US8840280B2 - Non-imaging optical lens and lighting device having the same - Google Patents

Non-imaging optical lens and lighting device having the same Download PDF

Info

Publication number
US8840280B2
US8840280B2 US13/773,001 US201313773001A US8840280B2 US 8840280 B2 US8840280 B2 US 8840280B2 US 201313773001 A US201313773001 A US 201313773001A US 8840280 B2 US8840280 B2 US 8840280B2
Authority
US
United States
Prior art keywords
lens
facets
light
imaging optical
optical lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/773,001
Other versions
US20130215619A1 (en
Inventor
Hung-Pin Kuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
B&M Optics Co Ltd
Original Assignee
B&M Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by B&M Optics Co Ltd filed Critical B&M Optics Co Ltd
Assigned to B&M OPTICS CO., LTD. reassignment B&M OPTICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUO, HUNG-PIN
Publication of US20130215619A1 publication Critical patent/US20130215619A1/en
Application granted granted Critical
Publication of US8840280B2 publication Critical patent/US8840280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the facets of the curved surface is formed at the concave region of the lens, which does not affect surface curvature of the lens. Therefore, the incident light would first be deranged when the light travels through the lens. More specifically, the incident light would slightly scatterringly travel through the lens after the incident light enters through the curved surface. The light would be further slightly blurred when entering through the lens. After that, the light is then refracted at the surface with wide diffusion angle, which thus achieves effects of diffusion and uniform light.
  • FIG. 6 is a perspective view of a non-imaging optical lens in accordance with a second embodiment of the invention.
  • FIG. 13 is a bottom plane view of the lens in accordance with the third embodiment of the invention.
  • the curved surface 41 is in a hyperbolic paraboloid shape or a saddle-like shape.
  • the facets 410 in each row of the curved surface 41 have slopes gradually increasing or gradually decreasing with the curve of the parabola
  • the facets 410 in each column of the curve surface 41 also have slopes gradually increasing or gradually decreasing with the curve of another orthogonal parabola.
  • the curved surface 61 is in a quasi hyperbolic paraboloid shape or a saddle-like shape.
  • the above-mentioned quasi hyperbolic paraboloid shape is a shape including a hyperbolic paraboloid (as shown in FIG. 2 ) and an elongated trench in the center area of the hyperbolic paraboloid.
  • the curved surface 61 includes surfaces of the elongated trench and the other regions adjacent to the elongated trench, which are formed a saddle-like surface. Besides, referring to FIG.
  • the conical optical facets 810 of the conical optical surface 8 encircle an axis that is the optical axis of the lens 300 (as shown in the dash line), which shows that the conical optical facets 810 are arranged on the optical axis of the lens 300 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention relates to a non-imaging optical lens and a light-emitting module having the same. The lens includes a concave region having a continuous curved optical surface formed by a plurality of facets spliced together. The continuous curved optical surface faces the light-emitting device. The curved surface consists of an array in at least three rows of the facets and at least three columns of the facets.

