JP2004052695A - Load limiting method for steam turbine - Google Patents

Load limiting method for steam turbine Download PDF

Info

Publication number
JP2004052695A
JP2004052695A JP2002212892A JP2002212892A JP2004052695A JP 2004052695 A JP2004052695 A JP 2004052695A JP 2002212892 A JP2002212892 A JP 2002212892A JP 2002212892 A JP2002212892 A JP 2002212892A JP 2004052695 A JP2004052695 A JP 2004052695A
Authority
JP
Japan
Prior art keywords
steam
turbine
valve opening
pressure
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002212892A
Other languages
Japanese (ja)
Inventor
Toshihiko Ono
小野 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002212892A priority Critical patent/JP2004052695A/en
Publication of JP2004052695A publication Critical patent/JP2004052695A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To rapidly secure the quantity of steam supply to a condensing steam turbine to which a high pressure steam essential load facility is connected, when steam generating flow in a steam generating facility 1 is reduced. <P>SOLUTION: A difference value δ between the steam flow generated in the steam generating facility 1, and the quantity of steam supplied to the back pressure steam turbine 6 side, is detected, and the difference between the difference value δ and a target value δ* is successively detected as a target restriction steam quantity ▵F. When the steam generating facility 1 trips, a target value F* of the steam supply quantity to the back pressure steam turbine 6 side when reducing the present steam quantity supplied to the back pressure steam turbine 6 side, by the target restriction steam quantity ▵F, is computed, and valve opening V* of a governing valve 12 that can realize the target value F* is detected from the target value F* and a predetermined characteristic chart. The valve opening of the governing valve 12 is then adjusted to become the valve opening V*. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、高圧蒸気を用いて背圧タービン及び復水タービンを運転し、高圧蒸気の発生源における高圧蒸気発生量が低減した場合であっても、復水タービンへの高圧蒸気供給量を継続して確保することの可能な蒸気タービンの負荷制限方法に関する。
【0002】
【従来の技術】
蒸気発電プラントは、ボイラにより製造した高圧蒸気によって、蒸気タービンを駆動し、発電機や、送風機、圧縮機等、いろいろな産業用設備を運転するプラントとして知られている。
前記蒸気発電プラントでは、例えば、特開平4−321702号公報、或いは特開平7−269305号公報に記載されているように、前記ボイラで製造された蒸気は、復水蒸気タービンによって、所定の仕事を行った後、復水となり、各種処理を経て再びボイラに供給されるものと、背圧蒸気タービンによって、有効エネルギの一部を発電量として回収した後、低圧蒸気として工場内各所に供給され、工場用蒸気として使用されるものとに分かれる。
【0003】
このような、蒸気発電プラントにおいては、何らかのトラブル等によってボイラ等の蒸気発生設備がトリップし、その蒸気発生量が低減した場合、このトリップした蒸気発生設備で発生すべき蒸気発生量が少ない場合には、これに伴う蒸気不足量を、他のボイラ等の負荷調整を行うことによって補うことができるが、他のボイラ等で補うことができない程の蒸気不足量が発生した場合には、蒸気使用設備である蒸気タービン側での負荷調整が必要となる。
【0004】
基本的には、復水タービンに接続される負荷が、高炉への送風設備等、設備的に大変重要な負荷であり、復水タービン側での負荷調整が困難な場合には、背圧タービン側での負荷調整を行い、復水タービン側の重要負荷に影響を与えないように対応する方法が用いられている。このとき、背圧タービン側における、負荷調整の影響は、蒸気アキュムレータ等の低圧蒸気バックアップ設備によって補うようになっている。
【0005】
前記背圧蒸気タービン側における負荷調整の方法としては、手動で行う方法や、通常背圧蒸気タービンは背圧蒸気タービン出口の排気蒸気流量制御を行っているため、蒸気発生設備の発生蒸気量とトリップ信号とを用いて、排気蒸気流量制御を行うための調節計において、その設定値を、トリップした蒸気発生設備の発生蒸気量分だけ自動的に減算し、排気蒸気流量制御によって負荷調整を行う方法等が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、前記背圧蒸気タービンの負荷調整を手動で行う場合には、背圧タービンへの高圧蒸気と、背圧タービンからの低圧蒸気の圧力変動を監視しながら、トリップした蒸気発生設備の発生蒸気量に見合うだけの負荷を蒸気加減弁を絞って調整するが、その絞り込み量が、オペレータの経験に左右され、安定的に負荷制限を行うことは困難であった。
【0007】
また、前記背圧蒸気流量制御のための調節計によって負荷調整を行う方法においては、通常の背圧蒸気流量制御と同じゲインで、負荷調整が行われるため、負荷調整速度が遅く、高圧蒸気系統に圧力変動を与えたり、また、制御が安定するまでに時間がかかるという問題がある。
そこで、この発明は、上記従来の未解決の問題に着目してなされたものであり、高圧蒸気系統への圧力変動を低減し速やかに負荷制限を行うことの可能な、蒸気タービンの負荷制限方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に係る蒸気タービンの負荷制限方法は、高圧蒸気発生源で発生した高圧蒸気を用いて複数の蒸気タービンを運転し、前記高圧蒸気発生源からの高圧蒸気発生量が減少したときには、前記蒸気タービンのうち、高圧蒸気供給量を確保すべき特定蒸気タービンを除く非特定蒸気タービンへの高圧蒸気供給量を制限して前記特定蒸気タービンへの高圧蒸気供給量を確保するようにした蒸気タービンの負荷制限方法において、前記非特定蒸気タービンへの高圧蒸気供給量を調整するための蒸気加減弁の弁開度と前記非特定蒸気タービンに供給される高圧蒸気供給量との対応情報を予め検出しておくと共に、前記高圧蒸気発生量と前記非特定蒸気タービンへの高圧蒸気供給量との差分値を逐次検出し、前記高圧蒸気発生量の低減異常が検出されたときには、前記差分値の、基準値との変動量を低減し得る前記高圧蒸気供給量の目標値を検出し、当該目標値となり得る前記蒸気加減弁の弁開度を前記対応情報に基づき特定し、この特定弁開度となるように、前記蒸気加減弁の弁開度を調整することを特徴としている。
【0009】
この請求項1に係る発明では、高圧蒸気供給量を確保すべき特定蒸気タービンを除く非特定蒸気タービンへの高圧蒸気供給量と、高圧蒸気発生源で発生する高圧蒸気発生量との差分値を逐次検出しておき、例えば高圧蒸気発生源側で高圧蒸気発生量の低減異常が検出されたとき等には、前記差分値と、この差分値の基準値との変動量を低減し得る高圧蒸気供給量の目標値が検出される。
【0010】
ここで、高圧蒸気発生量と非特定蒸気タービンへの高圧蒸気供給量との差分値は、すなわち、特定蒸気タービンへ供給される高圧蒸気供給量であるから、この差分値が基準値、つまり、特定蒸気タービンへ供給されるべき高圧蒸気供給量に応じた値となるようにすれば、特定蒸気タービンへ供給される高圧蒸気供給量は所定の値となる。
【0011】
