JP2004058092A - Continuous casting method for steel - Google Patents

Continuous casting method for steel Download PDF

Info

Publication number
JP2004058092A
JP2004058092A JP2002219246A JP2002219246A JP2004058092A JP 2004058092 A JP2004058092 A JP 2004058092A JP 2002219246 A JP2002219246 A JP 2002219246A JP 2002219246 A JP2002219246 A JP 2002219246A JP 2004058092 A JP2004058092 A JP 2004058092A
Authority
JP
Japan
Prior art keywords
magnetic field
mold
patent document
coils
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002219246A
Other languages
Japanese (ja)
Other versions
JP3937961B2 (en
Inventor
Yuji Miki
三木 祐司
Hideji Takeuchi
竹内 秀次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002219246A priority Critical patent/JP3937961B2/en
Publication of JP2004058092A publication Critical patent/JP2004058092A/en
Application granted granted Critical
Publication of JP3937961B2 publication Critical patent/JP3937961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for flow control inside a casting mold which assures a more effective flow control inside the casting mold, responding to the demand for a quality improvement technology for better slab surface in relation to recent increasing surface quality needs and also cost reduction demand. <P>SOLUTION: Electromagnets 31 attached with coils of 3 or more 1a to 12a, 1b to 12b are arranged along the long side direction of a casting mold for continuous casting 21. The peak position of oscillating magnetic field is moved along the long side direction of the mold 21, while the oscillating magnetic field is being emitted from the electromagnets. Furthermore, it is superposed by DC magnetic field emitted from DC coils 32. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造方法に関する。
【0002】
【従来の技術】
近年、自動車用鋼板を中心として鋼製品の品質向上要求が厳しくなり、スラブ段階から清浄度の優れた高品質のスラブの要求が高まっている。スラブの欠陥には、介在物や気泡に起因するものや溶鋼中の成分の偏析に起因するものがあり、鋳型内の流動は、これらと深い関係があるため、多くの研究、発明がなされてきた。その一つとして、磁界を用いた鋳型内流動制御方法が考えられている。
【0003】
例えば、鋳型長辺を挟み対向する上下2段の磁極を鋳型長辺背面に配置し、下側に配置した磁極に直流静磁界と交流移動磁界とが重畳された磁界とするか、又は、上側に配置した磁極に直流静磁界と交流移動磁界とが重畳された磁界とし、下側に配置した磁極に直流静磁界を印加する鋳型内溶鋼流動の制御方法が開示されている(例えば、特許文献1参照。)。
【0004】
また、複数個設置した電気コイルに適当なリニア駆動用交流電流と制動用直流電流を流すことにより鋳型内溶鋼流動を制御する装置が知られている(例えば、特許文献2参照。)。
【0005】
また、位相が120度づつずれた交流移動磁界と直流静磁界とを重畳する鋳型内流動制御技術もある(例えば、特許文献3参照。)。
【0006】
浸漬ノズルから吐出された溶鋼流を包囲する位置に静磁場をかけ、流速を低下させると共に静磁場よりも下流位置に電磁攪拌装置を設置する電磁攪拌方法がある(例えば、特許文献4参照。)。
【0007】
鋳型上部に移動磁界を形成する磁石(400〜2000ガウス)を設置し、メニスカス表層部を流れる上昇反転溶鋼流に移動磁場を作用させると共に、メニスカスから500mm以上下方に静磁場を形成する磁石(1000〜7000ガウス)を設置し、吐出溶鋼流が鋳型短辺に当たって下降する溶鋼流に静磁場を作用させる鋳造方法および装置が示されている(例えば、特許文献5参照。)。
【0008】
また、湯面から吐出孔(下向き50度以上)の間に極芯中心を設置した磁石により移動磁界を作用させると共に極芯を浸漬ノズルより下部に設置した磁石により静磁場を作用させる鋳造技術が記載されている(例えば、特許文献6参照。)。
【0009】
浸漬ノズル下端よりも上部に電磁攪拌用磁石を設置し、浸漬ノズル下端よりも下部に移動磁界、静磁界が印可できる磁石を設置し、鋼種や鋳造速度に応じて静磁場と移動磁場を使い分ける鋳造方法もある(例えば、特許文献7参照。)。
【0010】
Arガスを吹込みながら鋼を鋳造する時に、浸漬ノズルから出た直後の溶鋼流に磁束密度が0.1テスラ以上の静磁場を作用させ、その上部で電磁攪拌装置により連続的に攪拌あるいは攪拌方向を周期的に変化させる技術が知られている(例えば、特許文献8参照。)。
【0011】
鋳型長辺側に対向して設置した長辺とほぼ同じ長さの電磁石により静磁場を作用させる電磁ブレーキが示されている(例えば、特許文献9参照。)。
【0012】
鋳型幅中央ないし鋳型短辺より内側の所定位置から両端部近傍にかけて、鋳型上方側へ曲げるか傾斜させた磁極を、幅中央部で浸漬ノズル吐出孔より下部に設置し、直流磁場あるいは低周波交流磁場を作用させることによって鋳型内の溶鋼流動を制御する方法もある(例えば、特許文献10参照。)。
【0013】
鋳型全幅にわたって、ほぼ均一な磁束密度分布を有する直流磁場を、鋳型厚み方向に加えて、浸漬ノズルからの吐出流を制御することにより、メニスカス流速を0.20〜0.40m/sに制御する技術が開示されている(例えば、特許文献11参照。)。
