JP2004052616A - Method of machining turbine blade of supercharger - Google Patents

Method of machining turbine blade of supercharger Download PDF

Info

Publication number
JP2004052616A
JP2004052616A JP2002209148A JP2002209148A JP2004052616A JP 2004052616 A JP2004052616 A JP 2004052616A JP 2002209148 A JP2002209148 A JP 2002209148A JP 2002209148 A JP2002209148 A JP 2002209148A JP 2004052616 A JP2004052616 A JP 2004052616A
Authority
JP
Japan
Prior art keywords
rotor shaft
turbine blade
processing
unbalance
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002209148A
Other languages
Japanese (ja)
Other versions
JP3916146B2 (en
Inventor
Kazunori Noda
野田 和徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDK KAKO CENTER KK
Original Assignee
NDK KAKO CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDK KAKO CENTER KK filed Critical NDK KAKO CENTER KK
Priority to JP2002209148A priority Critical patent/JP3916146B2/en
Publication of JP2004052616A publication Critical patent/JP2004052616A/en
Application granted granted Critical
Publication of JP3916146B2 publication Critical patent/JP3916146B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Supercharger (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of machining a turbine blade of a supercharger for shortening a time for correcting a degree of unbalance and improving the yield of products by greatly reducing the degree of unbalance being unavoidably produced in a conventional machining method. <P>SOLUTION: A cylindrical boss portion 12 on the side of a rotor shaft is previously provided on a joint portion between the precisely cast turbine blade 2 and the rotor shaft 3. A front end portion 14 of the turbine blade 2 is machined into a cylindrical shape with an outer periphery face B of the boss portion as a machining criterion in the radial direction and then the boss portion on the side of the rotor shaft is finish-machined with an outer periphery face C of the front end portion as a machining criterion in the radial direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、過給機のタービン翼の加工方法に関する。
【0002】
【従来の技術】
図5は、タービン翼とロータ軸を接合したタービンロータ軸の全体構成図である。この図において、(A)は完成したタービンロータ軸1であり、(B)はタービンロータ軸1を、その接合部分でタービン翼2とロータ軸3に分離して示した説明図である。(A)のタービンロータ軸1の右端にコンプレッサ翼(図示せず)をネジ止めして、過給機内に組み込む。かかるタービンロータ軸1は、特に小型のものでは、数万〜数10万rpmの高速で回転するため、そのつりあい良さは極めて重要となる。そのため、タービンロータ軸1は、動つりあい試験によりそのアンバランス量を計測し、図に斜線で示すA,B部分(2箇所)を削ってアンバランスを調整するようになっている。
【0003】
図6は、従来のタービンロータ軸の加工工程図であり、図7はその模式図である。図6及び図7に示すように、先ず、精密鋳造したタービン翼2の接合部を機械加工し、ロータ軸3を仕上げ代を残して中間加工する(A)(B)。次に、電子ビーム溶接で一体化してタービンロータ軸1にする(C)。次いで、ロータ軸部分を仕上加工し、ロータ軸を硬化処理(窒化処理や高周波焼入)し、軸の研摩とタービン翼の外径を研削加工する(D)。最後に動つりあい試験によりアンバランス量を計測し、タービン翼の一部を削ってアンバランスを調整してタービンロータ軸1が完成する。
【0004】
【発明が解決しようとする課題】
図8は、タービン翼2の精密鋳造品の接合部を機械加工する工程の説明図であり、(A)は加工前、(B)は加工後を示している。この図に示すように、精密鋳造品の接合部には、予めボス穴2aが設けられており、この加工工程では、タービン翼の接合側端面A及び外径Bを基準に接合部の端面2bと内面2cを加工する。
【0005】
しかし、従来のこの加工工程が要因となって、タービン翼2のアンバランス量が大きい問題点があった。その結果、上述した最終工程のアンバランス調整において、アンバランス量が大きすぎ、修正に長時間を要したり、修正できずに不良品になる率が高い問題点があった。
また、以下の問題点もあった。
(1)素材単体でのアンバランス計測基準がない。
(2)加工基準部ではアンバランスの計測ができない。
(3)軽量化等のため羽根が薄くなりチャックできない。
【0006】
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、従来の加工方法によって不可避的に発生していたアンバランス量を大幅に低減することができ、素材にアンバランス計測基準を設けることで加工時のバランス管理が可能であり、羽根の形状や厚さに関係なく加工が可能であり、これにより、アンバランス量の修正時間を短縮し、製品の歩留りを高めることができる過給機のタービン翼の加工方法を提供することにある。
【0007】
【課題を解決するための手段】
従来は、タービン翼の翼外径部を加工基準とし接合部の切削加工を施している。しかし、タービン翼の素材は精密鋳造品であるが、加工基準とする翼部分はその形状が複雑な上、肉薄であり、鋳造後の冷却速度が速いため、収縮応力の影響を受けて変形が大きい。そのため、加工基準として必要と考えられる精度(±0.02mm程度)が得られていない(実力値としては0.2mm程度)。その結果、翼外径部を加工基準として加工した接合部の中心がタービン翼全体のバランス中心に対してズレを発生し、タービンロータ軸全体のアンバランスの要因となることが後述する計測結果から明らかとなった。
【0008】
一方、タービン翼のバランス中心は、表面積に対する質量の割合が翼に比較して大きく、冷却速度が遅い中心部分に存在すると考えられる。この部分は、収縮応力の影響が小さく、精度維持が比較的容易であるためである。その結果、中心部分に隣接する精密鋳造品のボス部が、タービン翼全体のバランス中心にほぼ一致していることが計測の結果明らかとなった。
【0009】
本出願は、上述した新規の知見を基に創案されたものである。すなわち、本発明によれば、精密鋳造品のタービン翼(2)のロータ軸(3)との接合部に、予め円筒形のロータ軸側ボス部(12)を設け、該ボス部外周面Bを半径方向の加工基準にしてタービン翼(2)の先端部(14)を円筒形に加工し、次いで先端部外周面Cを半径方向の加工基準にしてロータ軸側ボス部を仕上げ加工する、ことを特徴とする過給機のタービン翼の加工方法が提供される。
【0010】
本発明のこの方法によれば、タービン翼全体のバランス中心に対してズレが大きく、かつチャック等で把持しにくいタービン翼の翼外径部を半径方向の加工基準とせず、タービン翼全体のバランス中心にほぼ一致している2つのボス部(ロータ軸側と先端部)を順に半径方向の加工基準に用いて、ロータ軸側ボス部(12)を仕上げ加工することができる。
従って、従来の翼外径部を加工基準とした仕上げ加工により不可避的に生じていたアンバランスをなくし、精密鋳造品のバランス中心に近いロータ軸側ボス部(12)を加工することができる。
【0011】
本発明の好ましい実施形態によれば、前記先端部(14)の加工において、タービン翼の接合側端面Aを軸方向の加工基準にして円筒形の端面及び根元部を加工する。
また、前記仕上げ加工において、先端部(14)の外周面C及び端面又は根元部Dを加工基準にして少なくとも接合部の端面(2b)と内面(2c)を加工する。
なお、素材先端部を基準にしたアンバランス量が一定量内であれば、加工せずに直接加工基準とすることも可能である。
【0012】
この方法により、ロータ軸側ボス部(12)を基準に加工された先端部外周面を基準に、接合部の端面(2b)及び内面(2c)を加工するので、ボス部(12)、端面(2b)及び内面(2c)を精密鋳造品のバランス中心に近い同心に形成することができ、ロータ軸との接合部分の肉厚を均一化し、電子ビーム溶接をより高精度に行うことができる。
【0013】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。
図1は、本発明によるタービンロータ軸の加工工程図であり、図2は、図1の模式図である。図1に示すように、本発明の加工方法では、タービン翼を精密鋳造S1a、先端部の円筒形加工S1b及びボス部の仕上げ加工S1cの3ステップで加工する。
【0014】
