JP2004055746A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
JP2004055746A
JP2004055746A JP2002209724A JP2002209724A JP2004055746A JP 2004055746 A JP2004055746 A JP 2004055746A JP 2002209724 A JP2002209724 A JP 2002209724A JP 2002209724 A JP2002209724 A JP 2002209724A JP 2004055746 A JP2004055746 A JP 2004055746A
Authority
JP
Japan
Prior art keywords
substrate
light
layer
semiconductor
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002209724A
Other languages
Japanese (ja)
Inventor
Yukio Shakuda
尺田 幸男
Yukio Matsumoto
松本 幸生
Nobuaki Oguro
小黒 伸顕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2002209724A priority Critical patent/JP2004055746A/en
Publication of JP2004055746A publication Critical patent/JP2004055746A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting device having a structure, which improves the luminance of the semiconductor light-emitting device provided on a GaP substrate, on which a light-emitting layer forming section consisting of an InGaAlP based compound semiconductor is provided. <P>SOLUTION: A light-emitting layer forming section 9, formed of an active layer 3, consisting of the InGaAlP base compound semiconductor and different conductive clad layers 2, 4 consisting of the InGAaAlP base compound semiconductor, having a band gap larger than that of the active layer 3 and pinching the active layer 3, is provided on the GaP substrate, while the thickness of a GaP substrate 1 side clad layer (an n-type clad layer 2 in the figure, for example) in the light-emitting layer forming section 9 is formed so as to be not less than 30μm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、GaP基板上にInGaAlP系化合物半導体からなる発光層形成部を有し、表示パネルやLEDパネルなどに用いられる半導体発光素子に関する。さらに詳しくは、外部への光の取り出し効率を向上させた半導体発光素子に関する。
【0002】
【従来の技術】
従来のInGaAlP系化合物半導体を用いた半導体発光素子は、図2に示されるように、たとえばn形のGaAsからなる半導体基板11上に、InGaAlP系の半導体材料からなるn形クラッド層2、クラッド層よりバンドギャップエネルギーが小さくなる組成でノンドープのInGaAlP系半導体材料からなる活性層3、p形のInGaAlP系半導体材料からなるp形クラッド層4がそれぞれエピタキシャル成長され、ダブルヘテロ接合構造の発光層形成部9が形成されている。そして、その表面側にAlGaAs系半導体材料からなるウィンドウ層5が設けられ、さらにその表面の一部にp形GaAsからなるコンタクト層6を介してp側電極8、半導体基板1の裏面側にn側電極7がそれぞれAu−Ge/Ni合金などにより設けられ、ウェハからチップ化されている。
【0003】
このような構造では、基板のGaAsが活性層3で発光する波長の光に対して、吸収する材料であるため、活性層で発光した光で基板側に進んだ光の殆どが吸収されてしまい無駄になるという問題がある。そのため、GaAs基板上に前述のような構造の半導体層を積層した後、GaAs基板を研磨により除去してGaP基板など光を吸収しないバンドギャップを有する材料からなる半導体基板を貼着したり、直接GaP基板などに前述の構造の半導体層を積層する半導体発光素子が製造されている。なお、GaP基板に直接InGaAlP系化合物を成長する場合、バッファ層をその間に介在させる場合もある。
【0004】
【発明が解決しようとする課題】
