JP2004055850A - Lighting system using light-emitting diode element - Google Patents

Lighting system using light-emitting diode element Download PDF

Info

Publication number
JP2004055850A
JP2004055850A JP2002211693A JP2002211693A JP2004055850A JP 2004055850 A JP2004055850 A JP 2004055850A JP 2002211693 A JP2002211693 A JP 2002211693A JP 2002211693 A JP2002211693 A JP 2002211693A JP 2004055850 A JP2004055850 A JP 2004055850A
Authority
JP
Japan
Prior art keywords
emitting diode
irradiation
light emitting
diode element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002211693A
Other languages
Japanese (ja)
Inventor
Hiroshi Sase
佐瀬 洋
Atsushi Kato
加登 篤
Hideyuki Kitanaka
北仲 秀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endo Lighting Corp
Original Assignee
Endo Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endo Lighting Corp filed Critical Endo Lighting Corp
Priority to JP2002211693A priority Critical patent/JP2004055850A/en
Publication of JP2004055850A publication Critical patent/JP2004055850A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting system using light-emitting diode elements capable of illuminating more uniformly an illumination plane. <P>SOLUTION: The lighting system is used for illuminating a rectangular illumination plane, and is equipped with forty light-emitting diode elements a1 to a8, b1 to b8, c1 to c8, d1 to d8, and e1 to e8. When dividing the illumination plane K that is illuminated by light from the light-emitting diode elements a1 to a8, b1 to b8, c1 to c8, d1 to d8, and e1 to e8, into forty smaller illumination planes A1 to A8, B1 to B8, C1 to C8, D1 to D8, E1 to E8 with an equal area to one another to illuminate the one smaller illumination plane by the one light-emitting diode element, an optical axis of the assigned one light-emitting diode element is directed to the center of the one assigned smaller illumination plane. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、複数の発光ダイオード素子を用いた照明装置に関する。
【0002】
【従来の技術】
従来のこの種の照明装置は、基板に複数の発光ダイオード素子をマトリクス状に配列したものがある。そして、各発光ダイオード素子の光軸は、光が照射される照射平面に対して垂直になっているものがある(真下タイプと称する。)。また、各発光ダイオード素子の光軸Lは、隣接する発光ダイオード素子の光軸と垂直軸とがなす角度の差がすべて等しく設定されているものもある(等差角タイプと称する。)。
【0003】
【発明が解決しようとする課題】
しかしながら、上述した従来の照明装置のうち、光軸が照射平面に対して垂直になっている真下タイプのものは、図11、図13に示すように、照明装置の真下付近のみが明るくなる。また、前記等差角タイプの照明装置では、図12、図14に示すように、真下タイプのものより光は拡がるが、中心部の最も明るい部分と周囲の暗い部分との照度の差が大きいという問題がある。すなわち、真下タイプのものも等差角タイプものでも、スポットライト的な使用には適しているが、照射平面をよりむらなく均一に照らすことはできないという問題があった。
【0004】
本発明は上記事情に鑑みて創案されたもので、照射平面をよりむらなく均一に照らすことができる発光ダイオード素子を用いた照明装置を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明に係る発光ダイオード素子を用いた照明装置は、複数の発光ダイオード素子を有する発光ダイオード素子を用いた照明装置であって、前記発光ダイオード素子からの光が照射される照射平面を等しい面積を有する複数の照射小面に分割し、1又は複数の発光ダイオード素子により1つの照射小面を照射する場合、担当する照射小面の中心位置に対して、その照射小面を担当する1又は複数の発光ダイオード素子の光軸を向けている。
【0006】
【発明の実施の形態】
図1は本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置の発光ダイオード素子の配置を示す概略的説明図、図2は本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置によって照射される照射平面及び照射小面を説明する概略的説明図、図3は本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置の光軸を示す概略的説明図、図4は本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置の照射平面における照度を示す概略的照度分布図、図5は本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置の照射平面における照度を示す概略的照度グラフである。
【0007】
また、図6は本発明の第2の実施の形態に係る発光ダイオード素子を用いた照明装置の発光ダイオード素子の配置を示す概略的説明図、図7は本発明の第2の実施の形態に係る発光ダイオード素子を用いた照明装置によって照射される照射平面及び照射小面を説明する概略的説明図、図8は本発明の第2の実施の形態に係る発光ダイオード素子を用いた照明装置の光軸を示す概略的説明図、図9は本発明の第2の実施の形態に係る発光ダイオード素子を用いた照明装置の照射平面における照度を示す概略的照度分布図、図10は本発明の第2の実施の形態に係る発光ダイオード素子を用いた照明装置の照射平面における照度を示す概略的照度グラフである。
【0008】
さらに、図11は本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置との対比用の従来の発光ダイオード素子を用いた真下タイプの照明装置の照射平面における照度を示す概略的照度グラフ、図12は本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置との対比用の従来の発光ダイオード素子を用いた等差角タイプの照明装置の照射平面における照度を示す概略的照度グラフ、図13は本発明の第2の実施の形態に係る発光ダイオード素子を用いた照明装置との対比用の従来の発光ダイオード素子を用いた真下タイプの照明装置の照射平面における照度を示す概略的照度グラフ、図14は本発明の第2の実施の形態に係る発光ダイオード素子を用いた照明装置との対比用の従来の発光ダイオード素子を用いた等差角タイプの照明装置の照射平面における照度を示す概略的照度グラフである。
【0009】
本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置100は、矩形状の照射平面Kを照射するものであって、80個の発光ダイオード素子a1〜a16、b1〜b16、c1〜c16、d1〜d16、e1〜e16を有する発光ダイオード素子を用いた照明装置であり、前記発光ダイオード素子a1〜a16、b1〜b16、c1〜c16、d1〜d16、e1〜e16からの光が照射される照射平面Kを等しい面積を有する80個の照射小面A1〜A16、B1〜B16、C1〜C16、D1〜D16、E1〜E16に分割し、1つの発光ダイオード素子により1つの照射小面を照射する場合、担当する照射小面の中心位置に対して、その照射小面を担当する1つの発光ダイオード素子の光軸を向けている。
【0010】
まず、本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置100の説明の前に、この照明装置100によって照射される照射平面Kについて説明する。
例えば、図2に示すように、3.2m×1mの大きさを有する照射平面Kであれば、それぞれが0.2m×0.2mの面積を有する合計80個の照射小面A1〜A16、B1〜B16、C1〜C16、D1〜D16、E1〜E16に分割する。そして、照射平面Kを横行を上から下に向かってA〜Eの5行とし、縦行を左から右に向かって1〜16の16行とし、各照射平面は、横行及び縦行の符号の符号で表示するものとする。
【0011】
すると、照射平面Kの上端かつ左端を原点とした場合、各照射小面A1〜A16、B1〜B16、C1〜C16、D1〜D16、E1〜E16の中心位置XY座標は、表1に示すようになる。
【0012】
【表1】