したがって、この差分値の基準値との変動量を低減し得る、非特定蒸気タービンへの高圧蒸気供給量の目標値を検出し、この目標値となり得る蒸気加減弁の弁開度を対応情報に基づいて特定し、この特定した特定弁開度となるように蒸気加減弁を調整することにより、蒸気加減弁の弁開度は速やかに特定弁開度に制御され、非特定蒸気タービンへの高圧蒸気供給量が減少して特定蒸気タービンへの高圧蒸気供給量が確保されることになる。
【0012】
また、請求項2に係る蒸気タービンの負荷制限方法は、前記高圧蒸気発生量の低減異常が検出されないときには、前記非特定蒸気タービンの排気蒸気流量が目標値となるように前記蒸気加減弁の弁開度を第1の調整手段により調整し、前記高圧蒸気発生量の低減異常が検出されたときには、前記第1の調整手段に代えて、前記特定弁開度を検出して当該特定弁開度となるように前記蒸気加減弁の弁開度を第2の調整手段により調整し、当該第2の調整手段による調整によって前記蒸気加減弁の弁開度が前記特定弁開度となったときには、前記第1の調整手段による調整に切り替えるようにした蒸気タービンの負荷制限方法であって、前記第2の調整手段により前記蒸気加減弁の弁開度を制御しているときには、前記排気蒸気流量を検出し、この検出値を前記第1の調整手段における前記排気蒸気流量の目標値として更新設定するようになっていることを特徴としている。
【0013】
この請求項2に係る発明では、高圧蒸気発生量の低減異常が検出されないときには、蒸気加減弁は、非特定蒸気タービンの排気蒸気流量が目標値となるように第1の調整手段により調整され、高圧蒸気発生量の低減異常が検出されたときには、蒸気加減弁は、その弁開度が特定弁開度となるように第2の調整手段により調整され、特定弁開度となったときには、第1の調整手段による調整に切り替えられる。このとき、第2の調整手段により蒸気加減弁の調整が行われている間、非特定蒸気タービンの排気蒸気流量を検出し、この検出した排気蒸気流量を、第1の調整手段における排気蒸気流量の目標値として更新設定している。
【0014】
ここで、第2の調整手段により蒸気加減弁の調整を行うことによって、非特定蒸気タービンの排気蒸気流量が変動した場合、第1の調整手段で設定されていた目標値に基づいて排気蒸気流量を制御すると、実際の排気蒸気流量と目標値とが異なるため、蒸気加減弁の調整が行われることになって場合によっては、特定蒸気タービンへの高圧蒸気供給量が確保できなくなる。しかしながら、非特定蒸気タービンの排気蒸気流量の検出値を、排気蒸気流量の目標値として順次更新設定するようにしているから、第1の調整手段に切り替えられたときであっても、蒸気加減弁の弁開度の調整はバンプレスに行われることになる。
【0015】
さらに、請求項3に係る蒸気タービンの負荷制限方法は、前記特定蒸気タービンは復水蒸気タービンであり、前記非特定蒸気タービンは背圧蒸気タービンであることを特徴としている。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明の蒸気タービンの負荷制限方法を適用した蒸気発電プラントの蒸気供給系統図である。
ボイラ等の蒸気発生設備1で製造された高圧蒸気は、高圧蒸気レシーバ2を経由し復水蒸気タービン4及び背圧蒸気タービン6に分配され、これら蒸気タービンを駆動する。前記復水蒸気タービン4には、高炉送風設備等といった重要な高圧蒸気重要負荷設備5が接続されている。また、背圧蒸気タービン6は、発電機7を駆動して蒸気エネルギの一部を発電量として回収し、減圧した蒸気を低圧蒸気として工場内の各所に供給する。
【0017】
前記背圧蒸気タービン6で減圧された低圧蒸気を供給するための低圧蒸気ライン8には、低圧蒸気圧力が低下した時の低圧蒸気バックアップ設備10として、蒸気アキュムレータ等が接続されている。
また、前記背圧蒸気タービン6の入側には、背圧蒸気タービン6への高圧蒸気の供給量を制御するための蒸気加減弁12が介挿され、この蒸気加減弁12は、背圧タービン入口蒸気流量調整回路20からのパルス信号に応じてその弁開度が調整されるようになっている。
【0018】
また、前記蒸気発生設備1の出側には、蒸気発生設備1で発生する蒸気流量を検出する蒸気発生設備蒸気流量発信器14が設けられ、また、前記蒸気加減弁12の入側には、背圧蒸気タービン6への蒸気流量を検出する背圧タービン入口蒸気流量発信器16が設けられ、また、前記低圧蒸気バックアップ設備10の上流側には背圧蒸気タービン6からの排気蒸気流量を検出する背圧タービン排気蒸気流量発信器18が設けられている。
【0019】
また、前記蒸気加減弁12には、その弁開度を検出する加減弁開度発信器13が設けられ、これら発信器13〜18の検出信号は、背圧タービン入口蒸気流量調整回路20に入力されるようになっている。
なお、図1においては、蒸気発生設備1、復水蒸気タービン4、高圧蒸気重要負荷設備5、背圧蒸気タービン6及び発電機7を、それぞれ1組ずつしか記載していないが、これらの設備は複数機設けられてプラントを構成している。
【0020】
図2は、背圧タービン入口蒸気流量調整回路20の構成を示す回路図である。この背圧タービン入口蒸気流量調整回路20は、図2に示すように、背圧タービン排気蒸気流量発信器18からの背圧タービン排気蒸気流量をもとに、この背圧タービン排気蒸気流量PVがその制御目標値SVとなるように、蒸気加減弁12の弁開度を制御する排気蒸気流量調節回路22と、背圧タービン入口蒸気流量発信器16からの背圧タービン入口蒸気流量と、蒸気発生設備蒸気流量発信器14からの蒸気発生設備蒸気流量とをもとに、前記蒸気加減弁12の弁開度を制御する加減弁絞込回路24と、前記加減弁絞込回路24と蒸気加減弁12との間に介挿されたスイッチSW1及び前記排気蒸気流量調節回路22と蒸気加減弁12との間に介挿されたスイッチSW2を制御し、前記加減弁絞込回路24及び前記排気蒸気流量調節回路22との何れにより、前記蒸気加減弁12の弁開度を制御するかを切り替える切替回路26とを備えている。
【0021】
前記排気蒸気流量調節回路22は、排気蒸気流量調節計23を有し、この排気蒸気流量調節計23では、背圧タービン排気蒸気流量発信器18からの背圧タービン排気蒸気流量PVが、排気蒸気流量の制御目標値SVと一致するように、前記蒸気加減弁12へのパルス信号を生成する。また、排気蒸気流量調節回路22は、前記切替回路26からのSW2切替信号を入力し、このSW2切替信号が、前記スイッチSW2を遮断制御する信号である場合には、前記背圧タービン排気蒸気流量発信器18からの背圧タービン排気蒸気流量PVを、排気蒸気流量の制御目標値SVとして順次更新設定し、SW2切替信号がスイッチSW2を遮断制御する信号から導通制御する信号に切り替わったときには、更新設定した排気蒸気流量の制御目標値SVを新たな目標値として、この制御目標値SVと背圧タービン排気蒸気流量PVとを一致させるためのパルス信号を生成する。なお、前記排気蒸気流量の制御目標値SVは、起動時には、予め設定された初期値が設定される。
【0022】
また、前記加減弁絞込回路24は、図2に示すように、背圧タービン入口蒸気流量及び蒸気発生設備蒸気流量が通知される毎に、演算器31においてこれら流量の差分値δを算出し、この差分値δと予め設定された差分値の目標値δ* との差から、差分値δの変動量を算出しこれを目標絞込蒸気量ΔFとしてホールド回路32に出力する。このホールド回路32では、蒸気発生源トリップ信号を入力し、この蒸気発生源トリップ信号が、蒸気発生設備1がトリップしたことを表す信号であるときに、前記演算器31からの目標絞込蒸気量ΔFと、このときの背圧タービン入口蒸気流量とをホールドする。なお、前記蒸気発生源トリップ信号は、蒸気発生設備1において所定の蒸気流量を発生することができない状態となったことを通知するための2値の信号であって、例えば、蒸気発生設備1から出力される。
【0023】
そして、目標絞込加減弁開度演算回路33において、ホールド回路32でホールドした、蒸気発生設備1がトリップしたときの、目標絞込蒸気量ΔFと背圧タービン入口蒸気流量とをもとに、トリップ時の背圧タービン入口蒸気流量をこの状態から目標絞込蒸気量ΔFだけ絞り込んだときの背圧タービン入口蒸気流量を目標値F* として算出し、予め設定した背圧タービン入口蒸気流量と蒸気加減弁12の加減弁開度との対応を表す特性図から、実際の背圧タービン入口蒸気流量が、算出した前記目標値F* となり得る加減弁開度を検出し、これを目標絞込加減弁開度V* として、比較器34に出力する。
【0024】
なお、前記特性図は、予め、蒸気加減弁12の性能等に応じて設定され、例えば図2に示すように、背圧タービン入口蒸気流量が増加するにつれて、加減弁12の弁開度も増加するように設定される。なお、これは、特性図としているが、特性表として設定するようにしてもよく、また、蒸気加減弁12の性能曲線に基づいて設定するようにしてもよい。
【0025】
前記比較器34では、加減弁開度発信器13からの加減弁開度と、目標絞込加減弁開度演算回路33からの目標絞込加減弁開度V* とを比較し、これらが、一致しない間、パルス発生器35に制御指令を出力する。また、前記加減弁開度と目標絞込加減弁開度V* とが一致するときに、切替回路26に対し、前記加減弁開度と目標絞込加減弁開度V* とが一致したことを表すON指令信号を出力する。
【0026】
前記パルス発生器35では、前記比較器34から制御指令を入力している間、前記蒸気加減弁12に対し、前記弁開度を絞るためのパルス信号を出力する。
一方、前記切替回路26は、蒸気発生設備1から蒸気発生設備1がトリップしたことを表す蒸気発生源トリップ信号を入力し且つ前記比較器34から、加減弁開度が目標絞込加減弁開度V* と一致したことを表すON指令信号を入力したときにハイレベルとなる信号を出力するAND回路41と、蒸気発生源トリップ信号を論理反転するNOT回路42と、AND回路41及びNOT回路42の論理積を出力するOR回路43と、蒸気発生源トリップ信号と、比較器34からのON指令信号をNOT回路44で論理反転した信号を入力するAND回路45とを備えている。
