JP2004058994A - Vehicle travel controller - Google Patents

Vehicle travel controller Download PDF

Info

Publication number
JP2004058994A
JP2004058994A JP2003202334A JP2003202334A JP2004058994A JP 2004058994 A JP2004058994 A JP 2004058994A JP 2003202334 A JP2003202334 A JP 2003202334A JP 2003202334 A JP2003202334 A JP 2003202334A JP 2004058994 A JP2004058994 A JP 2004058994A
Authority
JP
Japan
Prior art keywords
vehicle
inter
distance
vehicle distance
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003202334A
Other languages
Japanese (ja)
Inventor
Yuichi Kuramochi
倉持 祐一
Tatsuya Yoshida
吉田 龍也
Shinichi Sakamoto
坂本 伸一
Daisetsu Tanimichi
谷道 大雪
Yasushi Konishi
小西 泰史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003202334A priority Critical patent/JP2004058994A/en
Publication of JP2004058994A publication Critical patent/JP2004058994A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To control traveling of a vehicle to have an inter-vehicle distance according to evaluated drivability by more properly evaluating the drivability. <P>SOLUTION: A drivability calculation part 15 evaluates the type of a vehicle traveling in front, the inter-vehicle distance, relative speed, a relative position, speed of a following vehicle to be speed of the present vehicle, a steering angle and a sunlight degree to calculate a present drivability index. A proper inter-vehicle distance calculation part 16 calculates a proper inter-vehicle distance between the vehicle traveling in front and the following vehicle to be the present vehicle based on the calculated drivability index. A proper speed manipulated variable control part 17 controls the traveling of the vehicle to have the proper calculated inter-vehicle distance. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、前方走行車両に自車両を追従させる自動追従制御を行う車両走行制御装置に属する。
【0002】
【従来の技術】
従来の、前方走行車両に自車両を追従させる自動追従制御を行う車両走行制御装置としては、前方走行車両と自車両との間の車間距離が、予めセットした設定車間距離値を保つように、自車両の走行を制御する装置が知られている。
【0003】
このような車両走行制御装置では、前方走行車両が、軽車両から大型貨物車両に変わったとしても、運転者が設定車間距離値を変更しない限り、前方走行車両と自車両との間の車間距離は一定に保たれる。
【0004】
このため、前方走行車両が軽車両のときに合わせて設定車間距離値を設定した場合、前方走行車両が大型貨物車両となると、前方が見難くなってしまい、快適に運転できなくなってしまうことがある。
【0005】
そこで、たとえば、特開平2−40798号公報記載の技術では、前方車両が大型車であるか否かを識別し、大型車であると識別された場合には、車間距離が長くなるように、自車両の走行を制御している。
【0006】
【発明が解決しようとする課題】
しかしながら、運転者の感じる車間距離に対する妥当性、すなわち、運転者の感じる運転のし易さや安心感などの現運転状況の妥当性等を表す運転性というものは、前方走行車両の種類のみで決まるものではない。すなわち、自車両である追従車両が普通乗用車で、前方走行車両が大型貨物自動車である場合、普通乗用車の運転者は、例えば5mの車間距離でも前方走行車両が普通乗用車の場合と比べて短く感じてしまい、逆に前方走行車両が普通乗用車で、自車両である追従車両が大型貨物自動車である場合、例えば5mの車間距離でも前方走行車両が大型貨物自動車の場合と比べて長く感じてしまうという様に、前方走行車両と自車両である追従車両との組み合わせによっても、自車両である追従車の運転者が感じる運転性は大きく異なる。
【0007】
また、周囲の明るさによっても、運転者の感じる車間距離に対する運転性は異なってくる。すなわち、昼間と夜間とにおいて、前方走行車両との車間距離が同じでも、運転者が感じる車間距離は、視界が不鮮明な状態である夜間の方が短く感じられる。
【0008】
また、同様に、自車両の走行速度や、前方走行車両に対する相対速度、相対位置や、自車両の操舵角などによっても、前方走行車両との車間距離が同じでも自車両である追従車の運転者が感じる運転性は異なってくる。
【0009】
なお、運転視界に関する調査結果をまとめたものとしては、財団法人自動車走行電子技術協会発行の商用車の車間距離(車間時間)に関する調査研究報告書(平成11年3月)がある。
【0010】
そこで、本発明は、運転者が感じる運転性に整合した車間距離を保つように自動追従制御を行うことのできる車両走行制御装置を提供することを課題とする。
【0011】
【課題を解決するための手段】
前記課題達成のために、本発明では、前方車両の大きさを検出する車両大きさ検出手段と、前方車両と自車両との間の車間距離を検出する車間距離検出手段と、自車両周囲の照度を検出する照度検出手段と、適正車間距離を算出する適正車間距離算出手段と、前記車間距離検出手段で検出される前方車両と自車両との間の車間距離が、前記適正車間距離算出手段で算出された適正車間距離となるように自車両の走行を制御する走行制御手段と、を設ける。そして、前記適正車間距離算出手段に、車両大きさ検出手段により検出した前方車両の大きさが大きいほどより長くなり、前記照度検出手段により検出した照度が高い程より長くなるように、前記適正車間距離を算出させる。
【0012】
このようにすれば、前方車両の大きさのみならず、周囲の照度による運転視界の変化をも考慮して、適正車間距離を決定することができるので、より、運転者の感じる運転性に整合した車間距離による自動追従制御を行えるようになる。
【0013】
【発明の実施の形態】
以下、本発明の一実施形態について説明する。
【0014】
図1に、本発明の一実施形態が適用された車両走行制御装置の構成を示す。
【0015】
図中、自車両(追従車両)に搭載された車両位置検出部10は、例えばレーザーレーダを備え、所定のパルス間隔でレーザ光を照射しつつ自車前方をスキャンする。スキャンされたレーザ光は前方走行車両によって反射される。車両位置検出部10は、その反射レーザ光を受光することにより、車間距離、相対速度、および、前方走行車両と自車両との走行方向の偏移を表す相対位置を検出する。
【0016】
また、車速検出部11は、ホール素子等を利用して自車両の走行速度を検出する。操舵角検出部13は、ポテンショメータ等を利用して自車両の操舵角を検出する。
【0017】
また、前方走行車両判別部13は、カメラ等の撮影機で得られた画像を処理して、前方走行車両が大型車か普通車かを表す前方走行車両種別を判別する。この判別基準としては、撮影機での投影面積の比較、ナンバープレートの大きさ、色などを用いることができる。
【0018】
また、日照度検出部14は、フォトダイオード等を用いて、運転視界の明るさを表すパラメータとして日照度を検出する。なお、日照度は、前方走行車両判別部13にカメラを使用した場合、このカメラの露光の補正値を参考にして検出するようにしてもよい。
【0019】
車両位置検出部10、車速検出部11、操舵角検出部12、前方走行車両判別部13、日照度検出部14によって検出された、車間距離、相対速度、相対位置、自車速度、操舵角、前方走行車両種別、日照度は、運転性算出部15に送られる。
【0020】
さて、運転性算出部15は、送られてきた各パラメータに対して演算処理を行い、運転者の感覚に合致した運転性指数を算出する。
【0021】
以下、この運転性算出部15における運転性指数の算出処理について説明する。
【0022】
運転性算出部15は、図2に示すように、前方走行車両種別、車間距離、相対速度、相対位置、自車速度である追従車両車速、操舵角、日照度の各々を、予め定めた評価基準を用いて評価し、各評価結果に応じて、最終的に運転性指数Dを出力する。
【0023】
すなわち、追従車(自車)車速と車間距離は、3つの評価基準S(Small:小)、M(Middle:中)、B(Big:大)で評価する。相対位置と操舵角は、3つの評価基準L(Left:左)、Z(Zero:ゼロ)、R(Right:右)で評価する。相対速度は、3つの評価基準N(Negative:負)、Z(Zero:ゼロ)、P(Positive:正)で評価する。前方走行車両種別は、2つの評価基準S(Small:小)、B(Big:大)で評価する。そして、日照度は、2つの評価基準D(Dark:暗)、B(Bright:明)で評価する。
【0024】
具体的には、図3、図4、図5、図6、図7、図8、図9にそれぞれ示した追従車速、相対速度、車間距離、相対位置、操舵角、前方走行車両、日照度の各評価基準の評価関数を用いて、追従車速、相対速度、車間距離、相対速度、操舵角、前方走行車両種別、日照度の各パラメータの、対応する各評価基準への適合度を算出する。
【0025】
ここで、図3は追従者車速の評価基準S(小)、M(中),B(大)の評価関数を、図4は相対速度の評価基準N(負)、Z(ゼロ)、P(正)の評価関数を、図5は車間距離の評価基準S(小)、M(中)、B(大)の評価関数を、図6は相対位置の評価基準L(左)、Z(ゼロ)、R(右)の評価関数を、図7は操舵角の評価基準L(左)、Z(ゼロ)、R(右)の評価関数を、図8は前方車両種別の評価基準S(Small:小)、B(Big:大)の評価関数を、そして、図9は日照度の評価基準D(Dark:暗)、B(Bright:明)の評価関数を表している。ただし、図8は、前方車両種別として、前方車両の車両高さを用いる場合について示している。