タービン翼の精密鋳造S1aでは、図2(A)に示すように、精密鋳造品のタービン翼2のロータ軸3との接合部に、かつタービン翼の回転中心上に予め円筒形のロータ軸側ボス部12を設ける。このロータ軸側ボス部12にはロータ軸3との接合部に、円筒形のボス穴2aを設ける。また、タービン翼2のロータ軸3の反対側先端部にもタービン翼の回転中心上に別のボス部14を予め設ける。
【0015】
ロータ軸側ボス部12とそのボス穴2aは、ロータ軸の一端を最小限度の機械加工で精度よく嵌め込めるように、精密鋳造で可能な範囲でできるだけ高精度にするのがよく、例えば±0.01mm程度にする。また、先端側のボス部14も、好ましくは、高精度の円筒形に同等の精度で予め設けるのがよい。
【0016】
なお、先端側のボス部14を、従来と同様に6角面またはいわゆる菊座に形成してもよい。その他の点では、この精密鋳造S1aは、従来と同様である。
【0017】
先端部の円筒形加工S1bでは、図2(A)に示すように、ロータ軸側ボス部12を半径方向の加工基準Bとしてタービン翼2の先端部14を円筒形に加工する。なおこの加工において、タービン翼の接合側端面Aを軸方向の加工基準にして円筒形の端面及び根元部を加工する。
【0018】
ボス部の仕上げ加工S1cでは、図2(B)に示すように、先端部14の外周面を半径方向の加工基準Cにしてロータ軸側ボス部12を仕上げ加工する。なおこの加工において、軸方向は先端部14の端面又は根元部Dを加工基準とする。
またこの仕上げ加工において、先端部14の外周面C及び端面又は根元部Dを加工基準にして少なくとも接合部の端面2bと内面2cを加工する。更に、ボス穴2aとボス部12の外径寸法もこの工程で仕上げ加工するのがよい。
【0019】
図3は、本発明による加工中のアンバランス量を示す計測結果である。この図において、(A)は、精密鋳造S1aで得た精密鋳造品(素材)のアンバランス量であり、(B)は先端部の円筒形加工S1bの後(先端部加工後)のアンバランス量である。各図において、アンバランス量は、偏重心の方向(0〜360°)とその偏心量(μm)で示している。また図中の番号と黒点(●)は異なる素材の実測値であり、白丸(○)はその平均値である。
なお(A)の精密鋳造品(素材)のアンバランス量は、鋳造の型修正である程度調整が可能である。
【0020】
図3(A)において、平均アンバランス量は、34.86°の方向に23.72μm(約0.02mm)であり、15点(No.11は欠番)の精密鋳造品(素材)がこの平均位置近傍に集中していることがわかる。
このことから、タービン翼の精密鋳造品(素材)は、全体としては、加工基準として必要と考えられる精度(±0.02mm程度)に近い精度が得られることがわかる。
【0021】
しかし、タービン翼の翼部分はその形状が複雑な上、肉薄であり、鋳造後の冷却速度が速いため、収縮応力の影響を受けて変形が大きい。これに対して、タービン翼の中心部分は、表面積に対する質量の割合が翼に比較して大きく、冷却速度が遅いため、収縮応力の影響が小さく、精度維持が比較的容易である。従って、中心部分に隣接する精密鋳造品のボス部は、素材全体の平均よりも精度が高く、タービン翼全体のバランス中心にほぼ一致しているといえる。
【0022】
図3(B)は、先端部加工後のアンバランス量であり、平均アンバランス量は、58.57°の方向に17.51μm(約0.02mm)である。このことから、先端部加工後の15点(No.11は欠番)も加工前の精密鋳造品(素材)の平均位置近傍に集中していることがわかる。
【0023】
図3の(A)と(B)の比較から、素材(A)と先端部加工後(B)とで、アンバランスの方向とその偏心量が非常に近似していることがわかる。このことから、先端部の円筒形加工S1bが、少なくともアンバランスを増大させない方向で行われており、半径方向の加工基準Bが適正であることがわかる。
【0024】
図4は、本発明と従来例による仕上加工後のアンバランス量を示す計測結果である。この図において、(A)は、先端部の円筒形加工S1bの後、ボス部の仕上げ加工S1cを行った本発明の方法によるタービン翼2のアンバランス量であり、(B)は従来に方法によるタービン翼2のアンバランス量である。各図において、アンバランス量は、偏重心の方向(0〜360°)とその偏心量(μm)で示している。また図中の番号と黒点(●)は異なる素材の実測値であり、白丸(○)はその平均値である。
【0025】
図4(A)において、平均アンバランス量は、76.43°の方向に21.76μm(約0.02mm)であり、7点の加工品(タービン翼2)がこの平均位置近傍に集中していることがわかる。
このことから、本発明のタービン翼は、精密鋳造品(素材)のアンバランス傾向をそのまま保持し、かつ加工基準として必要と考えられる精度(±0.02mm程度)に近い精度が得られることがわかる。
【0026】
これに対して、図4(B)の従来例では、平均アンバランス量は、27.71°の方向に63.92μm(約0.06mm)であり、かた7点の加工品(タービン翼2)がこの方向および偏心量も大きくばらついていることがわかる。
これは、アンバランス量が大きいタービン翼の外径を基準に加工したためであり、その結果、最終工程のアンバランス調整において、アンバランス量が大きすぎ、修正に長時間を要したり、修正できずに不良品になる率が高くなることがわかる。
【0027】
上述した本発明の方法によれば、タービン翼全体のバランス中心に対してズレが大きく、かつチャック等で把持しにくいタービン翼の翼外径部を加工基準とせず、タービン翼全体のバランス中心にほぼ一致している2つのボス部(ロータ軸側と先端部)を順に加工基準に用いて、ロータ軸側ボス部12を仕上げ加工することができる。
従って、従来の翼外径部を加工基準とした仕上げ加工により不可避的に生じていたアンバランスをなくし、精密鋳造品のバランス中心に近いロータ軸側ボス部12を加工することができる。
【0028】
また、ボス穴2aを有するロータ軸側ボス部12を基準に加工された先端部外周面を基準に、接合部の端面2b及び内面2cを加工するので、加工していないボス穴2aと加工した端面2b及び内面2cを精密鋳造品のバランス中心に近い同心に形成することができ、ロータ軸との接合部分の肉厚を均一化し、電子ビーム溶接をより高精度に行うことができる。
更に、ボス穴2aとボス部12の外径寸法もこの工程で仕上げ加工することにより、更にロータ軸側ボス部12全体を精密鋳造品のバランス中心に近い同心に形成することができ、ロータ軸との接合部分の肉厚を均一化し、電子ビーム溶接をより高精度に行うことができる。
【0029】
次ぎにタービン翼以外の部分の加工方法を説明する。
図1において、本発明の加工工程では、更に、ロータ軸の仕上加工S2、ロータ軸の硬化処理S3a、ロータ軸の研摩S3b、電子ビーム溶接S4、タービン翼の外径研削S5、及び動バランスの調整S5の各ステップを有する。
【0030】
ロータ軸の仕上加工S2は、好ましくは、中間加工を省略してロータ軸単独で最終仕上げまで行う。また、引き続く、ロータ軸の硬化処理S3aにおいて、必要な窒化処理又は高周波焼入れを行い、ロータ軸の研摩S3bにおいて表面を研摩する。
【0031】
電子ビーム溶接S4は、タービン翼の仕上げ加工S1cで加工したボス穴2aにロータ軸の仕上加工S2で予め仕上げ加工したロータ軸3の一端3aを嵌め込み、その接合部分を電子ビーム溶接する。
【0032】
タービン翼の外径研削S5では、ロータ軸の仕上加工S2で仕上げ加工したロータ軸3の外径Cと端面Eを加工基準として、タービン翼2を加工する。またはロータ軸3のセンタ穴Dと翼のセンター穴2dを加工基準として加工する。
【0033】
最後に動バランスの調整S6によりアンバランス量を計測し、タービン翼の一部を削ってアンバランスを調整してタービンロータ軸1が完成する。
【0034】
なお、本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。例えば、上述した実施形態では、過給機のタービンロータ軸の加工、特にタービン翼2とロータ軸3の接合について説明したが、本発明の方法は、例えば真空部品、航空宇宙部品等の分野において複数の部材を互いに同軸上に溶接する場合にも同様に適用することができる。
【0035】
【発明の効果】
上述したように、本発明の過給機のタービン翼の加工方法は、従来の加工方法によって不可避的に発生していたアンバランス量を大幅に低減することができ、素材にアンバランス計測基準を設けることで加工時のバランス管理が可能であり、羽根の形状や厚さに関係なく加工が可能であり、これにより、アンバランス量の修正時間を短縮し、製品の歩留りを高めることができる、等の種々の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明によるタービンロータ軸の加工工程図である。
【図2】図1の模式図である。
【図3】本発明による加工中のアンバランス量を示す計測結果である。
【図4】本発明と従来例による仕上加工後のアンバランス量を示す計測結果である。
【図5】タービン翼とロータ軸を接合したタービンロータ軸の全体構成図である。
【図6】従来のタービンロータ軸の加工工程図である。
【図7】図6の模式図である
【図8】タービン翼2の精密鋳造品の接合部を機械加工する工程説明図である。
【符号の説明】
1 タービンロータ軸、2 タービン翼、2a ボス穴、2b 端面、
2c 接合部内面、2d センター穴、3 ロータ軸、3a 接合端、
4 溶接治具、5 ボール、6 ヘッド、7 溶接ビード、
12 ロータ軸側ボス部、14 先端部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for processing a turbine blade of a supercharger.
[0002]
[Prior art]
FIG. 5 is an overall configuration diagram of a turbine rotor shaft in which a turbine blade and a rotor shaft are joined. In this figure, (A) is a completed turbine rotor shaft 1 and (B) is an explanatory diagram showing the turbine rotor shaft 1 separated into a turbine blade 2 and a rotor shaft 3 at a joint portion thereof. A compressor blade (not shown) is screwed to the right end of the turbine rotor shaft 1 shown in FIG. Such a turbine rotor shaft 1 rotates at a high speed of tens of thousands to hundreds of thousands of rpm especially in a small-sized one, so that its balance is extremely important. Therefore, the unbalance amount of the turbine rotor shaft 1 is measured by a dynamic balance test, and the unbalance is adjusted by cutting off portions A and B (two locations) indicated by oblique lines in the figure.