【0027】
そして、前記スイッチSW2は、OR回路43の出力に応じて動作し、前記OR回路43の出力がハイレベルであるときに導通状態、ローレベルであるときには遮断状態となるようになっている。また、前記スイッチSW1は、AND回路45の出力に応じて動作し、前記AND回路45の出力がハイレベルであるときに導通状態、ローレベルであるときには遮断状態となるようになっている。
【0028】
つまり、切替回路26は、蒸気発生源トリップ信号に応じて動作し、蒸気発生設備1が正常であるときには、AND回路41の出力がローレベル、NOT回路42の出力がハイレベル、よって、OR回路43の出力がハイレベルとなり、また、NOT回路44の出力がハイレベル、よって、AND回路45の出力がローレベルとなることから、前記スイッチSW2が導通状態、スイッチSW1が遮断状態となって、排気蒸気流量調節計23からのパルス信号に基づいて蒸気加減弁12の弁開度を調整し、背圧タービン排気蒸気流量が排気蒸気流量の制御目標値となるように蒸気加減弁12の弁開度を調整する。
【0029】
そして、蒸気発生設備1がトリップしたときには、NOT回路42の出力がローレベルとなることから、OR回路43の出力がローレベルとなり、スイッチSW2が遮断状態となる。また、トリップ信号がハイレベルとなることから、AND回路45の出力がハイレベルとなり、スイッチSW1が導通状態となる。
よって、排気蒸気流量調節計23からのパルス信号に代えてパルス発生器35からのパルス信号が蒸気加減弁12に供給されるようになり、蒸気加減弁12は、目標絞込加減弁開度演算回路33で検出された目標絞込加減弁開度V* となるように蒸気加減弁12の弁開度を調整する。
【0030】
そして、蒸気加減弁12の弁開度が目標絞込加減弁開度V* と一致すると、AND回路41の出力がハイレベルとなり、よって、OR回路43の出力がハイレベルとなって、スイッチSW2が導通状態となる。また、NOT回路44の出力がローレベルとなるからAND回路45の出力がローレベルに切り替わり、スイッチSW1が遮断状態となる。
【0031】
よって、パルス発生器35からのパルス信号に代えて、排気蒸気流量調節器22からのパルス信号が蒸気加減弁12に供給される。したがって、蒸気加減弁12は、背圧タービン排気蒸気流量が、排気蒸気流量の制御目標値SVとなるように制御される。
ここで、前記演算器31では、背圧タービン入口蒸気流量発信器16からの背圧タービン入口蒸気流量と、蒸気発生設備蒸気流量発信器14からの蒸気発生設備蒸気量との差分値δを算出し、この差分値δと予め設定した差分値δの目標値δ* との差を求め、この差を目標絞込蒸気量ΔFとして常時算出している。
【0032】
そして、蒸気発生設備1がトリップしたときには、蒸気発生源トリップ信号を受信した時点で、ホールド回路32が目標絞込蒸気量ΔFと現時点における背圧タービン入口蒸気流量とをホールドし、現時点における背圧タービン入口蒸気流量から目標絞込蒸気量ΔFを減算した値を、背圧タービン入口蒸気流量の目標値F* とし、予め設定した特性図から目標値F* を実現し得る、加減弁開度を算出してこれを目標絞込加減弁開度V* とし、加減弁開度発信器13からの加減弁開度が目標絞込現弁開度V* となるように、蒸気加減弁12の弁開度を制御する。
【0033】
したがって、蒸気加減弁12の弁開度はトリップした時点で目標絞込加減弁開度V* となるように制御され、この目標絞込加減弁開度V* は、目標絞込蒸気量ΔFだけ背圧タービン入口蒸気流量を絞り得る弁開度であり、前記目標絞込蒸気量ΔFは、背圧タービン入口蒸気流量と蒸気発生設備1の蒸気発生設備蒸気量との差分値δの変動量に応じた値である。
【0034】
よって、目標絞込蒸気量ΔFだけ背圧タービン入口蒸気流量を絞ることによって、背圧タービン入口蒸気流量と蒸気発生設備1の蒸気発生設備蒸気量との差がなくなるように制御されることになりすなわち、復水蒸気タービン4側へ供給される蒸気量の変動がなくなるように制御されることになるから、背圧蒸気タービン6側に供給される蒸気量が低減し、復水蒸気タービン4側へ供給される蒸気量が一定となる。
【0035】
したがって、復水蒸気タービン4側へ供給される蒸気量の変動が抑制され、蒸気発生設備1がトリップしその発生蒸気量が低減した場合であっても、復水蒸気タービン4側へは継続して安定した蒸気量の供給が行われることになる。
そして、蒸気加減弁12の弁開度が目標絞込加減弁開度V* と一致すると、スイッチSW1及びSW2が動作し、蒸気加減弁12は、加減弁絞込回路24に代えて排気蒸気流量調節回路22によって制御されるようになるが、排気蒸気流量調節回路22では、蒸気加減弁12の弁開度が加減弁絞込回路24によって制御されている間は、背圧タービン排気蒸気流量PVを追従し、これを排気蒸気流量制御目標値SVとして更新設定するようにしている。
【0036】
したがって、加減弁絞込回路24から排気蒸気流量調節回路22による制御に切り替わったときには、排気蒸気流量調節回路22では、この時点における背圧タービン排気蒸気流量PVを目標値とし、この目標値となるように蒸気加減弁12を制御することになる。
ここで、加減弁絞込回路24による蒸気加減弁12の弁開度に対する制御によって、背圧タービン排気蒸気流量が変動した場合、排気蒸気流量調節回路22における目標値が加減弁絞込回路24による制御開始前の値に維持されている場合には、背圧タービン排気蒸気流量が制御開始前の値となるように蒸気加減弁12の弁開度が制御されることになり、場合によっては、復水蒸気タービン4側への高圧蒸気供給量を確保することができなくなる場合がある。
【0037】
しかしながら、加減弁絞込回路24により蒸気加減弁12の弁開度に対する制御が行われている間は、背圧タービン排気蒸気流量の検出値をその制御目標値SVとして順次更新設定するようにしているから、蒸気加減弁12の弁開度に対する制御が、加減弁絞込回路24による制御から、排気蒸気流量調節回路22による制御に切り替わったとしても、バンプレスに制御を行うことができる。
【0038】
したがって、蒸気発生設備1において突発的な蒸気量変動が発生した場合であっても、重要機器が接続された復水蒸気タービン4側に安定した蒸気供給を行うことができ、重要機器に影響を及ぼすことを回避することができる。
また、このとき、背圧タービン入口蒸気流量と蒸気発生設備蒸気量との差分値の変動量に基づいて目標絞込蒸気量ΔFを検出し、これに基づいて弁開度を調整するようにしている。ここで、復水蒸気タービン4及び背圧蒸気タービン6には、高圧蒸気レシーバ2を介して蒸気供給が行われるため、蒸気発生設備1の蒸気発生量が減少した場合、復水蒸気タービン4或いは背圧蒸気タービン6側への供給蒸気量が実際に減少するまでに時間差が生じると共に、緩やかに減少することになる。したがって、例えば復水蒸気タービン4への供給蒸気量を検出しこれに基づいて弁開度を調整した場合には、復水蒸気タービン4への供給蒸気量が実際に減少した時点でその減少量に基づいて制御が行われることになり、復水蒸気タービン4に接続される高圧蒸気重要負荷設備への蒸気供給量が減少すると共に、弁開度の絞り調整を行っている期間も長くなり、すなわち、この間は、復水蒸気タービン4への蒸気供給量は減少した状態となる。
【0039】
しかしながら、背圧タービン入口蒸気流量と蒸気発生設備蒸気量との差分値δの変動量に基づいて蒸気加減弁12の弁開度制御を行うことによって、復水蒸気タービン4側への蒸気供給量が実際に変動する以前に弁開度の調整を開始することができると共に、復水蒸気タービン4への蒸気供給変動量を抑制し得る弁開度に速やかに制御することができる。よって、復水蒸気タービン4への蒸気供給量を速やかに確保し、安定した蒸気供給を行うことができる。
【0040】
なお、上記実施の形態においては、加減弁絞込回路24を1つ備える場合について説明しているが、背圧蒸気タービン6を複数備え、蒸気加減弁12を複数備えるプラントである場合には、加減弁絞込回路24を複数設け、各蒸気加減弁12のそれぞれに対応させるようにすればよい。
ここで、蒸気発生設備1が高圧蒸気発生源に対応し、復水蒸気タービン4が特定蒸気タービンに対応し、背圧蒸気タービン6が非特定蒸気タービンに対応し、排気蒸気流量調節回路22が第1の調整手段に対応し、加減弁絞込回路24が第2の調整手段に対応している。
【0041】
【発明の効果】
本発明の請求項1乃至請求項3に係る、蒸気タービンの負荷制限方法によれば、非特定蒸気タービンへの高圧蒸気供給量を調整するための蒸気加減弁の弁開度と前記非特定蒸気タービンに供給される高圧蒸気供給量との対応情報を予め検出しておくと共に、高圧蒸気発生源による高圧蒸気発生量と前記非特定蒸気タービンへの高圧蒸気供給量との差分値を逐次検出し、高圧蒸気発生量の低減異常が検出されたときには、差分値の基準値との変動量を低減し得る高圧蒸気供給量の目標値を検出し、この目標値となり得る蒸気加減弁の弁開度を、前記対応情報に基づき特定し、この特定弁開度となるように、前記蒸気加減弁の弁開度を調整するようにしたから、蒸気加減弁の弁開度を、特定蒸気タービンへの高圧蒸気供給量を確保し得る弁開度に速やかに調整することができ、高圧蒸気発生量の低減異常が発生した場合であっても、特定蒸気タービン側への高圧蒸気供給量を確保し安定した供給を行うことができる。
【0042】