Figure 2004055850
【0013】
かかる照射平面Kに対して、前記照射小面A8と照射小面A9との間に高さ2mのポール110を設け、このポール110の上端に照明装置100を設けたとする。
【0014】
この照明装置100は、全部で80個の発光ダイオード素子a1〜a16、b1〜b16、c1〜c16、d1〜d16、e1〜e16を有しており、1つの発光ダイオード素子が1つの照射小面に対する光の照射を受け持つようにする。すなわち、1つの発光ダイオード素子の光軸が1つの照射小面に向かうようにする。なお、各発光ダイオード素子a1〜a16、b1〜b16、c1〜c16、d1〜d16、e1〜e16は、照射小面A1〜A16、B1〜B16、C1〜C16、D1〜D16、E1〜E16と同様に16×5の配列になっており、各発光ダイオード素子a1〜a16、b1〜b16、c1〜c16、d1〜d16、e1〜e16は、横行を上から下に向かってa〜eの5行とし、縦行を左から右に向かって1〜16の16行とし、各発光ダイオード素子は、横行及び縦行の符号の符号で表示するものとする。なお、例えば、発光ダイオード素子a1は照射小面A1を、発光ダイオードb3は照射小面B3をそれぞれ照射するようにする。
【0015】
かかる発光ダイオード素子a1〜a16、b1〜b16、c1〜c16、d1〜d16、e1〜e16は、図1に示すように配列される。すなわち、上述したように、それぞれが等しい面積を有する各照射小面A1〜A16、B1〜B16、C1〜C16、D1〜D16、E1〜E16の中心位置に、各発光ダイオード素子a1〜a16、b1〜b16、c1〜c16、d1〜d16、e1〜e16の光軸Lを向けるため、遠くの照射小面を担当する発光ダイオード素子ほど、その光軸と垂直軸との角度が大きくなるように設定されているのである。
【0016】
なお、本明細書における実験では、この発光ダイオード素子a1〜a16、b1〜b16、c1〜c16、d1〜d16、e1〜e16には、中心光度10cd、1/2光度角15°の性能を有するものを使用している。
【0017】
このように各発光ダイオード素子a1〜a16、b1〜b16、c1〜c16、d1〜d16、e1〜e16を配置した場合、各発光ダイオード素子a1〜a16、b1〜b16、c1〜c16、d1〜d16、e1〜e16の光軸Lの垂直軸Yに対する傾きは、それぞれ異なるものとなる。詳しくは、各発光ダイオード素子の光軸は、照明装置100から離れた位置にある照射小面を担当する発光ダイオード素子ほど垂直軸Yに対する光軸Lの傾き(鉛直角)が大きくなるのである。
【0018】
例えば、図3に示すように、光軸Lがある照射小面に向かっている発光ダイオード素子では、その照射小面の中心点と照明装置100が設けられたポール110の根元とがなす角度を平面角θhとし、垂直軸であるポール110とがなす角度を正面方向からみた正面角θvとすると、θv=tan −1(x/H)、θh=tan −1(x/y)となる。なお、Hはポール110の高さ寸法、(x、y)は照射小面の中心座標である。
【0019】
なお、照明装置100は、照射小面A8と照射小面A9との間に設けられているため、照射平面Kは照射小面A8と照射小面A9との境目を軸として左右対称になっているため、右側半分のみについて考察する。
【0020】
各照射小面に対する各発光ダイオード素子の光軸の向きを示す正面角θv及び平面角θhは、以下の表2のようになる。
【0021】
【表2】
Figure 2004055850
【0022】
このように各発光ダイオード素子を配置した場合の照射平面Kの照度は、図4に示すようになる。
【0023】
詳しく述べると、照射小面B4〜B13、C4〜C13を含む略長円状の9ルクス以上11ルクス未満の照度を有する領域Aria11ができる。この9ルクス以上11ルクス未満の照度を有する領域Aria11の周囲、すなわち照射小面A4〜A14、B3〜B14、C3〜C14、D3〜D14を含む略長円状の7ルクス以上9ルクス未満の照度を有する領域Aria9ができる。
【0024】
また、この7ルクス以上9ルクス未満の照度を有する領域Aria9の周囲には、照射小面A2〜A14、B2〜B3、B14〜B15、C2、C15、D2〜D15、E3〜E14を含む略長円状の5ルクス以上7ルクス未満の照度を有する領域Aria7ができる。さらに、この5ルクス以上7ルクス未満の照度を有する領域Aria7の周囲には、照射小面A2〜A15、B1〜B2、B15〜B16、C1〜2、C15〜16、D1〜D2、D15〜D16、E2〜E15を含む略長円状の3ルクス以上5ルクス未満の照度を有する領域Aria5ができる。
【0025】
また、この3ルクス以上5ルクス未満の照度を有する領域Aria5の周囲には、照射小面A1〜A2、A15〜A16、B1、B16、D1、D16、E1〜E2、E15〜E16を含む略長円状の3ルクス未満の照度を有する領域Aria3ができる。
【0026】
この照明装置100では、幅広く均一な照度を確保できていることが図5からも判明する。
【0027】
これを、図11の示す従来の真下タイプの照明装置の照射平面の照度と比較すると、本実施の形態に係る照明装置100は、最も照度の高い照射小面は約10ルクスで、最も照度の低い照射小面は約3ルクスであるのに対し、従来の真下タイプの照明装置の照射平面では、最も照度の高い照射小面は約12ルクスで、最も照度の低い照射小面は0ルクスである。すなわち、本実施の形態に係る照明装置100の方が、最大照度の部分と最小照度の部分との差が小さい、換言すると、本実施の形態に係る照明装置100の方が照射平面Kをむらなくより均一に照射していることがわかる。
【0028】
また、従来の等差角タイプの照明装置の照度は、図12に示すように、最も高くて約11ルクスであるのに対して、最も低くて約5ルクスである。しかし、本実施の形態に係る照明装置100の方が、約10ルクスの照度を得られる照射小面が多いことが図5との比較から判明する。従って、本実施の形態に係る照明装置100の方が照射平面Kをむらなくより均一に照射していることがわかる。
【0029】
なお、この従来の等差角タイプの照明装置は、すべての発光ダイオード素子Aの基板Bにおける配置位置は本実施の形態に係るものと同一であるが、隣接する各発光ダイオード素子Aの光軸Lと垂直軸Yとがなす角度の差がすべてが5°となっているものである。
【0030】
次に、円形の照射平面KCを照らす照明装置300について説明する。
かかる照明装置300の場合には、円形の基板に5つの同心円上を形成し、それぞれ4個、12個、20個、28個、36個の合計100個の発光ダイオード素子a1〜a4、b1〜b12、c1〜c20、d1〜d28、e1〜e36を配置する。そして、最も中心の4個の発光ダイオード素子a1〜a4の光軸と垂直軸とがなす角度より、より外側に位置する発光ダイオード素子b1〜12b、c1〜c20、d1〜d28、e1〜e36の光軸が垂直軸となす角度の方が徐々に大きくなっている。照明素子300を取り付けるポール310は、前記基板の中心に立設されることになる。
【0031】
この場合、照射平面KCは、図7に示すように半径1m、2m、3m、4m、5mの5つの同心円をそれぞれ、1個、12個、20個、28個、36個に分割することで、照射平面A1〜A4、B1〜B12、C1〜C20、D1〜D28、E1〜E36の面積を等しくしている。
【0032】
中心に高さ7mのポール310を設け、このポール310に照明装置300を設置した場合には、図9に示すような照度分布を得ることができた。すなわち、照明装置300の真下に当たる照射小面Aの中心部付近の照度は約0.55ルクス以上、最も外側でも約0.3ルクスであった。
【0033】
詳述すると、照射小面A1を含む0.5ルクス以上0.6ルクス未満の円形の領域Aria0.6、照射小面A1、B1〜12、C1〜C20、D1〜D28、E1〜E36を含み、前記領域Aria0.6の外側の0.4ルクス以上0.5ルクス未満の環状の領域Aria0.5、照射小面E1〜E36を含み、前記領域Aria0.5の外側の0.4ルクス未満の環状の領域Aria0.4がそれぞれ形成されることになる。
【0034】
かかる照明装置300の発光ダイオード素子は、図8に示すように、照明装置300に近い照射小面を担当する発光ダイオード素子の光軸が垂直軸Yとなす角度θ1と、より遠い照射小面を担当する発光ダイオード素子の光軸が垂直軸Yとなす角度θ2とでは、θ1<θ2となる。発光ダイオード素子a1ではθ=4.09°、発光ダイオード素子b1ではθ=12.09°、発光ダイオード素子c1ではθ=19.65°、発光ダイオード素子d1ではθ=26.57°、発光ダイオード素子e1ではθ=32.74°となっている。
【0035】
これに対して、従来の照明装置、すなわち、真下タイプの照明装置では、図13示すように、最も照度の高い部分で約10ルクス、最も低い部分で0ルクスとなっている。従って、図10と比較すると、従来の真下タイプの照明装置の方が照度が高いが、本実施の形態に係る照明装置300の方が照度むらがなく均一な照明を得ることができるといえる。
【0036】
また、従来の等差角タイプの照明装置の照度分布を示す図12と比較すると、従来の等差角タイプの照明装置の方が照度が高いが、本実施の形態に係る照明装置300の方が照度むらがなく均一な照明を得ることができるといえる。
【0037】
なお、上述した2つの実施の形態では、1つの発光ダイオード素子が1つの照射小面を照射するとして説明を行ったが、2以上の発光ダイオード素子が1つの照射小面を照射するようにしてもよい。この場合には、全体の照度を向上させることができることはいうまでもない。
【0038】
【発明の効果】
本発明に係る発光ダイオード素子を用いた照明装置は、複数の発光ダイオード素子を有する発光ダイオード素子を用いた照明装置であって、前記発光ダイオード素子からの光が照射される照射平面を等しい面積を有する複数の照射小面に分割し、1又は複数の発光ダイオード素子により1つの照射小面を照射する場合、担当する照射小面の中心位置に対して、その照射小面を担当する1又は複数の発光ダイオード素子の光軸を向けている。
【0039】
すると、この発光ダイオード素子を用いた照明装置では、遠くの照射小面を照射する発光ダイオード素子の方が、隣接する各発光ダイオード素子の光軸と垂直軸とがなす角度の差が小さくなる。すなわち、従来のように、発光ダイオード素子の光軸が一様に真下に向いているものや、隣接する発光ダイオード素子の光軸と垂直軸とがなす角度の差が等しいものとは相違する。
また、各照射小面の照度Eは、E=Φ/A(ただし、Φは光束、Aは面積)、すなわち発光ダイオード素子が発光する光束が照射小面に入射する量によって表され、この発光ダイオード素子を用いた照明装置では、各発光ダイオード素子が担当する照射小面に入射する光束量が均一になるような構成にしている点でも、従来のものとは大きく異なる。かかる構成であると、照射平面を全体的にむらなく均一に照射することができるというメリットがある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置の発光ダイオード素子の配置を示す概略的説明図である。
【図2】本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置によって照射される照射平面及び照射小面を説明する概略的説明図である。
【図3】本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置の光軸を示す概略的説明図である。
【図4】本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置の照射平面における照度を示す概略的照度分布図である。
【図5】本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置の照射平面における照度を示す概略的照度グラフである。
【図6】本発明の第2の実施の形態に係る発光ダイオード素子を用いた照明装置の発光ダイオード素子の配置を示す概略的説明図である。
【図7】本発明の第2の実施の形態に係る発光ダイオード素子を用いた照明装置によって照射される照射平面及び照射小面を説明する概略的説明図である。
【図8】本発明の第2の実施の形態に係る発光ダイオード素子を用いた照明装置の光軸を示す概略的説明図である。
【図9】本発明の第2の実施の形態に係る発光ダイオード素子を用いた照明装置の照射平面における照度を示す概略的照度分布図である。
【図10】本発明の第2の実施の形態に係る発光ダイオード素子を用いた照明装置の照射平面における照度を示す概略的照度グラフである。
【図11】本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置との対比用の従来の発光ダイオード素子を用いた真下タイプの照明装置の照射平面における照度を示す概略的照度グラフである。
【図12】本発明の第1の実施の形態に係る発光ダイオード素子を用いた照明装置との対比用の従来の発光ダイオード素子を用いた等差角タイプの照明装置の照射平面における照度を示す概略的照度グラフである。
【図13】本発明の第2の実施の形態に係る発光ダイオード素子を用いた照明装置との対比用の従来の発光ダイオード素子を用いた真下タイプの照明装置の照射平面における照度を示す概略的照度グラフである。
【図14】本発明の第2の実施の形態に係る発光ダイオード素子を用いた照明装置との対比用の従来の発光ダイオード素子を用いた等差角タイプの照明装置の照射平面における照度を示す概略的照度グラフである。
【符号の説明】
100  発光ダイオード素子を用いた照明装置
110  ポール
K    照射平面
A1〜E8 照射小面