Description

BACKGROUND OF INVENTION
1. Field of Invention
The invention relates to a non-imaging optical lens and a light-emitting module having the lens which achieves effects of uniform light.
2. Related Prior Art
A general optical lens, which is particularly applicable for a light emitting diode, is used as a secondary optical lens for converging or diverging the light beam. However, it might incur facula.
As disclosed in Taiwan Publication Patent No. M411533, a LED lens has advantages of diffusion light and uniform light. The aforementioned LED lens has a concave condensing part 11 at the bottom of the lens and a concave diffusing part at the center of the top of the lens, so as to diffusing the light. Besides, the lens further has a circular inclined wide-angle part at a peripheral of the top of the lens. However, it has limited uniform light distribution.
In addition, Taiwan Publication Patent No. 201113555 relates to a non-imaging condensing lens, which comprises a plurality of annular protruding prisms to uniformly concentrate light (such as sunlight) on a solar panel for collection. Nevertheless, the lens is typically applicable for the parallel light beam.
SUMMARY OF INVENTION
The present invention discloses a lens with effects of uniform light and a light-emitting module having the lens.
Specifically, the non-imaging optical lens comprises a concave region, wherein the concave region has a continuous curved optical surface formed by a plurality of facets spliced together. The curved surface consists of an array in at least three rows of the facets and at least three columns of the facets. The facets in each row have slopes gradually increasing or gradually decreasing with a parabola, and the facets in each column have slopes gradually increasing or gradually decreasing with the other one parabola that is orthogonal thereto.
As mentioned above, the facets of the curved surface is formed at the concave region of the lens, which does not affect surface curvature of the lens. Therefore, the incident light would first be deranged when the light travels through the lens. More specifically, the incident light would slightly scatterringly travel through the lens after the incident light enters through the curved surface. The light would be further slightly blurred when entering through the lens. After that, the light is then refracted at the surface with wide diffusion angle, which thus achieves effects of diffusion and uniform light.
Besides, the cost of the curved surface formed by multiple facets of the present invention is less than that of a smooth curved surface of the convention lens. Compared with the smooth aspheric surface made by a precise mechanical apparatus, the curved surface formed by multiple facets of the present invention is easy to be manufactured by a general mechanical apparatus. Therefore, the lens of the present invention has greater coast advantages.
Other features, objects, aspects and advantages will be identified and described in detail below.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a perspective view of a non-imaging optical lens in accordance with a first embodiment of the invention;
FIG. 2 is bottom perspective view of the non-imaging optical lens of FIG. 1 in accordance with the first embodiment of the invention.
FIG. 3 is a bottom plane view of the lens in accordance with the first embodiment of the invention;
FIG. 4 is a cross sectional view along line A-A of the lens of FIG. 3;
FIG. 4A is a partial enlarged sectional view of the lens of FIG. 4;
FIG. 5 is a cross sectional view along line B-B of the lens of FIG. 3;
FIG. 6 is a perspective view of a non-imaging optical lens in accordance with a second embodiment of the invention;
FIG. 7 is bottom perspective view of the non-imaging optical lens of FIG. 6 in accordance with the second embodiment of the invention.
FIG. 8 is a bottom plane view of the lens in accordance with the second embodiment of the invention;
FIG. 9 is a cross sectional view along line C-C of the lens of FIG. 8;
FIG. 9A is a partial enlarged sectional view of the lens of FIG. 9;
FIG. 10 is a cross sectional view along line D-D of the lens of FIG. 8;
FIG. 11 is a perspective view of a non-imaging optical lens in accordance with a third embodiment of the invention;
FIG. 12 is bottom perspective view of the non-imaging optical lens of FIG. 6 in accordance with the third embodiment of the invention.
FIG. 13 is a bottom plane view of the lens in accordance with the third embodiment of the invention;
FIG. 13A is a partial enlarged sectional view of the lens of FIG. 13;
FIG. 14 is a cross sectional view along line E-E of the lens of FIG. 13; and
FIG. 15 is a top plane view of the lens in accordance with the third embodiment of the invention;
DETAILED DESCRIPTION OF EMBODIMENTS
