JP2004058255A - Apparatus for cutting-off sleeve of transmission belt and its cutting off method - Google Patents

Apparatus for cutting-off sleeve of transmission belt and its cutting off method Download PDF

Info

Publication number
JP2004058255A
JP2004058255A JP2002223744A JP2002223744A JP2004058255A JP 2004058255 A JP2004058255 A JP 2004058255A JP 2002223744 A JP2002223744 A JP 2002223744A JP 2002223744 A JP2002223744 A JP 2002223744A JP 2004058255 A JP2004058255 A JP 2004058255A
Authority
JP
Japan
Prior art keywords
cutting
sleeve
belt
groove
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002223744A
Other languages
Japanese (ja)
Other versions
JP4639028B2 (en
Inventor
Takuya Yoshikawa
吉川 琢也
Hirotaka Hara
原 浩孝
Akihiro Nagata
永田 昭裕
Tetsuji Mori
森 哲司
Haruyuki Tsubaki
椿 晴行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2002223744A priority Critical patent/JP4639028B2/en
Publication of JP2004058255A publication Critical patent/JP2004058255A/en
Application granted granted Critical
Publication of JP4639028B2 publication Critical patent/JP4639028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for laterally cutting-off a sleeve of a transmission belt having a plurality of grooves in the lateral direction, which grooves are formed over the whole periphery of the belt, which apparatus has a high quality and is low-priced without causing the shift of the cut-off position by compensating the deformation of members and the scatter of grooving during cutting-off, and its cutting-off method. <P>SOLUTION: The apparatus copes with the problem as follows: The apparatus is provided with a sleeve rotating means 3 for moving the belt sleeve BS by mounting it on a spindle and by preventing meandering of the belt sleeve BS utilizing, as a guide, the grooves formed over the whole periphery of the sleeve surface, a groove position detecting means 8 for detecting the position of the grooves by bringing it into contact with the groove M of the running belt sleeve by facing the sleeve to the rotating spindle and by axially moving in parallel with the sleeve, a cutter moving means 5 for carrying out the cutting-off positioning and the depth setting for cutting-off, which cutter moving means 5 has a compensation control means 10 for correcting the position of the cutting edge of the cutter by measuring the lateral shift of the detected position, and a cutter means 7 for cutting off the sleeve. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、ベルトスリーブを所定巾にカットする伝動ベルト用スリーブのカット装置及び方法に係わり、詳しくは変形を伴う溝付きベルトスリーブを現物溝形状に即して溝位置検出手段を当接させて実際の溝位置をカット前に捉えて測定しカッタ刃の位置を補正することにより、更に正確で簡便に対応できるベルト幅カット技術に関する。
【0002】
【従来の技術】
従来の伝動ベルトのカット装置に関するものとしては、本出願人による第3022387号の特許公報があり、このカット装置では、図6に示すように溝部Mを表側に位置させた状態で巻き掛けて周回移動し、溝部Mに対峙させたCCDカメラ161によってカット位置を撮像して、予め記憶されている画像とマッチング処理してその位置ズレ量を演算し、補正できるようにカッタースライド手段142が駆動制御出来るこれら手段を具備することを特徴とするものであった。
【0003】
これによれば、山数や山形状等の違いからそれぞれのカット幅を予め入力設定してあり、これらの計算値からカット位置の選択を行い、更にカット時にはカット面に面した溝部MをCCDカメラ161で撮影して画像処理技術を用いて溝形状をリアルに検出して、検出値との差を補正しこれによって所定の切断位置にカッタ刃14を誘導して正確に切断しようとするものである。
【0004】
【発明が解決しようとする課題】
しかし、CCDカメラを用いた高精密画像処理であることから、元来、画像処理装置の装置コスト自体が高価であるとともにその装置の精密で複雑であることから性能維持費用も割高で、取扱において習熟技能を要し、また性能面で例えばベルトゴム中に分散し強化のために用いたカット糸が溝部には毛羽状態で露出させた溝面の画像では溝の外形が羽毛でボカされて外形測定の画像信頼性に難点がともない、一層の拡大運用には限界があった。
【0005】
本発明の目的は、上述の高精密機器を用いたコスト高並びに品質の不安定な問題点を改善すると伴に、ゴムや樹脂で成形されてベルトスリーブ自体の収縮変形に伴う幅痩せや、溝加工時の微少なバラツキを残したベルトスリーブのそれぞれにカット位置補正を簡便に対応できて、予め設定されたカット位置との差を実物に即してシンプルに補正して、あまねく高品質な伝動ベルトを提供することにある。
【0006】
【課題を解決するための手段】
上記問題を解決する即ち、本願請求項1記載の伝動ベルト用スリーブのカット装置では、全周にわたる溝を幅方向に複数有したベルトスリーブを軸上に掛架して蛇行を防ぎながら走行させるスリーブ回動手段と、走行軸上のスリーブに対峙して軸方向に平行移動し走行中のベルトスリーブの溝に当接して溝位置を検出する溝位置検出手段と、検出位置の横ズレ量を測定してカッタ刃位置を補正する補正制御手段とを備えたカット位置決めを行いカット切り込みをするカッタ移動手段と、スリーブを切断するカッタ刃と、からなることを特徴とする。
【0007】
請求項1の構成においては、とりわけベルトスリーブの溝部へ溝位置検出手段を直接嵌着させてその横ズレ量を測定して、カッタ位置を補正するそれぞれの手段とを備えており、カットに際してベルトスリーブの溝位置がリアルに検出でき且つ溝部に露出する羽毛状のカット糸も溝部に馴染ませて正確に簡便にズレ量が測定できる構成である。
【0008】
本願請求項2記載の伝動ベルト用スリーブのカット装置では、請求項1の構成において溝位置検出手段が、前記ベルトスリーブの溝部に嵌着する複数の山部を備えた回転体を具備している。この請求項2の構成においては、溝位置検出に当たって少なくとも複数の溝を検出対象に出来るから、横ズレ量を複数溝との同時嵌着状態から判定できるのでバラツキの少ない測定が出来、併せて回転出来ることから走行する溝部への当接対応が容易である。
【0009】
本願請求項3記載の伝動ベルト用スリーブのカット装置では、請求項1または2において、カッタ刃が、その間隔でベルト幅をカットする2枚刃を含んでいる。請求項3の構成においては、カッタ刃が2枚の構成であり2枚刃で同時に切り込みカットを行うことから、この2枚刃間で繰り返しカットされる幅はバラツキが無く、2枚の刃間に走行するカットベルトをキャッチし易く直線走行性も高いから幅精度の高いベルトを得ることが出来る。
【0010】
本願請求項4記載の伝動ベルト用スリーブのカット方法では、全周にわたる溝を幅方向に複数有したベルトスリーブを軸上に掛架して蛇行を防ぎながら走行させて、軸上を走行するベルトスリーブの幅方向に軸と平行に移動して所定のカット幅に位置決めしてカッタ刃を切り込んで輪切りするベルトのカット方法であって、前記軸上を走行するベルトスリーブの幅方向に軸と平行に移動して所定のカット位置とする位置決めが、複数の山を備えた溝検出体を前記軸と平行に横ズレ可能とすると伴に前記軸に離間可能に支持し、走行中の前記ベルトスリーブの溝部に前記複数の山を備えた溝検出体の山を嵌着させ発生する横ズレ量を測定し、カッタ刃切り込み位置を補正して行うことを特徴とする。
【0011】
請求項4の方法においては、幅決めに当たって複数の山を備えた溝検出体の山を走行中の前記ベルトスリーブの溝部に外接させながら横ズレ可能に嵌着させて走行溝位置を測定出来るから、非接触方式で高精密で高価な画像技術に頼る必要が無くなり、加えて溝部に短繊維が羽毛状に露出して撮像の障害となっていた課題も検出体を外接するから羽毛状に露出したような対応にも拡大使用が出来る。
【0012】