a1e8 発光ダイオード素子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lighting device using a plurality of light emitting diode elements.
[0002]
[Prior art]
2. Description of the Related Art A conventional illumination device of this type includes a substrate in which a plurality of light emitting diode elements are arranged in a matrix. Some light-emitting diode elements have an optical axis that is perpendicular to an irradiation plane on which light is irradiated (referred to as a direct-under type). In some cases, the optical axis L of each light emitting diode element is set so that the difference between the angles formed by the optical axis of the adjacent light emitting diode elements and the vertical axis is all equal (referred to as an equiangular angle type).
[0003]
[Problems to be solved by the invention]
However, among the above-described conventional illumination devices, those of a type directly below the illumination device whose optical axis is perpendicular to the irradiation plane, as shown in FIGS. Further, in the isometric angle type illuminating device, as shown in FIGS. 12 and 14, light spreads more than the direct-illumination type, but the difference in illuminance between the brightest portion at the center and the dark portion around is large. There is a problem. In other words, both the right-down type and the equi-angle type are suitable for use as a spotlight, but there is a problem that the irradiation plane cannot be evenly and uniformly illuminated.
[0004]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lighting device using a light-emitting diode element that can uniformly illuminate an irradiation plane evenly.
[0005]
[Means for Solving the Problems]
A lighting device using a light-emitting diode element according to the present invention is a lighting device using a light-emitting diode element having a plurality of light-emitting diode elements, and has an equal irradiation area to which light from the light-emitting diode element is irradiated. When irradiating one irradiation facet with one or a plurality of light emitting diode elements and dividing the irradiation facet into a plurality of irradiation facets, one or more of the irradiation facets are assigned to a center position of the irradiation facet to be handled. The light axis of the light emitting diode element is oriented.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic explanatory view showing the arrangement of light emitting diode elements of a lighting device using the light emitting diode elements according to the first embodiment of the present invention, and FIG. 2 is light emission according to the first embodiment of the present invention. FIG. 3 is a schematic explanatory view illustrating an irradiation plane and an irradiation small surface irradiated by a lighting device using a diode element. FIG. 3 is an optical axis of a lighting device using a light emitting diode element according to the first embodiment of the present invention. FIG. 4 is a schematic illuminance distribution diagram showing illuminance on an irradiation plane of an illuminating device using the light emitting diode element according to the first embodiment of the present invention, and FIG. 6 is a schematic illuminance graph showing illuminance on an illumination plane of a lighting device using the light-emitting diode element according to the embodiment.
[0007]
FIG. 6 is a schematic explanatory view showing an arrangement of a light emitting diode element of a lighting device using a light emitting diode element according to a second embodiment of the present invention, and FIG. 7 is a view showing a second embodiment of the present invention. FIG. 8 is a schematic explanatory view illustrating an irradiation plane and an irradiation small surface irradiated by the lighting device using the light emitting diode element. FIG. 8 is a diagram illustrating a lighting device using the light emitting diode element according to the second embodiment of the present invention. FIG. 9 is a schematic explanatory view showing an optical axis, FIG. 9 is a schematic illuminance distribution diagram showing illuminance on an irradiation plane of an illuminating device using a light emitting diode element according to a second embodiment of the present invention, and FIG. It is a schematic illuminance graph which shows the illuminance in the illumination plane of the illuminating device using the light emitting diode element which concerns on 2nd Embodiment.
[0008]
Further, FIG. 11 is a schematic diagram showing an illuminance on an irradiation plane of a lighting device of a direct type using a conventional light emitting diode element for comparison with a lighting device using a light emitting diode element according to the first embodiment of the present invention. FIG. 12 is an illumination plane of an isometric angle type lighting device using a conventional light emitting diode element for comparison with a lighting device using a light emitting diode element according to the first embodiment of the present invention. FIG. 13 is a schematic illuminance graph showing illuminance, and FIG. 13 is an illumination of a lighting device of a direct type using a conventional light emitting diode element for comparison with a lighting apparatus using a light emitting diode element according to the second embodiment of the present invention. FIG. 14 is a schematic illuminance graph showing illuminance in a plane, and FIG. 14 shows a conventional light-emitting diode element for comparison with a lighting device using the light-emitting diode element according to the second embodiment of the present invention. Is a schematic illuminance graph showing the illuminance in had been irradiated plane of the arithmetic angle type lighting device.
[0009]