【0026】
このような評価関数を用いて、各パラメータの対応する各評価基準への適合度を求める。たとえば、図3に示す追従者車速の評価基準S(小)、M(中),B(大)の評価関数を用いた場合、追従車車速が50Km/hであるときの各評価基準の度合いは以下のようになる。
【0027】
S(小)=0
M(中位)=0.6
B(大)=0
これは、自車である追従車両の車速50Km/hの場合は、運転者の感覚で0.6の適合度で評価基準M(中位のスピード)に適合していると判断されることを示している。
【0028】
このようして、運転性算出部15は、追従車速、相対速度、車間距離、相対速度、操舵角、前方走行車両、日照度の各パラメータの対応する各評価基準への適合度を算出する。
【0029】
この結果、例えば、追従車速、相対速度、車間距離、相対速度、操舵角、前方走行車両、日照度の各パラメータが、
追従車両車速=80Km/h
相対速度=−20Km/h
車間距離=25m
相対位置=−2m
操舵角=−45deg
前方走行車両=1.5m(車高)
日照度=101x
である場合、各パラメータの対応する各評価基準への適合度は、以下のようになる。
【0030】
(1)追従車車速:
S=B=O
M=0.35
(2)相対速度:
P=Z=O
N=0.9
(3)車間距離:
S=0.4
M=B=0
(4)相対位置:
R=O
L=0.9
(5)操舵角:
L=1.0
R=0
(6)前方走行車両
S=0.3
B=0
(7)照度
D=0.6
B=0
そこで、運転性算出部15は、図10に示す制御マップを用い、以下のようにして、最終的な運転性指数Dを求める。
【0031】
図10は、追従車速、相対速度、車間距離、相対速度、操舵角、前方走行車両、日照度の各パラメータの評価基準の組み合わせと、運転性指数Dの5つの評価基準VL(Very LOW:極めて低)、L(Low:低)、M(Middle:中)、H(High:高)、VH(Very High:極めて高)との対応を、予め規定したものであり、追従車速、相対速度、車間距離、相対速度、操舵角、前方走行車両、日照度の組み合わせに対して、運転者が感じる運転性を、各評価基準の関係ルールとして表現したものである。
【0032】
たとえば、この制御マップの1段目は「追従車車速がB(大)且つ相対速度がN(負)且つ車間距離がS(小)且つ相対位置がZ(ゼロ)且つ操舵角力がZ(ゼロ)且つ前方走行車両がB(大)且つ日照度D(暗)であるならば、運転性指数はVL(極めて低)」とするルールを示している。3段目は、「追従車車速がB(大)且つ相対速度がN(負)且つ車間距離がS(小)且つ拍対位置がZ(ゼロ)且つ操舵角がZ(ゼロ)且つ前方走行車両がB(大)且つ日照度がB(明)であるならば、運転性指数はL(低)」とするルールを示している。
【0033】
さて、このような制御マップを用いて、運転性算出部15は、まず、各制御マップの各ルール(各段)の満足度を、そのルールに記述された追従車速、相対速度、車間距離、相対速度、操舵角、前方走行車両、日照度の評価基準に対して先に求めた適合度の積より求める。
【0034】
すなわち、たとえば、制御マップの※印のついているルールに対して、図3〜図9に示す各パラメータの評価関数により、
追従車車速度がMの適合度=0.35
相対速度がNの適合度=0.9
車間距離がSの適合度=0.4
相対位置がLの適合度=0.9
操舵角がLの適合度=1.0
前方走行車両がSの適合度=0.3
日照度がSの適合度=0
であるとして求まる場合、この※印のついているルールの満足度を、これらの適合度の積をとって、
0.35×0.9×0.4×0.9×1.0×0.3×0=0
とする。
【0035】
そして、制御マップの各ルールに対して満足度を求めたならば、i番目のルールの満足度をSi、i番目のルールに記述された運転性指数の評価基準をUiとし、運転性指数Dの5つの評価基準VL、L、M、H、VHに、予め定めておいた数値VL=1.00、L=0.75、M=0.50、H=0.25、VH=0.00を代入して、以下の式
D=Σ(Si×Ui)/ΣSi
により、最終的な運転性指数Dを算出する。
【0036】
さて、このようにして運転性算出部15にて算出された運転性指数Dは、次に適正車間距離算出部16に送られる。
【0037】
適正車間距離算出部16は、送られてきた運転性指数D、車両位置検出部10からの相対速度、および、車速検出部11からの追従車車速を用いて、前方走行車両と自車との適正な車間距離を算出する。
【0038】
すなわち、先ず、相対速度Vrと自車速Vにより、次式に従って、前方走行車両に追突せずに停止できる基準車間距離Loを求める。
【0039】
Lo=V×τ+(Vs−V)/2α
Vs=V+Vr
ここで、τは自車の空走時間(ブレーキを踏んで実際にブレーキが作動するまでの時間)、αは減速度である。そして、この基準車間距離Loを、運転性算出部15によって算出された運転性指数Dを用いて次式により補正し、適正車間距離Lを算出する。
【0040】
L=(1+D)×Lo
それから、適正車間距離算出部16は、算出した適正車間距離Lを適正車速操作量制御部17に送る。
【0041】
適正車間距離Lを受け取った適正車速操作量制御部17は、図11に示す処理20を行う。
【0042】
すなわち、処理21において、適性車間距離Lと実際の車間距離Gとで、L−Gという演算を行なう。そして、演算結果が正ならば、適正車間距離Lに対して実際の車間距離Gが短いということになるので、処理22によってスロットルアクチュエータ18を全閉とし、車両にエンジンブレーキをかけ、併せて、処理23でブレーキアクチュエータ19へブレーキ液圧を増加させてブレーキをかけ、車速を下げて、車間距離Gを適正車間距離Lに近づける制御を行なう。
【0043】
一方、処理21での演算結果が負ならば、適正車間距離Lに対して実際の車間距離Gが長いということになるので、処理24によってスロットルアクチュエータ18の開度を増加させ、併せて、処理25でブレーキアクチュエータ19へブレーキ液圧を低下させて、車速を上げて、車間距離Gを適正車間距離Lに近づける制御を行なう。
【0044】
以上、本発明の一実施形態について説明した。
【0045】
このように、本実施形態では、追従車車速、前方走行車両との相対速度、車間距離、相対位置、自車の操舵角、前方走行車両の大きさ、さらには、日照度を加味して、運転性を評価し、評価した運転性に応じて車間距離を制御することができる。このため、評価結果に応じた適当な制御内容を規定することにより、より運転性が適正となるように車間距離を制御することができるようになる。
【0046】
この結果、たとえば、前方走行車両の大きさと日照度に応じて、図12に示すように、前方走行車両の大きさが大きくて日照度が低いときには車間距離を標準よりも大きく、前方走行車両の大きさが大きくて日照度が高いときには車間距離を中程度に、前方走行車両の大きさが小さくて日照度が低いときには車間距離を中程度に、前方走行車両の大きさが小さくて日照度が高いときには車間距離を小さくするような車両走行制御が可能となる。
【0047】
【発明の効果】
以上のように、本発明によれば、より運転者の感じる運転性に整合した車間距離による自動追従制御を行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態が適用された車両走行制御装置の構成を示すブロック図である。
【図2】図1に示す運転性算出部15における入力パラメータの評価基準と出力値とを示す図である。
【図3】追従車速の評価基準の評価関数を示す図である。
【図4】相対速度の評価基準の評価関数を示す図である。
【図5】車間距離の評価基準の評価関数を示す図である。
【図6】相対位置の評価基準の評価関数を示す図である。
【図7】操舵角の評価基準の評価関数を示す図である。
【図8】前方車両種別の評価基準の評価関数を示す図である。
【図9】日照度の評価基準の評価関数を示す図である。
【図10】図1に示す運転性算出部15で用いる制御マップを示す図である。
【図11】図1に示す適正車速操作量制御部17での処理を示す図である。
【図12】本実施形態において、前方車両大きさと日照度に応じて決定、制御される適正車間距離の例を示した図である。
【符号の説明】
10…車両位置検出部、11…車速検出部、12…操舵角検出部
13…前方走行車両検出部、14…日照度検出部、15…運転性算出部
16…適正車間距離算出部、17…適正車速操作量制御部
18…スロットルアクチュエータ、19…ブレーキアクチュエータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vehicle travel control device that performs an automatic following control that causes a subject vehicle to follow a preceding traveling vehicle.
[0002]
[Prior art]
Conventionally, as a vehicle travel control device that performs an automatic following control that causes the own vehicle to follow the forward traveling vehicle, the inter-vehicle distance between the forward traveling vehicle and the own vehicle keeps a preset inter-vehicle distance value, 2. Description of the Related Art A device that controls traveling of a host vehicle is known.
[0003]
In such a vehicle travel control device, even if the forward running vehicle changes from a light vehicle to a large freight vehicle, the inter-vehicle distance between the forward running vehicle and the host vehicle is maintained unless the driver changes the set inter-vehicle distance value. Is kept constant.
[0004]
For this reason, when the set inter-vehicle distance value is set in accordance with the case where the vehicle traveling ahead is a light vehicle, if the vehicle traveling ahead becomes a large cargo vehicle, it becomes difficult to see ahead and it becomes difficult to drive comfortably. is there.
[0005]
Therefore, for example, in the technology described in Japanese Patent Application Laid-Open No. 2-40798, it is determined whether the preceding vehicle is a large vehicle or not, and if the vehicle is identified as a large vehicle, the inter-vehicle distance is increased. The running of the vehicle is controlled.