また溝検出体には複数の山を設けたことにより、溝ごとのバラツキに対して平均化できてカット幅のバラツキが小さくなりカット品質が向上した。このように検出体を外接させたことから検出機構を取り込んで直接的な測定が可能になり、簡便で信頼性の高い装置化が可能になった。
【0013】
本願請求項5記載の伝動ベルト用スリーブのカット方法では、全周にわたる溝を幅方向に複数有したベルトスリーブを軸上に掛架して蛇行を防ぎながら走行させて、軸上を走行するベルトスリーブの幅方向に軸と平行に移動して所定のカット幅に位置決めしてカッタ刃を切り込んで輪切りするベルトのカット方法であって、前記軸上を走行するベルトスリーブの幅方向に軸と平行に移動して所定のカット位置とする位置決めが、複数の山を備えた溝検出体を前記軸と平行に横ズレ可能とすると伴に前記軸に離間可能に支持し、走行中の前記ベルトスリーブの溝部に前記複数の山を備えた溝検出体の山を嵌着させ発生する横ズレ量を測定し、カッタ刃切り込み位置を補正して行う、と伴に、前記カッタ刃を切り込んで行う輪切りが少なくとも2枚のカッタ刃を用いて同時にベルト両端面を幅狭に切り込んで行うことを特徴とする。
【0014】
請求項5の方法においては、所定のカット位置とする位置決めが、溝検出体を横ズレ可能に離間可能に支持して、走行中のベルトスリーブの溝部にその山を嵌着させ発生する横ズレ量を測定して、カッタ刃切り込み位置を補正するから簡便で信頼性の高精度カットの装置が得られて、加えて輪切りするカッタ刃を少なくとも2枚のカッタ刃にして同時にベルト両端面をカットできるから、2枚のカット刃に挟まれたカットベルトの幅は一定に成る。先のカット刃設置精度の向上と合わせて、高性能なカットが出来る。
【0015】
【発明の実施の形態】
本発明の伝動ベルト用スリーブのカット装置及びカット方法の一実施形態について、図1〜図8を参照して説明する。図1は本発明の伝動ベルト用スリーブのカット装置の全体構成図であり、図2は本発明の溝位置検出方法を表す概念図である。まず伝動ベルト用スリーブのカット装置1は、図1に示すようにスリーブ回動手段3と、回動軸4に平行方向と直角方向に移動するカッタ移動手段5と、カッタ手段7とからなり、本発明では前記カッタ移動手段5において、そのカット位置決めが当接方式の溝位置検出手段8を用いて実際の溝位置との差を検出してカッタ刃31位置の差分を微調整する補正制御手段10とを備えている。
【0016】
次いで、本発明でカットされるベルトスリーブBSの部分斜視図を図5に示してあり、筒状でその内外周面の少なくとも外周面の全周にわたる溝を幅方向に複数有したベルトスリーブに、(a)Vリブドベルト、(b)ダブルVリブドベルト、(c)多本掛けローエッジベルト等の伝動ベルトがある。
【0017】
まず(a)Vリブドベルトは、台形状の山部RRとV形状の溝部Mを交互に幅方向に所定のピッチで片面に並べて形成された伝動ベルトでありフラットな背面側を回動軸に接して掛けて、(b)ダブルVリブドベルトは、前述の山部RRと溝部Mを幅方向に所定のピッチで両面に並べた伝動ベルトであり回動軸の外面にはスリーブの山部RRと溝部Mを反転して形成した山と溝を刻設してあり、(c)多本掛けローエッジベルトは複数のベルトの背面を帆布等で接合して複数の台形状の山部RRとV形状の溝部Mを幅方向に並べた伝動ベルトであり(a)と同様に裏返して回動軸に掛けて、この図では台形の山底面に波形のコグ部Cが表してあるが、この底面が平滑なタイプにも対応が出来る。
【0018】
次に本発明の伝動ベルト用スリーブのカット装置1の各部位について図1、図2を用いて説明する。まず本発明に係わるカッタ移動手段5は、回動軸4に平行方向(1図中、X―X方向である)と直角方向(1図中、Y方向である)の2次元移動の機能を有しており、とりわけ本発明に係わる平行方向の移動は、まずこの平行移動によって輪切り位置が決まりベルト幅を決定する働きを持ち、次に直角方向の移動はベルトスリーブBSの走行面に対峙してカッタ刃14を、走行中のベルトスリーブBSに押し付けて切り込んで、周回するスリーブを輪切りする働きを持つものである。
【0019】
続いて、この平行移動の制御については、設定制御と補正制御とから構成されており、まず設定制御については、予めカットするベルトスリーブBSの種別に応じて個々のカット条件が記憶されてデータベース化してあり、カットスタート時にベルトスリーブ種を入力すれば、カット刃14を待機位置から走行中のベルトスリーブBSのカット位置に自動で作動させて記憶条件を抽出して所定の幅に輪切り出来るようにプログラム制御としたシステムでありその動きについては、動作フローで後述する。
【0020】
次いで、カットの最終位置を決定する補正制御については前述の設定制御によって予め決められたプログラム位置にカッタ刃14が移動して位置決めされ、それに加えて回動中の山付きベルトスリーブBSに対峙して、その山位置を検出することにより先の設定位置との差分δ(図2参照)を測定してカッタ刃14の位置を現品に合わせて修正する機能を有するものであり、溝位置検出手段8と補正制御手段10とから構成されている。
【0021】
まず溝位置検出手段8は、図2に示すように回動軸4上のベルトスリーブBSに対峙して軸方向に平行移動し走行中のベルトスリーブの溝部Mに当接して溝位置が検出出来る機能を持っており、当接体としては溝部Mに嵌着する複数の山部Rを備えた回転体12を備えている。その構成については、図1に示すように、検出機構16と、測定センサ17と,検出移動機構18とから構成されている。
【0022】
まず検出機構16については、ベルトスリーブBSの溝部Mに嵌着する回転体12として、3つの山部Rを持った検出ロール26とこの回転体12を横ズレ可能に軸支した支持枠とからなりスライドユニット22のスライドレール端に連結してある。検出ロール26は、その形状は図2に示すように軸上を回動するベルトスリーブBSの表面に加工されたベルト溝部Mに嵌着する山部Rを検出ロール外周部に凸状に、カットするベルトスリーブの溝形状に応じて設けてある。
【0023】
まず検出ロール26は、まず設定制御されてスリーブのカット部の溝上付近に平行移動されて2図中の上方位置に設定され、直角方向に溝上に接近して溝斜面に沿ってその山部Rを滑らせて横ズレして溝M内に山部Rを嵌着させ、横ズレ量は2図中のδとなり、この差分δをカッタ位置で補正する。
【0024】
次いで支持枠はコの字形状の支持部材24と、この支持部材間に水平方向に設けた摺動ロッド41等からなり、このロッドに検出ロール26を挿通してこの検出ロール26が自在に横ズレ出来るように、加えてロッド41周りに回転可能に軸支してある。
【0025】
尚、検出ロール26の横ズレ自在の機構に対して、横原点位置を保持する機構が設けてあり、これは図1に示す回転する検出ロール26の両端面に当接して回転摺動するスラスト軸受けを挟んで支持部材の両端に設けた基準位置用シリンダ43と押当て用シリンダ45によって検出ロールを両端から挟み付ける機構にしてあり、これによって、横原点位置に保持された検出ロール26を回動中のベルトスリーブBSの溝部Mに検出ロール26の山部Rを以下の移動機構18で押し付けて、その際に発生する横方向の横ズレ(差分δ)を検出ロール26のズレ移動で吸収出来る。
【0026】
次に測定センサ17は、ベルトスリーブBSの溝部Mに検出ロール26の山部Rを押し付けて、その際に発生する検出ロール26の横ズレ量δを測定して電気出力出来る計器が用いてあり市販されるリニアーゲージである。ゲージ前端部の回転部への直接の接触を避けて押し当てシリンダの前端部の非回転部で横ズレを測定するようにしてある。
【0027】
次いで検出移動機構18は、リニアレールと、リニアーベアリングを内臓してリニアレールを把持したリニアーヘッドと、リニアーレール端部にサーボモータを着設してその回転軸にボールネジを連結しこの回転を直線運動に代える駆動機器から構成されて市販品のスライドユニットが用いてあり、1図中X方向移動には検出ロール用スライドユニット21を、Y方向移動には検出ロール用スライドユニット22が用いられて、Y方向スライドユニット22のリニアーヘッドがX方向スライドユニット21のリニアーヘッド上に連接してある。このX、Y方向の移動によって検出ロール26は、回動するベルトスリーブの回動軸に平行移動並びに接離移動が出来る(これらの作動については後述する)。
【0028】
次に補正制御手段10は、前述の検出移動機構18で測定して電気出力された横ズレ量の電気信号をもとに位置決め用コントローラ11を用いて、横ズレ量に応じてカッタ刃位置を正確に補正するもので、その制御系統を図1のブロック図に示している。
【0029】
まず検出ロール26の設置状態は、その検出ロール26の両端面に当接して挟むように設けた押当てシリンダ45の前端部に測定センサ17の突き出し検出部を押し付けて検出ロール26の横ズレに応じて検出部を伸縮させて測定できるように配設してある。
【0030】
次に補正制御流れは、検出ロール26の横ズレ量をこれに伸縮出来る検出端を当接させて測定する測定センサ17で検出して、リニアーゲージ用のカウンタを介して信号変換して位置決め用コントローラ11の入力ユニットに入力し、入力された横ズレ量をコントローラ11内のCPUユニットで補正量として位置決め用データに演算変換し、位置決めユニットで補正量をパルス出力に変換し、そのパルス数に応じてサーボアンプを介してサーボモータSM1を回転させて、X方向スライドユニット47を移動させて検出ロール26が検出した横ズレ量を正確に補正する。
【0031】
続いて、ベルトスリーブBSを切断するカッタ手段7は、1枚刃による加工は知られており、ここでは本発明に係わる2枚刃について、図8で説明する。まず移動テーブル35上に突設されて、固定刃31と、刃間隔移動機構33を備えた可動刃32とからなり、これによって2枚の刃間隔が調整できる。カッタ手段7の構成については、2枚のカッタ刃14と、カッタホルダ36と、刃間設定機構33と、カッタ移動テーブル35とからなる。
【0032】
まずカッタ刃14は、2枚の丸刃から成りそれぞれカッタホルダーに止着されて、この丸刃の円盤面を軸の直角断面と平行に揃えて、2枚の丸刃が互いを平行にして向かい合わせて、カッタ移動テーブル35上にカッタホルダ36を介して固定刃31を、また可動刃32は刃間隔設定機構33を用いて可動出来る構成でカッタ移動テーブル35上に載置し、この上にカッタホルダ36を用いて配設してある。
【0033】
可動刃32の刃間隔設定機構33はリニアーガイドとボールネジと可動ヘッド54とサーボモータ55が一体でコンパクトに組み込まれて市販される一体構造アクチェータ38を用いてある。このように固定刃31に対して対面するもう一方の刃である可動刃32を遠近移動させて刃間隔の調整が行える。
【0034】
尚、検出ロール26と上記の固定刃31と可動刃32から成る2枚刃の設定位置関係については、図2にカット幅が三つの山RRからなる場合を示しており、検出ロール26の三つの山Rが図中、ベルトスリーブの四つの溝Mに対して固定刃31が切り込む予定の溝位置を基準にして、可動刃32が切り込む溝との間に位置させて嵌着出来、カット位置の溝を常に検出できるように配設してある。カット幅が広くなり更に山数が増えれば、検出ロールの山数を増やし対応できる。