The lighting apparatus 100 using the light emitting diode elements according to the first embodiment of the present invention irradiates a rectangular irradiation plane K, and includes 80 light emitting diode elements a1 to a16, b1 to b16, A lighting device using a light-emitting diode element having c1 to c16, d1 to d16, and e1 to e16. Light from the light-emitting diode elements a1 to a16, b1 to b16, c1 to c16, d1 to d16, and e1 to e16. Is divided into 80 irradiation small surfaces A1 to A16, B1 to B16, C1 to C16, D1 to D16, and E1 to E16 having the same area, and one irradiation is performed by one light emitting diode element. When irradiating a small surface, the optical axis of one light emitting diode element that is in charge of the irradiation small surface is directed to the center position of the irradiation small surface in charge.
[0010]
First, before describing the lighting device 100 using the light emitting diode elements according to the first embodiment of the present invention, an irradiation plane K illuminated by the lighting device 100 will be described.
For example, as shown in FIG. 2, if the irradiation plane K has a size of 3.2 m × 1 m, a total of 80 irradiation small surfaces A 1 to A 16 each having an area of 0.2 m × 0.2 m, It is divided into B1 to B16, C1 to C16, D1 to D16 and E1 to E16. Then, the irradiation plane K is made up of five rows A to E in the horizontal direction from top to bottom, and the vertical row is made up of 16 lines 1 to 16 in the left to right direction. It shall be indicated by the sign of.
[0011]
Then, when the upper end and the left end of the irradiation plane K are set as the origin, the center position XY coordinates of each irradiation small surface A1 to A16, B1 to B16, C1 to C16, D1 to D16, and E1 to E16 are as shown in Table 1. become.
[0012]
[Table 1]
Figure 2004055850
[0013]
It is assumed that a pole 110 having a height of 2 m is provided between the irradiation small surface A8 and the irradiation small surface A9 with respect to the irradiation plane K, and the illumination device 100 is provided at an upper end of the pole 110.
[0014]
This lighting device 100 has a total of 80 light emitting diode elements a1 to a16, b1 to b16, c1 to c16, d1 to d16, and e1 to e16, and one light emitting diode element is one irradiation facet. To take care of the light irradiation. That is, the optical axis of one light emitting diode element is directed to one irradiation facet. In addition, each light emitting diode element a1-a16, b1-b16, c1-c16, d1-d16, e1-e16 is irradiation small surface A1-A16, B1-B16, C1-C16, D1-D16, E1-E16. Similarly, the light emitting diode elements a1 to a16, b1 to b16, c1 to c16, d1 to d16, and e1 to e16 are arranged in a 16 × 5 array. A row is defined as 16 rows from 1 to 16 from left to right, and each light-emitting diode element is represented by a code of a row and a row. For example, the light emitting diode element a1 irradiates the irradiation small surface A1, and the light emitting diode b3 irradiates the irradiation small surface B3.
[0015]
The light emitting diode elements a1 to a16, b1 to b16, c1 to c16, d1 to d16, and e1 to e16 are arranged as shown in FIG. That is, as described above, the light emitting diode elements a1 to a16, b1 are located at the center positions of the irradiation small surfaces A1 to A16, B1 to B16, C1 to C16, D1 to D16, E1 to E16, each having the same area. B16, c1 to c16, d1 to d16, and e1 to e16, so that the light axis of the light emitting diode element that is in charge of the irradiating small surface is set to have a larger angle between the optical axis and the vertical axis. It is being done.
[0016]
In the experiments in this specification, the light emitting diode elements a1 to a16, b1 to b16, c1 to c16, d1 to d16, and e1 to e16 have the performance of a central luminous intensity of 10 cd and a luminous intensity angle of 15 °. Use things.
[0017]
When the light emitting diode elements a1 to a16, b1 to b16, c1 to c16, d1 to d16, and e1 to e16 are arranged in this manner, the light emitting diode elements a1 to a16, b1 to b16, c1 to c16, d1 to d16 , E1 to e16 have different inclinations with respect to the vertical axis Y of the optical axis L. More specifically, the inclination (vertical angle) of the optical axis L with respect to the vertical axis Y increases with the light axis of each light emitting diode element that is in charge of the irradiation facet located farther from the lighting device 100.
[0018]
For example, as shown in FIG. 3, in a light emitting diode element in which the optical axis L is directed toward a certain irradiation facet, the angle formed by the center point of the irradiation facet and the base of the pole 110 provided with the lighting device 100 is determined. Assuming that the plane angle is θh and the angle between the pole 110 which is a vertical axis and the front angle is θv when viewed from the front, θv = tan −1 (x / H) and θh = tan −1 (x / y). Note that H is the height dimension of the pole 110, and (x, y) is the center coordinate of the irradiation small surface.
[0019]
Since the illumination device 100 is provided between the irradiation small surface A8 and the irradiation small surface A9, the irradiation plane K is bilaterally symmetric about the boundary between the irradiation small surface A8 and the irradiation small surface A9. Therefore, only the right half is considered.
[0020]
The front angle θv and the plane angle θh indicating the direction of the optical axis of each light emitting diode element with respect to each irradiation facet are as shown in Table 2 below.
[0021]
[Table 2]
Figure 2004055850
[0022]
The illuminance on the irradiation plane K when the respective light emitting diode elements are arranged as described above is as shown in FIG.
[0023]
More specifically, a substantially elliptical area Aria11 including the irradiation small surfaces B4 to B13 and C4 to C13 and having an illuminance of 9 to 11 lux is formed. Around the area Aria11 having an illuminance of 9 lux or more and less than 11 lux, that is, a substantially elliptical illuminance of 7 lux or more and less than 9 lux including the irradiation small surfaces A4 to A14, B3 to B14, C3 to C14, and D3 to D14. Is formed in the area Aria9.
[0024]