[0006]
[Problems to be solved by the invention]
However, the validity for the inter-vehicle distance felt by the driver, that is, the drivability representing the validity of the current driving situation such as the ease of driving and the sense of security felt by the driver is determined only by the type of the vehicle traveling ahead. Not something. That is, when the following vehicle, which is the host vehicle, is an ordinary passenger vehicle and the preceding traveling vehicle is a large lorry, the driver of the ordinary passenger vehicle feels shorter even when the inter-vehicle distance is 5 m, for example, as compared with the case where the preceding traveling vehicle is an ordinary passenger vehicle. Conversely, when the vehicle traveling ahead is an ordinary passenger vehicle and the following vehicle is a large truck, for example, even if the inter-vehicle distance is 5 m, the vehicle traveling ahead feels longer than that of a large truck. As described above, the drivability felt by the driver of the following vehicle, which is the own vehicle, also differs greatly depending on the combination of the vehicle running ahead and the following vehicle, which is the own vehicle.
[0007]
Drivability with respect to the inter-vehicle distance felt by the driver also differs depending on the surrounding brightness. That is, even in the daytime and the nighttime, even if the inter-vehicle distance to the vehicle traveling ahead is the same, the inter-vehicle distance felt by the driver is felt shorter in the nighttime where the visibility is unclear.
[0008]
Similarly, depending on the traveling speed of the own vehicle, the relative speed with respect to the preceding traveling vehicle, the relative position, the steering angle of the own vehicle, and the like, the driving of the following vehicle which is the own vehicle even if the inter-vehicle distance to the preceding traveling vehicle is the same. Drivability that people feel is different.
[0009]
As a summary of the survey results on the driving visibility, there is a survey and research report (March 1999) on the inter-vehicle distance (inter-vehicle time) of commercial vehicles issued by the Automotive Driving Technology Association.
[0010]
Therefore, an object of the present invention is to provide a vehicle traveling control device capable of performing automatic following control so as to maintain an inter-vehicle distance that matches driving performance felt by a driver.
[0011]
[Means for Solving the Problems]
In order to achieve the object, according to the present invention, a vehicle size detecting means for detecting a size of a preceding vehicle, an inter-vehicle distance detecting means for detecting an inter-vehicle distance between the preceding vehicle and the own vehicle, Illuminance detection means for detecting illuminance, appropriate inter-vehicle distance calculation means for calculating an appropriate inter-vehicle distance, and the inter-vehicle distance between the preceding vehicle and the host vehicle detected by the inter-vehicle distance detection means being the appropriate inter-vehicle distance calculation means Traveling control means for controlling traveling of the own vehicle so as to have an appropriate inter-vehicle distance calculated in (1). Then, the appropriate inter-vehicle distance calculating means sets the appropriate inter-vehicle distance such that the longer the front vehicle detected by the vehicle size detecting means is, the longer the preceding vehicle is, and the longer the illuminance detected by the illuminance detecting means is, the longer the appropriate inter-vehicle distance is. Let the distance be calculated.
[0012]
In this way, the appropriate inter-vehicle distance can be determined in consideration of not only the size of the vehicle in front but also the change in the driving field of view due to the surrounding illuminance. The automatic following control based on the determined inter-vehicle distance can be performed.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described.
[0014]
FIG. 1 shows a configuration of a vehicle traveling control device to which an embodiment of the present invention is applied.
[0015]
In the figure, a vehicle position detecting unit 10 mounted on a host vehicle (following vehicle) includes, for example, a laser radar, and scans the front of the host vehicle while irradiating laser light at predetermined pulse intervals. The scanned laser light is reflected by a vehicle traveling ahead. By receiving the reflected laser light, the vehicle position detecting unit 10 detects an inter-vehicle distance, a relative speed, and a relative position indicating a deviation in the traveling direction between the vehicle traveling ahead and the host vehicle.
[0016]
Further, the vehicle speed detection unit 11 detects the traveling speed of the own vehicle using a hall element or the like. The steering angle detector 13 detects the steering angle of the host vehicle using a potentiometer or the like.