With reference to FIGS. 1 to 5, a non-imaging optical lens 100 is shown in accordance with a first embodiment of the present invention. The non-imaging optical lens 100 is mainly used for a secondary lens of a light-emitting device 2 (such as a LED), as shown in FIG. 4. The non-imaging optical lens 100 is covered on the light-emitting device 2, which constitute a light-emitting module with other electronic components (not shown). The lens 100 is mainly used as a secondary lens of the light-emitting device 2 for achieving effects of generating a wider diffusion angle. The multiple facets of the lens 100 can further provide additional functions of uniform light, reducing facula or avoiding generating a shape of shadow of a light source.
As shown in FIG. 1, the lens 100 has a protruded region 3 at a top surface thereof, and the lens 100 has a concave region 4 at a bottom surface thereof. The protruded region 3 is a prominent optical surface that projects outwards. The concave region 4 is an optical surface that curves inwards. The concave region 4 includes an inner wall 40 and a curved surface 41 that is formed by a plurality of facets 410. That is, the facets 410 are spliced together to form the continuous curved surface 41. The curved surface 41 consists of an array in at least three rows of the facets 410 and at least three columns of the facets 410, which would provide sufficient effect of uniform light. Preferably, as shown in FIG. 3, the curved surface 41 consists of 13 rows (along a direction of line A-A) and 9 columns (along a direction of line B-B) of the facets 410 in different sizes, which provides better effects of uniform light.
As shown in FIG. 2, the curved surface 41 is in a hyperbolic paraboloid shape or a saddle-like shape. Moreover, referring to FIG. 4A showing an enlarged cross sectional view of the lens, the facets 410 in each row of the curved surface 41 have slopes gradually increasing or gradually decreasing with the curve of the parabola, and referring to FIG. 3 or FIG. 5, the facets 410 in each column of the curve surface 41 also have slopes gradually increasing or gradually decreasing with the curve of another orthogonal parabola.
As mentioned above, the facets 410 of the curved surface 41 is formed at the concave region 4 of the lens 100, which does not affect surface curvature of the lens. Therefore, the incident light would first be deranged when the light travels through the lens 100. More specifically, the incident light would slightly scatterringly travel through the lens 100 after the incident light enters through the curved surface 41. This shows that the light might be overlapped when travelling through the lens 100. After that, the light is then refracted at the protruded region 3 with wide diffusion angle, which thus achieves effects of diffusion and uniform light.
With reference to FIGS. 6 to 10, a non-imaging optical lens 200 is shown in accordance with a second embodiment of the present invention. The lens 200 is mainly used for a secondary lens of a light-emitting device 2 as shown in FIG. 9. The non-imaging optical lens 200 is covered on the light-emitting device 2, which constitute a light-emitting module with other electronic components (not shown). The lens 200 is mainly used as a secondary lens of the light-emitting device 2 for achieving effects of generating a wider diffusion angle. The multiple facets of the lens 200 can further provide additional functions of uniform light, reducing facula or avoiding generating a shape of shadow of a light source.
As shown in FIG. 6 and FIG. 7, the lens 200 has a protruded region 5 at a top surface thereof, and the lens 200 has a concave region 6 at a bottom surface thereof. The protruded region 5 is a prominent optical surface that projects outwards. The concave region 6 is an optical surface that curves inwards. The concave region 6 includes an inner wall 60 and a curved surface 61 that is formed by a plurality of facets 610. That is, the facets 610 are spliced together to form the continuous curved surface 41. Similarly, the curved surface 61 consists of at least three rows of the facets 610 and at least three columns of the facets 610, which would provide sufficient effects of uniform light. Preferably, as shown in FIG. 8, the curved surface 61 consists of 20 rows (along a direction of line C-C) and 9 columns (along a direction of line D-D) of the facets 610 in different sizes, which provides better effects of uniform light.