前述のように、基板としてGaP基板を用いることにより、GaPはInGaAlP系化合物半導体で発光する波長の光を吸収しないバンドギャップを有するため、活性層から基板側に向った光も比較的有効に取り出せるとして重用されている。
【0005】
しかしながら、本発明者らはGaP基板とInGaAlP系化合物半導体からなる発光層形成部とを用いた発光素子の輝度を調べた結果、GaAs基板を用いた場合よりも向上してはいるものの、充分に輝度が向上していないことを見出した。すなわち、従来は、基板としてGaP基板を用いれば外へ取り出す外部発光効率は充分に高いと考えられるが、InGaAlP系化合物半導体との格子不整合の問題で内部発光効率は若干低下する可能性があるため、格子不整合に伴う内部発光効率の向上に心血が注がれ、たとえばGaAs基板にInGaAlP系化合物半導体層を積層し、積層後にGaAs基板を除去してGaP基板を貼着するなどの方法が考えられていた。しかし、GaP基板を用いても、発光層形成部とGaP基板との境界面で反射したり、GaP基板自身も結晶性がよくなく、基板内で吸収したり、反射が起こり、前述のように、外部への光の取出し効率を充分に向上させることができないことを見出した。
【0006】
本発明は、このような状況に鑑みてなされたもので、InGaAlP系化合物半導体からなる発光層形成部がGaP基板に設けられる半導体発光素子の輝度を向上させることができる構造の半導体発光素子を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明による半導体発光素子は、GaP基板と、該GaP基板上に設けられ、InGaAlP系化合物半導体からなる活性層を、該活性層よりバンドギャップが大きいInGaAlP系化合物半導体からなり、異なる導電形のクラッド層により挟持する発光層形成部とを有し、前記発光層形成部における前記GaP基板側のクラッド層の厚さが30μm以上に形成されている。
【0008】
ここにInGaAlP系化合物半導体とは、In(Ga1−xAl1−uPの形で表され、uおよびxの値が0と1との間で種々の値のときの材料を意味する。
【0009】
この構造にすることにより、GaP基板側のクラッド層が30μm以上と非常に厚く形成されているため、活性層で発光して基板側に進む光がGaP基板に到達する前にその側壁から外部へ出る光が非常に多くなり、GaP基板との境界面で反射して再度発光層形成部内に戻って反射を繰返したり、GaP基板内で吸収や乱反射をして消滅する光をGaP基板に達する前に側壁から外部に取出して利用することができる。外部に出た光は外部に設けられるカップ状反射壁などにより必要な方向に反射して有効に利用することができるため、全体として発光する光の輝度を向上させることができる。
【0010】
【発明の実施の形態】
つぎに、図面を参照しながら本発明の半導体発光素子について説明をする。本発明による半導体発光素子は、図1にその一実施形態であるLEDチップの断面構造が示されるように、GaP基板1上に、InGaAlP系化合物半導体からなる活性層3を、活性層3よりバンドギャップが大きいInGaAlP系化合物半導体からなり、異なる導電形のクラッド層2、4により挟持する発光層形成部9とを有しており、その発光層形成部9におけるGaP基板1側のクラッド層(図1に示される例ではn形クラッド層2)の厚さが30μm以上に形成されていることに特徴がある。
【0011】
すなわち、通常はダブルヘテロ構造の発光層形成部を有する半導体発光素子は、基板と反対側の表面側に光を取り出す場合が多く、基板側に向う光には余り関心が持たれないか、その光も利用しようとする場合には、基板との間に多層反射膜を介在させて表面側に反射させて利用するか、基板にGaPのような光を透過させる材料の基板を用い基板裏面で反射させるという考え方が一般的であり、発光層形成部における半導体基板側のクラッド層は、0.5〜1.5μm程度に形成されている。また、発光層形成部の基板と反対側の表面側には、電流をチップ全体に拡散させる機能ももたせたウインドウ層が一般的には設けられるため、反対側のクラッド層も通常は1〜2μm程度に形成されている。
【0012】
しかし、前述のように、本発明者らが鋭意検討を重ねた結果、基板としてGaP基板を用いても、充分に外部に光を取り出すことができず、外部発光効率を充分に向上させることができないことを見出した。すなわち、基板にGaP基板を用いても、発光層形成部とGaPとの間の屈折率の違いに基づく全反射により発光層形成部内での光が反射を繰り返して消滅する、GaP基板といえども通常の半導体エピタキシャル成長層と比べるとその結晶性が非常に劣り、GaP内で吸収や乱反射を起こし消滅する、などの現象が生じ、充分に外部に光を取り出すことができない。一方、半導体チップの側面から外部に出た光でも、外部に反射板を置くことにより表面側への照射を大きくすることができ、また、携帯電話のダイヤルボタンなどでは、むしろチップのサイドで光らせた方が見やすいという用途もあり、チップのサイドから光を取り出すことが非常に効果的である。
【0013】
そして、基板としてGaP基板を用い、基板側のクラッド層を30μm以上の厚さにすることにより、GaP基板との界面での反射やGaP基板内での吸収を引き起こす前にチップサイドから光が出やすく、利用し得る光としてトータル的に外部に光を取り出す効率を向上させることができることを見出した。
【0014】