【0014】
浸漬ノズル吐出孔の下部に設けた複数のコイルに直流電流を流すことにより静磁界を印加したり、交流電流を流すことにより移動磁界を印加したりすることにより溶鋼流動を制御する鋳造方法が開示されている(例えば、特許文献12参照。)。
【0015】
また、電磁誘導によって鋳型内の溶鋼流動を制御する際に、周波数1〜15Hzの静止交流磁場を溶鋼に印加する技術もある(例えば、特許文献13参照。)。
【0016】
スラブ連鋳機において、電磁攪拌により鋳型壁に沿った水平方向の溶鋼旋回流を得る技術(M−EMS)が開示されている(例えば、非特許文献1参照。)。
【0017】
浸漬ノズルからの吐出流に交流移動磁場を作用させることにより、吐出溶鋼流を制動(EMLS)したり加速(EMLA)したりする技術が開示されている(例えば、非特許文献2参照。)。
【0018】
鋳型長辺側に鋳型内に供給される溶鋼電流を制御するように配された静磁場を有し、上方に移動磁界発生装置を配して溶鋼上表面を水平断面中央から短返側へ流動させる鋳型および鋳型上方の構造がある(例えば、特許文献14参照。)。
【0019】
また、モールド上部に電磁攪拌装置、モールド下部に電磁ブレーキを設置することにより、浸漬ノズルから出る吐出流を制御する(例えば、特許文献15参照。)。
【0020】
連続鋳造において、連鋳鋳型内の溶鋼湯面に静磁場を用い、連鋳用ノズルとしてストレートノズルを使用し、吐出口部に進行磁場を用い、その下部に静磁場を用いる鋳型内溶鋼流動制御技術が開示されている(例えば、特許文献16参照。)。
【0021】
浸漬ノズル吐出孔の上に置いた磁石により、幅方向全域に静磁界と高周波磁界を重畳して作用させると共に、吐出孔の下方に置いた磁石により、静磁界を作用させる鋼の鋳造方法がある(例えば、特許文献17参照。)。
【0022】
スラブの連続鋳造に際し、鋳型外に鋳片幅全体に鋳型厚み方向の均一な静磁界を浸漬ノズル吐出孔の上部、下部に作用させ、溶鋼吐出流に効果的な制動力を与え、流れを均一化する技術もある(例えば、特許文献18参照。)。
【0023】
なお、時間的に移動しない低周波交流静止磁界を付与し、凝固前面に低周波電磁振動を励起させることによって、凝固前面の柱状デンドライトを破断させ、溶融金属中に浮遊させて、凝固組織の微細化、中心偏析を低減する技術が記載されている(例えば、特許文献19参照。)。
【0024】
また、鋳造厚み方向に直流磁場と固定型の交流磁場とを重畳して印加し、これらの磁場を浸漬ノズル吐出口の上方あるいはさらに下方に配設した一対以上の磁場から印加し、交流磁場の周波数は0.01〜50Hzである技術が示されている(例えば、特許文献20参照。)。
【0025】
【特許文献1】
特開平10−305353号公報(第3頁左欄第16行〜第32行)
【0026】
【特許文献2】
特許第3067916号公報(第3頁左欄第40行〜第48行)
【0027】
【特許文献3】
特開平5−154623号公報(第2頁右欄第5行〜第11行)
【0028】
【特許文献4】
特開昭61−193755号公報(第2頁左上欄第18行〜右下欄第43行)
【0029】
【特許文献5】
特許第2610741号公報(第2頁右欄第35行〜第47行)
【0030】
【特許文献6】
特開平6−226409号公報(第2頁左欄第34行〜右欄第4行)
【0031】
【特許文献7】
特開平9−262651号公報(第2頁右欄第19行〜第26行)
【0032】
【特許文献8】
特開2000−271710号公報(第2頁右欄第13行〜第18行)
【0033】
【特許文献9】
特開平3−258442号公報(第3頁右上欄第14行〜第19行)
【0034】
【特許文献10】
特開平8−19841号公報(第3頁左欄第1行〜第5行)
【0035】
【特許文献11】
国際公開特許W095/26243号公報(第5頁欄第18行〜第21行)
【0036】
【特許文献12】
特開平9−262650号公報(第2頁右欄第24行〜第41行)
【0037】
【特許文献13】
特開平8−19840号公報(第2頁右欄第37行〜第40行)
【0038】
【特許文献14】
特開昭61−140355号公報(第2頁右下欄第5行〜第19行)
【0039】
【特許文献15】
特開昭63−119959号公報(第2頁左下欄第20行〜右下欄第6行)
【0040】
【特許文献16】
特許第2856960号公報(第2頁右欄第11行〜第23行)
【0041】
【特許文献17】
特開平6−190520号公報(第2頁右欄第36行〜第44行)
【0042】
【特許文献18】
特開平2−284750号公報(第2頁右下欄第7行〜第12行)
【0043】
【特許文献19】
特開平2−274350号公報(第2頁右上欄第13行〜左下欄第13行)
【0044】
【特許文献20】
特開2000−326054号公報(第3頁左欄第10行〜第28行)
【0045】
【非特許文献1】
鉄と鋼66(1980)、PS797(第1頁第5行〜第6行)
【0046】
【非特許文献2】
材料とプロセスvol3(1990)、P.256(第1頁第25行〜第30行)
【0047】
【発明が解決しようとする課題】
以上のように磁界を用いた種々の鋳型内流動制御があるが、さらに近年の表面品質ニーズの高まり、コストダウンの要求から、よりすぐれた鋳片表面の品質改善技術が望まれており、より効果的な鋳型内流動の制御が必要となっている。本発明はこのような鋳型内流動制御技術に改善を加えた連続鋳造方法を提供することを目的とする。
【0048】
【課題を解決するための手段】
本発明方法では、鋳型の厚み方向の流速分布を規制する。すなわち、厚み中央付近では、流速を小さくし、モールドフラックスの巻き込みを抑えつつ、鋳型壁面に近い凝固界面の流速を大きくして、気泡、介在物に洗浄効果を与えて、凝固核への捕捉を抑制する。
【0049】
このための手段として、交流磁場の印加態様を工夫する必要があり、モデル実験およびシミュレーション計算を実施した。その結果、以下の結論を得るに至った。
【0050】
(1)移動磁界によるマクロ流動は、凝固界面の気泡・介在物の捕捉を抑制するが、時として、モールドフラックスの巻き込みを増加させるため、かえって品質を劣化させる場合がある。
【0051】
(2)振動磁界を印加する際に、振動磁界を強く受ける位置が固定されると、電磁力の弱い位置で、気泡・介在物の捕捉を十分に抑制できない部分が生じる場合がある。
【0052】
(3)このため、振動磁界によるローレンツ力のピーク位置を移動させることが効果的である。
【0053】
(4)ローレンツ力のピーク位置を移動させるには、隣り合う3つのコイル、あるいは、コイル群の位相を、真中のコイルの位相を最後とするにように設定するとよい。ここで、振動磁界とは、時間とともにローレンツ力の向きが反転する磁場をいう。
【0054】