また、このとき、高圧蒸気発生量の低減異常が検出されないときには、非特定蒸気タービンの排気蒸気流量が目標値となるように蒸気加減弁の弁開度を第1の調整手段により調整し、高圧蒸気発生量の低減異常が検出されたときには、第1の調整手段に代えて前記特定弁開度を検出してこの特定弁開度となるように蒸気加減弁の弁開度を第2の調整手段により調整し、蒸気加減弁の弁開度が前記特定弁開度となったときには、前記第1の調整手段による調整に切り替えるようになっている場合には、第2の調整手段により前記蒸気加減弁の弁開度を制御しているときに、排気蒸気流量の検出値を、第1の調整手段における排気蒸気流量の目標値として更新設定するようにしているから、蒸気加減弁の弁開度が前記特定弁開度となり、第2の調整手段から第1の調整手段に切り替えた場合であっても、蒸気加減弁をバンプレスに制御することができる。
【図面の簡単な説明】
【図1】本発明の、蒸気タービンの負荷制限方法を適用した、蒸気発電プラントの系統図である。
【図2】図1の背圧タービン入口蒸気流量調整回路20の構成の一例を示すブロック図である。
【符号の説明】
1 蒸気発生設備
4 復水蒸気タービン
5 高圧蒸気重要負荷設備
6 背圧蒸気タービン
12 蒸気加減弁
14 蒸気発生設備蒸気流量発信器
16 背圧タービン入口蒸気流量発信器
18 背圧タービン排気蒸気流量発信器
20 背圧タービン入口蒸気流量調整回路
23 排気蒸気流量調節計
24 加減弁絞込回路
26 切替回路
31 演算器
32 ホールド回路
33 目標絞込加減弁開度検出器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention operates the back-pressure turbine and the condensing turbine using high-pressure steam, and continuously supplies the high-pressure steam to the condensing turbine even when the amount of high-pressure steam generated at the high-pressure steam generating source is reduced. The present invention relates to a method for limiting the load of a steam turbine which can be secured by using the above method.
[0002]
[Prior art]
BACKGROUND ART A steam power plant is known as a plant that drives a steam turbine with high-pressure steam produced by a boiler to operate various industrial facilities such as a generator, a blower, and a compressor.
In the steam power plant, for example, as described in JP-A-4-321702 or JP-A-7-269305, steam produced by the boiler performs predetermined work by a condensing steam turbine. After that, it becomes condensed, and after being subjected to various treatments, it is again supplied to the boiler, and part of the effective energy is recovered as power generation by the back-pressure steam turbine, and then supplied to various parts of the factory as low-pressure steam. It is divided into those used as factory steam.
[0003]
In such a steam power plant, when the steam generation equipment such as a boiler trips due to some trouble or the like and the amount of generated steam is reduced, when the amount of steam to be generated by the tripped steam generation equipment is small, Can be compensated by adjusting the load of other boilers, etc., but if there is a shortage of steam that cannot be compensated by other boilers, It is necessary to adjust the load on the steam turbine side as equipment.
[0004]
Basically, if the load connected to the condensate turbine is a very important load in terms of equipment such as the blower for the blast furnace, and it is difficult to adjust the load on the condensate turbine side, A method is used in which the load is adjusted on the side so as not to affect the important load on the condensing turbine side. At this time, the effect of load adjustment on the back pressure turbine side is compensated for by a low-pressure steam backup device such as a steam accumulator.
[0005]
As a method of adjusting the load on the back pressure steam turbine side, a manual method or a method of controlling the exhaust steam flow at the outlet of the back pressure steam turbine is usually performed in the back pressure steam turbine. In the controller for controlling the exhaust steam flow rate using the trip signal, the set value is automatically subtracted by the amount of steam generated from the tripped steam generating equipment, and the load is adjusted by the exhaust steam flow rate control. Methods have been proposed.
[0006]
[Problems to be solved by the invention]
However, when the load of the back pressure steam turbine is manually adjusted, the steam generated by the tripped steam generation equipment is monitored while monitoring pressure fluctuations of the high pressure steam to the back pressure turbine and the low pressure steam from the back pressure turbine. Although the load corresponding to the amount is adjusted by squeezing the steam control valve, the amount of squeezing depends on the experience of the operator, and it has been difficult to stably limit the load.
[0007]
Further, in the method of adjusting the load by the controller for controlling the back pressure steam flow rate, the load adjustment is performed with the same gain as that of the normal back pressure steam flow rate control. However, there is a problem that pressure fluctuation is applied to the motor and it takes time until the control is stabilized.