Around the area Aria9 having an illuminance of 7 lux or more and less than 9 lux, an approximate length including irradiation small surfaces A2 to A14, B2 to B3, B14 to B15, C2, C15, D2 to D15, and E3 to E14. A circular area Aria7 having an illuminance of 5 lux or more and less than 7 lux is formed. Further, around the area Aria7 having an illuminance of 5 lux or more and less than 7 lux, irradiation small surfaces A2 to A15, B1 to B2, B15 to B16, C1 to 2, C15 to 16, D1 to D2, D15 to D16 , E2 to E15, and a region Aria5 having an illuminance of 3 lux or more and less than 5 lux is formed.
[0025]
Further, around the area Aria5 having an illuminance of 3 lux or more and less than 5 lux, a substantially long area including the irradiation small surfaces A1 to A2, A15 to A16, B1, B16, D1, D16, E1 to E2, and E15 to E16. There is a circular area Aria3 having an illuminance of less than 3 lux.
[0026]
It can be seen from FIG. 5 that the lighting device 100 can secure a wide and uniform illuminance.
[0027]
Comparing this with the illuminance of the illuminating plane of the conventional directly below type illuminating device shown in FIG. 11, the illuminating device 100 according to the present embodiment shows that the illuminating small surface with the highest illuminance is about 10 lux, and The low illuminated facet is about 3 lux, while the illuminated flat face of a conventional directly below type illuminator has the illuminated facet with the highest illuminance at about 12 lux and the illuminated facet with the lowest illuminance at 0 lux. is there. That is, the illumination device 100 according to the present embodiment has a smaller difference between the maximum illuminance portion and the minimum illuminance portion, in other words, the illumination device 100 according to the present embodiment has an uneven irradiation plane K. It can be seen that the light was more uniformly irradiated.
[0028]
Further, as shown in FIG. 12, the illuminance of the conventional equiangular illumination device is about 11 lux at the highest, whereas it is about 5 lux at the lowest. However, it is clear from the comparison with FIG. 5 that the illumination device 100 according to the present embodiment has more irradiation small surfaces that can obtain an illuminance of about 10 lux. Therefore, it can be seen that the illumination device 100 according to the present embodiment irradiates the irradiation plane K evenly and evenly.
[0029]
In this conventional equiangular illumination device, the arrangement positions of all the light emitting diode elements A on the substrate B are the same as those according to the present embodiment, but the optical axes of the adjacent light emitting diode elements A are different. The difference between the angles formed by L and the vertical axis Y is all 5 °.
[0030]
Next, the lighting device 300 that illuminates the circular irradiation plane KC will be described.
In the case of such a lighting device 300, five concentric circles are formed on a circular substrate, and a total of 100 light-emitting diode elements a1 to a4, b1 to 4, 12, 20, 28, and 36 respectively. b12, c1 to c20, d1 to d28, and e1 to e36 are arranged. Then, the light-emitting diode elements b1 to 12b, c1 to c20, d1 to d28, and e1 to e36, which are located more outward than the angle formed by the optical axis and the vertical axis of the four most central light-emitting diode elements a1 to a4. The angle between the optical axis and the vertical axis is gradually increasing. The pole 310 to which the lighting element 300 is attached is erected at the center of the substrate.
[0031]
In this case, the irradiation plane KC is obtained by dividing five concentric circles having radii of 1 m, 2 m, 3 m, 4 m, and 5 m into 1, 12, 20, 28, and 36, respectively, as shown in FIG. The irradiation planes A1 to A4, B1 to B12, C1 to C20, D1 to D28, and E1 to E36 have the same area.
[0032]
When the pole 310 having a height of 7 m is provided at the center and the lighting device 300 is installed on the pole 310, an illuminance distribution as shown in FIG. 9 can be obtained. That is, the illuminance near the center of the irradiation face A directly below the lighting device 300 was about 0.55 lux or more, and about 0.3 lux at the outermost.
[0033]
To be more specific, a circular area Aria0.6 including 0.5 lux or more and less than 0.6 lux including the irradiation small surface A1, including the irradiation small surfaces A1, B1 to 12, C1 to C20, D1 to D28, and E1 to E36. , Including an annular area Aria0.5 outside the area Aria0.6 and less than 0.5 lux and less than 0.5 lux, the irradiation facets E1 to E36, and less than 0.4 lux outside the area Aria0.5. Each of the annular regions Aria0.4 is formed.
[0034]
As shown in FIG. 8, the light emitting diode element of the lighting device 300 has an angle θ1 between the optical axis of the light emitting diode element which is in charge of the irradiation facet close to the lighting device 300 and the vertical axis Y, and a farther irradiation facet. The angle θ2 between the optical axis of the light emitting diode element in charge and the vertical axis Y satisfies θ1 <θ2. Θ = 4.09 ° for light emitting diode element a1, θ = 12.99 ° for light emitting diode element b1, θ = 19.65 ° for light emitting diode element c1, θ = 26.57 ° for light emitting diode element d1, light emitting diode In the element e1, θ = 32.74 °.
[0035]
On the other hand, in a conventional lighting device, that is, a lighting device of a direct type, as shown in FIG. 13, a portion having the highest illuminance has about 10 lux and a portion having the lowest illuminance has 0 lux. Therefore, as compared with FIG. 10, it can be said that the illumination device 300 according to the present embodiment can obtain uniform illumination without unevenness in illumination, although the illumination device of the conventional direct-type illumination device has higher illuminance.
[0036]