以下、上記(4)について説明する。図1に示すような櫛歯状のコイルの各コイルに振動磁界を与え、各コイルごとに位相を変化させる。図2〜図5はこのような各コイルごとに付与する位相の説明図である。図中の振動磁界発生用コイル31a、31bの各コイルの横に付してある数字は、ある時刻におけるそのコイルの電流の位相角(度)を記入したものである。図2〜図5は2相交流の場合で、図2は移動磁界、図3は振動磁界、図4、図5は振動磁界のピーク位置を移動させた場合の例を示した。図4、図5に示すように、連続鋳造用鋳型の鋳型長辺幅方向に3個以上の電磁石を並べ、隣り合う電磁石に通電する電流の位相が、一方向に増加、あるいは、減少することなく、少なくとも真中の位相が両側の位相よりも遅れるように設定することによって、磁界は単に一方向に移動するのではなく、振動しながら移動することになる。以上のように、3個以上の隣り合うコイルの位相が、n、2n、nあるいは、n、3n、2n(但しnは2相交流で90゜、3相交流で60゜又は120゜)の配列部分をもたせることによって、振動磁界のピーク位置を移動させることができる。
【0055】
ここで、単純に振動磁界を誘起させた場合には、振動磁界の振幅が大きいところと小さいいところができる。このピーク位置を移動させることによって、全ての位置で、凝固界面を洗浄することが可能となる。
【0056】
なお、ここで、コイルの櫛歯数が12本の例を示したが、櫛歯数は4、6、8、10、12、16本などから選ぶことができ、また、交流は2相、3相のいずれでも良い。
【0057】
特開平6−190520号公報(特許文献17)に示されるような、厚み方向の磁場では、交流電流の表皮効果を利用して、凝固界面あるいは溶鋼表面にローレンツ力を集中させていたが、これだけでは、効率的にローレンツ力を集中できない。このため、電磁場を凝固界面に集中させることが重要であり、磁力線分布を制御する必要がある。
【0058】
このための手段として、幅方向に交互に位相が反転する電磁石を配置して、交番させることが効果的であることがわかった。厚み方向に振動させる場合には、電磁力を鋳型壁面、すなわち、凝固界面に集中することができなくなるため、幅方向に磁界を振動させる必要がある。ここで、交互の電磁石に通電する電流の位相が、実質反転する必要があり、そのためには、交互の位相は120度以上異なる、幅方向に3つ以上の櫛歯状コイルにして、かつ、隣同士のコイルの位相を反転させることによって、幅方向の磁界を振動させることができる。
【0059】
次に、静磁界を重畳させることによって、F=J×B式におけるB項が大きくなるために、ローレンツ力を増加させることができるが、さらに、ローレンツ力の向きが、静磁界を重畳しない場合と大きく異なり、溶鋼の流動状態も変化して、幅方向および鋳造方向の流動が大きくなるので、凝固界面に捕捉される気泡や介在物の洗浄効果を期待することができる。また交流磁界と直流磁界とを重畳することにより、厚み中央での溶湯の流速を低減することができ、モールドフラックスの巻き込みも防止することができる。
【0060】
この際の交流電流の周波数は、低すぎるとマクロな流動が励起されてしまい、高過ぎると、溶鋼が電磁場に追随しなくなるので、1Hzから8Hzの範囲が適当であることがわかった。さらに、電磁場を凝固界面に集中させるには、コイル構造が重要であり、特に、コイルの磁極間と、溶鋼までの距離を最適化することが効果的である。さらに、特開平2−274350号公報(特許文献19)の技術では、デンドライトの破断が起こって、柱状晶組織から等軸晶組織に変化してしまう。極低炭素鋼などでは、柱状晶組織のみの方が、圧延時に、集合組織として制御しやすくなるため、等軸晶化することによって、結晶方位をそろえ難くなるという問題がある。従って、交流振動磁界および直流磁界の強度の上限が必要である。
【0061】
そこで、本発明方法では、幅方向に磁界を振動させつつ、厚み方向に直流磁界を印加することにより、従来方法と大きく異なった鋳型幅方向および鋳造方向に大きな流動を溶湯に誘起させることができるため、以上のような作用が期待できるのである。
【0062】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。図1は鋼の連続鋳造用鋳型21の平面図及び電磁石31、32の配列例を示したものである。
【0063】
鋳型21には連続鋳造用浸漬のズル22が上方のタンデイッシュの底部から吊下されて鋳型21内に浸漬され、溶鋼23を供給する。連続鋳造用鋳型21の長辺の外側に1a〜12a、1b〜12bの電磁石(コイル)を並べた振動磁界発生用コイル31及び直流磁界発生用の直流コイル32が配設されている。電磁石(コイル)1a〜12a、1b〜12bにはそれぞれ振動磁界を発生する振動電流が付加され、その振動電流のピーク値は、鋳型長辺幅方向に沿って移動するように印加される。この移動は、隣合うコイルの位相がn、2n、n又はn、3n、2nの配列部分をもつように印加される。
【0064】
図2〜図5は、ある瞬間におけるコイル1a〜12a、1b〜12bの振動磁界の位相の分布を数字(位相角の値)で記載して示したものである。振動磁界のピーク位置は鋳型21の長辺に沿う方向に順次移動する。図2では隣接コイルの位相差が90度で、対向するコイル31a、31bで180度異なる2相交流の移動磁界が示されている。図3では隣接コイルの位相差が180度で、対向するコイル31a、31bで同位相の2相交流の振動磁界が印加されている。図4では隣接コイルの位相差が90度で、対向するコイル31a、31bで180度異なる半波整流2相交流が印加されている。図5には隣接コイルとの位相差が120度、対向するコイルで60度異なる半波整流2相交流が印加されている。
【0065】
本発明方法によって、凝固界面のみを効率的に振動させて、気泡、介在物の捕捉を抑制できるので、鋳片の表面品質を大幅に向上させることが出来る。
【0066】
【実施例】
約300トンの溶鋼を転炉で溶製し、RH処理によって極低炭素鋼のアルミキルド鋼とし、連続鋳造機でスラブを鋳造した。代表的な溶鋼成分を表1に示す。なお、スラブの幅は1500〜1700mm、スラブの厚みは220mm、溶鋼のスループット量は4〜5トン/minの範囲とした。コイル構造として、図1に示すような、幅方向に12等分した櫛歯状の鉄芯を用い、鋳型21の幅方向に交互に位相が反転する磁場を発生するように配置した。交流磁界による磁束は最大1000ガウスとした。表2に、実験条件および実験結果をまとめて示した。表2中のコイルパターンの符号は次の通りである。
【0067】
A:n、2n、n(実施例)
B:n、3n、2n(実施例)
C:0、n、2n、3n(比較例)
D:0、2n、0、2n(比較例)
但し、nは位相角で、2相交流ではn=90度、3相交流ではn=60度又は120度である。
【0068】
鋳片の表面偏析はスラブ研削後エッチングを行い、目視観察によって1m当たりの偏析個数を調査した。また、冷間圧延後のコイルの表面欠陥を目視検査し、欠陥サンプルを採取後、欠陥部を分析することによってモールドフラックスによる欠陥個数を調査した。介在物量は鋳片の1/4厚みの位置からスライム抽出法によって介在物を抽出後、質量を測定した。表面偏析、モールドフラックス欠陥および介在物量とも、指数化に際しては、全条件のうち、もっとも悪かったものを10とし、それに対する線形な比で表示した。
【0069】
表2からわかるように、振動磁界を印加することによって、表面偏析、モールドフラックスによる欠陥、気泡、非金属介在物低減が可能となる。
【0070】
なお、振動磁界の強度が強すぎると、溶湯表面のフラックスの巻き込みが大きくなって、表面品質を悪化させ、周波数が高すぎると、磁界に溶湯が追随できなくなって、凝固界面の洗浄効果が低下し、気泡、介在物欠陥が増加している。
【0071】
【表1】