[0003]
FIG. 6 is a process chart of a conventional turbine rotor shaft, and FIG. 7 is a schematic view thereof. As shown in FIGS. 6 and 7, first, the joint of the precision-cast turbine blade 2 is machined, and the rotor shaft 3 is subjected to intermediate machining except for a finishing margin (A) and (B). Next, the turbine rotor shaft 1 is integrated by electron beam welding (C). Next, the rotor shaft portion is finished, the rotor shaft is hardened (nitriding or induction hardening), and the shaft is polished and the outer diameter of the turbine blade is ground (D). Finally, the amount of unbalance is measured by a dynamic balance test, and a part of the turbine blade is cut off to adjust the unbalance, whereby the turbine rotor shaft 1 is completed.
[0004]
[Problems to be solved by the invention]
FIGS. 8A and 8B are explanatory diagrams of a step of machining a joint portion of a precision casting of the turbine blade 2, wherein FIG. 8A shows a state before the processing and FIG. 8B shows a state after the processing. As shown in this drawing, a boss hole 2a is provided in advance at the joint of the precision casting, and in this processing step, the end face 2b of the joint is determined based on the joint side end face A and the outer diameter B of the turbine blade. And the inner surface 2c.
[0005]
However, there is a problem that the unbalance amount of the turbine blade 2 is large due to the conventional processing step. As a result, in the above-described imbalance adjustment in the final step, the imbalance amount is too large, and it takes a long time to correct, or a high rate of defective products cannot be corrected.
There are also the following problems.
(1) There is no unbalance measurement standard for the material alone.
(2) Unbalance cannot be measured at the processing reference portion.
(3) The blades become thin due to weight reduction or the like, and chucking is not possible.
[0006]
The present invention has been made to solve such a problem. That is, an object of the present invention is to significantly reduce the amount of unbalance inevitably generated by the conventional processing method, and it is possible to manage the balance during processing by providing an unbalance measurement reference to the material. Provided is a method of processing a turbine blade of a turbocharger, which can perform processing regardless of the shape and thickness of the blade, thereby shortening the time required to correct the imbalance amount and increasing the product yield. It is in.
[0007]
[Means for Solving the Problems]
Conventionally, the joining portion is cut using the outer diameter portion of the turbine blade as a processing reference. However, although the material of the turbine blade is a precision cast product, the blade part used as a processing standard has a complicated shape, is thin, and has a high cooling rate after casting, so that it is affected by shrinkage stress and deformed. large. Therefore, the accuracy (about ± 0.02 mm) considered necessary as a processing standard is not obtained (the actual value is about 0.2 mm). As a result, from the measurement results described below, it was found that the center of the joint processed using the outer diameter portion of the blade as the processing reference caused a deviation from the balance center of the entire turbine blade, which was a cause of unbalance of the entire turbine rotor shaft. It became clear.
[0008]
On the other hand, it is considered that the balance center of the turbine blade is located at the center where the ratio of mass to the surface area is larger than that of the blade and the cooling rate is slow. This is because the effect of the shrinkage stress is small in this portion, and it is relatively easy to maintain the accuracy. As a result, it became clear from the measurement results that the boss of the precision casting adjacent to the center portion almost coincided with the balance center of the entire turbine blade.
[0009]
The present application has been made based on the above-mentioned new findings. That is, according to the present invention, a cylindrical rotor shaft-side boss portion (12) is provided in advance at the joint of the turbine blade (2) of the precision casting with the rotor shaft (3), and the boss portion outer peripheral surface B is provided. The tip (14) of the turbine blade (2) is machined into a cylindrical shape with the machining reference in the radial direction, and then the rotor shaft side boss is finished with the tip outer peripheral surface C as the machining reference in the radial direction. A method for machining a turbine blade of a supercharger is provided.