In addition, as compared with FIG. 12 showing the illuminance distribution of the conventional isometric angle type lighting device, the conventional isometric angle type lighting device has higher illuminance, but the lighting device 300 according to the present embodiment has higher illuminance. However, it can be said that uniform illumination can be obtained without uneven illuminance.
[0037]
In the two embodiments described above, one light-emitting diode element irradiates one irradiation facet, but two or more light-emitting diode elements irradiate one irradiation facet. Is also good. In this case, it goes without saying that the overall illuminance can be improved.
[0038]
【The invention's effect】
A lighting device using a light-emitting diode element according to the present invention is a lighting device using a light-emitting diode element having a plurality of light-emitting diode elements, and has an equal irradiation area to which light from the light-emitting diode element is irradiated. When irradiating one irradiation facet with one or a plurality of light emitting diode elements and dividing the irradiation facet into a plurality of irradiation facets, one or more of the irradiation facets are assigned to a center position of the irradiation facet to be handled. The light axis of the light emitting diode element is oriented.
[0039]
Then, in the lighting device using this light emitting diode element, the difference in the angle between the optical axis and the vertical axis of each adjacent light emitting diode element is smaller in the light emitting diode element that irradiates a distant irradiation small surface. That is, unlike the related art, the light emitting diode element has an optical axis that is uniformly directed directly downward, and the light emitting diode element has a difference in angle between the optical axis and the vertical axis of an adjacent light emitting diode element.
The illuminance E of each irradiation facet is represented by E = Φ / A (where Φ is a light flux and A is an area), that is, the amount of light flux emitted by the light emitting diode element is incident on the irradiation facet. The illumination device using the diode element is also greatly different from the conventional illumination apparatus in that the light emitting diode element is configured so that the amount of light flux incident on the irradiation small surface is uniform. With such a configuration, there is a merit that the irradiation plane can be irradiated uniformly and evenly as a whole.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an arrangement of light emitting diode elements of a lighting device using light emitting diode elements according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram illustrating an irradiation plane and an irradiation small surface irradiated by a lighting device using the light emitting diode element according to the first embodiment of the present invention.
FIG. 3 is a schematic explanatory view showing an optical axis of a lighting device using the light emitting diode element according to the first embodiment of the present invention.
FIG. 4 is a schematic illuminance distribution diagram showing illuminance on an illumination plane of the illumination device using the light emitting diode element according to the first embodiment of the present invention.
FIG. 5 is a schematic illuminance graph showing illuminance on an illumination plane of the illumination device using the light emitting diode element according to the first embodiment of the present invention.
FIG. 6 is a schematic explanatory view showing an arrangement of light emitting diode elements of a lighting device using light emitting diode elements according to a second embodiment of the present invention.
FIG. 7 is a schematic explanatory diagram illustrating an irradiation plane and an irradiation small surface irradiated by a lighting device using a light-emitting diode element according to a second embodiment of the present invention.
FIG. 8 is a schematic explanatory view showing an optical axis of a lighting device using a light emitting diode element according to a second embodiment of the present invention.
FIG. 9 is a schematic illuminance distribution diagram showing illuminance on an irradiation plane of an illumination device using a light emitting diode element according to a second embodiment of the present invention.
FIG. 10 is a schematic illuminance graph showing illuminance on an illumination plane of an illuminating device using a light emitting diode element according to a second embodiment of the present invention.
FIG. 11 is a schematic diagram showing illuminance on an irradiation plane of a lighting device of a direct type using a conventional light emitting diode element for comparison with a lighting device using a light emitting diode element according to the first embodiment of the present invention. It is an illuminance graph.
FIG. 12 shows illuminance on an irradiation plane of an isometric angle type lighting device using a conventional light emitting diode element for comparison with a lighting device using a light emitting diode element according to the first embodiment of the present invention. It is a schematic illuminance graph.
FIG. 13 is a schematic diagram showing illuminance on an irradiation plane of a lighting device of a direct type using a conventional light emitting diode element for comparison with a lighting device using a light emitting diode element according to the second embodiment of the present invention. It is an illuminance graph.
FIG. 14 shows the illuminance on an irradiation plane of a lighting device of a regular angle type using a conventional light emitting diode element for comparison with a lighting apparatus using a light emitting diode element according to the second embodiment of the present invention. It is a schematic illuminance graph.
[Explanation of symbols]
Reference Signs List 100 lighting device using light emitting diode element 110 pole K irradiation planes A1 to E8 irradiation small face a1e8 light emitting diode element