Figure 2004058092
【0072】
【表2】
Figure 2004058092
【0073】
【発明の効果】
本発明により、捕捉される気泡、非金属介在物および鋳片表面偏析、モールドフラックス起因の表面欠陥および内部介在物の少ない鋳片を鋳造することができ、高品質の金属製品の製造が可能になった。
【図面の簡単な説明】
【図1】本発明によるコイルと鋳型を示した平面模式図である。
【図2】コイルの位相を示した模式図である。
【図3】コイルの位相を示した模式図である。
【図4】コイルの位相を示した模式図である。
【図5】コイルの位相を示した模式図である。
【符号の説明】
1a〜12a、1b〜12b  コイル
21  鋳型
22  ノズル
23  溶鋼
31a、31b  振動磁界発生用コイル(電磁石)
32a、32b  直流コイル(電磁石)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for continuously casting steel.
[0002]
[Prior art]
In recent years, demands for quality improvement of steel products mainly for automotive steel plates have become severe, and demands for high-quality slabs having excellent cleanliness from the slab stage have been increasing. Slab defects include those caused by inclusions and bubbles and those caused by segregation of components in molten steel.The flow in the mold has a deep relationship with these, and many studies and inventions have been made. Was. As one of them, a flow control method in a mold using a magnetic field has been considered.
[0003]
For example, two upper and lower magnetic poles opposed to each other across the long side of the mold are arranged on the back side of the long side of the mold, and the magnetic pole arranged on the lower side is a magnetic field in which a DC static magnetic field and an AC moving magnetic field are superimposed, or There is disclosed a method for controlling the flow of molten steel in a mold in which a magnetic field in which a DC static magnetic field and an AC moving magnetic field are superimposed on a magnetic pole arranged in the mold and a DC static magnetic field is applied to a magnetic pole arranged in a lower side (for example, Patent Document 1). 1).
[0004]
Further, there is known a device for controlling the flow of molten steel in a mold by supplying an appropriate linear drive AC current and braking DC current to a plurality of installed electric coils (for example, see Patent Document 2).
[0005]
There is also a flow control technique in a mold that superimposes an AC moving magnetic field and a DC static magnetic field whose phases are shifted by 120 degrees (for example, see Patent Document 3).
[0006]
There is an electromagnetic stirring method in which a static magnetic field is applied to a position surrounding the molten steel flow discharged from the immersion nozzle to reduce the flow velocity and to install an electromagnetic stirring device at a position downstream of the static magnetic field (for example, see Patent Document 4). .
[0007]
A magnet (400 to 2,000 gauss) for forming a moving magnetic field is installed on the upper part of the mold to apply a moving magnetic field to the rising inverted molten steel flow flowing through the surface layer of the meniscus, and to form a static magnetic field (1000 mm or more below the meniscus) by 1000 mm or less. A casting method and an apparatus are disclosed in which a molten steel flow is applied to a short side of a casting mold and a static magnetic field is applied to the molten steel flow descending to the short side of the mold (for example, see Patent Document 5).
[0008]
Also, a casting technique in which a moving magnetic field is actuated by a magnet having a pole center disposed between a molten metal surface and a discharge hole (at least 50 degrees downward), and a static magnetic field is acted by a magnet having a pole core located below an immersion nozzle. (For example, see Patent Document 6).
[0009]
A magnet for electromagnetic stirring is installed above the lower end of the immersion nozzle, a magnet that can apply a moving magnetic field and a static magnetic field is installed below the lower end of the immersion nozzle, and casting that uses the static magnetic field and the moving magnetic field according to the steel type and casting speed There is also a method (for example, see Patent Document 7).
[0010]
When casting steel while injecting Ar gas, a static magnetic field having a magnetic flux density of 0.1 Tesla or more is applied to the molten steel flow immediately after exiting from the immersion nozzle, and the magnetic stirring device continuously stirs or stirs the magnetic flux at the upper part. A technique for periodically changing the direction is known (for example, see Patent Document 8).
[0011]
There is disclosed an electromagnetic brake in which a static magnetic field is applied by an electromagnet having substantially the same length as the long side installed opposite to the long side of the mold (for example, see Patent Document 9).
[0012]
A magnetic pole bent or inclined upward from the center of the mold or from the predetermined position inside the mold short side to the vicinity of both ends is installed below the immersion nozzle discharge hole at the center of the mold, and a DC magnetic field or low frequency AC There is also a method of controlling the flow of molten steel in a mold by applying a magnetic field (for example, see Patent Document 10).
[0013]
A meniscus flow rate is controlled to 0.20 to 0.40 m / s by controlling a discharge flow from an immersion nozzle by applying a direct current magnetic field having a substantially uniform magnetic flux density distribution over the entire width of the mold in the thickness direction of the mold. A technique is disclosed (for example, refer to Patent Document 11).
[0014]
A casting method for controlling the flow of molten steel by applying a static magnetic field by applying a direct current to a plurality of coils provided at a lower portion of an immersion nozzle discharge hole or applying a moving magnetic field by applying an alternating current is disclosed. (For example, see Patent Document 12).
[0015]
There is also a technique of applying a static alternating magnetic field having a frequency of 1 to 15 Hz to molten steel when controlling the flow of molten steel in a mold by electromagnetic induction (for example, see Patent Document 13).
[0016]
In a slab continuous caster, a technique (M-EMS) for obtaining a swirling flow of molten steel in a horizontal direction along a mold wall by electromagnetic stirring has been disclosed (for example, see Non-Patent Document 1).
[0017]
A technique for damping (EMLS) or accelerating (EMLA) a discharged molten steel flow by applying an AC moving magnetic field to a discharge flow from an immersion nozzle is disclosed (for example, see Non-Patent Document 2).
[0018]
It has a static magnetic field arranged on the long side of the mold to control the molten steel current supplied into the mold, and a moving magnetic field generator is placed above it so that the upper surface of the molten steel flows from the center of the horizontal section to the short turn side. There is a mold to be made and a structure above the mold (for example, see Patent Document 14).
[0019]
By installing an electromagnetic stirrer at the upper part of the mold and an electromagnetic brake at the lower part of the mold, the discharge flow from the immersion nozzle is controlled (for example, see Patent Document 15).
[0020]
In continuous casting, using a static magnetic field on the surface of molten steel in a continuous casting mold, using a straight nozzle as a continuous casting nozzle, using a traveling magnetic field at the discharge port, and using a static magnetic field at the lower part, flow control of molten steel in the mold A technique is disclosed (for example, see Patent Document 16).
[0021]
There is a method of casting steel in which a static magnetic field and a high-frequency magnetic field are superimposed and act on the entire area in the width direction by a magnet placed above the discharge hole of the immersion nozzle, and a static magnetic field is actuated by the magnet placed below the discharge hole. (See, for example, Patent Document 17).
[0022]