[0010]
According to this method of the present invention, the deviation from the center of balance of the entire turbine blade is large, and the outer diameter portion of the turbine blade that is difficult to be gripped by a chuck or the like is not used as a radial machining reference, and the balance of the entire turbine blade is balanced. The two boss portions (the rotor shaft side and the tip portion) which are substantially coincident with the center can be sequentially used as the processing reference in the radial direction to finish the rotor shaft side boss portion (12).
Therefore, the rotor shaft side boss portion (12) close to the balance center of the precision casting can be machined by eliminating the unbalance inevitably generated by the conventional finishing process using the outer diameter portion of the blade.
[0011]
According to a preferred embodiment of the present invention, in processing the tip portion (14), a cylindrical end surface and a root portion are machined with the joint-side end surface A of the turbine blade as an axial machining reference.
In the finishing process, at least the end surface (2b) and the inner surface (2c) of the joint are processed using the outer peripheral surface C and the end surface or the root portion D of the tip portion (14) as a processing reference.
In addition, if the unbalance amount based on the front end of the material is within a certain amount, it is also possible to directly use the processing reference without performing the processing.
[0012]
According to this method, the end face (2b) and the inner face (2c) of the joining portion are machined with reference to the outer peripheral surface of the tip portion machined based on the rotor shaft side boss (12). (2b) and the inner surface (2c) can be formed concentrically close to the balance center of the precision casting, the thickness of the joint with the rotor shaft can be made uniform, and electron beam welding can be performed with higher precision. .
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a process diagram of a turbine rotor shaft according to the present invention, and FIG. 2 is a schematic diagram of FIG. As shown in FIG. 1, in the machining method of the present invention, a turbine blade is machined in three steps: precision casting S1a, cylindrical machining S1b at the tip, and finishing S1c at the boss.
[0014]
In the precision casting S1a of the turbine blade, as shown in FIG. 2 (A), a cylindrical rotor shaft side is formed beforehand on the joint of the turbine blade 2 of the precision casting with the rotor shaft 3 and on the rotation center of the turbine blade. A boss 12 is provided. The rotor shaft side boss portion 12 is provided with a cylindrical boss hole 2 a at a joint portion with the rotor shaft 3. Further, another boss portion 14 is provided in advance on the rotation center of the turbine blade 2 at the tip of the turbine blade 2 on the side opposite to the rotor shaft 3.
[0015]
The rotor shaft side boss portion 12 and its boss hole 2a are preferably made as high as possible in precision casting so that one end of the rotor shaft can be fitted with a minimum amount of machining. About 0.01 mm. The boss 14 on the distal end side is also preferably provided in advance in a high-precision cylindrical shape with the same accuracy.
[0016]
The boss 14 on the tip side may be formed in a hexagonal surface or a so-called chrysanthemum seat as in the conventional case. Otherwise, this precision casting S1a is the same as the conventional one.
[0017]
In the cylindrical processing S1b of the tip part, as shown in FIG. 2A, the tip part 14 of the turbine blade 2 is machined into a cylindrical shape using the rotor shaft side boss part 12 as a working reference B in the radial direction. In this processing, the cylindrical end face and the root are machined using the joint-side end face A of the turbine blade as the machining reference in the axial direction.
[0018]
In the finishing process S1c of the boss portion, as shown in FIG. 2B, the rotor shaft side boss portion 12 is finished using the outer peripheral surface of the tip portion 14 as a working reference C in the radial direction. In this processing, the end face of the tip portion 14 or the root D is used as a processing reference in the axial direction.
In this finishing process, at least the end surface 2b and the inner surface 2c of the joint are processed with reference to the outer peripheral surface C and the end surface or the root portion D of the tip portion 14. Further, the outer diameters of the boss hole 2a and the boss portion 12 are preferably finished in this step.
[0019]