As shown in FIG. 7, the curved surface 61 is in a quasi hyperbolic paraboloid shape or a saddle-like shape. The above-mentioned quasi hyperbolic paraboloid shape is a shape including a hyperbolic paraboloid (as shown in FIG. 2) and an elongated trench in the center area of the hyperbolic paraboloid. By any means, the curved surface 61 includes surfaces of the elongated trench and the other regions adjacent to the elongated trench, which are formed a saddle-like surface. Besides, referring to FIG. 9A showing an enlarged cross sectional view of the lens, the facets 610 in each row of the curved surface 61 have slopes gradually increasing or gradually decreasing with the curve of the parabola, and referring to FIG. 8 or FIG. 10, the facets 610 in each column of the curve surface 61 also have slopes gradually increasing or gradually decreasing with the curve of another orthogonal parabola.
As mentioned above, the facets 610 of the curved surface 61 is formed at the concave region 6 of the lens 200, which does not affect surface curvature of the lens. Therefore, the incident light would first be deranged at the first time when the light travels through the lens 200. More specifically, the incident light would slightly scatterringly travel through the lens 200 after the incident light enters through the curved surface 61. The light would be further slightly blurred when entering through the lens 200. After that, the light is then refracted at the protruded region 5 with wide diffusion angle, which thus achieves effects of diffusion and uniform light.
With reference to FIGS. 11 and 15, a non-imaging optical lens 300 is shown in accordance with a third embodiment of the present invention. The lens 300 is mainly used for a secondary lens of a light-emitting device 2 as shown in FIG. 14. The non-imaging optical lens 300 is covered on the light-emitting device 2, which constitute a light-emitting module with other electronic components (not shown). The lens 300 is a total internal reflection lens, which enables the light from the light-emitting device 2 to be condensed by passing through the secondary lens. The multiple facets of the lens 300 can further provide additional functions of uniform light, reducing facula or avoiding generating a shape of shadow of a light source.
As shown in FIG. 11 and FIG. 12, the lens 300 has an opening 70 at a top surface 7 thereof, and the lens 300 has a recess 9 at a bottom surface thereof for accommodating the light-emitting device 2. The opening 70 faces up and the recess 9 faces down (as shown in FIG. 14). The lens 300 has an outer lateral surface, which is a conical optical surface 8. The conical optical surface 8 includes a curved surface 81 that is formed by a plurality of conical facets 810. That is, the conical facets 810 are spliced together to form the continuous curved surface 81 with functions of uniform light. The conical optical facets 810 of the conical optical surface 8 encircle an axis that is the optical axis of the lens 300 (as shown in the dash line), which shows that the conical optical facets 810 are arranged on the optical axis of the lens 300.
Referring to FIG. 14 showing a cross sectional view of the lens, the recess 9 of the lens 300 has a circular top surface 90 and a cylinder-like surface 91 that is formed by a plurality of elongated planes 910 (as shown in FIG. 13A). That is, the elongated planes 910 are spliced and annularly arranged together to form the continuous cylinder-like surface 91. There is a common line between each two elongated planes 910 of the cylinder-like surface 91, and each common line is substantially parallel to the optical axis of the lens 300 (as shown in the dash line).
As such, referring to FIG. 15 showing a top view of the lens, visual effects of a concentric circle consisting of several grid patterns is generated duce to interlacement of the transverse arrangement of the curved surface 81 and the upright arrangement of the cylinder-like surface 91 of the lens 300. In other words, the lens 300 having such interlacement of the curved surface 81 and the cylinder-like surface 91 would provide greater effects of uniform light.
Specifically, the facets 810 and the elongated planes 910 are respectively at the outer surface and the inner surface of the lens 300, which does not affect surface curvature of the lens. Therefore, the incident light would first be refracted at the cylinder-like surface 91 and then scatterringly enter the lens 300. Then, part of the light at peripheral would be deranged and totally internally reflected at the curved surface 81. After that, the light travels toward the top surface 7 of the lens 300. Accordingly, the lens would provide light-concentration effects and greater uniform light effects due to the special lens structure of the interlacement of the transverse arrangement of the curved surface 81 and the upright arrangement of the cylinder-like surface 91.
It will be appreciated that although a particular embodiment of the invention has been shown and described, modifications may be made. It is intended in the claims to cover such modifications which come within the spirit and scope of the invention.