【0035】
次にスリーブ回動手段3については、図7に示すように全周にわたる溝を幅方向に複数有した筒状のベルトスリーブBSを、主軸63と従動軸65からなる回動軸4で張架して、主軸63に近接させて配設した山付きの案内ロール67で主軸上に回動してくるベルトスリーブBSの溝部Mに案内ロール67の山部Rを嵌着させて蛇行を防止できる蛇行防止機構61を備えて用いられる。
【0036】
続いて、以上の構成からなるカット装置1を用いての伝動ベルト用スリーブのカット方法について、図3に示すフローチャートを用いて説明する。まずスリーブ挿入(S11)は、手前側が開放された片持ち状の主軸63と従動軸65から成り、2軸間隔を縮小させた軸架機構にベルトスリーブBSを挿入する(図7参照)。次にカット条件入力し自動スタート(S12)では、ベルト種・ベルトピッチ周長等をタッチパネルに入力してスタート釦を押す。
【0037】
以下自動で進行し、スリーブ伸張(S13)では各軸63,65の開放端を開閉可能な軸支機構であるテールストックを閉じて両持ち支持とし、従動軸を離間させて2軸間隔を拡げてベルトスリーブを伸張させて、引き続いてスリーブ走行(S14)に入り、他方では刃間隔設定(S13‘)で可動刃32を一体構造アクチェータでサーボ制御して2枚の刃間隔を所定値に設定し、続いて溝検出ロール・カッタ刃のN回目カット位置へ横移動(S15)に入り、溝検出ロール・カッタ刃がそれぞれ退避し待機した位置からX、Y方向の2次元移動して予めプログラムされた初回カット位置に制御移動して、次カット位置:有/無?(S21)の指令を待つ。
【0038】
一方スリーブ走行(S14)後に、走行準備完了:Y/N?(S15‘)がNOでは引き続きスリーブ走行(S14)を行い、YESになると他方で溝ロール下降(S16)が起動してベルトスリーブの溝に3つの山を設けた溝ロールを下降させて押し付けて山と溝を嵌着させる。次いで溝ロール変位量測定(S17)で嵌着時の横ズレ差をリニアーゲージの変位出力で検出測定する。
【0039】
次に溝ロール上昇(S18)は、測定を終えた溝ロールを上方に退避させて順次繰り返して輪切りする次のカット位置への移動を待って待機する。ついでカッタ刃位置補正(S19)では測定した溝ロールの変位量に応じて位置決めコントローラがカッタ移動用スライドユニットをサーボ制御させて先の設定制御位置に補正制御を行わせて、これによって正確にカット位置が決定出来る。
【0040】
一方、スリーブ走行(S14)により主軸が駆動回転されてフリー回転の従動軸との間で周回回転を始めるとともに山付きの案内ロールが溝付きのベルトスリーブに押し付けられて回動中のベルトスリーブの蛇行を防止しており、他方ではカット作動(S20)に入り、カッタ移動用Y方向スライドユニット48が作動して回動中のベルトスリーブにカッタ刃を押し込んで切り込み周回させてベルトスリーブを輪切りして所定の幅を有した1本のベルトになる。
【0041】
以下、次カット位置:有/無?(S21)では繰り返しに当たってカット残りがないか設定カット数から累積カット数を比較演算させて判定を行い、残りがあれば再度繰り返してN回目カット位置へ移動(S15)に戻って溝ロールでN回目カット位置の測定を行いカッタ刃の位置補正を繰り返して順次輪切りを行う。
【0042】
ついにはカット残りがなくなりスリーブ走行停止(S22)に移行し走行停止する一方で、溝検出ロール・カッタ刃の原点位置へ移動(S22‘)で、溝検出ロール・カッタ刃は退避位置に移動して待機状態となる。次いでカットベルト開放(S23)で、前述のスリーブ伸張(S13)の逆動作を行って2軸間隔を縮めて両持ち支持の各軸のテールストックを開放させて片持ち状態に戻して、カットベルト取り外し(S24)つまり輪切りされてベルト1本ごとにカットされたベルトスリーブを軸架手段から外して、次の新たなベルトスリーブのカットに移行する。このように1スリーブを幅カットし、繰り返して行う。
【0043】
次に、本発明に係わる幅狭カットについて、図4を用いて説明する。(b)図中のW1が標準カット幅を示し、ベルトスリーブBSの溝の中央をベルト幅端としてベルト山部Rを3山、4山と山数を増やしてベルト幅が増えて伝達馬力を増して選択される。次に図中でW2で示すカット幅が幅狭カットであり、前記に比してベルト両端面でのカット位置が溝中央部よりベルト内側に切り込まれてつまり溝底の円弧部を残さず実質、幅狭にカットしたものである。
【0044】
このように、幅狭にカットするには1枚のカッタ刃で順次輪切りしようとすれば図中N1とN2、N3とN4、N5とN6間は大凡0.3ミリの厚み(リブピッチ3.56ミリでリブ山数6山のケース等)の薄切りスライス状の輪切りが必要であり、実質的には一枚刃のカットでは薄肉幅が均一にならず困難であり、以下のような工夫が取られている。
【0045】
2枚のカッタ刃を図4(b)中のN2とN3、N4とN5、、、にそれぞれ幅を設定して、図4(a)に示すように、カッタ刃14の刃先のシノギ形状を調整して切り込み時の刃厚による圧迫を左右バランスをとって且つ2枚刃間にカットベルトを挟み込んで均一幅を確保しながら幅カットを行うものである。このような2枚刃の位置決めにおいて、前述のベルトスリーブの溝位置を正確に検出補正して左右のカット刃31,32の山部Rへの刃当たりを左右対象に維持することで、好適に精度に優れた幅狭カットが出来る。
【0046】
また、左右刃の内面側の形状は、一段シノギで、シノギ角θ1は5〜10°、シノギ厚みT1は0.02〜0.1ミリにしてある。このように左右の両刃先がベルトスリーブBSに食い込んでシノギ厚みに相当する圧縮を受けて左右がバランスして横ズレを阻止できる。左右刃の外面側の形状は、2段シノギで、刃先に成る1段目は内面と同等のシノギ角θ2は5〜20°、シノギ厚みT2は0.15〜0.25ミリで、2段目はシノギ角θ3は3〜10°、刃の厚みT3は0.5〜2.5ミリが用いてある。
【0047】
尚、本発明の伝動ベルト用スリーブのカット装置及びそのカット方法では、図1〜図8に示すものに限定されず、例えば次の様な形態をとることが出来る。
1)スリーブ回動手段3は、必ずしも本例の主軸61と従動軸65の2軸間に軸架されるものに限定されものでなく、例えば少なくとも主軸61或いは従動軸65の何れか片方の一軸で回動される形態にも検出ロールを用いて溝位置を補正して好適に用いることが出来る。
【0048】
2)本例では、改良機に対する追加補正制御手段において便宜的に設定制御と補正制御を分割説明したが、新たに制作時は一括補正制御で対応出来る。
【0049】
3)全周にわたる溝については、必ずしも連続した山に限定されず、その不連続山間を跨いで案内できる溝形状については、本実施例と同様に実施できる。
4)本実施例では、溝位置を検出補正するカッタは固定刃31のみとして、可動刃32の位置は直接検出する方式にしていないが、検出ロール部を左右に分割設置して、測定センサーを増設して同様に実施できる。
【0050】
【発明の効果】
請求項1に記載の構成では、高精密で高価な電子画像手段にかえて機構部を取り込んで簡便な仕組みで対応できるから、安価な仕組みで且つメンテナンス費用も少なく、加えて測定の信頼性が向上してカッタ位置決めが正確で容易に出来るから、生産性向上の効果を奏する。
【0051】
請求項2に記載の構成では、複数の溝を検出対象にしてバラツキの少ない横ズレ量の測定が出来るから、その測定結果に基づきカット位置を補正して行うベルト幅カットのバラツキが少なくなり品質が向上する効果を奏する。
【0052】
請求項3に記載の構成では、2枚刃で挟まれたカット幅はとりわけカット幅精度が高いベルトが得られるから、少なくとも一山以上を有したベルト等でそのベルト端面を山斜面部で切断するような幅狭カット等を高精度にカット出来る効果を奏する。
【0053】
請求項4に記載の方法では、検出体を外接させて検出機構を取り込み直接的な測定が可能になり簡便で信頼性の高い装置化が出来て、カット工程の品質や原価において生産性向上の効果を奏する。
【0054】
請求項5に記載の方法では、ベルトスリーブの溝位置に対してカッタ刃の設置位置精度が高く、加えて2枚のカット刃でベルト幅を挟んでカット出来るからカット幅のバラツキは無視できる。このように高性能カットが出来るからベルト幅の両端部が溝部の斜面裾をカットする幅狭カット品への対応が可能になる効果を奏する。
【0055】
以上の様に本願の請求項1〜5記載の伝動ベルト用スリーブのカット装置及びその方法に係わる発明では変形や加工バラツキ等により寸法が定まらないベルトスリーブのカット位置を制御補正を直接検出することで簡便で安価で高信頼性を備えた機能を発揮する事が出来る。
【図面の簡単な説明】
【図1】本発明の伝動ベルト用スリーブのカット装置の全体構成図である。
【図2】本発明の溝位置検出方法を表す概要図である。
【図3】本発明の伝動ベルト用スリーブのカット装置の作動フロー図である。
【図4】本発明の幅狭カットの説明図であり、(a)2枚刃による幅狭カット状態、(b)幅狭と標準のカット位置を示す。
【図5】全周にわたる溝を幅方向に複数有したベルトスリーブである伝動ベルトを表す図であり、(a)Vリブドベルト、(b)ダブルVリブドベルト、(c)多本掛けローエッジベルトである。
【図6】従来技術のカット位置の補正を説明する制御ブロック図である。
【図7】従来技術のカット装置の全体正面図である。
【図8】従来技術のカット装置でその間隔を調節可能にする2枚カッタ刃を示した部分図である。
【符号の説明】
1 カット装置
5 カッタ移動手段
7 カッタ手段
8 溝位置検出手段
10 補正制御手段
11 コントローラ
12 回転体
14 カッタ刃
16 検出機構
17 測定センサ
26 検出ロール
31 基準刃(固定刃)
32 移動刃(可動刃)
BS ベルトスリーブ
δ 横ズレ量
M 溝(ベルトスリーブの)
R 山部(検出ロールの)
RR ベルトスリーブの山部
W1 標準幅
W2 幅狭幅
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transmission belt sleeve cutting apparatus and method for cutting a belt sleeve to a predetermined width, and more specifically, a grooved belt sleeve with deformation is brought into contact with a groove position detecting means in accordance with the actual groove shape. The present invention relates to a belt width cutting technique that can more accurately and easily cope with an actual groove position by measuring it before cutting and correcting the position of the cutter blade.