[0017]
Further, the forward traveling vehicle determination unit 13 processes an image obtained by a photographing machine such as a camera, and determines the forward traveling vehicle type indicating whether the forward traveling vehicle is a large vehicle or a normal vehicle. As the determination criterion, a comparison of the projection area in the photographing machine, the size of the license plate, the color, and the like can be used.
[0018]
In addition, the sunshine detecting unit 14 detects sunshine as a parameter representing the brightness of the driving field of view using a photodiode or the like. In addition, when a camera is used for the front running vehicle discriminating unit 13, the sunshine may be detected with reference to an exposure correction value of the camera.
[0019]
The following distances, relative speeds, relative positions, own vehicle speeds, steering angles, steering angles, detected by the vehicle position detecting unit 10, the vehicle speed detecting unit 11, the steering angle detecting unit 12, the forward running vehicle determining unit 13, and the sunshine detecting unit 14 are detected. The forward traveling vehicle type and the sunshine are sent to the drivability calculating unit 15.
[0020]
The drivability calculation unit 15 performs a calculation process on each of the transmitted parameters to calculate a drivability index that matches the driver's feeling.
[0021]
Hereinafter, the process of calculating the drivability index in the drivability calculation unit 15 will be described.
[0022]
As shown in FIG. 2, the drivability calculating unit 15 evaluates each of a forward traveling vehicle type, a following distance, a relative speed, a relative position, a following vehicle speed, which is the own vehicle speed, a steering angle, and sunshine, as predetermined evaluations. Evaluation is performed using a reference, and a drivability index D is finally output according to each evaluation result.
[0023]
That is, the following vehicle (own vehicle) vehicle speed and the inter-vehicle distance are evaluated based on three evaluation criteria S (Small: small), M (Middle: medium), and B (Big: large). The relative position and the steering angle are evaluated based on three evaluation criteria L (Left: left), Z (Zero: zero), and R (Right: right). The relative speed is evaluated based on three evaluation criteria N (Negative: negative), Z (Zero: zero), and P (Positive: positive). The forward traveling vehicle type is evaluated based on two evaluation criteria S (Small: small) and B (Big: large). The sunlight is evaluated based on two evaluation criteria D (Dark: dark) and B (Bright: bright).
[0024]
More specifically, the following vehicle speed, relative speed, inter-vehicle distance, relative position, steering angle, forward traveling vehicle, and sunshine shown in FIGS. 3, 4, 5, 6, 7, 8, and 9, respectively. Using the evaluation function of each evaluation criterion, the degree of conformity of each parameter of the following vehicle speed, the relative speed, the following distance, the relative speed, the steering angle, the type of the vehicle traveling ahead, and the sunshine to the corresponding evaluation criterion is calculated. .
[0025]
Here, FIG. 3 shows evaluation functions of the evaluation criteria S (small), M (medium), and B (large) of the follower vehicle speed, and FIG. 4 shows evaluation criteria N (negative), Z (zero), P of the relative speed. (Positive) evaluation function, FIG. 5 shows the evaluation criteria S (small), M (medium), and B (large) evaluation functions for the following distance, and FIG. 6 shows the evaluation criteria L (left) and Z ( FIG. 7 shows the evaluation functions of the steering angles L (left), Z (zero), and R (right), and FIG. 8 shows the evaluation criteria S (for the front vehicle type). 9 shows the evaluation functions of Small (small) and B (Big: large), and FIG. 9 shows the evaluation functions of the illuminance evaluation criteria D (Dark: dark) and B (Bright: bright). However, FIG. 8 shows a case where the vehicle height of the preceding vehicle is used as the preceding vehicle type.
[0026]
Using such an evaluation function, the degree of conformity of each parameter to each corresponding evaluation criterion is determined. For example, using the evaluation functions of the evaluation criteria S (small), M (medium), and B (large) of the follower vehicle speed shown in FIG. 3, the degree of each evaluation criterion when the follower vehicle speed is 50 Km / h Is as follows.
[0027]
S (small) = 0
M (medium) = 0.6
B (large) = 0
This means that when the vehicle speed of the following vehicle, which is the host vehicle, is 50 Km / h, it is determined that the vehicle conforms to the evaluation criterion M (medium speed) with a degree of conformity of 0.6 as perceived by the driver. Is shown.
[0028]
In this manner, the drivability calculating unit 15 calculates the degree of conformity of the parameters of the following vehicle speed, the relative speed, the inter-vehicle distance, the relative speed, the steering angle, the vehicle traveling ahead, and the sunshine to the corresponding evaluation criteria.