Claims (7)

The invention claimed is:
1. A non-imaging optical lens comprising:
a convex region being a light emitting surface; and
a concave region being a light incident surface, wherein the concave region has a curved optical surface formed by a plurality of flat facets spliced together,
wherein the curved surface is a spliced hyperbolic paraboloid surface.
2. The non-imaging optical lens of claim 1, wherein the curved surface consists of an array in at least three rows of facets and at least three columns of the facets.
3. The non-imaging optical lens of claim 2, wherein the facets in each row have slopes gradually increasing or gradually decreasing with the parabola, and the facets in each column have slopes gradually increasing or gradually decreasing with another orthogonal parabola.
4. A light-emitting module, comprising:
a light-emitting device; and
a non-imaging optical lens, having a concave region, wherein the concave region has a curved optical surface formed by a plurality of flat facets spliced together, and the curved optical surface faces the light-emitting device,
wherein the curved surface is a spliced hyperbolic paraboloid surface.
5. The light-emitting module of claim 4, wherein the curved surface consists of an array in at least three rows of the facets and at least three columns of the facets.
6. The non-imaging optical lens of claim 5, wherein the facets in each row have slopes gradually increasing or gradually decreasing with the parabola, and the facets in each column have slopes gradually increasing or gradually decreasing with another orthogonal parabola.
7. The non-imaging optical lens of claim 4, wherein the spliced hyperbolic paraboloid surface has a center area forming an elongated trench.
US13/773,001 2012-02-22 2013-02-21 Non-imaging optical lens and lighting device having the same Active US8840280B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW101105874A TWI456266B (en) 2012-02-22 2012-02-22 Non-imaging optical lens and lighting device with the lens
TW101105874 2012-02-22
TW101105874A 2012-02-22

Publications (2)

Publication Number Publication Date
US20130215619A1 US20130215619A1 (en) 2013-08-22
US8840280B2 true US8840280B2 (en) 2014-09-23

Family

ID=48982144

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/773,001 Active US8840280B2 (en) 2012-02-22 2013-02-21 Non-imaging optical lens and lighting device having the same

Country Status (3)

Country Link
US (1) US8840280B2 (en)
CN (1) CN103292248B (en)
TW (1) TWI456266B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10558081B2 (en) * 2016-06-08 2020-02-11 Sakai Display Products Corporation Light reflection device and light source device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140120683A (en) * 2013-04-04 2014-10-14 서울반도체 주식회사 Lens and light emitting module for surface illumination
TWI582345B (en) * 2013-10-11 2017-05-11 鴻海精密工業股份有限公司 Lens and light source module having the same
TWI578575B (en) * 2015-04-21 2017-04-11 隆達電子股份有限公司 Lighting apparatus and lens structure thereof
CN105066060B (en) * 2015-08-26 2019-02-01 中节能晶和照明有限公司 A kind of LED lens and its design method
CN107477379A (en) * 2017-09-09 2017-12-15 杨毅 Light fixture
JP2021113882A (en) * 2020-01-17 2021-08-05 株式会社東海理化電機製作所 Lens and license lamp
TWI787090B (en) * 2022-02-22 2022-12-11 百竤股份有限公司 Structure of bifocal lens

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5924788A (en) * 1997-09-23 1999-07-20 Teledyne Lighting And Display Products Illuminating lens designed by extrinsic differential geometry
US6019493A (en) * 1998-03-13 2000-02-01 Kuo; Jeffrey High efficiency light for use in a traffic signal light, using LED's
TW201113555A (en) 2009-10-09 2011-04-16 Foxsemicon Integrated Tech Inc Non-imaging condensing lens and solar device having same
TWM411533U (en) 2011-01-27 2011-09-11 Taiwan Oasis Technology Co Ltd structure for optical lens of light source
US8047699B2 (en) * 2007-10-31 2011-11-01 Foxsemicon Integrated Technology, Inc. Optical lens and illuminating device incorporating the same
US20120120646A1 (en) * 2008-10-14 2012-05-17 Ledengin, Inc. Total internal reflection lens with pedestals for led emitter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2009108005A (en) * 2006-08-10 2010-09-20 Апстрим Энджиниринг Ой (FI) METHOD AND DEVICE FOR LIGHTING
DE102008036845B4 (en) * 2008-08-07 2015-01-22 Oec Ag lighting device
CN101420008B (en) * 2008-11-17 2010-06-02 深圳市深华龙科技实业有限公司 LED secondary optical lens device
TW201033537A (en) * 2009-03-13 2010-09-16 Genius Electronic Optical Co Ltd Lens for LED illumination
CN201787486U (en) * 2010-04-01 2011-04-06 飞利浦(中国)投资有限公司 Optical lens and illumination equipment utilizing same
CN201852037U (en) * 2010-11-24 2011-06-01 霍永峰 Lens for light distribution of light emitting diode (LED) illumination lamp and lamp thereof
CN102322610A (en) * 2011-06-24 2012-01-18 深圳市众明半导体照明有限公司 Condensing lens, luminaire and camera