半導体基板は、GaP基板1が用いられるが、このGaP基板1は、直接その上に発光層形成部などの半導体層をエピタキシャル成長するものでもよいし、たとえばGaAs基板上に発光層形成部9などをエピタキシャル成長した後に、GaAs基板を取り除いて、貼着したものでもよい。このGaP基板1は、発光層形成部9の基板側クラッド層が30μm以上と厚いため、その分薄く形成されて、全体としては、従来と同様の200〜400μm程度の厚さになる。また、このGaP基板1は、p形、n形のいずれでもよく、n形GaP基板であれば、前述の厚くするクラッド層はn形クラッド層であり、p形GaP基板であれば、発光層形成部9のp形クラッド層が基板側になり、p形クラッド層が30μm以上の厚さに形成される。なお、GaP基板1に直接半導体層をエピタキシャル成長する場合には、GaPとInGaAlP系化合物半導体との格子定数の違いによる歪みを吸収するため、InGa1−yPのy=0.2程度の単層またはyを0から0.5に徐々に変化させる勾配層をバッファ層(図示せず)として0.1〜1μm程度の厚さに形成する場合がある。しかし、バッファ層がなくても成長することはできるし、GaP基板を貼着する場合にはなくても構わない。
【0015】
発光層形成部9は、InGaAlP系化合物半導体からなる活性層3をそれよりバンドギャップの大きいInGaAlP系化合物半導体材料からなるn形クラッド層2およびp形クラッド層4により挟持するダブルへテロ構造に形成されており、図1に示される例では、基板にn形GaP基板1が用いられているため、基板側にn形クラッド層2が30μm以上の厚さで設けられ、活性層3は、たとえば赤色光を得る組成になるように定められている。この発光層形成部9の成長は、目的とする素子の発光波長などにより必要な組成にしたり(Alの組成比を変えたり、ドーパントをドーピングしたりする)、必要な厚さに成長される。
【0016】
具体例としては、たとえば、In0.49(Ga0.25Al0.750.51Pからなり、Seがドープされてキャリア濃度が1×1017〜1×1019cm−3程度、厚さが0.1〜2μm程度のn形クラッド層2と、In0.49(Ga0.8Al0.20.51Pからなり、ノンドープで0.1〜2μm程度の厚さの活性層3と、Znがドープされてキャリア濃度が1×1016〜1×1019cm−3程度、厚さが0.1〜2μm程度で、n形クラッド層2と同じ組成のInGaAlP系化合物半導体からなるp形クラッド層4との積層構造により形成される。
【0017】
この発光層形成部9のp形クラッド層4上に、たとえばp形AlGa1−zAs(0.5≦z≦0.8)からなるウィンドウ層5が1〜10μm程度形成され、さらにその上でp側電極8の下側のみに、たとえばp形GaAsからなるコンタクト層6が積層されることにより、半導体積層部10が形成されている。ウインドウ層5は、電流をチップ全体に広げると共に、光を吸収しないようなバンドギャップの材料からなり、また、できるだけ厚くしてサイドから光を取り出せるようにすることが好ましい。
【0018】
なお、図1の例では示されていないが、n形クラッド層2と半導体基板1との間に、屈折率の異なる半導体層をλ/(4n)(λは発光波長、nは半導体層の屈折率)の厚さで交互に5〜40層づつ程度積層する反射層(DBR)が挿入されていたり、前述のように、バッファー層が挿入されていてもよい。反射層(DBR)は、活性層や基板よりもバンドギャップが大きい層、たとえばAlGaAsのAlの組成を変更した積層構造により得られる。
【0019】
半導体積層部10の表面側のコンタクト層6上に、Au−Be/Ni/Ti/Auなどからなるp側電極8、半導体基板1の裏面側に、Au−Ge/Ni/Auなどからなるn側電極7がそれぞれ設けられた状態でチップ化されている。
【0020】
このようなLEDチップを製造するには、たとえばn形のGaP基板1をMOCVD(有機金属化学気相成長)装置内に入れ、反応ガスのトリエチルガリウム(以下、TEGという)、トリメチルアルミニウム(以下、TMAという)、トリメチルインジウム(以下、TMInという)、ホスフィン(以下、PHという)およびn形ドーパントガスとしてのH2 Seの内の必要なガスをキャリアガスの水素(H)と共に導入して成長する。
【0021】
まず、半導体基板1表面に500〜700℃程度でエピタキシャル成長し、キャリア濃度が1×1016〜1×1019cm−3程度のIn0.49(Ga0.25Al0.750.51Pからなるn形クラッド層2を30μm以上、たとえば50μm程度エピタキシャル成長する。ついで、反応ガスのTMAを減らしてTEGを増やし、たとえばノンドープのIn0.49(Ga0.8Al0.20.51Pからなる活性層3を0.5μm程度、さらにn形クラッド層12と同様の反応ガスで、ドーパントガスをジメチル亜鉛(DMZn)にして、p形でキャリア濃度が1×1017〜1×1019cm−3程度のたとえばIn0.49(Ga0.25Al0.750.51Pからなるp形クラッド層4を1μm程度、p形でキャリア濃度が1×1017〜1×1020cm−3程度のたとえばAl0.7Ga0.3Asからなるp形ウィンドウ層5、p形でキャリア濃度が1×1017〜1×1020cm−3程度のたとえばGaAsからなるp形コンタクト層6それぞれ成長し、半導体積層部10を形成する。そして、半導体積層部10上に電極用の金属Au−Ti合金、Au−Zn/Ni合金またはAu−Be/Ni合金などを成膜し、電極用金属膜をパターニングしてp側電極8を形成し、p側電極8をマスクとして、p形コンタクト層6のp側電極8で覆われていない部分をエッチングにより除去し、p形コンタクト層6をパターニングする。また、GaP基板1の裏面の全面にAu−Ge/Ni合金などを成膜してn側電極7を形成し、半導体基板1のダイシングしてチップ化することにより、図1に示されるLEDチップが得られる。