FIG. 3 is a measurement result showing an unbalance amount during processing according to the present invention. In this figure, (A) shows the unbalance amount of the precision casting (material) obtained by the precision casting S1a, and (B) shows the unbalance after the cylindrical processing S1b at the tip (after the tip processing). Quantity. In each figure, the unbalance amount is indicated by the direction of the eccentricity (0 to 360 °) and the eccentricity (μm). Also, the numbers and black dots (●) in the figure are the actually measured values of different materials, and white circles (○) are the average values.
The imbalance amount of the precision casting (material) of (A) can be adjusted to some extent by modifying the casting mold.
[0020]
In FIG. 3A, the average unbalance amount is 23.72 μm (approximately 0.02 mm) in the direction of 34.86 °, and 15 points (No. 11 is a missing number) of the precision cast product (material) It can be seen that it is concentrated near the average position.
This indicates that the precision casting (raw material) of the turbine blade as a whole has an accuracy close to the accuracy (approximately ± 0.02 mm) considered necessary as a processing standard.
[0021]
However, the blade portion of the turbine blade has a complicated shape, is thin, and has a high cooling rate after casting. On the other hand, in the central portion of the turbine blade, the ratio of mass to the surface area is larger than that of the blade, and the cooling rate is slow. Therefore, the influence of shrinkage stress is small, and accuracy is relatively easily maintained. Therefore, it can be said that the boss portion of the precision casting adjacent to the center portion has higher accuracy than the average of the entire material, and substantially matches the balance center of the entire turbine blade.
[0022]
FIG. 3B shows the amount of unbalance after processing of the tip, and the average amount of unbalance is 17.51 μm (about 0.02 mm) in the direction of 58.57 °. From this, it can be seen that the 15 points (No. 11 is a missing number) after the processing of the tip are also concentrated near the average position of the precision casting (material) before the processing.
[0023]
From the comparison between (A) and (B) in FIG. 3, it can be seen that the direction of imbalance and the amount of eccentricity are very similar between the raw material (A) and the processed end portion (B). From this, it is understood that the cylindrical processing S1b at the tip is performed at least in a direction that does not increase the imbalance, and the processing reference B in the radial direction is appropriate.
[0024]
FIG. 4 is a measurement result showing the unbalance amount after the finish processing according to the present invention and the conventional example. In this figure, (A) shows the unbalance amount of the turbine blade 2 according to the method of the present invention in which the boss portion finishing process S1c is performed after the tip end cylindrical process S1b, and (B) is the conventional method. Is the amount of unbalance of the turbine blade 2 due to In each figure, the unbalance amount is indicated by the direction of the eccentricity (0 to 360 °) and the eccentricity (μm). Also, the numbers and black dots (●) in the figure are the actually measured values of different materials, and white circles (○) are the average values.
[0025]
In FIG. 4A, the average unbalance amount is 21.76 μm (about 0.02 mm) in the direction of 76.43 °, and seven processed products (turbine blades 2) concentrate near this average position. You can see that it is.
From this, the turbine blade of the present invention can maintain the unbalance tendency of the precision casting (material) as it is, and can obtain an accuracy close to the accuracy (about ± 0.02 mm) considered necessary as a processing standard. Understand.
[0026]
On the other hand, in the conventional example of FIG. 4B, the average amount of unbalance is 63.92 μm (about 0.06 mm) in the direction of 27.71 °, and the processed product (turbine blade 2) that the direction and the amount of eccentricity vary greatly.
This is due to processing based on the outer diameter of the turbine blade, which has a large amount of unbalance.As a result, the amount of unbalance is too large in the unbalance adjustment in the final process, and it takes a long time to correct it, or it can be corrected. It can be seen that the rate of defective products becomes higher without any change.
[0027]
According to the method of the present invention described above, the deviation is large with respect to the balance center of the entire turbine blade, and the outer diameter portion of the turbine blade that is difficult to be gripped by a chuck or the like is not used as a processing reference. The rotor shaft side boss portion 12 can be finish-processed by using two boss portions (the rotor shaft side and the tip portion) that are substantially coincident with each other in order as a processing reference.