[0002]
[Prior art]
As for a conventional transmission belt cutting device, there is a patent publication No. 302387 by the present applicant. In this cutting device, as shown in FIG. 6, the groove portion M is wound around and wound around. The cutter slide means 142 is driven and controlled so that the cut position can be imaged by a CCD camera 161 that has moved and confronted with the groove M, and a matching process with a pre-stored image is performed to calculate and correct the positional deviation amount. It was characterized by comprising these means that can be.
[0003]
According to this, each cut width is input and set in advance based on the difference in the number of peaks, the peak shape, etc., and the cut position is selected from these calculated values. Further, at the time of cutting, the groove M facing the cut surface is defined by the CCD. An image is captured by the camera 161 and the groove shape is detected realistically using an image processing technique, the difference from the detected value is corrected, and thereby the cutter blade 14 is guided to a predetermined cutting position to try to cut accurately. It is.
[0004]
[Problems to be solved by the invention]
However, since it is a high-precision image processing using a CCD camera, the image processing device itself is expensive and the accuracy and complexity of the device is high, so the performance maintenance cost is also expensive. In the image of the groove surface that requires skill and skill, and the cut yarn used for reinforcement that is dispersed in the belt rubber and exposed to the groove is exposed in the fluff state on the groove, the outer shape of the groove is blurred by the feather, and the outer shape is measured. However, there was a problem in the image reliability, and there was a limit to further expansion operation.
[0005]
The object of the present invention is to improve the cost and quality instability using the above-described high-precision equipment, and to reduce the width and groove due to shrink deformation of the belt sleeve itself, which is molded from rubber or resin. Cut position correction can be easily applied to each belt sleeve that leaves slight variations during processing, and the difference from the preset cut position is simply corrected according to the actual product, resulting in high quality transmission. To provide a belt.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the sleeve cutting device for a transmission belt according to claim 1, a sleeve that runs on a shaft with a belt sleeve having a plurality of grooves extending in the width direction on the shaft to prevent meandering. Rotating means, groove position detecting means for detecting the groove position by abutting against the groove of the belt sleeve that is moving in parallel in the axial direction against the sleeve on the traveling shaft, and measuring the lateral displacement amount of the detected position And a cutter moving means that performs cut positioning and performs cut cutting, and a cutter blade that cuts the sleeve.
[0007]
According to the first aspect of the present invention, the belt position detecting means is directly fitted in the groove portion of the belt sleeve, and the lateral deviation amount is measured to correct the cutter position. The configuration is such that the groove position of the sleeve can be detected in real time, and the amount of deviation can be measured accurately and simply by adapting the feather-like cut yarn exposed in the groove to the groove.
[0008]
In the transmission belt sleeve cutting device according to claim 2, the groove position detecting means in the configuration of claim 1 includes a rotating body having a plurality of ridges fitted into the groove portions of the belt sleeve. . In the configuration of claim 2, since at least a plurality of grooves can be detected in detecting the groove position, the amount of lateral deviation can be determined from the simultaneous fitting state with the plurality of grooves, so that measurement with little variation can be performed and rotation is also performed. As a result, it is easy to make contact with the traveling groove.
[0009]
The transmission belt sleeve cutting device according to claim 3 of the present application, in claim 1 or 2, the cutter blade includes two blades for cutting the belt width at the interval. In the configuration of claim 3, since the cutter blade has a configuration of two blades and cuts simultaneously by cutting with two blades, there is no variation in the width that is repeatedly cut between the two blades. Therefore, it is easy to catch a cut belt that travels quickly, and linear travelability is also high, so that a belt with high width accuracy can be obtained.