【0022】
この例では、GaP基板に直接n形クラッド層2を成長したが、まず、キャリア濃度が1×1016〜1×1019cm−3程度で、InGa1−yPのyを0から0.5まで順次変更した勾配層またはIn0.2Ga0.8Pの単層をバッファ層として0.1〜1μm程度成長し、ついで前述のn形クラッド層2を成長することもできる。また、GaP基板1を貼り付ける場合には、GaAs基板上に前述のn形クラッド層2、活性層3、p形クラッド層4、ウインドウ層5、コンタクト層6を順次成長し、p側電極8の金属膜を成膜した後、p側電極用金属膜表面にテープなどの補強材を貼付し、GaAs基板を研磨により除去し、その除去した部分にGaP基板を合せて、800〜1000℃程度の温度で、10〜10Pa程度の圧力をかけることにより、GaP基板1を貼り付けることができる。また、導電形は半導体基板がp形で、前述の各半導体層の導電形が逆になってもよい。
【0023】
本発明による半導体発光素子によれば、基板側のクラッド層の厚さを30μm以上にしているため、ダブルヘテロ構造の活性層で発光した光で、基板側に進む光でも、基板に達するまでに厚いクラッド層の側壁から外部に出る機会が非常に大きくなり、外部への光の取出し効率が非常に向上する。すなわち、従来は、基板としてGaP基板を用いる場合には、GaP基板は活性層で発光する波長の光を吸収しないと考えられているため、外部への光の取出しには余り問題はないと考えられていたが、前述のように、本発明者らの鋭意検討の結果、GaPを基板として用いても、充分に光を外に取り出せないことを見出し、基板側のクラッド層を30μm以上の厚さに形成することにより、従来のGaP基板を用いたものと比べて、20%程度の輝度の向上に寄与した。
【0024】
【発明の効果】
本発明によれば、GaP基板上にInGaAlP系化合物半導体からなる発光層形成部が設けられた半導体発光素子の外部への光の取出し効率が向上し、高輝度の半導体発光素子が得られる。
【図面の簡単な説明】
【図1】本発明による半導体発光素子の一実施形態の断面構造の説明図である。
【図2】従来のLEDチップの断面構造の説明図である。
【符号の説明】
1  GaP基板
2  n形クラッド層
3  活性層
4  p形クラッド層
5  ウインドウ層
9  発光層形成部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor light emitting device having a light emitting layer forming portion made of an InGaAlP-based compound semiconductor on a GaP substrate and used for a display panel, an LED panel, and the like. More specifically, the present invention relates to a semiconductor light emitting device having improved efficiency of extracting light to the outside.
[0002]
[Prior art]
As shown in FIG. 2, a conventional semiconductor light emitting device using a conventional InGaAlP-based compound semiconductor includes an n-type cladding layer 2 made of an InGaAlP-based semiconductor material and a cladding layer on a semiconductor substrate 11 made of, for example, n-type GaAs. An active layer 3 made of a non-doped InGaAlP-based semiconductor material and a p-type clad layer 4 made of a p-type InGaAlP-based semiconductor material with compositions having a smaller bandgap energy are epitaxially grown, respectively, to form a light emitting layer forming portion 9 having a double hetero junction structure. Is formed. A window layer 5 made of an AlGaAs-based semiconductor material is provided on the surface side, and a p-side electrode 8 is formed on a part of the surface via a contact layer 6 made of p-type GaAs, and n is formed on the back side of the semiconductor substrate 1. The side electrodes 7 are provided by Au-Ge / Ni alloy or the like, and are chipped from the wafer.