Therefore, it is possible to eliminate the unbalance inevitably generated by the conventional finishing process based on the outer diameter portion of the blade, and to process the rotor shaft side boss portion 12 close to the balance center of the precision casting.
[0028]
In addition, since the end surface 2b and the inner surface 2c of the joining portion are machined based on the outer peripheral surface of the tip portion machined based on the rotor shaft side boss portion 12 having the boss hole 2a, the boss hole 2a is machined with the unmachined boss hole 2a. The end face 2b and the inner face 2c can be formed concentrically near the balance center of the precision casting, the thickness of the joint with the rotor shaft can be made uniform, and electron beam welding can be performed with higher precision.
Further, by finishing the outer diameters of the boss hole 2a and the boss portion 12 in this step, the entire rotor shaft side boss portion 12 can be formed concentrically close to the balance center of the precision cast product. The thickness of the joining portion with the metal can be made uniform, and electron beam welding can be performed with higher accuracy.
[0029]
Next, a method of processing a portion other than the turbine blade will be described.
In FIG. 1, in the processing step of the present invention, further, finishing processing S2 of the rotor shaft, hardening processing S3a of the rotor shaft, polishing S3b of the rotor shaft, electron beam welding S4, outer diameter grinding S5 of the turbine blade, and dynamic balance. It has each step of adjustment S5.
[0030]
The finishing process S2 of the rotor shaft is preferably performed by the rotor shaft alone to the final finish, omitting the intermediate processing. Further, in the subsequent rotor shaft hardening treatment S3a, necessary nitriding treatment or induction hardening is performed, and the surface is polished in the rotor shaft polishing S3b.
[0031]
In the electron beam welding S4, one end 3a of the rotor shaft 3 finished in advance by the finishing process S2 of the rotor shaft is fitted into the boss hole 2a machined in the finishing process S1c of the turbine blade, and the joined portion is subjected to electron beam welding.
[0032]
In the outer diameter grinding S5 of the turbine blade, the turbine blade 2 is processed based on the outer diameter C and the end face E of the rotor shaft 3 finished in the finishing process S2 of the rotor shaft. Alternatively, machining is performed using the center hole D of the rotor shaft 3 and the center hole 2d of the blade as a machining reference.
[0033]
Finally, the amount of unbalance is measured by dynamic balance adjustment S6, and a part of the turbine blade is cut to adjust the unbalance, thereby completing the turbine rotor shaft 1.
[0034]
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the present invention. For example, in the above-described embodiment, the processing of the turbine rotor shaft of the supercharger, particularly the joining of the turbine blade 2 and the rotor shaft 3 has been described. However, the method of the present invention can be applied to the field of vacuum components, aerospace components, and the like. The same applies to a case where a plurality of members are coaxially welded to each other.
[0035]
【The invention's effect】
As described above, the method of processing a turbine blade of a turbocharger according to the present invention can significantly reduce the amount of unbalance that has been inevitably generated by a conventional processing method. By providing, it is possible to control the balance at the time of processing, it is possible to process regardless of the shape and thickness of the blade, thereby shortening the time required to correct the unbalance amount, it is possible to increase the product yield, And various other excellent effects.
[Brief description of the drawings]
FIG. 1 is a process diagram of a turbine rotor shaft according to the present invention.
FIG. 2 is a schematic diagram of FIG.
FIG. 3 is a measurement result showing an unbalance amount during processing according to the present invention.
FIG. 4 is a measurement result showing an unbalance amount after finish working according to the present invention and a conventional example.
FIG. 5 is an overall configuration diagram of a turbine rotor shaft in which a turbine blade and a rotor shaft are joined.
FIG. 6 is a process chart of a conventional turbine rotor shaft.
FIG. 7 is a schematic view of FIG. 6;
[Explanation of symbols]
1 turbine rotor shaft, 2 turbine blades, 2a boss hole, 2b end face,
2c joint inner surface, 2d center hole, 3 rotor shaft, 3a joint end,
4 welding jigs, 5 balls, 6 heads, 7 welding beads,
12 Boss on rotor shaft side, 14 Tip