Therefore, the present invention has been made in view of the above-mentioned conventional unsolved problem, and a load limiting method for a steam turbine capable of reducing a pressure fluctuation to a high-pressure steam system and quickly limiting the load. It is intended to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a load limiting method for a steam turbine according to claim 1 of the present invention operates a plurality of steam turbines using high-pressure steam generated by a high-pressure steam generating source, and operates the plurality of steam turbines from the high-pressure steam generating source. When the amount of high-pressure steam generation decreases, the high-pressure steam supply to non-specific steam turbines other than the specific steam turbines for which the high-pressure steam supply is to be ensured is limited by limiting the high-pressure steam supply to the specific steam turbine. In the steam turbine load limiting method for ensuring a steam supply amount, a valve opening degree of a steam control valve for adjusting a high-pressure steam supply amount to the non-specific steam turbine and a steam control valve supplied to the non-specific steam turbine. While detecting the correspondence information with the high-pressure steam supply amount in advance, sequentially detecting a difference value between the high-pressure steam generation amount and the high-pressure steam supply amount to the non-specific steam turbine, When a reduction abnormality in the amount of generated high-pressure steam is detected, a target value of the high-pressure steam supply amount capable of reducing a variation amount of the difference value from a reference value is detected, and the steam control valve that can be the target value is detected. The valve opening is specified based on the correspondence information, and the valve opening of the steam control valve is adjusted so as to be the specific valve opening.
[0009]
According to the first aspect of the present invention, the difference between the high-pressure steam supply amount to the non-specific steam turbine except for the specific steam turbine for which the high-pressure steam supply amount is to be secured and the high-pressure steam generation amount generated by the high-pressure steam generation source is determined. For example, when a high-pressure steam generation source side abnormality is detected on the high-pressure steam generation side or the like, high-pressure steam capable of reducing the amount of change between the difference value and the reference value of the difference value is detected. A target value of the supply amount is detected.
[0010]
Here, the difference value between the high-pressure steam generation amount and the high-pressure steam supply amount to the non-specific steam turbine is a high-pressure steam supply amount to be supplied to the specific steam turbine. If a value corresponding to the high-pressure steam supply amount to be supplied to the specific steam turbine is set, the high-pressure steam supply amount supplied to the specific steam turbine becomes a predetermined value.
[0011]
Therefore, the target value of the high-pressure steam supply amount to the non-specific steam turbine that can reduce the variation amount of the difference value from the reference value is detected, and the valve opening degree of the steam control valve that can be the target value is included in the corresponding information. The steam control valve is quickly adjusted to the specified valve opening by adjusting the steam control valve to the specified specified valve opening, and the high pressure to the non-specific steam turbine is controlled. The steam supply amount is reduced, and the high-pressure steam supply amount to the specific steam turbine is secured.
[0012]
Further, in the steam turbine load limiting method according to claim 2, the valve of the steam control valve is controlled such that the exhaust steam flow rate of the non-specific steam turbine becomes a target value when the abnormal reduction of the high-pressure steam generation amount is not detected. The opening is adjusted by the first adjusting means, and when the abnormal decrease in the high-pressure steam generation amount is detected, the specific valve opening is detected instead of the first adjusting means to detect the specific valve opening. When the valve opening of the steam control valve is adjusted by the second adjusting unit so that the valve opening of the steam control valve becomes the specific valve opening by the adjustment by the second adjusting unit, A load limiting method for a steam turbine configured to switch to adjustment by the first adjusting means, wherein the exhaust steam flow rate is controlled when the valve opening of the steam control valve is controlled by the second adjusting means. Detect It is characterized by being adapted to update sets the detected value as a target value of the exhaust steam flow in said first adjusting means.
[0013]
In the invention according to the second aspect, when the abnormality in reducing the amount of generated high-pressure steam is not detected, the steam control valve is adjusted by the first adjusting means so that the exhaust steam flow rate of the non-specific steam turbine becomes the target value. When a reduction abnormality of the high-pressure steam generation amount is detected, the steam control valve is adjusted by the second adjusting means so that the valve opening becomes the specific valve opening. The adjustment is switched to the adjustment by the first adjusting means. At this time, while the steam adjusting valve is being adjusted by the second adjusting means, the exhaust steam flow rate of the non-specific steam turbine is detected, and the detected exhaust steam flow rate is used as the exhaust steam flow rate in the first adjusting means. Is set as the target value for the update.
[0014]
Here, if the exhaust steam flow rate of the non-specific steam turbine fluctuates by adjusting the steam control valve by the second adjusting means, the exhaust steam flow rate is adjusted based on the target value set by the first adjusting means. Is controlled, the actual exhaust steam flow rate is different from the target value, so that the steam control valve is adjusted. In some cases, the supply of high-pressure steam to the specific steam turbine cannot be ensured. However, since the detected value of the exhaust steam flow rate of the non-specific steam turbine is sequentially updated and set as the target value of the exhaust steam flow rate, even when the control mode is switched to the first adjusting means, the steam control valve is operated. The adjustment of the valve opening is performed by the bumpless.
[0015]
Further, a load limiting method for a steam turbine according to claim 3 is characterized in that the specific steam turbine is a condensing steam turbine and the non-specific steam turbine is a back-pressure steam turbine.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram of a steam supply system of a steam power plant to which the load limiting method for a steam turbine according to the present invention is applied.
The high-pressure steam produced by the steam generating equipment 1 such as a boiler is distributed to a condensate steam turbine 4 and a back-pressure steam turbine 6 via a high-pressure steam receiver 2, and drives these steam turbines. The high-pressure steam important load equipment 5 such as a blast furnace blowing equipment is connected to the condensate steam turbine 4. The back-pressure steam turbine 6 drives the generator 7 to collect a part of the steam energy as a power generation amount, and supplies the reduced-pressure steam to various parts in the factory as low-pressure steam.
[0017]
A steam accumulator or the like is connected to a low-pressure steam line 8 for supplying low-pressure steam reduced in pressure by the back-pressure steam turbine 6 as a low-pressure steam backup device 10 when the low-pressure steam pressure is reduced.
A steam control valve 12 for controlling the supply amount of high-pressure steam to the back pressure steam turbine 6 is interposed on the inlet side of the back pressure steam turbine 6. The valve opening is adjusted according to a pulse signal from the inlet steam flow control circuit 20.
[0018]
Further, on the outlet side of the steam generating facility 1, there is provided a steam generating facility steam flow transmitter 14 for detecting a steam flow rate generated in the steam generating facility 1, and on the inlet side of the steam control valve 12, A back pressure turbine inlet steam flow transmitter 16 for detecting a steam flow to the back pressure steam turbine 6 is provided, and an exhaust steam flow from the back pressure steam turbine 6 is detected upstream of the low pressure steam backup facility 10. A back pressure turbine exhaust steam flow transmitter 18 is provided.
[0019]
Further, the steam control valve 12 is provided with a control valve opening transmitter 13 for detecting the valve opening, and detection signals from these transmitters 13 to 18 are input to a back pressure turbine inlet steam flow control circuit 20. It is supposed to be.
In FIG. 1, only one set of each of the steam generating facility 1, the condensing steam turbine 4, the high-pressure steam important load facility 5, the back-pressure steam turbine 6, and the generator 7 is shown. A plurality of units are provided to configure a plant.
[0020]
FIG. 2 is a circuit diagram showing a configuration of the back pressure turbine inlet steam flow control circuit 20. As shown in FIG. 2, the back-pressure turbine inlet steam flow control circuit 20 determines the back-pressure turbine exhaust steam flow PV based on the back-pressure turbine exhaust steam flow from the back-pressure turbine exhaust steam flow transmitter 18. An exhaust steam flow control circuit 22 for controlling the valve opening of the steam control valve 12 so as to achieve the control target value SV, a back pressure turbine inlet steam flow from the back pressure turbine inlet steam flow transmitter 16, and steam generation. A control valve throttle circuit 24 for controlling the valve opening of the steam control valve 12 based on the steam flow rate of the steam generating equipment from the equipment steam flow transmitter 14, the control valve throttle circuit 24, and the steam control valve 12 and a switch SW2 inserted between the steam control valve 22 and the steam control valve 12 to control the control valve narrowing circuit 24 and the exhaust steam flow. Control circuit By any of 2, and a switching circuit 26 for switching whether to control the valve opening of the steam control valve 12.