[0029]
As a result, for example, the following vehicle speed, the relative speed, the inter-vehicle distance, the relative speed, the steering angle, the vehicle running ahead, and each parameter of the sunshine are:
Following vehicle speed = 80 km / h
Relative speed = -20km / h
Inter-vehicle distance = 25m
Relative position = -2m
Steering angle = -45 deg
Vehicle traveling ahead = 1.5 m (vehicle height)
Sunlight = 101x
, The degree of conformity of each parameter to the corresponding evaluation criterion is as follows.
[0030]
(1) Following vehicle speed:
S = B = O
M = 0.35
(2) Relative speed:
P = Z = O
N = 0.9
(3) Distance between vehicles:
S = 0.4
M = B = 0
(4) Relative position:
R = O
L = 0.9
(5) Steering angle:
L = 1.0
R = 0
(6) Forward running vehicle S = 0.3
B = 0
(7) Illuminance D = 0.6
B = 0
Therefore, the drivability calculating section 15 obtains the final drivability index D as follows using the control map shown in FIG.
[0031]
FIG. 10 shows a combination of evaluation criteria for each parameter of the following vehicle speed, relative speed, inter-vehicle distance, relative speed, steering angle, forward running vehicle, and sunshine, and five evaluation criteria VL (very low: extremely low) for the drivability index D. The correspondence with low (low), L (low: low), M (middle: middle), H (high: high), VH (very high: extremely high) is defined in advance, and the following vehicle speed, relative speed, The drivability felt by the driver with respect to the combination of the inter-vehicle distance, the relative speed, the steering angle, the vehicle traveling ahead, and the sunshine is expressed as a relation rule of each evaluation criterion.
[0032]
For example, the first stage of this control map indicates that the following vehicle speed is B (high), the relative speed is N (negative), the inter-vehicle distance is S (small), the relative position is Z (zero), and the steering angular force is Z (zero). ) And the preceding vehicle is B (large) and the illuminance D (dark), the drivability index is VL (extremely low) ”. The third stage indicates that “the following vehicle speed is B (large), the relative speed is N (negative), the inter-vehicle distance is S (small), the beat position is Z (zero), the steering angle is Z (zero), and the vehicle is traveling forward. The rule indicates that the drivability index is L (low) if the vehicle is B (large) and the sunlight is B (bright).
[0033]
Now, using such a control map, the drivability calculating unit 15 first determines the degree of satisfaction of each rule (each stage) of each control map by following vehicle speed, relative speed, inter-vehicle distance, and the like described in the rule. It is determined from the product of the degree of conformity previously determined with respect to the evaluation criteria for the relative speed, the steering angle, the vehicle traveling ahead, and the sunshine.
[0034]
That is, for example, for the rule marked with * in the control map, the evaluation function of each parameter shown in FIGS.
The conformity of the following vehicle is M = 0.35
Goodness of fit of relative speed N = 0.9
Goodness of S = 0.4
Fitness of relative position L = 0.9
Fitness of steering angle L = 1.0
The degree of conformity of the preceding vehicle is S = 0.3
The degree of conformity of sunshine is S = 0
, The satisfaction of the rules marked with * is calculated by multiplying the conformance by
0.35 × 0.9 × 0.4 × 0.9 × 1.0 × 0.3 × 0 = 0
And
[0035]
Then, when the degree of satisfaction is obtained for each rule of the control map, the degree of satisfaction of the i-th rule is Si, the evaluation criterion of the drivability index described in the i-th rule is Ui, and the drivability index D The predetermined numerical values VL = 1.00, L = 0.75, M = 0.50, H = 0.25, VH = 0.5 are set to the five evaluation criteria VL, L, M, H, and VH. 00, the following equation D = Σ (Si × Ui) / ΣSi
To calculate the final drivability index D.
[0036]
The drivability index D calculated by the drivability calculation unit 15 in this manner is then sent to the appropriate inter-vehicle distance calculation unit 16.
[0037]
The appropriate inter-vehicle distance calculation unit 16 uses the transmitted drivability index D, the relative speed from the vehicle position detection unit 10, and the following vehicle speed from the vehicle speed detection unit 11 to determine whether the vehicle traveling ahead and the own vehicle are in contact with each other. Calculate the appropriate inter-vehicle distance.
[0038]
That is, first, based on the relative speed Vr and the own vehicle speed V, a reference inter-vehicle distance Lo at which the vehicle can stop without colliding with a vehicle traveling ahead is calculated according to the following equation.
[0039]
Lo = V × τ + (Vs 2 −V 2 ) / 2α
Vs = V + Vr