In the continuous casting of slabs, a uniform static magnetic field in the thickness direction of the mold is applied to the upper and lower parts of the discharge hole of the immersion nozzle over the entire width of the slab outside the mold to give an effective braking force to the molten steel discharge flow, making the flow uniform There is also a technology for converting the same (see, for example, Patent Document 18).
[0023]
By applying a low-frequency AC static magnetic field that does not move over time and exciting low-frequency electromagnetic vibration on the solidification front, the columnar dendrite on the solidification front is broken and floated in the molten metal, and the fine solidification structure Patent Document 1 discloses a technique for reducing the concentration and center segregation.
[0024]
In addition, a DC magnetic field and a fixed AC magnetic field are superimposed and applied in the thickness direction of the casting, and these magnetic fields are applied from one or more magnetic fields arranged above or below the discharge port of the immersion nozzle, and the AC magnetic field is applied. A technique having a frequency of 0.01 to 50 Hz is disclosed (for example, see Patent Document 20).
[0025]
[Patent Document 1]
JP-A-10-305353 (page 3, left column, lines 16 to 32)
[0026]
[Patent Document 2]
Japanese Patent No. 3067916 (page 3, left column, lines 40 to 48)
[0027]
[Patent Document 3]
JP-A-5-154623 (page 2, right column, lines 5 to 11)
[0028]
[Patent Document 4]
JP-A-61-193755 (page 18, upper left column, line 18 to lower right column, line 43)
[0029]
[Patent Document 5]
Japanese Patent No. 2610741 (page 2, right column, lines 35 to 47)
[0030]
[Patent Document 6]
JP-A-6-226409 (page 34, left column, line 34 to right column, fourth line)
[0031]
[Patent Document 7]
Japanese Patent Application Laid-Open No. 9-262551 (page 19, right column, lines 19 to 26)
[0032]
[Patent Document 8]
JP 2000-271710 A (page 2, right column, lines 13 to 18)
[0033]
[Patent Document 9]
JP-A-3-258442 (page 3, upper right column, lines 14 to 19)
[0034]
[Patent Document 10]
JP-A No. 8-19841 (page 3, left column, lines 1 to 5)
[0035]
[Patent Document 11]
International Patent Publication No. WO 095/26243 (Page 5, column 18 to 21)
[0036]
[Patent Document 12]
JP-A-9-262650 (page 2, right column, lines 24 to 41)
[0037]
[Patent Document 13]
JP-A-8-19840 (page 37, right column, line 37 to line 40)
[0038]
[Patent Document 14]
JP-A-61-140355 (page 2, lower right column, lines 5 to 19)
[0039]
[Patent Document 15]
JP-A-63-119959 (page 20, lower left column, line 20 to lower right column, line 6)
[0040]
[Patent Document 16]
Japanese Patent No. 2856960 (page 2, right column, lines 11 to 23)
[0041]
[Patent Document 17]
JP-A-6-190520 (page 2, right column, lines 36 to 44)
[0042]
[Patent Document 18]
JP-A-2-284750 (lower right column of page 2, lines 7 to 12)
[0043]
[Patent Document 19]
JP-A-2-274350 (page 13, upper right column, line 13 to lower left column, line 13)
[0044]
[Patent Document 20]
JP 2000-326054 A (page 3, left column, lines 10 to 28)
[0045]
[Non-patent document 1]
Iron and steel 66 (1980), PS797 (page 1, line 5 to line 6)
[0046]
[Non-patent document 2]
Materials and Process vol3 (1990), P.A. 256 (page 1, lines 25-30)
[0047]
[Problems to be solved by the invention]
As described above, there are various types of flow control in the mold using the magnetic field.However, in recent years, the need for surface quality has increased, and cost reduction has been demanded. Effective control of mold flow is needed. An object of the present invention is to provide a continuous casting method in which such a flow control technique in a mold is improved.
[0048]
[Means for Solving the Problems]
In the method of the present invention, the flow velocity distribution in the thickness direction of the mold is regulated. In other words, near the center of the thickness, while reducing the flow velocity and suppressing entrainment of mold flux, increasing the flow velocity at the solidification interface close to the mold wall surface, giving a cleaning effect to bubbles and inclusions, and trapping in solidification nuclei. Suppress.
[0049]
As a means for this, it is necessary to devise the manner of applying the AC magnetic field, and model experiments and simulation calculations were performed. As a result, they came to the following conclusion.
[0050]
(1) The macro flow caused by the moving magnetic field suppresses the trapping of bubbles and inclusions at the solidification interface, but sometimes increases the entrainment of the mold flux, thus deteriorating the quality.
[0051]
(2) When applying the oscillating magnetic field, if the position where the oscillating magnetic field is strongly applied is fixed, a portion where the electromagnetic force is weak may not be able to sufficiently suppress capture of bubbles and inclusions.
[0052]
(3) Therefore, it is effective to shift the peak position of the Lorentz force due to the oscillating magnetic field.
[0053]
(4) In order to move the peak position of the Lorentz force, it is preferable to set the phases of the three adjacent coils or the coil group so that the phase of the middle coil is the last. Here, the oscillating magnetic field refers to a magnetic field in which the direction of the Lorentz force reverses with time.
[0054]
Hereinafter, the above (4) will be described. An oscillating magnetic field is applied to each of the comb-shaped coils as shown in FIG. 1 to change the phase for each coil. FIG. 2 to FIG. 5 are explanatory diagrams of the phase given to each of such coils. In the figure, the numbers attached to the side of each of the oscillating magnetic field generating coils 31a and 31b indicate the phase angle (degree) of the current of the coil at a certain time. 2 to 5 show the case of two-phase alternating current, FIG. 2 shows an example in which the moving magnetic field, FIG. 3 shows an example in which the oscillating magnetic field is moved, and FIGS. As shown in FIGS. 4 and 5, three or more electromagnets are arranged in the width direction of the continuous casting mold, and the phase of the current supplied to adjacent electromagnets increases or decreases in one direction. Instead, by setting at least the middle phase to lag behind the phases on both sides, the magnetic field will move while vibrating, rather than simply moving in one direction. As described above, the phases of three or more adjacent coils are n, 2n, n or n, 3n, 2n (where n is 90 ° for two-phase AC and 60 ° or 120 ° for three-phase AC). By providing the arrangement portion, the peak position of the oscillating magnetic field can be moved.
[0055]
Here, when the oscillating magnetic field is simply induced, there are places where the amplitude of the oscillating magnetic field is large and where the amplitude is small. By moving this peak position, the solidification interface can be cleaned at all positions.
[0056]
Here, an example in which the number of comb teeth of the coil is 12 is shown, but the number of comb teeth can be selected from 4, 6, 8, 10, 12, 16 and the like. Any of the three phases may be used.
[0057]
In the magnetic field in the thickness direction as disclosed in JP-A-6-190520 (Patent Document 17), the Lorentz force is concentrated on the solidification interface or the molten steel surface by utilizing the skin effect of an alternating current. Then, Lorentz force cannot be concentrated efficiently. For this reason, it is important to concentrate the electromagnetic field on the solidification interface, and it is necessary to control the magnetic field line distribution.
[0058]
As a means for this, it has been found that it is effective to arrange electromagnets whose phases are alternately inverted in the width direction and to alternate them. When vibrating in the thickness direction, the electromagnetic force cannot be concentrated on the mold wall surface, that is, on the solidification interface. Therefore, it is necessary to vibrate the magnetic field in the width direction. Here, it is necessary that the phases of the currents flowing through the alternate electromagnets are substantially reversed. For that purpose, the alternate phases are different by 120 degrees or more, and three or more comb-shaped coils are arranged in the width direction. By inverting the phases of the adjacent coils, the magnetic field in the width direction can be vibrated.