[0010]
In the method for cutting a transmission belt sleeve according to claim 4 of the present application, a belt that travels on the shaft by running a belt sleeve having a plurality of grooves extending in the width direction on the shaft to prevent meandering. A method of cutting a belt that moves parallel to the shaft in the width direction of the sleeve, positions it at a predetermined cut width, cuts the cutter blade, and cuts the ring, and is parallel to the shaft in the width direction of the belt sleeve that runs on the shaft. The belt sleeve that is moved to the predetermined cut position can be displaced laterally in parallel with the shaft, and can be separated from the shaft, and the belt sleeve that is running It is characterized in that it is carried out by measuring the amount of lateral misalignment generated by fitting the ridges of the groove detecting body having a plurality of ridges in the groove portion and correcting the cutting position of the cutter blade.
[0011]
In the method of claim 4, when determining the width, it is possible to measure the traveling groove position by fitting the mountain of the groove detecting body having a plurality of mountains so as to be laterally displaceable while circumscribing the groove of the belt sleeve during traveling. In addition, it is no longer necessary to rely on high-precision and expensive image technology with a non-contact method, and in addition, the short fiber is exposed in a fluffy shape in the groove part, and the problem that has become an obstacle to imaging is also exposed in a fluffy shape because it circumscribes the detection body It can also be used for expanded correspondence.
[0012]
In addition, by providing a plurality of peaks in the groove detection body, it was possible to average the variation for each groove, and the variation in the cut width was reduced and the cut quality was improved. Since the detection body is circumscribed in this way, a direct measurement can be performed by incorporating the detection mechanism, and a simple and highly reliable apparatus can be realized.
[0013]
In the method for cutting a transmission belt sleeve according to claim 5 of the present invention, a belt that travels on the shaft by running a belt sleeve having a plurality of grooves extending in the width direction on the shaft to prevent meandering. A method of cutting a belt that moves parallel to the shaft in the width direction of the sleeve, positions it at a predetermined cut width, cuts the cutter blade, and cuts the ring, and is parallel to the shaft in the width direction of the belt sleeve that runs on the shaft. The belt sleeve that is moved to the predetermined cut position can be displaced laterally in parallel with the shaft, and can be separated from the shaft, and the belt sleeve that is running Measures the amount of lateral misalignment generated by fitting the grooves of the groove detecting body having the plurality of peaks in the groove portion, and corrects the cutting position of the cutter blade, and at the same time, cuts the cutter blade. Is at least 2 And performing cuts the belt end faces narrower simultaneously using a cutter blade.
[0014]
According to a fifth aspect of the present invention, positioning as a predetermined cutting position is performed by supporting the groove detector so that the groove detector can be laterally separated and by fitting the mountain to the groove portion of the running belt sleeve. By measuring the amount and correcting the cutter blade cutting position, a simple and reliable high-accuracy cutting device is obtained. In addition, at least two cutter blades are used as the cutter blade to cut the belt, and both end faces of the belt are cut simultaneously. Therefore, the width of the cut belt sandwiched between the two cutting blades is constant. Along with the improvement of the cutting blade installation accuracy, high-performance cutting is possible.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a cutting device and a cutting method for a transmission belt sleeve according to the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of a transmission belt sleeve cutting device of the present invention, and FIG. 2 is a conceptual diagram showing a groove position detection method of the present invention. First, as shown in FIG. 1, the transmission belt sleeve cutting device 1 comprises a sleeve rotating means 3, a cutter moving means 5 that moves in a direction perpendicular to the rotating shaft 4, and a cutter means 7. In the present invention, in the cutter moving means 5, the correction control means for finely adjusting the difference in the position of the cutter blade 31 by detecting the difference from the actual groove position by using the groove position detecting means 8 whose cut positioning is a contact type. 10.
[0016]
Next, a partial perspective view of the belt sleeve BS to be cut in the present invention is shown in FIG. 5, and the belt sleeve has a plurality of grooves extending in the width direction over the entire circumference of at least the outer circumferential surface of the inner and outer circumferential surfaces thereof. There are transmission belts such as (a) a V-ribbed belt, (b) a double V-ribbed belt, and (c) a multiple-hanging low-edge belt.
[0017]
First, (a) the V-ribbed belt is a transmission belt formed by alternately arranging trapezoidal peaks RR and V-shaped grooves M on one side at a predetermined pitch in the width direction, and the flat back side is in contact with the rotating shaft. (B) The double V-ribbed belt is a transmission belt in which the aforementioned peak portion RR and groove portion M are arranged on both sides at a predetermined pitch in the width direction, and on the outer surface of the rotating shaft, there is a sleeve peak portion RR and groove portion. The crests and grooves formed by reversing M are engraved. (C) The multi-row low-edge belt has a plurality of trapezoidal peaks RR and V-shaped belts by joining the backs of a plurality of belts with canvas or the like. It is a transmission belt in which grooves M are arranged in the width direction. As in (a), it is turned over and hung on a rotating shaft. In this figure, a corrugated cog C is represented on the trapezoidal mountain bottom, but this bottom is smooth. Can be used with any type.
[0018]
Next, each part of the transmission belt sleeve cutting device 1 according to the present invention will be described with reference to FIGS. First, the cutter moving means 5 according to the present invention has a function of two-dimensional movement in a direction parallel to the rotating shaft 4 (in the direction XX in FIG. 1) and a direction perpendicular to the direction (in the direction Y in FIG. 1). In particular, the movement in the parallel direction according to the present invention has a function of determining the belt width by the parallel movement first, and then determining the belt width. Next, the movement in the perpendicular direction is opposed to the running surface of the belt sleeve BS. Then, the cutter blade 14 is pressed against the running belt sleeve BS and cut to cut the rotating sleeve.
[0019]
Subsequently, the parallel movement control is composed of setting control and correction control. First, regarding the setting control, each cutting condition is stored in advance according to the type of the belt sleeve BS to be cut and stored in a database. If the belt sleeve type is input at the start of cutting, the cutting blade 14 is automatically operated from the standby position to the cutting position of the running belt sleeve BS so that the memory condition can be extracted and the ring can be cut to a predetermined width. The system is a program-controlled system and its operation will be described later in the operation flow.
[0020]
Next, with regard to correction control for determining the final position of the cut, the cutter blade 14 is moved and positioned to the program position determined in advance by the above-described setting control, and in addition, it is opposed to the rotating belt sleeve BS. The position of the cutter blade 14 is corrected according to the actual product by measuring the difference δ (see FIG. 2) with respect to the previous set position by detecting the peak position, and the groove position detecting means 8 and correction control means 10.
[0021]
First, as shown in FIG. 2, the groove position detection means 8 is parallel to the belt sleeve BS on the rotating shaft 4 and moves in the axial direction so as to contact the groove portion M of the running belt sleeve to detect the groove position. The rotating body 12 having a plurality of peak portions R fitted to the groove portion M is provided as a contact body. As shown in FIG. 1, the configuration includes a detection mechanism 16, a measurement sensor 17, and a detection movement mechanism 18.
[0022]
First, the detection mechanism 16 includes a detection roll 26 having three peak portions R as a rotating body 12 fitted in the groove portion M of the belt sleeve BS and a support frame that pivotally supports the rotating body 12 so as to be laterally displaced. The slide unit 22 is connected to the slide rail end. As shown in FIG. 2, the detection roll 26 is cut so that the peak portion R that fits in the belt groove portion M processed on the surface of the belt sleeve BS that rotates on the shaft is convex on the outer periphery of the detection roll. The belt sleeve is provided in accordance with the groove shape of the belt sleeve.
[0023]
First, the detection roll 26 is first set and controlled so as to be translated in the vicinity of the groove of the cut portion of the sleeve and set to the upper position in FIG. 2, approaching the groove in the right angle direction along the groove slope R. The lateral displacement amount is δ in FIG. 2, and the difference δ is corrected at the cutter position.
[0024]
Next, the support frame is composed of a U-shaped support member 24 and a sliding rod 41 provided in the horizontal direction between the support members, and a detection roll 26 is inserted into this rod so that the detection roll 26 can be freely moved sideways. In addition, it is pivotally supported around the rod 41 so that it can be displaced.