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5924788A (en) * 1997-09-23 1999-07-20 Teledyne Lighting And Display Products Illuminating lens designed by extrinsic differential geometry
US6019493A (en) * 1998-03-13 2000-02-01 Kuo; Jeffrey High efficiency light for use in a traffic signal light, using LED's
US8047699B2 (en) * 2007-10-31 2011-11-01 Foxsemicon Integrated Technology, Inc. Optical lens and illuminating device incorporating the same
US20120120646A1 (en) * 2008-10-14 2012-05-17 Ledengin, Inc. Total internal reflection lens with pedestals for led emitter
TW201113555A (en) 2009-10-09 2011-04-16 Foxsemicon Integrated Tech Inc Non-imaging condensing lens and solar device having same
TWM411533U (en) 2011-01-27 2011-09-11 Taiwan Oasis Technology Co Ltd structure for optical lens of light source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10558081B2 (en) * 2016-06-08 2020-02-11 Sakai Display Products Corporation Light reflection device and light source device

Also Published As

Publication number Publication date
CN103292248A (en) 2013-09-11
TW201335629A (en) 2013-09-01
TWI456266B (en) 2014-10-11
US20130215619A1 (en) 2013-08-22
CN103292248B (en) 2015-06-10

Similar Documents

Publication Publication Date Title
US8840280B2 (en) Non-imaging optical lens and lighting device having the same
US8585239B1 (en) Optical lens and light source module having the same
US10060597B2 (en) Optical lens, backlight module and display device
US9404638B2 (en) Optical element and illumination unit
US9964272B2 (en) Vehicle lamp with complex lightguide
US8944642B2 (en) Light assembly
US9857044B2 (en) Lighting apparatus and automobile having lighting apparatus mounted therein
US20130286657A1 (en) Optical lens and light source module having the same
US20090225552A1 (en) Light source-modulating device having composite curved surfaces
US20120020078A1 (en) Surface light source device
US20170102128A1 (en) Beam Forming Optic for LED
US20100165640A1 (en) Optical member of lighting device
TW201443372A (en) Light-guiding structure and light-emitting device
US9097395B2 (en) Lens with divergent structure and backlight module incorporating the same
US9316852B2 (en) Lens with diffusion structure and backlight module incorporating the same
US9194559B2 (en) Illumination lens and illumination module
US20200271297A1 (en) Lens and lamp having a lens
KR101305728B1 (en) Free―form lens with the effect of overlapping illumination patterns formed by different surfaces of the lens in order to improve the manufacturing tolerance of a led luminaire
US10288256B2 (en) Light guide lens, light emitting module and display apparatus including the same
US9829175B2 (en) Optical lens, backlight module and display device
KR101583647B1 (en) Light Guide Lens for LED
US9121975B2 (en) Backlight module
US9182084B2 (en) LED element having elongated LED and direct-type backlight module using the same
US10871271B2 (en) Diverging TIR facet LED optics producing narrow beams with color consistency
JP2016018893A (en) Light-emitting device

Legal Events

Date Code Title Description
AS Assignment

Owner name: B&M OPTICS CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUO, HUNG-PIN;REEL/FRAME:029870/0174

Effective date: 20130208

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8