Claims (1)

複数の発光ダイオード素子を有する発光ダイオード素子を用いた照明装置において、前記発光ダイオード素子からの光が照射される照射平面を等しい面積を有する複数の照射小面に分割し、1又は複数の発光ダイオード素子により1つの照射小面を照射する場合、担当する照射小面の中心位置に対して、その照射小面を担当する1又は複数の発光ダイオード素子の光軸を向けたことを特徴とする発光ダイオード素子を用いた照明装置。In a lighting device using a light emitting diode element having a plurality of light emitting diode elements, an irradiation plane irradiated with light from the light emitting diode element is divided into a plurality of irradiation small surfaces having an equal area, and one or more light emitting diodes are provided. In the case where one irradiation facet is irradiated by the element, the optical axis of one or a plurality of light-emitting diode elements that are responsible for the irradiation facet is directed to the center position of the irradiation facet in charge. A lighting device using a diode element.
JP2002211693A 2002-07-19 2002-07-19 Lighting system using light-emitting diode element Pending JP2004055850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211693A JP2004055850A (en) 2002-07-19 2002-07-19 Lighting system using light-emitting diode element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211693A JP2004055850A (en) 2002-07-19 2002-07-19 Lighting system using light-emitting diode element

Publications (1)

Publication Number Publication Date
JP2004055850A true JP2004055850A (en) 2004-02-19