Here, τ is the idle running time of the vehicle (the time from when the brake is depressed until the brake is actually activated), and α is the deceleration. Then, the reference inter-vehicle distance Lo is corrected by the following equation using the drivability index D calculated by the drivability calculating section 15 to calculate an appropriate inter-vehicle distance L.
[0040]
L = (1 + D) × Lo
Then, the appropriate inter-vehicle distance calculation unit 16 sends the calculated appropriate inter-vehicle distance L to the appropriate vehicle speed operation amount control unit 17.
[0041]
The appropriate vehicle speed operation amount control unit 17 that has received the appropriate inter-vehicle distance L performs a process 20 shown in FIG.
[0042]
That is, in the process 21, the calculation of LG is performed using the appropriate inter-vehicle distance L and the actual inter-vehicle distance G. If the calculation result is positive, it means that the actual inter-vehicle distance G is shorter than the appropriate inter-vehicle distance L. Therefore, the throttle actuator 18 is fully closed by the processing 22, the engine brake is applied to the vehicle, and In process 23, control is performed to increase the brake fluid pressure to the brake actuator 19 to apply the brake, reduce the vehicle speed, and bring the inter-vehicle distance G closer to the appropriate inter-vehicle distance L.
[0043]
On the other hand, if the result of the calculation in the process 21 is negative, it means that the actual inter-vehicle distance G is longer than the appropriate inter-vehicle distance L, so that the opening degree of the throttle actuator 18 is increased by the process 24, and At 25, control is performed to decrease the brake fluid pressure to the brake actuator 19, increase the vehicle speed, and bring the inter-vehicle distance G closer to the appropriate inter-vehicle distance L.
[0044]
Hereinabove, one embodiment of the present invention has been described.
[0045]
As described above, in the present embodiment, the following vehicle speed, the relative speed with respect to the preceding traveling vehicle, the following distance, the relative position, the steering angle of the own vehicle, the size of the preceding traveling vehicle, and further, taking into account the sunshine, Drivability is evaluated, and the inter-vehicle distance can be controlled according to the evaluated drivability. For this reason, by defining appropriate control content according to the evaluation result, it becomes possible to control the inter-vehicle distance so that the drivability becomes more appropriate.
[0046]
As a result, for example, according to the size of the front running vehicle and the sunshine, as shown in FIG. 12, when the size of the front running vehicle is large and the sunshine is low, the inter-vehicle distance is larger than the standard, When the size is large and the sunshine is high, the inter-vehicle distance is medium.When the size of the vehicle traveling ahead is small and the sunshine is low, the inter-vehicle distance is medium. When the distance is high, vehicle traveling control that reduces the inter-vehicle distance becomes possible.
[0047]
【The invention's effect】
As described above, according to the present invention, it is possible to perform the automatic following control based on the inter-vehicle distance that is more matched to the drivability felt by the driver.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a vehicle traveling control device to which an embodiment of the present invention has been applied.
FIG. 2 is a diagram showing evaluation criteria and output values of input parameters in drivability calculating section 15 shown in FIG.
FIG. 3 is a diagram showing an evaluation function of an evaluation criterion of a following vehicle speed.
FIG. 4 is a diagram showing an evaluation function of an evaluation criterion for relative speed.
FIG. 5 is a diagram showing an evaluation function of an evaluation criterion for an inter-vehicle distance.
FIG. 6 is a diagram showing an evaluation function of an evaluation criterion for a relative position.
FIG. 7 is a diagram showing an evaluation function of a steering angle evaluation criterion.
FIG. 8 is a diagram showing an evaluation function of an evaluation criterion of the type of vehicle ahead.
FIG. 9 is a diagram showing an evaluation function of an evaluation standard of sunlight.
FIG. 10 is a view showing a control map used in the drivability calculating section 15 shown in FIG.
FIG. 11 is a diagram showing processing in an appropriate vehicle speed operation amount control unit 17 shown in FIG. 1;
FIG. 12 is a diagram showing an example of an appropriate inter-vehicle distance determined and controlled according to the size of a forward vehicle and the sunshine in the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Vehicle position detection part, 11 ... Vehicle speed detection part, 12 ... Steering angle detection part 13 ... Forward running vehicle detection part, 14 ... Sunshine detection part, 15 ... Drivability calculation part 16 ... Appropriate inter-vehicle distance calculation part, 17 ... Appropriate vehicle speed control amount controller 18: throttle actuator, 19: brake actuator

