for charging the soil to be improved,
A conveyor (6) disposed below the hopper (2) for transporting the soil to be improved;
A belt-shaped endless body (10) provided on the hopper (2) and supplying the soil to be improved in the scraping direction in cooperation with the conveyor (6), or a plurality of scraping rotors (30, 31) arranged sequentially upward. )When,
It has an opening (44) having a side wall surface (41) facing substantially vertically, and a substantially horizontal upper surface (42) covering the upper surface of the hopper (2), and is detachable from the hopper (2). A self-propelled soil improvement machine equipped with an improved soil supply device (1, 1a, 1b, 1c) for soil improvement having a second hopper (40).
JP2002217188A 2002-07-25 2002-07-25 Reformation soil supply device for soil reformation, and self-propelled soil reforming machine with the same Pending JP2004059186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002217188A JP2004059186A (en) 2002-07-25 2002-07-25 Reformation soil supply device for soil reformation, and self-propelled soil reforming machine with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002217188A JP2004059186A (en) 2002-07-25 2002-07-25 Reformation soil supply device for soil reformation, and self-propelled soil reforming machine with the same

Publications (1)

Publication Number Publication Date
JP2004059186A true JP2004059186A (en) 2004-02-26

Family

ID=31938740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217188A Pending JP2004059186A (en) 2002-07-25 2002-07-25 Reformation soil supply device for soil reformation, and self-propelled soil reforming machine with the same

Country Status (1)

Country Link
JP (1) JP2004059186A (en)

Similar Documents

Publication Publication Date Title
JP2004059186A (en) Reformation soil supply device for soil reformation, and self-propelled soil reforming machine with the same
JP3992180B2 (en) Mixing and stirring method and apparatus
JP4126398B2 (en) Raw material agitation and mixing equipment
CN108515621B (en) Concrete stirring device and construction process thereof
KR20010051116A (en) Material feeder
JP2004059187A (en) Reformation soil supply device for soil reformation, and self-propelling soil reforming machine with the same
JPH083191B2 (en) Water-containing mud continuous solidification device
JP2000017683A (en) Mixing bucket
JP2001040698A (en) Sediment hopper for soil improving machine
JPH11157657A (en) Powder/granular material carrier device
JP3102631B2 (en) Conveyor mixer
JP3955422B2 (en) Mud solidification processing equipment
JP3370307B2 (en) Mixing ratio control device for soil improvement machine
JP3375577B2 (en) Soil hopper of soil improvement machine and self-propelled soil improvement machine
JP2003071427A (en) Mobile polluted soil treatment machine and polluted soil treatment system
JP2001140281A (en) Equipment for fragmentation and mixing
JP3370643B2 (en) Self-propelled soil improvement machine
JP3344710B2 (en) Improved soil discharge mechanism of self-propelled soil improvement machine and self-propelled soil improvement machine
JPH11165851A (en) Treating material charging device for treating machine
JP3344715B2 (en) Self-propelled soil improvement machine
JP2001342621A (en) Self propelled soil improving machine and mixer therefor
JPH0958841A (en) Vegetation base material agitating feed hopper
JP3965072B2 (en) Sludge treatment equipment
JP2006076859A (en) Compost stirring device
JP2004034088A (en) Refractory force-feeding system with kneading machine