[0025]
Note that a mechanism for maintaining the lateral origin position is provided for the mechanism that allows the lateral displacement of the detection roll 26, and this is a thrust that rotates and slides against both end faces of the rotating detection roll 26 shown in FIG. The mechanism is such that the detection roll is clamped from both ends by a reference position cylinder 43 and a pressing cylinder 45 provided at both ends of the support member with the bearing interposed therebetween, whereby the detection roll 26 held at the horizontal origin position is rotated. The peak portion R of the detection roll 26 is pressed against the groove M of the moving belt sleeve BS by the following moving mechanism 18, and the lateral shift (difference δ) generated at that time is absorbed by the shift movement of the detection roll 26. I can do it.
[0026]
Next, the measuring sensor 17 uses a meter that can press the peak portion R of the detection roll 26 against the groove portion M of the belt sleeve BS, measure the lateral displacement amount δ of the detection roll 26 generated at that time, and output electric power. It is a commercially available linear gauge. The lateral displacement is measured at the non-rotating portion at the front end of the pressing cylinder while avoiding direct contact with the rotating portion at the front end of the gauge.
[0027]
Next, the detection moving mechanism 18 includes a linear rail, a linear head with a built-in linear bearing and gripping the linear rail, a servo motor attached to the end of the linear rail, and a ball screw connected to the rotating shaft to linearly rotate the rotation. A commercially available slide unit is used which is composed of a drive device that replaces the movement, and in FIG. 1 the detection roll slide unit 21 is used for movement in the X direction, and the detection roll slide unit 22 is used for movement in the Y direction. The linear head of the Y direction slide unit 22 is connected to the linear head of the X direction slide unit 21. By this movement in the X and Y directions, the detection roll 26 can move parallel to and away from the rotating shaft of the rotating belt sleeve (these operations will be described later).
[0028]
Next, the correction control means 10 uses the positioning controller 11 on the basis of the electrical signal of the lateral deviation amount measured and electrically output by the detection moving mechanism 18 described above, and determines the cutter blade position according to the lateral deviation amount. The control system is shown in the block diagram of FIG.
[0029]
First, the detection roll 26 is installed in such a manner that the detection detection portion of the measurement sensor 17 is pressed against the front end portion of the pressing cylinder 45 provided so as to be in contact with and sandwiched between both end faces of the detection roll 26 and the detection roll 26 is displaced laterally. Accordingly, the detector is arranged so that it can be measured by expanding and contracting.
[0030]
Next, in the correction control flow, the amount of lateral deviation of the detection roll 26 is detected by the measurement sensor 17 that measures the amount of lateral displacement by making contact with a detection end that can be expanded and contracted, and the signal is converted through a linear gauge counter for positioning. Input to the input unit of the controller 11 and the input lateral shift amount is arithmetically converted into positioning data as a correction amount by the CPU unit in the controller 11, and the correction amount is converted into pulse output by the positioning unit, and the number of pulses Accordingly, the servo motor SM1 is rotated via the servo amplifier, and the X-direction slide unit 47 is moved to accurately correct the lateral displacement detected by the detection roll 26.
[0031]
Subsequently, the cutter means 7 for cutting the belt sleeve BS is known to be processed with a single blade, and here, a two-blade according to the present invention will be described with reference to FIG. First, it protrudes on the moving table 35, and is composed of a fixed blade 31 and a movable blade 32 provided with a blade interval moving mechanism 33, whereby the interval between the two blades can be adjusted. The configuration of the cutter means 7 includes two cutter blades 14, a cutter holder 36, an inter-blade setting mechanism 33, and a cutter moving table 35.
[0032]
First, the cutter blade 14 is composed of two round blades, each fixed to a cutter holder, and the disk surfaces of the round blades are aligned parallel to the right-angle cross section of the shaft so that the two round blades are parallel to each other. The fixed blade 31 is mounted on the cutter moving table 35 via the cutter holder 36 and the movable blade 32 is mounted on the cutter moving table 35 so as to be movable using the blade interval setting mechanism 33. The cutter holder 36 is used.
[0033]
The blade interval setting mechanism 33 of the movable blade 32 uses a commercially available integrated actuator 38 in which a linear guide, a ball screw, a movable head 54 and a servo motor 55 are integrated in a compact manner. In this way, the movable blade 32 which is the other blade facing the fixed blade 31 can be moved in the distance to adjust the blade interval.
[0034]
Note that the setting position relationship between the detection roll 26 and the two-blade composed of the fixed blade 31 and the movable blade 32 is shown in FIG. 2 when the cut width is composed of three peaks RR. In the drawing, the two ridges R can be fitted between the groove into which the movable blade 32 cuts with reference to the groove position where the fixed blade 31 will cut into the four grooves M of the belt sleeve. These grooves are arranged so that they can always be detected. If the cut width becomes wider and the number of ridges further increases, the number of detection roll ridges can be increased.
[0035]
Next, with respect to the sleeve rotation means 3, as shown in FIG. 7, a cylindrical belt sleeve BS having a plurality of grooves extending in the width direction is stretched around a rotation shaft 4 including a main shaft 63 and a driven shaft 65. Then, the crest portion R of the guide roll 67 can be prevented from being meandered by fitting the crest portion R of the guide roll 67 into the groove portion M of the belt sleeve BS that is rotated on the main shaft by the guide roll 67 with a crest disposed close to the main shaft 63. A meandering prevention mechanism 61 is used.
[0036]
Next, a method for cutting the transmission belt sleeve using the cutting device 1 having the above configuration will be described with reference to the flowchart shown in FIG. First, in the sleeve insertion (S11), the belt sleeve BS is inserted into a shaft mounting mechanism composed of a cantilevered main shaft 63 and a driven shaft 65 that are open on the front side (see FIG. 7). Next, the cutting conditions are input and in automatic start (S12), the belt type, belt pitch circumference and the like are input to the touch panel and the start button is pressed.
[0037]
In the sleeve extension (S13), the tailstock, which is a shaft support mechanism capable of opening and closing the shafts, is closed to support both ends, and the driven shaft is separated to widen the distance between the two axes. Then, the belt sleeve is extended and then the sleeve travels (S14), and on the other hand, the movable blade 32 is servo-controlled by the integral actuator in the blade interval setting (S13 '), and the interval between the two blades is set to a predetermined value. Then, the groove detection roll / cutter blade moves laterally to the N-th cut position (S15), and the groove detection roll / cutter blade moves two-dimensionally in the X and Y directions from the position where the groove detection roll / cutter blade is retracted and waits. Control moves to the first cut position and the next cut position: yes / no? Wait for the command of (S21).
[0038]
On the other hand, after the sleeve travel (S14), the travel preparation is completed: Y / N? If (S15 ′) is NO, the sleeve travel (S14) is continued, and if YES, the groove roll lowering (S16) is activated and the groove roll provided with three crests on the groove of the belt sleeve is lowered and pressed. Fit mountains and grooves. Next, in the groove roll displacement measurement (S17), the lateral displacement difference at the time of fitting is detected and measured by the displacement output of the linear gauge.
[0039]
Next, the groove roll rise (S18) waits for the movement to the next cut position where the groove roll whose measurement has been finished is retreated upward and is repeatedly repeatedly cut. Next, in the cutter blade position correction (S19), the positioning controller servo-controls the cutter moving slide unit according to the measured displacement amount of the groove roll, and performs correction control to the previously set control position, thereby cutting accurately. The position can be determined.
[0040]
On the other hand, the main shaft is driven and rotated by the sleeve travel (S14) and starts rotating around the free driven shaft, and the guide roll with a crest is pressed against the grooved belt sleeve to rotate the rotating belt sleeve. On the other hand, the cutting operation (S20) is entered, and the cutter moving Y-direction slide unit 48 is operated to push the cutter blade into the rotating belt sleeve and rotate it around to rotate the belt sleeve. Thus, one belt having a predetermined width is obtained.
[0041]
Hereinafter, next cut position: presence / absence? In (S21), it is determined whether there is no remaining cut by repeating, and the cumulative number of cuts is compared and calculated from the set number of cuts. If there is a remaining, it is repeated again to move to the Nth cut position (S15) and return to N with the groove roll. Measure the first cut position and repeat the cutter blade position correction to sequentially cut the ring.
[0042]
Eventually, there is no remaining cutting, and the process moves to the sleeve travel stop (S22) and stops traveling. On the other hand, when the groove detection roll / cutter blade moves to the origin position (S22 ′), the groove detection roll / cutter blade moves to the retracted position. To enter standby mode. Next, in the cut belt release (S23), the reverse operation of the above-mentioned sleeve extension (S13) is performed, the distance between the two axes is reduced, the tail stock of each axis of the both-end support is opened, and the cantilever state is restored. Removal (S24), that is, the belt sleeve that has been cut in a circle and cut for each belt is removed from the shaft mounting means, and the process proceeds to cutting of the next new belt sleeve. Thus, the width of one sleeve is cut and repeated.