Claims (3)

前方車両の大きさを検出する車両大きさ検出手段と、
前方車両と自車両との間の車間距離を検出する車間距離検出手段と、
自車両周囲の照度を検出する照度検出手段と、
適正車間距離を算出する適正車間距離算出手段と、
前記車間距離検出手段により検出される前方車両と自車両との間の車間距離が、前記適正車間距離算出手段により算出された適正車間距離となるように、自車両の走行を制御する走行制御手段と、を有し、
前記適正車間距離算出手段は、
前記車両大きさ検出手段により検出された前方車両の大きさが大きい程より長くなり、かつ、前記照度検出手段により検出された照度が高い程より長くなるように、前記適正車間距離を算出すること
を特徴とする車両走行制御装置。
Vehicle size detecting means for detecting the size of the preceding vehicle;
An inter-vehicle distance detecting means for detecting an inter-vehicle distance between the preceding vehicle and the own vehicle,
Illuminance detection means for detecting illuminance around the vehicle,
An appropriate inter-vehicle distance calculating means for calculating an appropriate inter-vehicle distance,
Traveling control means for controlling traveling of the own vehicle such that the inter-vehicle distance between the preceding vehicle and the own vehicle detected by the inter-vehicle distance detecting means becomes the proper inter-vehicle distance calculated by the appropriate inter-vehicle distance calculating means. And
The appropriate inter-vehicle distance calculating means,
Calculating the appropriate inter-vehicle distance such that the longer the front vehicle detected by the vehicle size detector is, the longer the front vehicle is, and the longer the illuminance detected by the illuminance detector is, the longer the distance is. A vehicle travel control device characterized by the above-mentioned.
前方車両の大きさを検出する車両大きさ検出手段と、
前方車両と自車両との間の車間距離を検出する車間距離検出手段と、
自車両の速度である走行速度を検出する速度検出手段と、
前方車両に対する自車両の相対速度を検出する相対速度検出手段と
前方車両に対する自車両の相対位置を検出する相対位置検出手段と、
自車両の操舵角を検出する操舵角検出手段と、
自車両周囲の照度を検出する照度検出手段と、
適正車間距離を算出する適正車間距離算出手段と、
前記車間距離検出手段により検出される前方車両と自車両との間の車間距離が、前記適正車間距離算出手段により算出された適正車間距離となるように、自車両の走行を制御する走行制御手段と、を有し、
前記適正車間距離算出手段は、
前記車両大きさ検出手段により検出された前方車両の大きさと、前記操舵角検出手段により検出された操舵角と、前記照度検出手段により検出された照度と、前記速度検出手段により検出された走行速度と、前記車間距離検出手段により検出された車間距離と、前記相対速度検出手段により検出された相対速度と、前記相対位置検出手段により検出された相対位置とを、予め定めた評価関数に従って評価して、評価結果として現在の運転性を求め、求めた運転性に応じて、算出する前記適正車間距離を修正すること
を特徴とする車両走行制御装置。
Vehicle size detecting means for detecting the size of the preceding vehicle;
An inter-vehicle distance detecting means for detecting an inter-vehicle distance between the preceding vehicle and the own vehicle,
Speed detection means for detecting a traveling speed that is the speed of the own vehicle,
Relative speed detecting means for detecting the relative speed of the own vehicle with respect to the preceding vehicle, and relative position detecting means for detecting the relative position of the own vehicle with respect to the preceding vehicle,
Steering angle detection means for detecting the steering angle of the vehicle,
Illuminance detection means for detecting illuminance around the vehicle,
An appropriate inter-vehicle distance calculating means for calculating an appropriate inter-vehicle distance,
Traveling control means for controlling traveling of the own vehicle such that the inter-vehicle distance between the preceding vehicle and the own vehicle detected by the inter-vehicle distance detecting means becomes the proper inter-vehicle distance calculated by the appropriate inter-vehicle distance calculating means. And
The appropriate inter-vehicle distance calculating means,
The size of the preceding vehicle detected by the vehicle size detecting means, the steering angle detected by the steering angle detecting means, the illuminance detected by the illuminance detecting means, and the traveling speed detected by the speed detecting means And evaluating the inter-vehicle distance detected by the inter-vehicle distance detecting means, the relative speed detected by the relative speed detecting means, and the relative position detected by the relative position detecting means according to a predetermined evaluation function. A vehicle driving control device for obtaining a current drivability as an evaluation result, and correcting the calculated appropriate inter-vehicle distance according to the obtained drivability.
前方車両と自車両との間の車間距離を制御する車両走行制御方法であって、
前方車両の大きさと、前方車両と自車両との間の車間距離と、自車両周囲の照度を検出する第1のステップと、
前記第1のステップにより検出した前方車両の大きさが大きい程より長くなり、前記第1のステップにより検出した照度が高い程よりより長くなるように、適正車間距離を算出する第2のステップと、
前記第1のステップで検出される前方車両と自車両との間の車間距離が、前記第2のステップで算出した適正車間距離となるように、自車両の走行を制御する第3のステップと、を有すること
を特徴とする車両走行制御装置。
A vehicle traveling control method for controlling an inter-vehicle distance between a preceding vehicle and a host vehicle,
A first step of detecting the size of the preceding vehicle, the inter-vehicle distance between the preceding vehicle and the own vehicle, and the illuminance around the own vehicle;
A second step of calculating an appropriate inter-vehicle distance such that the larger the size of the preceding vehicle detected in the first step is, the longer the vehicle is, and the longer the illuminance detected in the first step is, the longer the illuminance is. ,
A third step of controlling traveling of the own vehicle such that an inter-vehicle distance between the preceding vehicle and the own vehicle detected in the first step is an appropriate inter-vehicle distance calculated in the second step; , A vehicle travel control device.
JP2003202334A 2003-07-28 2003-07-28 Vehicle travel controller Pending JP2004058994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202334A JP2004058994A (en) 2003-07-28 2003-07-28 Vehicle travel controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202334A JP2004058994A (en) 2003-07-28 2003-07-28 Vehicle travel controller