[0003]
In such a structure, GaAs on the substrate is a material that absorbs light having a wavelength emitted by the active layer 3, so that most of the light that has traveled to the substrate side is absorbed by the light emitted by the active layer. There is a problem of being wasted. Therefore, after a semiconductor layer having the above-described structure is stacked on a GaAs substrate, the GaAs substrate is removed by polishing, and a semiconductor substrate made of a material having a band gap that does not absorb light, such as a GaP substrate, is attached to the semiconductor substrate. A semiconductor light emitting device in which a semiconductor layer having the above structure is stacked on a GaP substrate or the like has been manufactured. When an InGaAlP-based compound is grown directly on a GaP substrate, a buffer layer may be interposed between them.
[0004]
[Problems to be solved by the invention]
As described above, by using a GaP substrate as a substrate, GaP has a band gap that does not absorb light of a wavelength emitted by an InGaAlP-based compound semiconductor, so that light from the active layer toward the substrate can be extracted relatively effectively. It has been heavily used.
[0005]
However, the present inventors have examined the luminance of a light-emitting element using a GaP substrate and a light-emitting layer forming portion made of an InGaAlP-based compound semiconductor. As a result, although the luminance was improved as compared with the case where a GaAs substrate was used, it was sufficient. It was found that the brightness was not improved. That is, conventionally, when a GaP substrate is used as a substrate, the external luminous efficiency taken out is considered to be sufficiently high, but the internal luminous efficiency may be slightly reduced due to a lattice mismatch with the InGaAlP-based compound semiconductor. Therefore, much attention is paid to the improvement of the internal luminous efficiency due to the lattice mismatch. For example, a method of laminating an InGaAlP-based compound semiconductor layer on a GaAs substrate, removing the GaAs substrate after lamination, and attaching a GaP substrate is used. Was thought. However, even when a GaP substrate is used, the light is reflected at the interface between the light emitting layer forming portion and the GaP substrate, and the GaP substrate itself has poor crystallinity, and is absorbed or reflected in the substrate. It has been found that the efficiency of extracting light to the outside cannot be sufficiently improved.
[0006]
The present invention has been made in view of such circumstances, and provides a semiconductor light emitting device having a structure in which a light emitting layer forming portion made of an InGaAlP-based compound semiconductor can improve the luminance of a semiconductor light emitting device provided on a GaP substrate. The purpose is to do.
[0007]
[Means for Solving the Problems]
The semiconductor light-emitting device according to the present invention comprises a GaP substrate, an active layer formed on the GaP substrate, and made of an InGaAlP-based compound semiconductor, and made of an InGaAlP-based compound semiconductor having a band gap larger than that of the active layer. A light emitting layer forming portion sandwiched between layers, and a thickness of the cladding layer on the GaP substrate side in the light emitting layer forming portion is formed to be 30 μm or more.
[0008]
Here the InGaAlP-based compound semiconductor is expressed in the form of In u (Ga 1-x Al x) 1-u P, the material when the different values between the values of u and x are 0 and 1 means.
[0009]
With this structure, the cladding layer on the side of the GaP substrate is formed as very thick as 30 μm or more, so that the light emitted from the active layer and traveling toward the substrate side travels from the side wall to the outside before reaching the GaP substrate. Before the light that reaches the GaP substrate becomes extremely large, the light that is reflected at the interface with the GaP substrate returns to the light emitting layer forming portion again and repeats reflection, or the light that is absorbed and diffusely reflected and disappears in the GaP substrate before reaching the GaP substrate. Can be taken out from the side wall and used. Since the light emitted to the outside is reflected in a required direction by a cup-shaped reflecting wall provided outside and can be used effectively, the luminance of the emitted light can be improved as a whole.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the semiconductor light emitting device of the present invention will be described with reference to the drawings. In the semiconductor light emitting device according to the present invention, an active layer 3 made of an InGaAlP-based compound semiconductor is formed on a GaP substrate 1 such that a band is formed on the GaP substrate 1 as shown in FIG. A light-emitting layer forming portion 9 made of an InGaAlP-based compound semiconductor having a large gap and sandwiched by cladding layers 2 and 4 of different conductivity types; The example shown in FIG. 1 is characterized in that the thickness of the n-type cladding layer 2) is formed to be 30 μm or more.
[0011]
That is, a semiconductor light-emitting element having a light-emitting layer forming portion of a double hetero structure usually takes out light on the surface side opposite to the substrate in many cases, and the light directed toward the substrate side has little interest, or When light is to be used, a multilayer reflective film is interposed between the substrate and the light is reflected to the front surface side, or the substrate is made of a material such as GaP that transmits light, and the back surface of the substrate is used. The concept of reflection is common, and the cladding layer on the semiconductor substrate side in the light emitting layer forming portion is formed to have a thickness of about 0.5 to 1.5 μm. In addition, since a window layer having a function of diffusing current throughout the chip is generally provided on the surface of the light emitting layer forming portion opposite to the substrate, the cladding layer on the opposite side is also usually 1 to 2 μm in thickness. It is formed to the extent.