[0059]
Next, the superposition of the static magnetic field increases the B term in the equation F = J × B, so that the Lorentz force can be increased. The flow state of the molten steel is also changed, and the flow in the width direction and the casting direction is increased, so that the effect of cleaning bubbles and inclusions trapped at the solidification interface can be expected. Further, by superimposing the AC magnetic field and the DC magnetic field, the flow velocity of the molten metal at the center of the thickness can be reduced, and the entrainment of the mold flux can be prevented.
[0060]
If the frequency of the alternating current at this time is too low, a macro flow is excited, and if it is too high, the molten steel does not follow the electromagnetic field, so that the range of 1 Hz to 8 Hz was found to be appropriate. Furthermore, the coil structure is important for concentrating the electromagnetic field on the solidification interface. In particular, it is effective to optimize the distance between the magnetic poles of the coil and the molten steel. Further, in the technique disclosed in Japanese Patent Application Laid-Open No. 2-274350 (Patent Document 19), dendrite fracture occurs, and the structure changes from a columnar crystal structure to an equiaxed crystal structure. In ultra-low carbon steels and the like, only the columnar crystal structure is easier to control as a texture during rolling, and therefore, there is a problem that it is difficult to make the crystal orientation uniform by performing equiaxial crystallization. Therefore, the upper limit of the strength of the AC oscillating magnetic field and the DC magnetic field is required.
[0061]
Therefore, in the method of the present invention, by applying a DC magnetic field in the thickness direction while oscillating the magnetic field in the width direction, it is possible to induce a large flow in the molten metal in the mold width direction and the casting direction, which is significantly different from the conventional method. Therefore, the above effects can be expected.
[0062]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a plan view of a steel continuous casting mold 21 and an arrangement example of electromagnets 31 and 32.
[0063]
In the mold 21, a chisel 22 for immersion for continuous casting is suspended from the bottom of the upper tundish and immersed in the mold 21 to supply molten steel 23. An oscillating magnetic field generating coil 31 in which electromagnets (coils) 1a to 12a and 1b to 12b are arranged outside a long side of the continuous casting mold 21 and a DC coil 32 for generating a DC magnetic field are arranged. An oscillating current for generating an oscillating magnetic field is added to each of the electromagnets (coils) 1a to 12a and 1b to 12b, and the peak value of the oscillating current is applied so as to move along the width direction of the mold. This movement is applied so that the phases of adjacent coils have an arrangement portion of n, 2n, n or n, 3n, 2n.
[0064]
2 to 5 show the distribution of the phase of the oscillating magnetic field of the coils 1a to 12a and 1b to 12b at a certain moment by using numerical values (phase angle values). The peak position of the oscillating magnetic field sequentially moves in the direction along the long side of the mold 21. FIG. 2 shows a two-phase alternating moving magnetic field in which the adjacent coils have a phase difference of 90 degrees and the opposite coils 31a and 31b differ by 180 degrees. In FIG. 3, the phase difference between the adjacent coils is 180 degrees, and the two-phase alternating oscillating magnetic field having the same phase is applied to the opposing coils 31a and 31b. In FIG. 4, a half-wave rectified two-phase alternating current having a phase difference of 90 degrees between adjacent coils and a 180-degree difference between the opposite coils 31a and 31b is applied. In FIG. 5, a half-wave rectified two-phase alternating current having a phase difference of 120 degrees from the adjacent coil and a phase difference of 60 degrees between the opposing coils is applied.
[0065]
According to the method of the present invention, only the solidification interface can be efficiently vibrated to suppress the capture of bubbles and inclusions, so that the surface quality of the slab can be greatly improved.
[0066]
【Example】
Approximately 300 tons of molten steel was smelted in a converter, converted into an ultra-low carbon steel aluminum killed steel by RH treatment, and a slab was cast by a continuous casting machine. Table 1 shows typical molten steel components. The width of the slab was 1500 to 1700 mm, the thickness of the slab was 220 mm, and the throughput of molten steel was 4 to 5 ton / min. As a coil structure, as shown in FIG. 1, a comb-shaped iron core divided into 12 parts in the width direction was used, and was arranged so as to generate a magnetic field whose phase was alternately reversed in the width direction of the mold 21. The magnetic flux due to the alternating magnetic field was 1000 gauss at the maximum. Table 2 summarizes the experimental conditions and experimental results. The symbols of the coil patterns in Table 2 are as follows.
[0067]
A: n, 2n, n (Example)
B: n, 3n, 2n (Example)
C: 0, n, 2n, 3n (Comparative Example)
D: 0, 2n, 0, 2n (Comparative Example)
Here, n is a phase angle, n = 90 degrees for two-phase AC, and n = 60 degrees or 120 degrees for three-phase AC.
[0068]
Surface segregation of the slab is performed slab grinding after etching was investigated number polarized析個per 1 m 2 by visual observation. Further, the surface defect of the coil after the cold rolling was visually inspected, a defect sample was collected, and the defect portion was analyzed to investigate the number of defects due to the mold flux. The amount of inclusions was measured by extracting inclusions from the position of 1/4 thickness of the slab by the slime extraction method, and then measuring the mass. Regarding the surface segregation, the mold flux defect and the amount of inclusions, the worst of all the conditions was set to 10 in indexing, and a linear ratio to the worst was set.
[0069]
As can be seen from Table 2, by applying the oscillating magnetic field, it becomes possible to reduce surface segregation, defects due to mold flux, bubbles, and nonmetallic inclusions.
[0070]
If the intensity of the oscillating magnetic field is too strong, the flux on the surface of the molten metal becomes large and the quality of the surface deteriorates.If the frequency is too high, the molten metal cannot follow the magnetic field and the effect of cleaning the solidification interface decreases. And the number of bubbles and inclusion defects is increasing.
[0071]
[Table 1]
Figure 2004058092
[0072]
[Table 2]
Figure 2004058092
[0073]
【The invention's effect】
According to the present invention, it is possible to cast a slab having few trapped bubbles, nonmetallic inclusions and slab surface segregation, surface defects caused by mold flux and internal inclusions, and to manufacture a high quality metal product. became.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a coil and a mold according to the present invention.
FIG. 2 is a schematic diagram showing phases of coils.
FIG. 3 is a schematic diagram showing phases of coils.
FIG. 4 is a schematic diagram showing phases of coils.
FIG. 5 is a schematic diagram showing phases of coils.
[Explanation of symbols]
1a to 12a, 1b to 12b Coil 21 Mold 22 Nozzle 23 Molten steel 31a, 31b Oscillating magnetic field generating coil (electromagnet)
32a, 32b DC coil (electromagnet)