[0021]
The exhaust steam flow control circuit 22 has an exhaust steam flow controller 23. In the exhaust steam flow controller 23, the back pressure turbine exhaust steam flow PV from the back pressure turbine exhaust steam flow A pulse signal to the steam control valve 12 is generated so as to coincide with the control target value SV of the flow rate. The exhaust steam flow rate adjusting circuit 22 receives the SW2 switching signal from the switching circuit 26, and if the SW2 switching signal is a signal for controlling the switch SW2 to shut off, the exhaust steam flow rate of the back-pressure turbine is controlled. The back pressure turbine exhaust steam flow PV from the transmitter 18 is sequentially updated and set as the control target value SV of the exhaust steam flow. When the SW2 switching signal is switched from a signal for controlling the cutoff of the switch SW2 to a signal for controlling the conduction, the update is performed. With the set control target value SV of the exhaust steam flow as a new target value, a pulse signal for matching the control target value SV with the back-pressure turbine exhaust steam flow PV is generated. The control target value SV of the exhaust steam flow rate is set to a preset initial value at the time of startup.
[0022]
Further, as shown in FIG. 2, the control valve throttle circuit 24 calculates a difference value δ between the flow rates at the back pressure turbine inlet steam flow and the steam generation facility steam flow in the calculator 31 every time the steam flow is notified. , This difference value δ and a preset difference value target value δ * From this difference, the variation amount of the difference value δ is calculated and output to the hold circuit 32 as the target throttled steam amount ΔF. In the hold circuit 32, a steam generation source trip signal is input. When the steam generation source trip signal is a signal indicating that the steam generation equipment 1 has tripped, the target throttled steam amount from the arithmetic unit 31 is output. ΔF and the back flow turbine inlet steam flow at this time are held. Note that the steam generation source trip signal is a binary signal for notifying that a predetermined steam flow rate cannot be generated in the steam generation facility 1. Is output.
[0023]
Then, in the target throttle control valve opening degree calculation circuit 33, based on the target throttled steam amount ΔF and the back pressure turbine inlet steam flow rate when the steam generating equipment 1 trips, which is held by the hold circuit 32, The back flow turbine inlet steam flow when the back pressure turbine inlet steam flow at the time of the trip is reduced from this state by the target throttled steam amount ΔF is set to the target value F * The actual back pressure turbine inlet steam flow is calculated as the target value F from a characteristic diagram showing the correspondence between the preset back pressure turbine inlet steam flow and the opening / closing degree of the steam control valve 12. * The opening and closing of the controllable valve, which can be expressed as * Is output to the comparator 34.
[0024]
The characteristic diagram is set in advance in accordance with the performance of the steam control valve 12 and the like. For example, as shown in FIG. 2, as the steam flow rate at the back pressure turbine inlet increases, the valve opening of the control valve 12 also increases. Is set to Although this is a characteristic diagram, it may be set as a characteristic table, or may be set based on a performance curve of the steam control valve 12.
[0025]
In the comparator 34, the opening / closing valve opening from the opening / closing valve opening transmitter 13 and the target throttle opening / closing valve opening V from the target throttle opening / closing valve opening calculation circuit 33. * And outputs a control command to the pulse generator 35 while they do not match. Further, the opening and closing of the control valve and the target throttle opening and closing valve V * Are equal to each other, the switching valve 26 and the target throttle opening / closing valve opening V * And outputs an ON command signal indicating that has been matched.
[0026]
The pulse generator 35 outputs a pulse signal to the steam control valve 12 to reduce the valve opening while the control command is input from the comparator 34.
On the other hand, the switching circuit 26 inputs a steam generation source trip signal indicating that the steam generation equipment 1 has tripped from the steam generation equipment 1 and, from the comparator 34, adjusts the opening / closing valve opening to the target throttle opening / closing valve opening. V * , An AND circuit 41 that outputs a signal that goes high when an ON command signal indicating that the signal coincides with the above, a NOT circuit 42 that logically inverts the steam generation source trip signal, and a logical An OR circuit 43 for outputting the product, a steam generation source trip signal, and an AND circuit 45 for inputting a signal obtained by logically inverting an ON command signal from the comparator 34 by a NOT circuit 44 are input.
[0027]
The switch SW2 operates according to the output of the OR circuit 43. The switch SW2 is turned on when the output of the OR circuit 43 is at a high level, and is turned off when the output of the OR circuit 43 is at a low level. The switch SW1 operates according to the output of the AND circuit 45, and is turned on when the output of the AND circuit 45 is at a high level, and is turned off when the output of the AND circuit 45 is at a low level.
[0028]
That is, the switching circuit 26 operates according to the steam generation source trip signal, and when the steam generation equipment 1 is normal, the output of the AND circuit 41 is at the low level, the output of the NOT circuit 42 is at the high level, 43, the output of the NOT circuit 44 is at a high level, and the output of the AND circuit 45 is at a low level. Thus, the switch SW2 is turned on, and the switch SW1 is turned off. The valve opening of the steam control valve 12 is adjusted based on the pulse signal from the exhaust steam flow controller 23, and the steam control valve 12 is opened such that the back-pressure turbine exhaust steam flow becomes the control target value of the exhaust steam flow. Adjust the degree.
[0029]
Then, when the steam generating equipment 1 trips, the output of the NOT circuit 42 becomes low level, so that the output of the OR circuit 43 becomes low level, and the switch SW2 is turned off. In addition, since the trip signal goes high, the output of the AND circuit 45 goes high, and the switch SW1 is turned on.
Therefore, a pulse signal from the pulse generator 35 is supplied to the steam control valve 12 instead of the pulse signal from the exhaust steam flow controller 23, and the steam control valve 12 calculates the target throttle control valve opening degree. The target throttle opening / closing valve opening V detected by the circuit 33 * The valve opening of the steam control valve 12 is adjusted so that
[0030]
The valve opening of the steam control valve 12 is set to the target throttle control valve opening V * When they match, the output of the AND circuit 41 goes high, the output of the OR circuit 43 goes high, and the switch SW2 is turned on. Further, since the output of the NOT circuit 44 becomes low level, the output of the AND circuit 45 is switched to low level, and the switch SW1 is turned off.
[0031]
Therefore, a pulse signal from the exhaust steam flow controller 22 is supplied to the steam control valve 12 instead of the pulse signal from the pulse generator 35. Therefore, the steam control valve 12 is controlled such that the back-pressure turbine exhaust steam flow becomes the control target value SV of the exhaust steam flow.
Here, the arithmetic unit 31 calculates a difference value δ between the back pressure turbine inlet steam flow rate from the back pressure turbine inlet steam flow rate transmitter 16 and the steam generation facility steam flow rate from the steam generation facility steam flow rate transmitter 14. And the target value δ of the difference value δ and the preset difference value δ * And the difference is constantly calculated as the target throttled steam amount ΔF.
[0032]
Then, when the steam generating equipment 1 trips, when the steam generating source trip signal is received, the hold circuit 32 holds the target throttled steam amount ΔF and the steam flow rate at the back pressure turbine inlet at the present time, and the back pressure at the present time. The value obtained by subtracting the target throttled steam amount ΔF from the turbine inlet steam flow rate is calculated as the target value F of the back pressure turbine inlet steam flow rate. * And the target value F is obtained from a preset characteristic diagram. * Is calculated, and the target throttle opening / closing valve opening V is calculated. * The adjustable valve opening from the adjustable valve opening transmitter 13 is the target throttled current valve opening V * The valve opening of the steam control valve 12 is controlled so that
[0033]
Therefore, the valve opening of the steam control valve 12 becomes the target throttle control valve opening V at the time of trip. * And the target throttle opening / closing valve opening degree V * Is the valve opening that can reduce the steam flow at the back pressure turbine inlet by the target throttled steam amount ΔF, and the target throttled steam amount ΔF is the steam flow rate at the back pressure turbine inlet and the steam generation facility steam rate of the steam generation facility 1. Is a value corresponding to the amount of change in the difference value δ with respect to.