[0012]
However, as described above, as a result of intensive studies by the present inventors, even when a GaP substrate is used as the substrate, light cannot be sufficiently extracted to the outside, and the external luminous efficiency can be sufficiently improved. I found that I could not do it. In other words, even if a GaP substrate is used as the substrate, even a GaP substrate in which light in the light emitting layer forming portion repeatedly reflects and disappears due to total reflection based on the difference in refractive index between the light emitting layer forming portion and GaP. Compared with a normal semiconductor epitaxial growth layer, its crystallinity is very poor, and phenomena such as absorption and irregular reflection in GaP occur and disappear, and light cannot be sufficiently extracted outside. On the other hand, even if light is emitted from the side of the semiconductor chip to the outside, it is possible to increase the irradiation on the front side by placing a reflector outside. There is also a use that it is easier to see, and extracting light from the side of the chip is very effective.
[0013]
By using a GaP substrate as the substrate and setting the thickness of the cladding layer on the substrate side to 30 μm or more, light is emitted from the chip side before causing reflection at the interface with the GaP substrate or absorption in the GaP substrate. It has been found that the efficiency of extracting light to the outside as easy and usable light can be improved.
[0014]
As the semiconductor substrate, a GaP substrate 1 is used. The GaP substrate 1 may be a substrate on which a semiconductor layer such as a light emitting layer forming portion is directly epitaxially grown, or a light emitting layer forming portion 9 or the like is formed on a GaAs substrate, for example. After epitaxial growth, the GaAs substrate may be removed and bonded. Since the substrate-side cladding layer of the light emitting layer forming portion 9 is as thick as 30 μm or more, the GaP substrate 1 is formed thinner by that amount, and has a thickness of about 200 to 400 μm as in the related art. The GaP substrate 1 may be either a p-type or an n-type. If it is an n-type GaP substrate, the thick cladding layer is an n-type cladding layer. The p-type cladding layer of the forming part 9 is on the substrate side, and the p-type cladding layer is formed to a thickness of 30 μm or more. When a semiconductor layer is directly epitaxially grown on the GaP substrate 1, strain due to a difference in lattice constant between GaP and the InGaAlP-based compound semiconductor is absorbed, so that y = about 0.2 of In y Ga 1-y P is used. In some cases, a single layer or a gradient layer that gradually changes y from 0 to 0.5 is formed as a buffer layer (not shown) to a thickness of about 0.1 to 1 μm. However, it can be grown without a buffer layer, and may be omitted when a GaP substrate is attached.
[0015]
The light emitting layer forming portion 9 has a double hetero structure in which an active layer 3 made of an InGaAlP-based compound semiconductor is sandwiched between an n-type clad layer 2 and a p-type clad layer 4 made of an InGaAlP-based compound semiconductor material having a larger band gap. In the example shown in FIG. 1, since the n-type GaP substrate 1 is used as the substrate, the n-type cladding layer 2 is provided on the substrate side with a thickness of 30 μm or more. The composition is determined so as to obtain red light. The light emitting layer forming portion 9 is grown to a required composition (by changing the Al composition ratio or doping with a dopant) or to a required thickness depending on the emission wavelength of the target device.
[0016]
As a specific example, for example, it is made of In 0.49 (Ga 0.25 Al 0.75 ) 0.51 P, is doped with Se, and has a carrier concentration of about 1 × 10 17 to 1 × 10 19 cm −3 . It is composed of an n-type cladding layer 2 having a thickness of about 0.1 to 2 μm and In 0.49 (Ga 0.8 Al 0.2 ) 0.51 P and having a non-doping thickness of about 0.1 to 2 μm. An active layer 3 and an InGaAlP-based compound doped with Zn, having a carrier concentration of about 1 × 10 16 to 1 × 10 19 cm −3 , a thickness of about 0.1 to 2 μm, and the same composition as the n-type cladding layer 2 It is formed by a laminated structure with a p-type cladding layer 4 made of a semiconductor.