Claims (3)

連続鋳造用鋳型の鋳型長辺方向に沿って3個以上の電磁石を並べ、振動磁界を発生させながら該振動磁界のピーク位置を鋳型長辺方向に沿って移動させることを特徴とする鋼の連続鋳造方法。A continuous continuity of steel characterized in that three or more electromagnets are arranged along a long side direction of a continuous casting mold, and a peak position of the oscillating magnetic field is moved along a long side direction of the mold while generating an oscillating magnetic field. Casting method. 3個以上の隣り合うコイルの位相が、n、2n、nあるいはn、3n、2nの配列部分をもつことを特徴とする請求項1記載の鋼の連続鋳造方法。
ただし、3相交流でn=60゜又は120゜、2相交流でn=90゜である。
The continuous casting method for steel according to claim 1, wherein the phases of three or more adjacent coils have an arrangement portion of n, 2n, n or n, 3n, 2n.
However, n = 60 ° or 120 ° for three-phase AC and n = 90 ° for two-phase AC.
前記振動磁界に直流磁界を重畳することを特徴とする請求項1又は2記載の鋼の連続鋳造方法。3. The method according to claim 1, wherein a DC magnetic field is superimposed on the oscillating magnetic field.
JP2002219246A 2002-07-29 2002-07-29 Continuous casting method of steel Expired - Lifetime JP3937961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219246A JP3937961B2 (en) 2002-07-29 2002-07-29 Continuous casting method of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219246A JP3937961B2 (en) 2002-07-29 2002-07-29 Continuous casting method of steel