Claims (3)

精密鋳造品のタービン翼(2)のロータ軸(3)との接合部に、予め円筒形のロータ軸側ボス部(12)を設け、該ボス部外周面Bを半径方向の加工基準にしてタービン翼(2)の先端部(14)を円筒形に加工し、次いで先端部外周面Cを半径方向の加工基準にしてロータ軸側ボス部を仕上げ加工する、ことを特徴とする過給機のタービン翼の加工方法。A cylindrical rotor shaft-side boss portion (12) is provided in advance at the joint of the turbine blade (2) of the precision casting with the rotor shaft (3), and the outer peripheral surface B of the boss portion is used as a working reference in the radial direction. A turbocharger characterized in that the tip (14) of the turbine blade (2) is machined into a cylindrical shape, and then the rotor shaft side boss is finished with the tip outer peripheral surface C being used as a machining reference in the radial direction. Method of processing turbine blades. 前記先端部(14)の加工において、タービン翼の接合側端面Aを軸方向の加工基準にして円筒形の端面及び根元部を加工する、ことを特徴とする請求項1に記載の過給機のタービン翼の加工方法。2. The turbocharger according to claim 1, wherein, in the processing of the tip portion, a cylindrical end surface and a root portion are processed with the joint-side end surface A of the turbine blade as a processing reference in the axial direction. 3. Method of processing turbine blades. 前記仕上げ加工において、先端部(14)の外周面C及び端面又は根元部Dを加工基準にして少なくとも接合部の端面(2b)と内面(2c)を加工する、ことを特徴とする請求項2に記載の過給機のタービン翼の加工方法。3. The finishing process according to claim 2, wherein at least the end surface (2b) and the inner surface (2c) of the joint are processed with reference to the outer peripheral surface C and the end surface or the root portion D of the tip portion (14). 3. The method for processing a turbine blade of a turbocharger according to claim 1.
JP2002209148A 2002-07-18 2002-07-18 Machining method of turbocharger turbine blade Expired - Lifetime JP3916146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209148A JP3916146B2 (en) 2002-07-18 2002-07-18 Machining method of turbocharger turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209148A JP3916146B2 (en) 2002-07-18 2002-07-18 Machining method of turbocharger turbine blade