[0017]
This on the p-type cladding layer 4 of the light emitting layer forming portion 9, the window layer 5 made of, for example, p-type Al z Ga 1-z As ( 0.5 ≦ z ≦ 0.8) is formed about 1 to 10 [mu] m, further On top of that, a contact layer 6 made of, for example, p-type GaAs is laminated only on the lower side of the p-side electrode 8, thereby forming a semiconductor laminated portion 10. The window layer 5 is preferably made of a material having a band gap that does not absorb light while spreading the current over the entire chip, and is preferably made as thick as possible so that light can be extracted from the side.
[0018]
Although not shown in the example of FIG. 1, a semiconductor layer having a different refractive index is provided between the n-type cladding layer 2 and the semiconductor substrate 1 by λ / (4n) (λ is the emission wavelength, and n is the semiconductor layer). A reflective layer (DBR), which is alternately stacked by about 5 to 40 layers with a thickness of (refractive index), may be inserted, or a buffer layer may be inserted as described above. The reflective layer (DBR) is obtained by a layer having a band gap larger than that of the active layer or the substrate, for example, a laminated structure of AlGaAs having a changed Al composition.
[0019]
The p-side electrode 8 made of Au-Be / Ni / Ti / Au or the like is formed on the contact layer 6 on the front surface side of the semiconductor laminated portion 10, and the n-side made of Au-Ge / Ni / Au is formed on the back surface of the semiconductor substrate 1 Chips are formed in a state where the side electrodes 7 are provided.
[0020]
In order to manufacture such an LED chip, for example, an n-type GaP substrate 1 is placed in an MOCVD (metal organic chemical vapor deposition) apparatus, and triethylgallium (hereinafter, referred to as TEG) as a reaction gas and trimethylaluminum (hereinafter, referred to as TEG) are used. called TMA), trimethyl indium (hereinafter referred to as TMIn), phosphine (hereinafter, is introduced together with hydrogen in the necessary gases and the carrier gas of the H 2 Se as) and n-type dopant gas of PH 3 (H 2) grow up.
[0021]
First, In 0.49 (Ga 0.25 Al 0.75 ) 0.51 having a carrier concentration of about 1 × 10 16 to 1 × 10 19 cm −3 is epitaxially grown on the surface of the semiconductor substrate 1 at about 500 to 700 ° C. An n-type cladding layer 2 made of P is epitaxially grown to 30 μm or more, for example, about 50 μm. Next, the TMA of the reaction gas is reduced to increase the TEG. For example, the active layer 3 made of non-doped In 0.49 (Ga 0.8 Al 0.2 ) 0.51 P is reduced to about 0.5 μm, and the n-type cladding layer is formed. 12, the reaction gas is dimethyl zinc (DMZn), and the p-type carrier concentration is about 1 × 10 17 to 1 × 10 19 cm −3 , for example, In 0.49 (Ga 0.25 Al). 0.75 ) A p-type cladding layer 4 of 0.51 P is made of, for example, Al 0.7 Ga 0.3 As having a p-type carrier concentration of about 1 × 10 17 to 1 × 10 20 cm −3. p-type window layer 5 made, the carrier concentration in the p-type is grown 1 × 10 17 ~1 × 10 20 cm -3 of about e.g. each p-type contact layer 6 made of GaAs, a semiconductor lamination portion To form a 0. Then, a metal Au—Ti alloy, Au—Zn / Ni alloy, Au—Be / Ni alloy, or the like for an electrode is formed on the semiconductor laminated portion 10, and the p-side electrode 8 is formed by patterning the metal film for an electrode. Then, using the p-side electrode 8 as a mask, a portion of the p-type contact layer 6 that is not covered with the p-side electrode 8 is removed by etching, and the p-type contact layer 6 is patterned. 1 is formed by forming an n-side electrode 7 by depositing an Au—Ge / Ni alloy or the like on the entire back surface of the GaP substrate 1 and dicing the semiconductor substrate 1 into chips. Is obtained.
[0022]
In this example, the n-type cladding layer 2 was grown directly on the GaP substrate. First, the carrier concentration was about 1 × 10 16 to 1 × 10 19 cm −3 , and y of In y Ga 1-y P was changed from 0 to 0. A gradient layer or a single layer of In 0.2 Ga 0.8 P sequentially changed to 0.5 may be used as a buffer layer to grow about 0.1 to 1 μm, and then the above-mentioned n-type cladding layer 2 may be grown. When the GaP substrate 1 is attached, the above-described n-type cladding layer 2, active layer 3, p-type cladding layer 4, window layer 5, and contact layer 6 are sequentially grown on the GaAs substrate. After forming the metal film, a reinforcing material such as a tape is adhered to the surface of the metal film for the p-side electrode, the GaAs substrate is removed by polishing, and the GaP substrate is combined with the removed portion to about 800 to 1000 ° C. The GaP substrate 1 can be attached by applying a pressure of about 10 4 to 10 6 Pa at the above temperature. In addition, the conductivity type may be such that the semiconductor substrate is a p-type and the conductivity type of each of the semiconductor layers described above is reversed.