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007032257A Division JP4591456B2 (en) 2007-02-13 2007-02-13 Steel continuous casting method
JP2007032250A Division JP2007118089A (en) 2007-02-13 2007-02-13 Method for continuously casting steel

Publications (2)

Publication Number Publication Date
JP2004058092A true JP2004058092A (en) 2004-02-26
JP3937961B2 JP3937961B2 (en) 2007-06-27

Family

ID=31940200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219246A Expired - Lifetime JP3937961B2 (en) 2002-07-29 2002-07-29 Continuous casting method of steel

Country Status (1)

Country Link
JP (1) JP3937961B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448431B2 (en) * 2003-04-11 2008-11-11 Jfe Steel Corporation Method of continuous steel casting
WO2019216222A1 (en) * 2018-05-08 2019-11-14 日本製鉄株式会社 Electromagnetic stirring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591456B2 (en) * 2007-02-13 2010-12-01 Jfeスチール株式会社 Steel continuous casting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448431B2 (en) * 2003-04-11 2008-11-11 Jfe Steel Corporation Method of continuous steel casting
WO2019216222A1 (en) * 2018-05-08 2019-11-14 日本製鉄株式会社 Electromagnetic stirring device

Also Published As

Publication number Publication date
JP3937961B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
CN1258414C (en) Method and device for continuous casting of metal
JP4438705B2 (en) Steel continuous casting method
JP4348988B2 (en) Steel continuous casting method
JP4539024B2 (en) Steel continuous casting method
JPH10305353A (en) Continuous molding of steel
JP3697585B2 (en) Steel continuous casting method and equipment
JP4591456B2 (en) Steel continuous casting method
KR100764945B1 (en) Method of continuous steel casting
JP4263396B2 (en) Steel continuous casting method and equipment
JP3937961B2 (en) Continuous casting method of steel
JP3697584B2 (en) Steel continuous casting method and equipment
JP5076465B2 (en) Steel continuous casting method and equipment
JP2007118089A (en) Method for continuously casting steel
JPH09262650A (en) Method for controlling fluidity in mold in continuous casting and device therefor
JPH09262651A (en) Method for reducing non-metallic inclusion in continuous casting
JP5045133B2 (en) Steel continuous casting method and surface-treated steel plate manufacturing method
JP2002028763A (en) Method for continuously casting metal
JP2004322179A (en) Electromagnetic force control device in mold and continuous casting method
JP7273304B2 (en) Continuous casting method and mold equipment
CN100372634C (en) Method and apparatus for continuous casting of metals
JP2003275849A (en) Method for producing continuously cast slab
JP5359653B2 (en) Steel continuous casting method
Toh et al. Electromagnetic phenomena in steel continuous casting
JP2000225449A (en) Apparatus for continuously casting stainless steel slab
JP2005238318A (en) Apparatus and method for continuously casting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Ref document number: 3937961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term