Family

ID=31934841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211693A Pending JP2004055850A (en) 2002-07-19 2002-07-19 Lighting system using light-emitting diode element

Country Status (1)

Country Link
JP (1) JP2004055850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034207A1 (en) * 2016-08-16 2018-02-22 シャープ株式会社 Lighting device and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034207A1 (en) * 2016-08-16 2018-02-22 シャープ株式会社 Lighting device and display device
CN109154424A (en) * 2016-08-16 2019-01-04 夏普株式会社 Lighting device and display device

Similar Documents

Publication Publication Date Title
US7866837B2 (en) Skew light illumination lens device
US8092042B2 (en) Shield member in LED apparatus
US9322526B2 (en) Optical device for semiconductor based lamp
US9297511B2 (en) Member for controlling luminous flux, light-emitting device, and illumination device
JP5747196B2 (en) Optical element, illumination device including the optical element, and illumination module using the illumination device
JP2011044315A (en) Optical lens and lighting fixture using this
US8500300B2 (en) Optical lens, light-emitting diode optical component and light-emitting diode road lamp
WO2012132043A1 (en) Illumination device
US20200303601A1 (en) Light-emitting apparatus
US8840280B2 (en) Non-imaging optical lens and lighting device having the same
TW201027130A (en) Lens structure
TWI653416B (en) Vehicle dual function lighting module and vehicle dual function lighting group
US20110019405A1 (en) Street lamp
JP2018181726A (en) Luminous flux control member, light emitting device, surface light source device and display device
JP5555927B2 (en) Lighting device
TWI582350B (en) Lens and light source module having the same
US10295151B2 (en) Optical member for spot flood lights
US9140827B2 (en) Lens, LED light source unit having the lens and LED light source module incorporating the unit
US20200271297A1 (en) Lens and lamp having a lens
KR100845041B1 (en) Lens, light emitting diode and lighting apparatus having the same
JP2004055850A (en) Lighting system using light-emitting diode element
US7922367B2 (en) Optical element and backlight module having the same
JP2010146986A (en) Lens for illumination, light-emitting device, plane light source, and liquid crystal display
US20110305015A1 (en) Led illumination lamp and led illumination units thereof
JP6452073B2 (en) LIGHT EMITTING DEVICE AND APPARATUS HAVING LIGHT EMITTING DEVICE

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116