Publications (2)

Publication Number Publication Date
JP2004052616A true JP2004052616A (en) 2004-02-19
JP3916146B2 JP3916146B2 (en) 2007-05-16

Family

ID=31933073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209148A Expired - Lifetime JP3916146B2 (en) 2002-07-18 2002-07-18 Machining method of turbocharger turbine blade

Country Status (1)

Country Link
JP (1) JP3916146B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105144A (en) * 2004-09-30 2006-04-20 Caterpillar Inc Turbocharger with titanium component
JP2007120409A (en) * 2005-10-28 2007-05-17 Daido Castings:Kk Hot wheel for turbocharger
JP2008045510A (en) * 2006-08-18 2008-02-28 Mitsubishi Heavy Ind Ltd Manufacturing method for turbine rotor
JP2010242561A (en) * 2009-04-02 2010-10-28 Ihi Corp Method for manufacturing rotor, and rotor and turbocharger
WO2014016016A1 (en) * 2012-07-24 2014-01-30 Schaeffler Technologies AG & Co. KG Device and method for joining a shaft-hub connection of a rotor
JP2016037927A (en) * 2014-08-08 2016-03-22 株式会社Ihi Turbine rotor shaft and manufacturing method of turbine rotor shaft
US10753205B2 (en) 2016-04-14 2020-08-25 Ihi Corporation Turbine shaft and turbocharger
CN113626938A (en) * 2021-08-24 2021-11-09 中国航发沈阳黎明航空发动机有限责任公司 Design method of turbine rear casing process reference
CN115091145A (en) * 2022-07-29 2022-09-23 重庆江增船舶重工有限公司 Machining method for casting turbine of supercharger

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105144A (en) * 2004-09-30 2006-04-20 Caterpillar Inc Turbocharger with titanium component
JP2007120409A (en) * 2005-10-28 2007-05-17 Daido Castings:Kk Hot wheel for turbocharger
JP2008045510A (en) * 2006-08-18 2008-02-28 Mitsubishi Heavy Ind Ltd Manufacturing method for turbine rotor
JP4727532B2 (en) * 2006-08-18 2011-07-20 三菱重工業株式会社 Manufacturing method of turbine rotor and manufacturing method of turbine rotor for exhaust turbocharger
JP2010242561A (en) * 2009-04-02 2010-10-28 Ihi Corp Method for manufacturing rotor, and rotor and turbocharger
WO2014016016A1 (en) * 2012-07-24 2014-01-30 Schaeffler Technologies AG & Co. KG Device and method for joining a shaft-hub connection of a rotor
JP2016037927A (en) * 2014-08-08 2016-03-22 株式会社Ihi Turbine rotor shaft and manufacturing method of turbine rotor shaft
US10753205B2 (en) 2016-04-14 2020-08-25 Ihi Corporation Turbine shaft and turbocharger
CN113626938A (en) * 2021-08-24 2021-11-09 中国航发沈阳黎明航空发动机有限责任公司 Design method of turbine rear casing process reference
CN113626938B (en) * 2021-08-24 2023-08-15 中国航发沈阳黎明航空发动机有限责任公司 Design method of turbine rear casing process reference
CN115091145A (en) * 2022-07-29 2022-09-23 重庆江增船舶重工有限公司 Machining method for casting turbine of supercharger

Also Published As

Publication number Publication date
JP3916146B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP2001254627A (en) Machining method for turbine rotor shaft of supercharger
US11215055B2 (en) Gas turbine engine rotor balancing
KR100468982B1 (en) Ibr fixture and method of machining
US7637010B2 (en) Methods for machining turbine engine components
US8286348B2 (en) Method of manufacturing and refinishing integrally bladed rotors
US7069654B2 (en) Rotor balancing
JP2004092650A (en) Improved method of manufacturing rotor of centrifugal compressor
CN105750844B (en) Compressor hollow spindle processing method
JP2004052616A (en) Method of machining turbine blade of supercharger
JP2011518274A (en) An improved method of manufacturing an integral bladed disk with a temporary blade support ring that is removed prior to finish milling
CN106271459A (en) The processing method of complex-curved integral wheel
CN113982754B (en) Novel aircraft engine multi-lobe non-uniformity combined cylindrical casing and processing method
US9114480B2 (en) Methods for joining a monocrystalline part to a polycrystalline part by means of an adapter piece made of polycrystalline material
JP6288283B2 (en) Hollow rotating shaft finishing method and hollow rotating shaft
CN109531157A (en) A kind of full-scale machine adding method of eccentric contract
EP3117946B1 (en) Linear friction welding method
JPS63210437A (en) Jig and method for correcting unbalance of cylindrical rotary body
CN105867307A (en) High-speed dynamic balance restoration method for transmission shaft
JPH0688178B2 (en) Ceramic rotor processing method
JPH04272404A (en) Vane bottom part structure of ceramics made rotary vane and processing method thereof
JP2021074837A (en) Impeller manufacturing method
JPS6176701A (en) Construction of ceramic rotor used in turbo machine
JPS63212702A (en) Balance correction method for ceramic rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

R150 Certificate of patent or registration of utility model

Ref document number: 3916146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term