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000051032A Division JP2001243600A (en) 2000-02-28 2000-02-28 Vehicle travel controller

Publications (1)

Publication Number Publication Date
JP2004058994A true JP2004058994A (en) 2004-02-26

Family

ID=31944758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202334A Pending JP2004058994A (en) 2003-07-28 2003-07-28 Vehicle travel controller

Country Status (1)

Country Link
JP (1) JP2004058994A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604154B2 (en) 2015-10-28 2020-03-31 Hyundai Motor Company Vehicle and method of controlling the same
JP2020063940A (en) * 2018-10-16 2020-04-23 トヨタ自動車株式会社 Mobile object

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558235A (en) * 1991-08-29 1993-03-09 Nissan Motor Co Ltd Between-vehicle distance alarm device for vehicle
JPH0589398A (en) * 1991-03-22 1993-04-09 Omron Corp Output device
JPH0594600A (en) * 1991-10-01 1993-04-16 Nissan Motor Co Ltd Approach judging device for vehicle
JPH07186775A (en) * 1993-12-28 1995-07-25 Mazda Motor Corp Control device for vehicle
JPH0927100A (en) * 1995-07-12 1997-01-28 Yazaki Corp Method and device for recognizing proceding vehicel and read-end collision preventive device equipped there with for vehicle
JP2654971B2 (en) * 1988-07-30 1997-09-17 マツダ株式会社 Travel control device for vehicles
JPH09323566A (en) * 1996-06-07 1997-12-16 Omron Corp Safety travelling system
JPH1096626A (en) * 1996-09-20 1998-04-14 Oki Electric Ind Co Ltd Detector for distance between vehicles
JPH10119676A (en) * 1996-10-11 1998-05-12 Honda Access Corp Collision alarm system for vehicle
JPH10154300A (en) * 1996-11-25 1998-06-09 Honda Access Corp Vehicle driving support system
JPH10187930A (en) * 1996-12-19 1998-07-21 Hitachi Ltd Running environment recognizing device
JPH10281794A (en) * 1997-04-03 1998-10-23 Toyota Motor Corp Guidance display device for vehicle
JPH11213300A (en) * 1998-01-27 1999-08-06 Mitsubishi Motors Corp Inter-vehicle distance alarming device
JP2000142321A (en) * 1998-11-09 2000-05-23 Fujitsu Ten Ltd Occupant protection support device
JP3145740B2 (en) * 1991-08-29 2001-03-12 マツダ株式会社 Traveling state determination device for mobile vehicles

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654971B2 (en) * 1988-07-30 1997-09-17 マツダ株式会社 Travel control device for vehicles
JPH0589398A (en) * 1991-03-22 1993-04-09 Omron Corp Output device
JP3145740B2 (en) * 1991-08-29 2001-03-12 マツダ株式会社 Traveling state determination device for mobile vehicles
JPH0558235A (en) * 1991-08-29 1993-03-09 Nissan Motor Co Ltd Between-vehicle distance alarm device for vehicle
JPH0594600A (en) * 1991-10-01 1993-04-16 Nissan Motor Co Ltd Approach judging device for vehicle
JPH07186775A (en) * 1993-12-28 1995-07-25 Mazda Motor Corp Control device for vehicle
JPH0927100A (en) * 1995-07-12 1997-01-28 Yazaki Corp Method and device for recognizing proceding vehicel and read-end collision preventive device equipped there with for vehicle
JPH09323566A (en) * 1996-06-07 1997-12-16 Omron Corp Safety travelling system
JPH1096626A (en) * 1996-09-20 1998-04-14 Oki Electric Ind Co Ltd Detector for distance between vehicles
JPH10119676A (en) * 1996-10-11 1998-05-12 Honda Access Corp Collision alarm system for vehicle
JPH10154300A (en) * 1996-11-25 1998-06-09 Honda Access Corp Vehicle driving support system
JPH10187930A (en) * 1996-12-19 1998-07-21 Hitachi Ltd Running environment recognizing device
JPH10281794A (en) * 1997-04-03 1998-10-23 Toyota Motor Corp Guidance display device for vehicle
JPH11213300A (en) * 1998-01-27 1999-08-06 Mitsubishi Motors Corp Inter-vehicle distance alarming device
JP2000142321A (en) * 1998-11-09 2000-05-23 Fujitsu Ten Ltd Occupant protection support device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604154B2 (en) 2015-10-28 2020-03-31 Hyundai Motor Company Vehicle and method of controlling the same
JP2020063940A (en) * 2018-10-16 2020-04-23 トヨタ自動車株式会社 Mobile object
CN111142510A (en) * 2018-10-16 2020-05-12 丰田自动车株式会社 Moving body
US11313686B2 (en) 2018-10-16 2022-04-26 Toyota Jidosha Kabushiki Kaisha Moving body

Similar Documents

Publication Publication Date Title
US8214124B2 (en) Cruise control system and method
JP4229051B2 (en) Driving intention estimation device, vehicle driving assistance device, and vehicle equipped with vehicle driving assistance device
US5396426A (en) Constant speed traveling apparatus for vehicle with inter-vehicle distance adjustment function
US7668638B2 (en) Inter-vehicle distance control apparatus
US7561955B2 (en) Preceding-vehicle following control system
CN107472246A (en) Adaptive cruise control system and its operating method
US20060106505A1 (en) Driving assisting system for a vehicle and a vehicle installed with the system
JPH11314537A (en) Preceding vehicle follow-up control device
JPH07251651A (en) Intervehicle distance control device
JP2019211830A (en) Lane change estimation device and lane change estimation method, and vehicle control device and vehicle control method
JPH05170008A (en) Travel control device for vehicle
EP1128351B1 (en) Vehicular travel control system
CN110281940A (en) The control method of travel assist system and vehicle
JPH11348598A (en) Control device for vehicle
JPH03132434A (en) Vehicular travel control device
JPH0817000A (en) Controller for distance between vehicles going to the same direction
JP2700495B2 (en) Travel control device for vehicles
JP2004249846A (en) Operation control auxiliary device for vehicle and vehicle with the device
JP4304258B2 (en) VEHICLE DRIVE OPERATION ASSISTANCE DEVICE AND VEHICLE HAVING VEHICLE DRIVE OPERATION ASSISTANCE DEVICE
JP7351076B2 (en) Electric vehicle control method and electric vehicle control device
CN110834628B (en) Obstacle avoidance control method and system suitable for automobile
JP2004058994A (en) Vehicle travel controller
JPH05159198A (en) Travelling controller for vehicle
JP2503681B2 (en) Vehicle drive controller
JPH0717298A (en) Running control device for automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060707

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309