[0034]
Therefore, by reducing the steam flow rate at the inlet of the back pressure turbine by the target throttled steam quantity ΔF, the control is performed so that the difference between the steam flow rate at the back pressure turbine inlet and the steam amount of the steam generating facility of the steam generating facility 1 is eliminated. That is, since the control is performed so that the fluctuation in the amount of steam supplied to the condensing steam turbine 4 side is eliminated, the amount of steam supplied to the back-pressure steam turbine 6 side is reduced, and the amount supplied to the condensing steam turbine 4 side is reduced. The amount of steam to be discharged is constant.
[0035]
Therefore, fluctuations in the amount of steam supplied to the condensing steam turbine 4 are suppressed, and even when the steam generating facility 1 trips and the amount of generated steam is reduced, the steam is continuously supplied to the condensing steam turbine 4. The supplied steam amount is supplied.
The valve opening of the steam control valve 12 is set to the target throttle control valve opening V * When the values match, the switches SW1 and SW2 operate, and the steam control valve 12 is controlled by the exhaust steam flow control circuit 22 instead of the control valve throttle circuit 24. In the exhaust steam flow control circuit 22, While the valve opening degree of the steam control valve 12 is controlled by the control valve throttle circuit 24, the back pressure turbine exhaust steam flow rate PV is followed, and this is updated and set as the exhaust steam flow control target value SV. I have.
[0036]
Therefore, when the control is switched from the control valve throttle circuit 24 to the control by the exhaust steam flow control circuit 22, the exhaust steam flow control circuit 22 uses the back pressure turbine exhaust steam flow PV at this time as a target value, which is the target value. Thus, the steam control valve 12 is controlled as described above.
Here, if the exhaust steam flow rate of the back pressure turbine fluctuates due to the control of the valve opening of the steam control valve 12 by the adjustment valve throttle circuit 24, the target value in the exhaust steam flow rate adjustment circuit 22 is adjusted by the adjustment valve throttle circuit 24. When the value is maintained at the value before the control is started, the valve opening of the steam control valve 12 is controlled so that the back-pressure turbine exhaust steam flow rate becomes the value before the control is started. In some cases, it is not possible to secure a high-pressure steam supply amount to the condensate steam turbine 4 side.
[0037]
However, while the control of the valve opening of the steam control valve 12 is performed by the control valve throttle circuit 24, the detected value of the back-pressure turbine exhaust steam flow rate is sequentially updated and set as the control target value SV. Therefore, even if the control for the valve opening degree of the steam control valve 12 is switched from the control by the control valve throttle circuit 24 to the control by the exhaust steam flow control circuit 22, the bumpless control can be performed.
[0038]
Therefore, even when a sudden change in the amount of steam occurs in the steam generating facility 1, stable steam supply can be performed to the condensate steam turbine 4 to which the important device is connected, which affects the important device. Can be avoided.
At this time, the target throttled steam amount ΔF is detected based on the amount of change in the difference between the back flow turbine inlet steam flow rate and the steam generation facility steam amount, and the valve opening is adjusted based on this. I have. Here, since steam is supplied to the condensing steam turbine 4 and the back-pressure steam turbine 6 via the high-pressure steam receiver 2, when the steam generation amount of the steam generating equipment 1 decreases, the condensing steam turbine 4 or the back-pressure steam turbine 6 A time difference occurs until the amount of steam supplied to the steam turbine 6 actually decreases, and the amount gradually decreases. Therefore, for example, when the amount of steam supplied to the condensing steam turbine 4 is detected and the valve opening is adjusted based on the detected amount, when the amount of steam supplied to the condensing steam turbine 4 actually decreases, the amount is determined based on the decrease. Control is performed, the amount of steam supply to the high-pressure steam important load equipment connected to the condensate steam turbine 4 is reduced, and the period during which the throttle adjustment of the valve opening is being performed becomes longer. Then, the steam supply amount to the condensate steam turbine 4 is reduced.
[0039]
However, by controlling the valve opening of the steam control valve 12 based on the amount of change in the difference value δ between the back-pressure turbine inlet steam flow rate and the steam generation facility steam amount, the steam supply amount to the steam recovery steam turbine 4 side is reduced. Adjustment of the valve opening can be started before actually changing, and the valve opening can be quickly controlled to a valve opening that can suppress the amount of steam supply fluctuation to the condensate steam turbine 4. Therefore, the amount of steam supply to the steam recovery steam turbine 4 can be secured promptly, and stable steam supply can be performed.
[0040]
In the above embodiment, the case where one control valve throttle circuit 24 is provided is described. However, in the case where the plant includes a plurality of back pressure steam turbines 6 and a plurality of steam control valves 12, A plurality of throttle valves 24 may be provided to correspond to each steam control valve 12.
Here, the steam generation equipment 1 corresponds to a high-pressure steam generation source, the condensate steam turbine 4 corresponds to a specific steam turbine, the back pressure steam turbine 6 corresponds to a non-specific steam turbine, and the exhaust steam flow control circuit 22 The adjusting valve narrowing circuit 24 corresponds to the second adjusting unit.
[0041]
【The invention's effect】
According to the load limiting method for a steam turbine according to claims 1 to 3 of the present invention, the valve opening degree of a steam control valve for adjusting the supply amount of high-pressure steam to a non-specific steam turbine and the non-specific steam The correspondence information between the high-pressure steam supply amount supplied to the turbine is detected in advance, and the difference value between the high-pressure steam generation amount by the high-pressure steam generation source and the high-pressure steam supply amount to the non-specific steam turbine is sequentially detected. When a reduction abnormality in the amount of generated high-pressure steam is detected, a target value of the supply amount of high-pressure steam that can reduce the variation of the difference value from the reference value is detected, and the valve opening of the steam control valve that can be the target value is detected. Is specified based on the correspondence information, and the valve opening of the steam control valve is adjusted so as to be the specific valve opening, so that the valve opening of the steam control valve is adjusted to the specific steam turbine. Valve opening to ensure high-pressure steam supply Ya or the can be adjusted, even when the reduction abnormality of the high-pressure steam generation amount has occurred, can be supplied stably to ensure high-pressure steam supply to a particular steam turbine side.
[0042]
Further, at this time, when no abnormality in the reduction of the high-pressure steam generation amount is detected, the valve opening of the steam control valve is adjusted by the first adjusting means so that the exhaust steam flow rate of the non-specific steam turbine becomes the target value. When an abnormal decrease in the amount of generated steam is detected, the specific valve opening is detected instead of the first adjusting means, and the valve opening of the steam control valve is adjusted to the specific valve opening by the second adjustment. When the valve opening degree of the steam control valve is equal to the specific valve opening degree, switching to the adjustment by the first adjusting means is performed by the second adjusting means. Since the detected value of the exhaust steam flow rate is updated and set as the target value of the exhaust steam flow rate in the first adjusting means when controlling the valve opening of the control valve, the valve opening of the steam control valve is controlled. Is the specific valve opening and the second control Even when switching from the means to the first adjustment means can control the steam control valve bumpless.
[Brief description of the drawings]
FIG. 1 is a system diagram of a steam power plant to which a load limiting method for a steam turbine according to the present invention is applied.