[0043]
Next, the narrow cut concerning this invention is demonstrated using FIG. (B) W1 in the figure indicates the standard cut width, and the belt width is increased by increasing the number of the belt crests R to 3 and 4 with the center of the groove of the belt sleeve BS as the belt width end, thereby increasing the transmission horsepower. More selected. Next, the cut width indicated by W2 in the figure is a narrow cut, and the cut positions on both end faces of the belt are cut into the belt inside from the center of the groove compared to the above, that is, without leaving the arc portion of the groove bottom. In fact, it is cut narrowly.
[0044]
In this way, in order to cut narrowly, if one cutter blade is to be cut sequentially, the thickness between N1 and N2, N3 and N4, and N5 and N6 in the figure is approximately 0.3 mm (rib pitch 3.56). It is necessary to make a sliced slice of a ring with a 6 mm rib rib, etc., and it is difficult to make the thin wall width uniform by cutting with a single blade. It has been.
[0045]
The widths of the two cutter blades are set to N2 and N3 and N4 and N5 in FIG. 4 (b), respectively, and as shown in FIG. The width is cut while adjusting the pressure due to the blade thickness at the time of cutting to balance the left and right and sandwiching the cut belt between the two blades to ensure a uniform width. In such two-blade positioning, the groove position of the above-described belt sleeve is accurately detected and corrected, and the contact of the left and right cutting blades 31 and 32 with the crest R is maintained on the left and right sides, preferably. A narrow cut with excellent accuracy can be made.
[0046]
Moreover, the shape of the inner surface side of the left and right blades is a single-stage Shinogi, the Shinogi angle θ1 is 5 to 10 °, and the Shinogi thickness T1 is 0.02 to 0.1 mm. In this way, the left and right cutting edges bite into the belt sleeve BS and receive compression corresponding to the thickness of the cypress, and the left and right are balanced to prevent lateral deviation. The shape of the left and right blades on the outer surface side is a two-stage cypress, and the first tier of the blade edge has a cynogi angle θ2 equivalent to the inner surface of 5 to 20 ° and a shino thickness T2 of 0.15 to 0.25 mm and two tiers. The eyes have a cynogi angle θ3 of 3 to 10 ° and a blade thickness T3 of 0.5 to 2.5 mm.
[0047]
Note that the transmission belt sleeve cutting device and the cutting method thereof according to the present invention are not limited to those shown in FIGS. 1 to 8, and may take the following forms, for example.
1) The sleeve rotating means 3 is not necessarily limited to the one that is pivoted between the main shaft 61 and the driven shaft 65 of this example. For example, at least one of the main shaft 61 and the driven shaft 65 is one axis. The groove position can also be suitably used by correcting the groove position using the detection roll.
[0048]
2) In this example, the setting control and the correction control are divided and explained for the sake of convenience in the additional correction control means for the improved machine.
[0049]
3) About the groove | channel over a perimeter, it is not necessarily limited to a continuous mountain, About the groove shape which can be guided across the discontinuous mountain, it can implement similarly to a present Example.
4) In the present embodiment, the cutter for detecting and correcting the groove position is only the fixed blade 31 and the position of the movable blade 32 is not directly detected. However, the detection roll unit is divided into left and right, and the measurement sensor is installed. It can be implemented in the same way by expanding.
[0050]
【The invention's effect】
In the configuration according to claim 1, since the mechanism portion can be taken in with a simple mechanism instead of the high-precision and expensive electronic image means, the mechanism is inexpensive and the maintenance cost is low, and in addition, the measurement reliability is high. Since the cutter positioning can be performed accurately and easily, the effect of improving the productivity can be obtained.
[0051]
In the configuration according to claim 2, since it is possible to measure the amount of lateral deviation with a small variation with respect to a plurality of grooves as detection targets, the variation in the belt width cut performed by correcting the cut position based on the measurement result is reduced, and the quality is reduced. Has the effect of improving.
[0052]
In the configuration according to claim 3, a belt having particularly high cut width accuracy can be obtained with a cut width sandwiched between two blades. Therefore, the belt end surface is cut at a mountain slope portion with a belt having at least one mountain or the like. It is possible to cut such a narrow cut with high accuracy.
[0053]
In the method according to claim 4, the detection body is circumscribed, the detection mechanism is taken in and direct measurement is possible, and a simple and highly reliable apparatus can be realized, which can improve productivity in the quality and cost of the cutting process. There is an effect.
[0054]
In the method according to the fifth aspect, the accuracy of the installation position of the cutter blade is high with respect to the groove position of the belt sleeve, and in addition, since the cutting can be performed with the belt width sandwiched by two cutting blades, variations in the cutting width can be ignored. Since high-performance cutting is possible in this way, there is an effect that it is possible to cope with a narrow cut product in which both end portions of the belt width cut the slope hem of the groove portion.
[0055]
As described above, in the invention relating to the transmission belt sleeve cutting apparatus and method according to claims 1 to 5 of the present application, the control correction is directly detected for the cutting position of the belt sleeve whose dimensions are not determined due to deformation, processing variation, or the like. Simple, inexpensive and highly reliable functions can be demonstrated.
[Brief description of the drawings]
1 is an overall configuration diagram of a transmission belt sleeve cutting device according to the present invention;
FIG. 2 is a schematic diagram showing a groove position detection method of the present invention.
FIG. 3 is an operation flow chart of the transmission belt sleeve cutting device of the present invention.
FIG. 4 is an explanatory diagram of a narrow cut according to the present invention, (a) a narrow cut state with two blades, (b) a narrow and standard cut position.
FIGS. 5A and 5B are diagrams showing a transmission belt that is a belt sleeve having a plurality of grooves extending in the width direction in the width direction, and are (a) a V-ribbed belt, (b) a double V-ribbed belt, and (c) a multiple-hanging low-edge belt. .
FIG. 6 is a control block diagram illustrating correction of a cutting position according to the prior art.
FIG. 7 is an overall front view of a conventional cutting device.
FIG. 8 is a partial view showing a two-cutter blade that allows the interval to be adjusted by a cutting device of the prior art.
[Explanation of symbols]
1 Cutting device
5 Cutter moving means
7 Cutter means
8 Groove position detection means
10 Correction control means
11 Controller
12 Rotating body
14 Cutter blade
16 Detection mechanism
17 Measuring sensor
26 Detection roll
31 Reference blade (fixed blade)
32 Moving blade (movable blade)
BS belt sleeve
δ Lateral displacement
M groove (for belt sleeve)
R Yamabe (of detection roll)
RR Belt sleeve mountain
W1 standard width
W2 Narrow width

Claims (5)

全周にわたる溝を幅方向に複数有したベルトスリーブを軸上に掛架して蛇行を防ぎながら走行させるスリーブ回動手段と、走行軸上のスリーブに対峙して軸方向に平行移動し走行中のベルトスリーブの溝に当接して溝位置を検出する溝位置検出手段と、検出位置の横ズレ量を測定してカッタ刃位置を補正する補正制御手段とを備えたカット位置決めを行いカット切り込みをするカッタ移動手段と、スリーブを切断するカッタ手段と、からなることを特徴とする伝動ベルト用スリーブのカット装置。A belt sleeve with a plurality of grooves in the width direction in the width direction is hung on the shaft to run while preventing meandering, and the belt is parallel to the sleeve on the running shaft and running in parallel with the sleeve The cut position is provided by groove position detection means for detecting the groove position by contacting the groove of the belt sleeve, and correction control means for correcting the cutter blade position by measuring the lateral shift amount of the detection position and performing cut cutting. A cutting device for a sleeve for a transmission belt, comprising: a cutter moving means for cutting and a cutter means for cutting the sleeve. 前記溝位置検出手段が、前記ベルトスリーブの溝部に嵌着する複数の山部を備えた回転体を具備している請求項1に記載の伝動ベルト用スリーブのカット装置。The transmission belt sleeve cutting device according to claim 1, wherein the groove position detecting means includes a rotating body having a plurality of ridges fitted into the groove portions of the belt sleeve. 前記カッタ手段が、その間隔でベルト幅をカットする2枚刃を含んだ請求項1または2に記載の伝動ベルト用スリーブのカット装置。3. The transmission belt sleeve cutting device according to claim 1, wherein the cutter means includes two blades for cutting the belt width at an interval therebetween. 全周にわたる溝を幅方向に複数有したベルトスリーブを軸上に掛架して蛇行を防ぎながら走行させて、軸上を走行するベルトスリーブの幅方向に軸と平行に移動して所定のカット幅に位置決めしてカッタ刃を切り込んで輪切りするベルトのカット方法であって、
前記軸上を走行するベルトスリーブの幅方向に軸と平行に移動して所定のカット位置とする位置決めが、複数の山を備えた溝検出体を前記軸と平行で横ズレ可能に軸支すると伴に前記軸に離間可能に架設し、走行中の前記ベルトスリーブの溝部に前記複数の山を備えた溝検出体の山を嵌着させ発生する横ズレ量を測定し、カッタ刃の切り込み位置を補正して行うことを特徴とした伝動ベルト用スリーブのカット方法。
A belt sleeve that has multiple grooves in the width direction around the entire circumference is hung on the shaft to prevent meandering, and the belt sleeve that runs on the shaft moves parallel to the shaft in the width direction to make a predetermined cut. A method of cutting a belt that is positioned in a width and cuts a cutter blade to cut a ring,
Positioning the belt sleeve traveling on the shaft in parallel with the shaft in the width direction to achieve a predetermined cut position is supported by a groove detector having a plurality of peaks so that it can be laterally displaced parallel to the shaft. At the same time, it is constructed to be separable from the shaft, and the amount of lateral misalignment caused by fitting the grooves of the groove detecting body having the plurality of peaks to the groove of the belt sleeve that is running is measured, and the cutting position of the cutter blade is measured. A method for cutting a sleeve for a transmission belt, characterized in that the correction is performed.