[0023]
According to the semiconductor light emitting device of the present invention, the thickness of the cladding layer on the substrate side is set to 30 μm or more, so that the light emitted from the active layer of the double hetero structure, even the light traveling to the substrate side, reaches the substrate. The chance of exiting from the side wall of the thick cladding layer becomes very large, and the efficiency of extracting light to the outside is greatly improved. That is, conventionally, when a GaP substrate is used as a substrate, it is considered that the GaP substrate does not absorb light having a wavelength emitted by the active layer, and thus there is little problem in extracting light to the outside. However, as described above, as a result of intensive studies by the present inventors, it has been found that even when GaP is used as a substrate, light cannot be sufficiently extracted outside, and the thickness of the cladding layer on the substrate side is set to 30 μm or more. With such a structure, the luminance was improved by about 20% as compared with the case using the conventional GaP substrate.
[0024]
【The invention's effect】
According to the present invention, the efficiency of extracting light to the outside of a semiconductor light emitting device in which a light emitting layer forming portion made of an InGaAlP-based compound semiconductor is provided on a GaP substrate is improved, and a high-brightness semiconductor light emitting device can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a cross-sectional structure of an embodiment of a semiconductor light emitting device according to the present invention.
FIG. 2 is an explanatory diagram of a cross-sectional structure of a conventional LED chip.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 GaP substrate 2 n-type cladding layer 3 active layer 4 p-type cladding layer 5 window layer 9 light emitting layer forming section

Claims (1)

GaP基板と、該GaP基板上に設けられ、InGaAlP系化合物半導体からなる活性層を、該活性層よりバンドギャップが大きいInGaAlP系化合物半導体からなり、異なる導電形のクラッド層により挟持する発光層形成部とを有し、前記発光層形成部における前記GaP基板側のクラッド層の厚さが30μm以上に形成されてなる半導体発光素子。A light-emitting layer forming portion provided between a GaP substrate and an InGaAlP-based compound semiconductor provided on the GaP substrate, the active layer being made of an InGaAlP-based compound semiconductor having a larger band gap than the active layer, and being sandwiched by cladding layers having different conductivity types; And a thickness of a cladding layer on the GaP substrate side in the light emitting layer forming portion is formed to be 30 μm or more.
JP2002209724A 2002-07-18 2002-07-18 Semiconductor light-emitting device Withdrawn JP2004055746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209724A JP2004055746A (en) 2002-07-18 2002-07-18 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209724A JP2004055746A (en) 2002-07-18 2002-07-18 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JP2004055746A true JP2004055746A (en) 2004-02-19

Family

ID=31933500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209724A Withdrawn JP2004055746A (en) 2002-07-18 2002-07-18 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP2004055746A (en)

Similar Documents

Publication Publication Date Title
JP4004378B2 (en) Semiconductor light emitting device
RU2491683C2 (en) Contact for semiconductor light-emitting device
US20110037049A1 (en) Nitride semiconductor light-emitting device
JP3643665B2 (en) Semiconductor light emitting device
US20050205884A1 (en) Semiconductor light emitting devices including in-plane light emitting layers
JP2003347584A (en) Semiconductor light emitting element
JPH05251739A (en) Semiconductor light emitting device
KR20080003901A (en) Nitride semiconductor light emitting element
JP2008288248A (en) Semiconductor light-emitting element
JP2002222989A (en) Semiconductor light-emitting device
JP2007019488A (en) Semiconductor light emitting element
KR20080087135A (en) Nitride semiconductor light emitting element
JP2005191326A (en) Semiconductor light emitting device
WO2010134298A1 (en) Light emitting diode, light emitting diode lamp, and lighting apparatus
JP2008282851A (en) Semiconductor light-emitting element
JP7432024B2 (en) infrared light emitting diode
JPH05167101A (en) Semiconductor light emitting element
US20110233603A1 (en) Semiconductor light-emitting device
JP3787321B2 (en) Semiconductor light emitting device
JP2004200303A (en) Light emitting diode
US20050139853A1 (en) Semiconductor light emitting device
JP2004363206A (en) Semiconductor light emitting element
JP2007273590A (en) Nitride semiconductor element and its manufacturing method
JP2012253074A (en) Nitride based light-emitting diode element
JP2898847B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070417