FIG. 2 is a block diagram showing an example of a configuration of a back pressure turbine inlet steam flow control circuit 20 of FIG. 1;
[Explanation of symbols]
1 Steam generation equipment
4 Condensate steam turbine
5 High-pressure steam important load equipment
6 Back pressure steam turbine
12 Steam control valve
14 Steam generation equipment steam flow transmitter
16 Back pressure turbine inlet steam flow transmitter
18 Back pressure turbine exhaust steam flow transmitter
20 Back pressure turbine inlet steam flow control circuit
23 Exhaust steam flow controller
24 Control valve throttle circuit
26 Switching circuit
31 arithmetic unit
32 hold circuit
33 Target throttle control valve opening detector

Claims (3)

高圧蒸気発生源で発生した高圧蒸気を用いて複数の蒸気タービンを運転し、前記高圧蒸気発生源からの高圧蒸気発生量が減少したときには、前記蒸気タービンのうち、高圧蒸気供給量を確保すべき特定蒸気タービンを除く非特定蒸気タービンへの高圧蒸気供給量を制限して前記特定蒸気タービンへの高圧蒸気供給量を確保するようにした蒸気タービンの負荷制限方法において、
前記非特定蒸気タービンへの高圧蒸気供給量を調整するための蒸気加減弁の弁開度と前記非特定蒸気タービンに供給される高圧蒸気供給量との対応情報を予め検出しておくと共に、前記高圧蒸気発生量と前記非特定蒸気タービンへの高圧蒸気供給量との差分値を逐次検出し、
前記高圧蒸気発生量の低減異常が検出されたときには、前記差分値の、基準値との変動量を低減し得る前記高圧蒸気供給量の目標値を検出し、当該目標値となり得る前記蒸気加減弁の弁開度を前記対応情報に基づき特定し、この特定弁開度となるように、前記蒸気加減弁の弁開度を調整することを特徴とする蒸気タービンの負荷制限方法。
When a plurality of steam turbines are operated using the high-pressure steam generated by the high-pressure steam source, and when the amount of high-pressure steam generated from the high-pressure steam source decreases, the high-pressure steam supply amount of the steam turbine should be secured. In a load limiting method for a steam turbine, which restricts a high-pressure steam supply amount to a non-specific steam turbine other than a specific steam turbine to secure a high-pressure steam supply amount to the specific steam turbine,
Preliminarily detecting correspondence information between the valve opening degree of the steam control valve for adjusting the high-pressure steam supply amount to the non-specific steam turbine and the high-pressure steam supply amount supplied to the non-specific steam turbine, The difference between the high-pressure steam generation amount and the high-pressure steam supply amount to the non-specific steam turbine is sequentially detected,
When an abnormal decrease in the high-pressure steam generation amount is detected, a target value of the high-pressure steam supply amount capable of reducing a variation amount of the difference value from a reference value is detected, and the steam control valve that can be the target value is detected. And a valve opening of the steam control valve is adjusted so as to achieve the specified valve opening.
前記高圧蒸気発生量の低減異常が検出されないときには、前記非特定蒸気タービンの排気蒸気流量が目標値となるように前記蒸気加減弁の弁開度を第1の調整手段により調整し、前記高圧蒸気発生量の低減異常が検出されたときには、前記第1の調整手段に代えて、前記特定弁開度を検出して当該特定弁開度となるように前記蒸気加減弁の弁開度を第2の調整手段により調整し、当該第2の調整手段による調整によって前記蒸気加減弁の弁開度が前記特定弁開度となったときには、前記第1の調整手段による調整に切り替えるようにした蒸気タービンの負荷制限方法であって、
前記第2の調整手段により前記蒸気加減弁の弁開度を制御しているときには、前記排気蒸気流量の検出値を、前記第1の調整手段における前記排気蒸気流量の目標値として更新設定することを特徴とする請求項1記載の蒸気タービンの負荷制限方法。
When no abnormal decrease in the high-pressure steam generation amount is detected, the valve opening of the steam control valve is adjusted by first adjusting means so that the exhaust steam flow rate of the non-specific steam turbine becomes a target value. When the generation abnormality is detected, instead of the first adjusting means, the specific valve opening is detected and the valve opening of the steam control valve is changed to the second valve opening so as to become the specific valve opening. The steam turbine is adapted to be adjusted by the first adjusting means when the valve opening of the steam control valve becomes the specific valve opening by the adjustment by the second adjusting means. Load limiting method,
When the opening degree of the steam control valve is controlled by the second adjusting means, the detected value of the exhaust steam flow rate is updated and set as a target value of the exhaust steam flow rate in the first adjusting means. The method according to claim 1, wherein the load is limited.
前記特定蒸気タービンは復水蒸気タービンであり、前記非特定蒸気タービンは背圧蒸気タービンであることを特徴とする請求項1又は2記載の蒸気タービンの負荷制限方法。The load limiting method for a steam turbine according to claim 1, wherein the specific steam turbine is a condensate steam turbine, and the non-specific steam turbine is a back-pressure steam turbine.
JP2002212892A 2002-07-22 2002-07-22 Load limiting method for steam turbine Pending JP2004052695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212892A JP2004052695A (en) 2002-07-22 2002-07-22 Load limiting method for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212892A JP2004052695A (en) 2002-07-22 2002-07-22 Load limiting method for steam turbine

Publications (1)

Publication Number Publication Date
JP2004052695A true JP2004052695A (en) 2004-02-19

Family

ID=31935692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212892A Pending JP2004052695A (en) 2002-07-22 2002-07-22 Load limiting method for steam turbine

Country Status (1)

Country Link
JP (1) JP2004052695A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476987B (en) * 2009-01-19 2011-04-20 沈阳化工学院 Fault diagnosis method for turbine emergency protection device
CN108005735A (en) * 2017-11-04 2018-05-08 国网江西省电力公司电力科学研究院 A kind of real-time dynamic correcting method of optimal first pressing of Steam Turbine
CN110219705A (en) * 2019-06-05 2019-09-10 陕西渭河发电有限公司 A kind of high back pressure heat supply steam turbine accident conditions guard method
CN110374694A (en) * 2019-06-05 2019-10-25 陕西渭河发电有限公司 A kind of high back pressure thermal power plant unit method of controlling security

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476987B (en) * 2009-01-19 2011-04-20 沈阳化工学院 Fault diagnosis method for turbine emergency protection device
CN108005735A (en) * 2017-11-04 2018-05-08 国网江西省电力公司电力科学研究院 A kind of real-time dynamic correcting method of optimal first pressing of Steam Turbine
CN110219705A (en) * 2019-06-05 2019-09-10 陕西渭河发电有限公司 A kind of high back pressure heat supply steam turbine accident conditions guard method
CN110374694A (en) * 2019-06-05 2019-10-25 陕西渭河发电有限公司 A kind of high back pressure thermal power plant unit method of controlling security

Similar Documents

Publication Publication Date Title
US8689565B2 (en) Method of providing asymmetric joint control for primary frequency regulation in combined-cycle power plants
KR101572115B1 (en) Method and device for controlling regulation valve, and power generating plant using them
JP2004052695A (en) Load limiting method for steam turbine
JP4734184B2 (en) Steam turbine control device and steam turbine control method
JP2002147253A (en) Gas turbine protecting device and fuel control device
JP3752568B2 (en) Gas turbine fuel heating system
JP2008138525A (en) Gas turbine control device
JP2004060496A (en) Steam turbine control device
JP2509612B2 (en) Bypass controller
JP6543175B2 (en) Control device and control method of control valve
JP3673295B2 (en) Method and apparatus for controlling reheat steam temperature of boiler
JP3324899B2 (en) Turbine gland steam pressure controller
JP2001317305A (en) Method and device for controlling turbine generator
JP3747253B2 (en) Thermal power plant protection system
JPH1030408A (en) Pressure energy recovery equipment from high pressure gas
JP4127911B2 (en) Steam turbine ground steam pressure controller
JPH10103020A (en) Controller and control method for turbine bypass valve in combined plant
JPH05272361A (en) Load controller of combined-cycle power generating plant
JP6768307B2 (en) Control device
JPH0486306A (en) Combined cycle main steam temperature control device
JPH06117602A (en) Pressure controller
JPH0979508A (en) Feed water controller for steam generating plant
JPH07305605A (en) Control device for reducing pressure and temperature of turbine bypass steam
JP2007170359A (en) Turbine control device
JPH04259609A (en) Combined cycle control device