全周にわたる溝を幅方向に複数有したベルトスリーブを軸上に掛架して蛇行を防ぎながら走行させて、軸上を走行するベルトスリーブの幅方向に軸と平行に移動して所定のカット幅に位置決めしてカッタ刃を切り込んで輪切りするベルトのカット方法であって、
前記軸上を走行するベルトスリーブの幅方向に軸と平行に移動して所定のカット位置とする位置決めが、複数の山を備えた溝検出体を前記軸と平行で横ズレ可能に軸支すると伴に前記軸に離間可能に架設し、走行中の前記ベルトスリーブの溝部に前記複数の山を備えた溝検出体の山を嵌着させ発生する横ズレ量を測定し、カッタ刃の切り込み位置を補正して行うと伴に、前記カッタ刃を切り込んで行う輪切りが、少なくとも2枚のカッタ刃を用いて同時にベルト両端面部を幅狭に切り込んで行うことを特徴とした伝動ベルト用スリーブのカット方法。
A belt sleeve that has multiple grooves in the width direction around the entire circumference is hung on the shaft to prevent meandering, and the belt sleeve that runs on the shaft moves parallel to the shaft in the width direction to make a predetermined cut. A method of cutting a belt that is positioned in a width and cuts a cutter blade to cut a ring,
Positioning the belt sleeve traveling on the shaft in parallel with the shaft in the width direction to achieve a predetermined cut position is supported by a groove detector having a plurality of peaks so that it can be laterally displaced parallel to the shaft. At the same time, it is constructed to be separable from the shaft, and the amount of lateral misalignment caused by fitting the grooves of the groove detecting body having the plurality of peaks to the groove of the belt sleeve that is running is measured, and the cutting position of the cutter blade is measured. The cutting of the transmission belt sleeve is characterized in that the cutting of the cutter blade by cutting the cutter blade is performed by cutting the both end faces of the belt narrowly simultaneously using at least two cutter blades. Method.
JP2002223744A 2002-07-31 2002-07-31 Transmission belt sleeve cutting device and method Expired - Fee Related JP4639028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223744A JP4639028B2 (en) 2002-07-31 2002-07-31 Transmission belt sleeve cutting device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223744A JP4639028B2 (en) 2002-07-31 2002-07-31 Transmission belt sleeve cutting device and method

Publications (2)

Publication Number Publication Date
JP2004058255A true JP2004058255A (en) 2004-02-26
JP4639028B2 JP4639028B2 (en) 2011-02-23

Family

ID=31943427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223744A Expired - Fee Related JP4639028B2 (en) 2002-07-31 2002-07-31 Transmission belt sleeve cutting device and method

Country Status (1)

Country Link
JP (1) JP4639028B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313606A (en) * 2006-05-26 2007-12-06 Mitsuboshi Belting Ltd Width cutting apparatus for belt sleeve material
KR101121246B1 (en) 2008-07-17 2012-03-26 도시바 기카이 가부시키가이샤 Method and apparatus for machining v grooves
CN106042035A (en) * 2016-08-10 2016-10-26 天津大学 Parallel sleeve cutting machine with protection structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563196A (en) * 1979-06-22 1981-01-13 Bando Chemical Ind Cutting method of and apparatus for constant width feeder
JPH01301326A (en) * 1988-05-31 1989-12-05 Mitsuboshi Belting Ltd Manufacture of power transmission belt
JPH04503557A (en) * 1989-02-21 1992-06-25 デイコ プロダクツ,インコーポレイテッド Belt structure, rotatable pulley, combination thereof, and manufacturing method thereof
JPH10264094A (en) * 1997-03-27 1998-10-06 Mitsuboshi Belting Ltd Width cutting device of belt sleeve material
JP2000074154A (en) * 1998-08-28 2000-03-07 Unitta Co Ltd V-ribbed belt
JP2000130515A (en) * 1998-10-26 2000-05-12 Mitsuboshi Belting Ltd Transmission belt and manufacturing process thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563196A (en) * 1979-06-22 1981-01-13 Bando Chemical Ind Cutting method of and apparatus for constant width feeder
JPH01301326A (en) * 1988-05-31 1989-12-05 Mitsuboshi Belting Ltd Manufacture of power transmission belt
JPH04503557A (en) * 1989-02-21 1992-06-25 デイコ プロダクツ,インコーポレイテッド Belt structure, rotatable pulley, combination thereof, and manufacturing method thereof
JPH10264094A (en) * 1997-03-27 1998-10-06 Mitsuboshi Belting Ltd Width cutting device of belt sleeve material
JP2000074154A (en) * 1998-08-28 2000-03-07 Unitta Co Ltd V-ribbed belt
JP2000130515A (en) * 1998-10-26 2000-05-12 Mitsuboshi Belting Ltd Transmission belt and manufacturing process thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313606A (en) * 2006-05-26 2007-12-06 Mitsuboshi Belting Ltd Width cutting apparatus for belt sleeve material
KR101121246B1 (en) 2008-07-17 2012-03-26 도시바 기카이 가부시키가이샤 Method and apparatus for machining v grooves
CN106042035A (en) * 2016-08-10 2016-10-26 天津大学 Parallel sleeve cutting machine with protection structure

Also Published As

Publication number Publication date
JP4639028B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
TWI353921B (en)
CN102105256A (en) Progressive laser blanking device for high speed cutting
JP4639028B2 (en) Transmission belt sleeve cutting device and method
WO1990000965A1 (en) Tire grooving apparatus and method
JPH07243947A (en) Runout device for tire uniformity machine
JPH0880582A (en) Tire grooving method and apparatus
JPH06106653A (en) Cutter for strip like member for tire
JP4207616B2 (en) Cutting device
JP3265248B2 (en) Belt sleeve cutting device
US20240034017A1 (en) Versatile sipe machine
JP4426233B2 (en) Cutting method and cutting apparatus
JPS6026959Y2 (en) Extrudate trim cutting equipment
CN219214158U (en) A shop&#39;s cutting machine that pastes for spreading area equipment
KR101620741B1 (en) Apparatus for guiding and Cutter having the same
JP3857778B2 (en) Transmission belt cutting device
JPH079229A (en) Automatic cutting device for flange of mold material
JP2805167B2 (en) Pressing method of log supporting roll of veneer lace
KR200285925Y1 (en) Device for quiding the strip to the center of processing line
JPH11309787A (en) Method and apparatus for molding transmission belt
JPH04364933A (en) Positioning method for belt-like member
JPH11129205A (en) Four-side planer
JPH07164232A (en) Method and device for cutting node on reduction roll for deformed steel bar
JP2563025B2 (en) Cutting control method for parts
JP3714887B2 (en) Trimming apparatus and trimming method
JP2003200383A (en) Endless belt cutting device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091224

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4639028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees