JP2004055805A - Method for manufacturing printed wiring board - Google Patents

Method for manufacturing printed wiring board Download PDF

Info

Publication number
JP2004055805A
JP2004055805A JP2002210888A JP2002210888A JP2004055805A JP 2004055805 A JP2004055805 A JP 2004055805A JP 2002210888 A JP2002210888 A JP 2002210888A JP 2002210888 A JP2002210888 A JP 2002210888A JP 2004055805 A JP2004055805 A JP 2004055805A
Authority
JP
Japan
Prior art keywords
layer
forming
etching
projection
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002210888A
Other languages
Japanese (ja)
Inventor
Makoto Ito
伊藤 誠
Toshihiko Asano
浅野 敏彦
Seiichi Hoshi
星 誠一
Tatsunori Matsumoto
松本 達則
Hideki Arai
荒井 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denkai Co Ltd
North Corp
Original Assignee
Nippon Denkai Co Ltd
North Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denkai Co Ltd, North Corp filed Critical Nippon Denkai Co Ltd
Priority to JP2002210888A priority Critical patent/JP2004055805A/en
Publication of JP2004055805A publication Critical patent/JP2004055805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a printed wiring board in which a projection is set to be an interlayer connection means and which has stripping strength required in a wiring circuit on the outermost layer, by using a composite metal foil formed of a projection forming metal layer, an etching barrier layer and a circuit wiring forming metal layer. <P>SOLUTION: A face where a projected layer is formed is roughened, an adhesive layer formed of a high molecular weight linear polymer is formed, and an interlayer insulating layer is formed. Thus, high stripping strength is obtained between the interlayer insulating layer and the circuit wiring on the outermost layer. Polyamideimide resin is used for the high molecular weight linear polymer. A blackening processing or etching processing is performed as a roughening processing. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はプリント配線板の製造方法に関するものである。
【0002】
【従来の技術】
配線回路となる金属層上に、該金属層とは別の金属から成るエッチングバリア層を介して金属から成る突起が、選択的に形成され、上記配線回路の上記突起が形成された側の面に層間絶縁層が形成され、上記突起が上記絶縁層を貫通して上記配線回路となる金属層と他との層間接続手段を成していることを特徴とする配線回路基板が、特開2001−111819号公報に提案されている。また、同公報には、厚さ例えば100μmの突起形成用の銅層(突起形成用金属層)の一方の主面に例えばニッケルからなるエッチングバリア層(厚さ例えば2μm)を例えばめっきにより形成し、該エッチングバリア層の表面に配線回路形成用銅箔(配線回路形成用金属箔、厚さ例えば18μm)を形成してなるベース材を用いることが記載されている。突起形成用銅層を、エッチングバリア層を侵さないエッチング液により選択的にエッチングすることにより突起を形成し、エッチングバリア層を突起をマスクとして配線回路用銅箔を侵さないエッチング液で除去し、さらに、突起形成側の面に層間絶縁層を形成し、突起を配線回路に接続された層間接続手段とする。ついで、導体回路形成用金属層をエッチングして配線回路を形成する。
【0003】
【発明が解決しようとする課題】
上記工程で形成された配線回路は、プリント配線板において最外層に位置することから高いひきはがし強さが求められる。高いひきはがし強さを実現するために、通常のプリント配線板用銅箔では、層間絶縁層と接する銅箔の面には凹凸形状が形成され、さらに微細な金属粒子を形成する粗化処理が行なわれている。この凹凸形状と粗化処理とによって、いわゆるアンカー効果がもたらされ、層間絶縁層と銅箔との間に高いひきはがし強さが実現される。しかしながら、上記工程においては、層間絶縁層との接着に用いられる導体回路形成用金属層の面はエッチングバリアを除去することにより得られることから、比較的平滑な面に限定され、アンカー効果を期待することは出来ない。
【0004】
従来の基材と内層回路板とを用いる多層プリント配線板の製造においては、内層回路と基材との接着力を向上させるために内層回路表面に亜酸化銅又は酸化銅の微細な針状結晶を形成するいわゆる黒化処理が行なわれているが、最外層の配線回路で必要とされるひきはがし強さを得ることはできない。
【0005】
本発明は、突起を層間接続手段とする多層プリント配線板の製造方法において、最外層の配線回路で必要とされるひきはがし強さを有するプリント配線板の製造方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、厚さが35μmから210μmの厚銅層からなる突起形成用金属層と、厚さが0.1μmから3.0μmのニッケル層またはニッケル合金層からなるエッチングバリア層と、厚さが1μmから35μmの薄銅層からなる配線回路形成用金属箔とからなる複合金属箔から、突起形成用金属層とニッケル層とをエッチングにより所定の形状で順次除去することにより、銅とエッチングバリア層とからなる突起を形成し、ついで該突起の形成された面に層間絶縁層を形成し、内層回路基板と積層成形することを特徴とするプリント配線板の製造方法において、該突起層の形成された面に粗面化処理を行い、ついで高分子量線状重合体からなる接着性付与層を形成し、ついで、層間絶縁層を形成することを特徴とするプリント配線板の製造方法である。
【0007】
さらに、本発明は、粗面化処理が黒化処理である前記プリント配線板の製造方法であり、また、粗面化処理がエッチング処理である前記プリント配線板の製造方法である。
【0008】
また、本発明は、高分子量線状重合体が、ポリアミドイミド樹脂であることを特徴とする上記プリント配線板の製造方法である。
【0009】
本発明のプリント配線板の製造方法によれば、最外層の配線回路のひきはがし強さを従来の粗化銅箔を用いて製造されたプリント配線板のそれと同等とすることができ、信頼性に優れたプリント配線板を製造できる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
【0011】
本発明で用いる、厚さが35μmから210μmの厚銅層からなる突起形成用金属層と、厚さが0.1μmから3.0μmのニッケル層またはニッケル合金層からなるエッチングバリア層と、厚さが1μmから35μmの薄銅層からなる配線回路形成用金属箔とからなる複合金属箔には、たとえば、国際公開番号WO00/05934号公報に記載の、片面又は両面にニッケルめっきを具備する銅箔材と、他の銅箔材又は片面にニッケルめっきを具備する銅箔材とを、0.1〜3%の圧下率で圧接して製造されるプリント基板用クラッド板がある。また、厚さが35μmから210μmの厚銅層からなる突起形成用金属層に、厚さが0.1μmから3.0μmのニッケル層またはニッケル合金層からなるエッチングバリア層を電気めっき法により形成し、ついで、厚さが1μmから35μmの薄銅層からなる配線回路形成用金属箔をめっき法により形成して製造することもできる。
【0012】
突起形成用金属層としては厚さが35μmから210μmであれば、電解銅箔、圧延銅箔のいずれも使用できる。突起形成用金属層の厚さは、製造するプリント配線板の層間絶縁層の厚さによって選択され、薄いと突起が低くなり配線回路層と内層基板の接続が充分に得られず、一方、厚いと層間絶縁層と内層基板間でボイドが発生して信頼性が低下する。突起形成用金属層の表面粗さは、10点平均粗さで0.1μmから3μmである。表面粗さが大きいとエッチングに用いるレジストとの密着性が悪くなり、エッチングにより形成された突起の形状が不均一となる。突起形成用金属箔として電解銅箔を用いた場合には、表面粗さが上記の範囲にあれば、ニッケル層またはニッケル合金層からなるエッチングバリア層を光沢面とマット面のいずれに対して形成してもよい。
【0013】
ニッケル層またはニッケル合金層からなるエッチングバリア層は、めっき法により形成される。ニッケル層の形成には純ニッケルめっき、ニッケル合金層の形成には、リンを含有するニッケル−リン合金めっきが用いられる。これらのめっきは一般に装飾用として用いられる各種のめっき法により行うことができる。このようなめっき法としては、硫酸ニッケルや塩化ニッケルにホウ酸や亜リン酸などの添加剤、さらには各種の光沢剤などを加えたものを用いる方法があり、必要に応じて適宜選択される。ニッケルめっきまたはニッケル−リン合金めっきの厚さは0.1μmから3.0μmであり、好ましくは0.2μmから2.0μmである。薄いとピンホールなどが発生しやすくエッチングバリア性が充分ではなく、厚いとエッチングバリア層の除去が困難になる。
【0014】
厚さが1μmから35μmの薄銅層からなる配線回路形成用金属箔は、硫酸銅と硫酸とからなるめっき液を用いてエッチングバリア層上にめっきすることにより製造する。ゼラチンや塩素などの添加剤、また、メルカプトスルホン酸などの平滑化剤を必要に応じ添加することができる。めっき表面の表面粗さは10点平均粗さで0.1μmから3μmである。表面粗さが大きいとエッチングに用いるレジストとの密着性が悪くなり、微細な配線回路が形成できない。表面が空気酸化などにより劣化することを防止するため、クロメート処理などの無機防錆処理や植物油などの防錆剤塗布を行なってもよい。
【0015】
厚さが1μmから35μmの薄銅層では、突起形成用金属層をエッチングにより形成した後の取扱が困難となるので、薄銅層上に樹脂層を形成してもよい。
【0016】
上記の複合金属箔から、突起形成用金属層とニッケル層とをエッチングにより所定の形状で順次除去することにより、銅とエッチングバリア層とからなる突起を形成し、ついで該突起の形成された面に粗面化処理を行い、高分子量線状重合体からなる接着性付与層を形成する。
【0017】
粗面化処理としては、黒化処理及びエッチング処理が好適に用いられる。黒化処理は銅表面を酸化することにより微細な酸化銅ないし亜酸化銅の針状晶を形成するものであり、黒色の外観を呈することから黒化処理と呼ばれ、多層プリント配線板の製造において従来から内層回路と積層基材との接着に用いられている。黒化処理は過流酸ナトリウムなどの酸化剤の水溶液中、50〜80℃の高温で処理することにより行なわれる。また、黒化処理後に水素化ホウ素ナトリウムなどの還元剤を用いることにより酸化銅ないし亜酸化銅を金属銅に還元してもよい。金属銅とすることにより耐塩酸性などの耐薬品性が向上する。 エッチング処理としては、微細なクレータ上のエッチング孔を均一に多層形成するエッチング液を用いて行う方法があり、エッチング液としてはクエン酸などの有機酸を含有するものが用いられる。このようなエッチング液としてはメック社から市販されているCZ液がある。
【0018】
高分子量線状重合体としては、ポリアミドイミド樹脂が耐熱性とひきはがし強さに優れることから好ましく用いられる。
【0019】
ポリアミドイミド樹脂としては、無水トリメリット酸または無水トリメリット酸クロライドと各種ジアミンとの付加物を用いることができる。各種ジアミンの代わりに対応するイソシアネート化合物を用いてもよい。本発明においては、特開2001−139809号公報に記載されたシロキサン変性ポリアミドイミド樹脂が特に好適である。このポリアミドイミド樹脂系線状重合体は、フィルム形成性や機械強度に優れることから、溶解度の許容する範囲で高分子量であることが好ましく、重量平均分子量で10,000以上、より好ましくは100,000以上である。上記のエポキシ樹脂重合体を溶剤に溶解し、濃度が1〜10%のワニスとして用いる。溶剤としては、ホルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド化合物類、クロロホルム、塩化メチレン等のハロゲン化炭化水素類、アリルグリシジルエーテル、スチレンオキサイド、フェニルグリシジルエーテル等のエポキシ化合物類、アミド化合物類とベンゼン、ヘキサン、トルエン、キシレン等の炭化水素類、メタノール、エタノール、1一プロパノール、2一プロパノール等のアルコール類、アセトン、2−ブタノン、2−ペンタノン、3−ペンタノン等のケトン類、あるいは、ギ酸メチル、酢酸メチル、酢酸エチル等のエステル類との混合溶剤を用いる。
【0020】
ポリアミドイミド樹脂の熱硬化性を向上させる目的で、各種の硬化システムと組合わせることが好ましい。このような硬化システムとしては多官能エポキシ樹脂とポリフェノール類などの硬化剤の組合わせ、イソシアネート化合物との組合わせがある。また、イミダゾール類などの硬化促進剤を同時に使用してもよい。このような硬化システムは、線状重合体の有する可とう性を損なわない範囲で使用される。線状重合体の比率が低下すると、基材と電解銅箔間の引きはがし強さが低くなる。ポリアミドイミド樹脂に硬化システムとの組合わせたワニスを、カップリング剤層上に塗布、乾燥することにより接着性付与層を形成する。上記ワニスには難燃剤、レベリング剤、酸化防止剤などの各種添加剤を添加することができ、乾燥後の樹脂組成物層の塗工量は、重量換算厚さで0.5〜5g/mである。0.5g/m未満では引きはがし強さが低く、5g/mより厚くても引きはがし強さは向上しない。
【0021】
接着性付与層を形成するためのワニスの塗布方法としては、上記ワニスを公知の塗工方式、噴射方式、自重滴下方式等を用いることができる。これらの中では、噴射方式あるいは自重滴下方式によって実施することが量産性、経済性の点で実用上望ましい。ワニスを塗工した後、加熱乾燥することにより、接着性付与層を半硬化状態とする。完全に硬化した状態ではガラス布エポキシ樹脂基材等の積層基材との積層成型に際して、接着性付与層と基材樹脂との一体化が十分ではなく、信頼性が低下する。一方、硬化が不十分な状態では、塗工品をロール状で保管した場合に接着性付与層が銅箔の他方の面を汚染する。乾燥温度は45〜300℃、好ましくは70〜250℃、乾燥時間は2秒〜60分、好ましくは10秒〜30分である。
【0022】
【実施例】
以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
【0023】
(実施例1)厚さ105μmの電解銅箔(日本電解株式会社製、商品名ND−SLP−105)の無粗化品を突起形成用金属層として用いた。なお、光沢面の表面粗さは10点平均粗さで1.9μm、マット面は2.2μmであった。上記電解銅箔を酸洗浄により表面の防錆処理を除去し、厚さ1μmのニッケルめっき層を光沢面側に形成した。ニッケルめっきは硫酸ニッケル水溶液を用いて行なった。ついで、硫酸銅めっきをおこない、厚さ25μmの配線回路形成用金属箔を形成することにより、複合金属箔を製造した。ついで、配線回路用金属箔側を樹脂でマスクして、突起形成用金属層とニッケルメッキ層とを順次エッチングにより除去し、厚さ25μmの配線回路用金属箔とした。つづいてエッチングにより露出した面に、黒化処理を行ない、ついで、シロキサン変性ポリアミドイミド樹脂を2%含有する接着性付与層形成用ワニスを噴霧し、直ちに温度70℃で30分間乾燥して接着性付与層を形成した。接着性付与層の厚さは、重量換算厚さで2.0g/mであった。
なお、シロキサン変性ポリアミドイミド樹脂を2%含有する接着性付与層形成用ワニスは、KS6600(日立化成工業株式会社製、商品名)を溶剤で希釈して用いた。ついで、厚さ0.2mmのガラス布基材エポキシ樹脂プリプレグ(日立化成工業株式会社製、商品名 GEA−679N)8枚に、樹脂面(即ち、被接着面)がプリプレグに面するように積層し、温度168℃、圧力0.3MPa、時間90分の条件下で加熱加圧処理して銅張積層板を作製した。この銅張積層板の特性を表に示した。
【0024】
(実施例2)黒化処理のかわりにエッチング処理を行なったほかは実施例1と同様にして銅張積層板を製造した。但し、エッチング液にはメック社製CZ液を用い、50℃で10秒間処理を行なったこの銅張積層板の特性を表に示した。
【0025】
(比較例1)黒化処理を行なわなかったほかは、実施例1と同様にして銅張積層板を製造し、特性を評価した。結果を表に示した。
【0026】
(比較例2)処理接着性付与層を形成しなかったほかは、実施例1と同様にして銅張積層板を製造し、特性を評価した。結果を表に示した。
【0027】
(比較例3)接着性付与層を形成しなかったほかは、実施例2と同様にして銅張積層板を製造し、特性を評価した。結果を表に示した。
【表1】

Figure 2004055805
【0028】
【発明の効果】
以上、説明したように本発明のプリント配線板の製造方法によれば、最外層の回路配線のひきはがし強さが高い信頼性に優れた多層プリント配線板を製造することができ、きわめて有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a printed wiring board.
[0002]
[Prior art]
A projection made of metal is selectively formed on a metal layer to be a wiring circuit via an etching barrier layer made of a metal different from the metal layer, and a surface of the wiring circuit on a side where the projection is formed. JP-A-2001-2001, wherein an interlayer insulating layer is formed, and the projections penetrate the insulating layer to form interlayer connecting means with the metal layer serving as the wiring circuit. No. -11819. Also, in the publication, an etching barrier layer (for example, 2 μm in thickness) made of, for example, nickel is formed on one main surface of a copper layer for projection formation (a metal layer for projection formation) having a thickness of, for example, 100 μm by, for example, plating. It describes that a base material formed by forming a copper foil for forming a wiring circuit (metal foil for forming a wiring circuit, for example, a thickness of 18 μm) on the surface of the etching barrier layer is used. Protrusions are formed by selectively etching the copper layer for forming protrusions with an etchant that does not attack the etching barrier layer, and removing the etching barrier layer with an etchant that does not attack the copper foil for wiring circuit using the protrusions as a mask, Further, an interlayer insulating layer is formed on the surface on the side where the protrusions are formed, and the protrusions are used as interlayer connection means connected to a wiring circuit. Next, the wiring layer is formed by etching the conductive circuit forming metal layer.
[0003]
[Problems to be solved by the invention]
Since the wiring circuit formed in the above process is located in the outermost layer of the printed wiring board, high peel strength is required. In order to achieve high peeling strength, in the case of ordinary copper foil for printed wiring boards, irregularities are formed on the surface of the copper foil in contact with the interlayer insulating layer, and a roughening process to form finer metal particles is performed. Is being done. By this uneven shape and the roughening treatment, a so-called anchor effect is provided, and a high peeling strength is realized between the interlayer insulating layer and the copper foil. However, in the above process, since the surface of the conductive circuit forming metal layer used for bonding to the interlayer insulating layer is obtained by removing the etching barrier, the surface is limited to a relatively smooth surface, and an anchor effect is expected. I can't do that.
[0004]
In the production of a multilayer printed wiring board using a conventional substrate and an inner layer circuit board, fine needle-like crystals of cuprous oxide or copper oxide are formed on the inner layer circuit surface in order to improve the adhesive force between the inner layer circuit and the substrate. Is performed, but the peeling strength required for the outermost wiring circuit cannot be obtained.
[0005]
SUMMARY OF THE INVENTION The present invention provides a method of manufacturing a multilayer printed wiring board using protrusions as interlayer connection means, which has a peeling strength required for an outermost wiring circuit.
[0006]
[Means for Solving the Problems]
According to the present invention, there is provided a projection forming metal layer including a thick copper layer having a thickness of 35 μm to 210 μm, an etching barrier layer including a nickel layer or a nickel alloy layer having a thickness of 0.1 μm to 3.0 μm, The copper and the etching barrier layer are removed by sequentially removing the metal layer for forming the projections and the nickel layer in a predetermined shape by etching from the composite metal foil comprising the metal foil for forming a wiring circuit comprising a thin copper layer having a thickness of 1 μm to 35 μm. Forming a projection consisting of the following, and then forming an interlayer insulating layer on the surface on which the projection is formed, and laminating and forming the same with an inner circuit board. A method for producing a printed wiring board, comprising performing a roughening treatment on a roughened surface, forming an adhesion-imparting layer made of a high-molecular-weight linear polymer, and then forming an interlayer insulating layer. A.
[0007]
Furthermore, the present invention is the method for manufacturing a printed wiring board, wherein the surface roughening is blackening, and the method for manufacturing the printed wiring board, wherein the surface roughening is etching.
[0008]
Further, the present invention is the above-mentioned method for producing a printed wiring board, wherein the high-molecular-weight linear polymer is a polyamideimide resin.
[0009]
According to the method for manufacturing a printed wiring board of the present invention, the peel strength of the outermost wiring circuit can be made equal to that of a printed wiring board manufactured using a conventional roughened copper foil, and the reliability can be improved. It is possible to manufacture a printed wiring board excellent in quality.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0011]
A metal layer for forming a protrusion formed of a thick copper layer having a thickness of 35 μm to 210 μm, an etching barrier layer formed of a nickel layer or a nickel alloy layer having a thickness of 0.1 μm to 3.0 μm, and a thickness used in the present invention; Is a metal foil for forming a wiring circuit formed of a thin copper layer having a thickness of 1 μm to 35 μm, for example, a copper foil having nickel plating on one or both sides described in International Publication No. WO00 / 05934. There is a clad plate for a printed circuit board manufactured by pressing a material and another copper foil material or a copper foil material having nickel plating on one surface at a rolling reduction of 0.1 to 3%. Further, an etching barrier layer made of a nickel layer or a nickel alloy layer having a thickness of 0.1 μm to 3.0 μm is formed by electroplating on a projection-forming metal layer made of a thick copper layer having a thickness of 35 μm to 210 μm. Then, a metal foil for forming a wiring circuit formed of a thin copper layer having a thickness of 1 μm to 35 μm can be formed by a plating method.
[0012]
As the projection-forming metal layer, any of an electrolytic copper foil and a rolled copper foil can be used as long as the thickness is 35 μm to 210 μm. The thickness of the metal layer for forming the protrusions is selected depending on the thickness of the interlayer insulating layer of the printed wiring board to be manufactured. If the thickness is small, the protrusions become low and the connection between the wiring circuit layer and the inner layer substrate cannot be sufficiently obtained, while the thickness is large. In addition, voids are generated between the interlayer insulating layer and the inner layer substrate, and the reliability is reduced. The surface roughness of the metal layer for forming projections is 0.1 μm to 3 μm in terms of 10-point average roughness. If the surface roughness is large, the adhesion to the resist used for the etching is deteriorated, and the shape of the protrusion formed by the etching becomes uneven. When an electrolytic copper foil is used as the metal foil for forming the protrusion, if the surface roughness is within the above range, an etching barrier layer composed of a nickel layer or a nickel alloy layer is formed on either the glossy surface or the matte surface. May be.
[0013]
The etching barrier layer made of a nickel layer or a nickel alloy layer is formed by a plating method. Pure nickel plating is used for forming the nickel layer, and nickel-phosphorus alloy plating containing phosphorus is used for forming the nickel alloy layer. These platings can be performed by various plating methods generally used for decoration. As such a plating method, there is a method of using an additive such as boric acid or phosphorous acid to nickel sulfate or nickel chloride, and further adding various brightening agents and the like, and is appropriately selected as necessary. . The thickness of the nickel plating or nickel-phosphorus alloy plating is 0.1 μm to 3.0 μm, preferably 0.2 μm to 2.0 μm. If the thickness is thin, pinholes and the like are likely to occur, and the etching barrier property is not sufficient. If the thickness is large, removal of the etching barrier layer becomes difficult.
[0014]
A metal foil for forming a wiring circuit formed of a thin copper layer having a thickness of 1 μm to 35 μm is manufactured by plating on an etching barrier layer using a plating solution containing copper sulfate and sulfuric acid. Additives such as gelatin and chlorine, and leveling agents such as mercaptosulfonic acid can be added as necessary. The surface roughness of the plated surface is 0.1 μm to 3 μm as a 10-point average roughness. If the surface roughness is large, the adhesion to the resist used for etching is deteriorated, and a fine wiring circuit cannot be formed. In order to prevent the surface from being deteriorated by air oxidation or the like, an inorganic rust preventive treatment such as chromate treatment or a rust preventive such as vegetable oil may be applied.
[0015]
In the case of a thin copper layer having a thickness of 1 μm to 35 μm, it is difficult to handle after forming the projection forming metal layer by etching. Therefore, a resin layer may be formed on the thin copper layer.
[0016]
From the composite metal foil, the projection-forming metal layer and the nickel layer are sequentially removed in a predetermined shape by etching to form a projection made of copper and an etching barrier layer, and then the surface on which the projection is formed Is subjected to a surface roughening treatment to form an adhesion-imparting layer composed of a high-molecular-weight linear polymer.
[0017]
As the roughening treatment, a blackening treatment and an etching treatment are preferably used. The blackening treatment is to form fine needle crystals of copper oxide or cuprous oxide by oxidizing the copper surface, and is called blackening treatment because of its black appearance. Has been conventionally used for bonding an inner layer circuit and a laminated base material. The blackening treatment is carried out at a high temperature of 50 to 80 ° C. in an aqueous solution of an oxidizing agent such as sodium peroxide. Further, copper oxide or cuprous oxide may be reduced to metallic copper by using a reducing agent such as sodium borohydride after the blackening treatment. By using metallic copper, chemical resistance such as hydrochloric acid resistance is improved. As the etching treatment, there is a method in which an etching solution for uniformly forming multilayers of etching holes on a fine crater is used, and an etching solution containing an organic acid such as citric acid is used. As such an etching solution, there is a CZ solution commercially available from Mech Company.
[0018]
As the high molecular weight linear polymer, a polyamideimide resin is preferably used because of its excellent heat resistance and peeling strength.
[0019]
As the polyamideimide resin, trimellitic anhydride or an adduct of trimellitic anhydride chloride with various diamines can be used. Corresponding isocyanate compounds may be used in place of various diamines. In the present invention, a siloxane-modified polyamideimide resin described in JP-A-2001-139809 is particularly preferred. Since the polyamide-imide resin-based linear polymer is excellent in film formability and mechanical strength, it is preferable that the linear polymer has a high molecular weight as long as the solubility is acceptable, and the weight average molecular weight is 10,000 or more, more preferably 100, 000 or more. The epoxy resin polymer is dissolved in a solvent and used as a varnish having a concentration of 1 to 10%. As the solvent, formamide, dimethylformamide, dimethylacetamide, amide compounds such as N-methylpyrrolidone, chloroform, halogenated hydrocarbons such as methylene chloride, allyl glycidyl ether, styrene oxide, epoxy compounds such as phenyl glycidyl ether, Amide compounds and hydrocarbons such as benzene, hexane, toluene and xylene; alcohols such as methanol, ethanol, 1-propanol and 2-propanol; ketones such as acetone, 2-butanone, 2-pentanone and 3-pentanone Alternatively, a mixed solvent with esters such as methyl formate, methyl acetate, and ethyl acetate is used.
[0020]
For the purpose of improving the thermosetting property of the polyamide-imide resin, it is preferable to combine with various curing systems. Examples of such a curing system include a combination of a polyfunctional epoxy resin and a curing agent such as a polyphenol, and a combination of an isocyanate compound. Further, a curing accelerator such as imidazoles may be used at the same time. Such a curing system is used within a range that does not impair the flexibility of the linear polymer. When the ratio of the linear polymer decreases, the peel strength between the substrate and the electrolytic copper foil decreases. A varnish obtained by combining a polyamideimide resin with a curing system is applied on the coupling agent layer and dried to form an adhesion-imparting layer. Various additives such as a flame retardant, a leveling agent, and an antioxidant can be added to the varnish, and the coating amount of the resin composition layer after drying is 0.5 to 5 g / m in terms of weight in terms of weight. 2 . If it is less than 0.5 g / m 2 , the peel strength is low, and if it is thicker than 5 g / m 2, the peel strength does not improve.
[0021]
As a method of applying a varnish for forming the adhesion-imparting layer, a known coating method, spraying method, self-weight dropping method, and the like of the varnish can be used. Among them, it is practically preferable to carry out the injection method or the self-weight dropping method in terms of mass productivity and economy. After applying the varnish, the adhesiveness-imparting layer is semi-cured by heating and drying. In a completely cured state, upon lamination molding with a laminated substrate such as a glass cloth epoxy resin substrate, the integration of the adhesiveness-imparting layer and the substrate resin is not sufficient, and the reliability is reduced. On the other hand, in a state where curing is insufficient, the adhesion imparting layer contaminates the other surface of the copper foil when the coated product is stored in a roll. The drying temperature is 45 to 300 ° C, preferably 70 to 250 ° C, and the drying time is 2 seconds to 60 minutes, preferably 10 seconds to 30 minutes.
[0022]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
[0023]
(Example 1) A non-roughened product of a 105 µm-thick electrolytic copper foil (trade name: ND-SLP-105, manufactured by Nihon Denki Co., Ltd.) was used as a metal layer for forming projections. The surface roughness of the glossy surface was 1.9 μm in terms of 10-point average roughness, and the surface roughness of the matte surface was 2.2 μm. The electrolytic copper foil was subjected to acid cleaning to remove the rust preventive treatment on the surface, and a nickel plating layer having a thickness of 1 μm was formed on the glossy side. Nickel plating was performed using a nickel sulfate aqueous solution. Subsequently, a composite metal foil was manufactured by performing copper sulfate plating to form a metal foil for forming a wiring circuit having a thickness of 25 μm. Then, the metal foil for wiring circuit was masked with a resin, and the metal layer for forming protrusions and the nickel plating layer were sequentially removed by etching to obtain a metal foil for wiring circuit having a thickness of 25 μm. Subsequently, the surface exposed by etching is subjected to a blackening treatment, and then a varnish for forming an adhesion-imparting layer containing 2% of a siloxane-modified polyamideimide resin is sprayed and immediately dried at a temperature of 70 ° C. for 30 minutes to obtain an adhesive property. An application layer was formed. The thickness of the adhesion-imparting layer was 2.0 g / m 2 in terms of weight.
The varnish for forming an adhesion-imparting layer containing 2% of a siloxane-modified polyamideimide resin was obtained by diluting KS6600 (trade name, manufactured by Hitachi Chemical Co., Ltd.) with a solvent. Next, laminated on a glass cloth-based epoxy resin prepreg having a thickness of 0.2 mm (GEA-679N, manufactured by Hitachi Chemical Co., Ltd.) so that the resin surface (that is, the surface to be bonded) faces the prepreg. Then, a heat-pressing treatment was performed under the conditions of a temperature of 168 ° C., a pressure of 0.3 MPa and a time of 90 minutes to produce a copper-clad laminate. The characteristics of this copper clad laminate are shown in the table.
[0024]
(Example 2) A copper-clad laminate was manufactured in the same manner as in Example 1 except that an etching treatment was performed instead of the blackening treatment. However, the properties of the copper-clad laminate treated at 50 ° C. for 10 seconds using a CZ solution manufactured by MEC Corporation as an etching solution are shown in the table.
[0025]
(Comparative Example 1) A copper-clad laminate was manufactured and evaluated in the same manner as in Example 1 except that the blackening treatment was not performed. The results are shown in the table.
[0026]
(Comparative Example 2) A copper-clad laminate was manufactured and evaluated in the same manner as in Example 1 except that the treated adhesion-imparting layer was not formed. The results are shown in the table.
[0027]
(Comparative Example 3) A copper-clad laminate was manufactured and evaluated in the same manner as in Example 2 except that the adhesion-imparting layer was not formed. The results are shown in the table.
[Table 1]
Figure 2004055805
[0028]
【The invention's effect】
As described above, according to the method for manufacturing a printed wiring board of the present invention, it is possible to manufacture a highly reliable multilayer printed wiring board having high peeling strength of the outermost circuit wiring, which is extremely useful. is there.

Claims (4)

厚さが35μmから210μmの厚銅層からなる突起形成用金属層と、厚さが0.1μmから3.0μmのニッケル層またはニッケル合金層からなるエッチングバリア層と、厚さが1μmから35μmの薄銅層からなる配線回路形成用金属箔とからなる複合金属箔から、突起形成用金属層とニッケル層とをエッチングにより所定の形状で順次除去することにより、銅とエッチングバリア層とからなる突起を形成し、ついで該突起の形成された面に層間絶縁層を形成し、内層回路基板と積層成形することを特徴とするプリント配線板の製造方法において、該突起層の形成された面に粗面化処理を行い、ついで高分子量線状重合体からなる接着性付与層を形成し、ついで、層間絶縁層を形成することを特徴とするプリント配線板の製造方法。A metal layer for forming a projection made of a thick copper layer having a thickness of 35 μm to 210 μm, an etching barrier layer made of a nickel layer or a nickel alloy layer having a thickness of 0.1 μm to 3.0 μm, and a metal layer for forming a projection having a thickness of 1 μm to 35 μm. A projection formed of copper and an etching barrier layer is formed by sequentially removing a metal layer for forming a projection and a nickel layer in a predetermined shape by etching from a composite metal foil including a metal foil for forming a wiring circuit formed of a thin copper layer. Forming an interlayer insulating layer on the surface on which the projections are formed, and laminating and molding the same with an inner circuit board. A method for producing a printed wiring board, comprising: performing a surface treatment, forming an adhesion-imparting layer made of a high-molecular-weight linear polymer, and then forming an interlayer insulating layer. 粗面化処理が黒化処理であることを特徴とする請求項1のプリント配線板の製造方法。2. The method for manufacturing a printed wiring board according to claim 1, wherein the surface roughening process is a blackening process. 粗面化処理がエッチング処理であることを特徴とする請求項1のプリント配線板の製造方法。2. The method for manufacturing a printed wiring board according to claim 1, wherein the roughening process is an etching process. 高分子量線状重合体が、ポリアミドイミド樹脂であることを特徴とする請求項1ないし請求項3のプリント配線板の製造方法。4. The method according to claim 1, wherein the high molecular weight linear polymer is a polyamideimide resin.
JP2002210888A 2002-07-19 2002-07-19 Method for manufacturing printed wiring board Pending JP2004055805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210888A JP2004055805A (en) 2002-07-19 2002-07-19 Method for manufacturing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002210888A JP2004055805A (en) 2002-07-19 2002-07-19 Method for manufacturing printed wiring board

Publications (1)

Publication Number Publication Date
JP2004055805A true JP2004055805A (en) 2004-02-19

Family

ID=31934269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210888A Pending JP2004055805A (en) 2002-07-19 2002-07-19 Method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP2004055805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060413A (en) * 2006-08-31 2008-03-13 Toshiba Corp Printed wiring board with built-in component, and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060413A (en) * 2006-08-31 2008-03-13 Toshiba Corp Printed wiring board with built-in component, and electronic apparatus

Similar Documents

Publication Publication Date Title
TWI699459B (en) Surface-treated copper foil and laminated board using the same, copper foil with carrier, printed wiring board, electronic equipment, and manufacturing method of printed wiring board
JP4656209B2 (en) Metal foil with resin, metal-clad laminate, printed wiring board using the same, and manufacturing method thereof
TWI544115B (en) Roughened copper foil, its manufacturing method, copper clad laminate and printed circuit board
CN110087405B (en) Copper foil with adhesive layer, copper-clad laminate, and printed wiring board
JP4241098B2 (en) Metal-clad laminate, printed wiring board using the same, and manufacturing method thereof
WO2015012376A1 (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
JP4961023B2 (en) Copper foil for printed wiring boards
US10076044B2 (en) Method for manufacturing multilayer wiring substrate
KR101822251B1 (en) Copper foil, copper foil with carrier, copper-clad laminate, printed circuit board, circuit forming substrate for semiconductor package, semiconductor package, electronic device, resin substrate, circuit forming method, semiadditive method, and printed circuit board manufacturing method
WO2014109396A1 (en) Surface treated copper foil, laminate board, copper foil with carrier, printed wiring board, printed circuit board, electronic device, and method for production of printed wiring board
JP2010153628A (en) Method for manufacturing multilayer wiring board
JP2755058B2 (en) Metal foil for printed wiring board, method of manufacturing the same, and method of manufacturing wiring board using the metal foil
JP4698957B2 (en) Electrolytic copper foil and electrolytic polishing method for electrolytic copper foil glossy surface
JP2004055805A (en) Method for manufacturing printed wiring board
JP2007022091A (en) Metal foil with resin and metal-clad laminate, and printed wiring board using the same and method for production thereof
JP2004055806A (en) Method for manufacturing printed wiring board
JP2004335784A (en) Method for manufacturing printed wiring board
JP2004273744A (en) Thermoplastic resin material and manufacturing method of printed circuit board
JP5288168B2 (en) Multilayer printed wiring board and manufacturing method thereof
TW202035791A (en) Surface-treated copper foil, and copper-clad laminate plate, resin-attached copper foil and circuit board each using same
JP4677703B2 (en) POLYIMIDE RESIN FILM AND METHOD FOR PRODUCING MULTILAYER WIRING BOARD USING SAME
JP2000280401A (en) Resin-clad copper foil
JP2010047842A (en) Electrolytic copper foil and method for electropolishing glossy surface of electrolytic copper foil
JP2003051657A (en) Method for manufacturing printed circuit substrate having ultra fine wiring pattern
JP4776217B2 (en) Copper metallized laminate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050705

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20050705

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A711 Notification of change in applicant

Effective date: 20070206

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070928

RD02 Notification of acceptance of power of attorney

Effective date: 20071005

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20071107

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A601 Written request for extension of time

Effective date: 20071113

Free format text: JAPANESE INTERMEDIATE CODE: A601

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071116

A521 Written amendment

Effective date: 20080221

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081202

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081205

A02 Decision of refusal

Effective date: 20090324

Free format text: JAPANESE INTERMEDIATE CODE: A02