JP2004052310A - Reinforcing construction method of existing structure - Google Patents

Reinforcing construction method of existing structure Download PDF

Info

Publication number
JP2004052310A
JP2004052310A JP2002209425A JP2002209425A JP2004052310A JP 2004052310 A JP2004052310 A JP 2004052310A JP 2002209425 A JP2002209425 A JP 2002209425A JP 2002209425 A JP2002209425 A JP 2002209425A JP 2004052310 A JP2004052310 A JP 2004052310A
Authority
JP
Japan
Prior art keywords
existing structure
reinforcing
cement board
toughness cement
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002209425A
Other languages
Japanese (ja)
Other versions
JP4085726B2 (en
Inventor
Masao Fukui
福井 真男
Shigeru Aoki
青木 茂
Akira Niimura
新村 亮
Yukinori Kubo
久保 征則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2002209425A priority Critical patent/JP4085726B2/en
Publication of JP2004052310A publication Critical patent/JP2004052310A/en
Application granted granted Critical
Publication of JP4085726B2 publication Critical patent/JP4085726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To economically reinforce an existing structure while avoiding the diversification of a process and an increase in labor. <P>SOLUTION: This reinforcing construction method integrally joins a reinforcing material 12 to a bridge pier 10 by arranging the reinforcing material 12 over the whole outside surface of the bridge pier 10. The reinforcing material 12 is composed of a highly tough cement board 14 and a fiber sheet for alternately joining the board 14. The board 14 has characteristics of a flexural strength of 30 MPa or higher, a span of 18 cm and a maximum deflection of 25 mm or larger. When reinforcing the bridge pier 10, the board 14 is arranged on the surface side of the bridge pier 10. Afterwards, a curing material 28 such as mortar is placed in an interval 18, and this material is cured, and the board 14 is integrated to the surface of the bridge pier 10. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、既設構造物の補強工法に関し、特に、高靭性セメントボードを補強材に用いる補強工法に関するものである。
【0002】
【従来の技術】
既設コンクリート構造物、例えば、道路橋や鉄道橋の橋脚、あるいは、床版は、耐震性や曲げ耐力の向上目的で補強する場合がある。また、既設コンクリート構造物は、塩害や中性化による経年劣化の補修と同時に、前述した目的も兼ねた補強を行う場合がある。
【0003】
このような補強に用いられる工法としては、従来、既設構造物の断面をコンクリートないしはモルタルで増加させる断面増厚工法、既設構造物の表面に鋼板を巻き付ける鋼板巻き立て工法などがあるが、これらの補強工法には、以下に説明する技術的な課題があった。
【0004】
【発明が解決しようとする課題】
すなわち、断面増厚工法の場合には、補強鉄筋を用いなくても要求性能を満足することもあるが、曲げ耐力の増大やせん断耐力の増大を意図した場合には、補強鉄筋の組立が必要であり、また、コンクリートやモルタルの打設用堰板の設置,取り外し、さらには、コンクリートあるいはモルタルの養生が必要になり、工程が多岐に亘ると同時に工期が長くなるという問題がある。
【0005】
また、この工法では、構造物の断面増厚により、構造物の自重が増大するので、基礎の補強が必要になる場合もある。
【0006】
一方、鋼板巻き立て工法の場合には、鋼板の重量が大きいので、巻き付けに大きな労力がかかり、鋼板は、腐食し易いため、防食塗装をする必要があり、特に、塩害を受ける条件の場合には、防食のグレードも高いものとなり、工費が嵩む工法となっていた。
【0007】
本発明は、このような従来の問題点に鑑みてなされたものであって、その目的とするところは、工程の多岐化と労力の増大化を回避しつつ、経済的に補強が行える既設構造物の補強工法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は、既設構造物の表面に補強材を配設して、前記補強材を前記既設構造物に一体的に結合させる既設構造物の補強工法において、前記補強材に、曲げ強度が30MPa以上で、スパン18cmで、最大撓みが25mm以上の高靭性セメントボートを用いるようにした。
【0009】
このように構成した既設構造物の補強工法によれば、高靭性セメントボードの高い靭性とせん断強度により、既設構造物の曲げ補強,せん断補強が可能になる。また、高靭性セメントボードは、鋼板に比べで軽量なので、鋼板巻き立て工法と比べて、架設労力が少なくなり、経済的になる。
【0010】
さらに、高靭性セメントボードは、モルタルなどを打設する際には、堰板兼用の埋設型枠となるので、堰板の解体が不要になり、養生期間も必要としないので、断面増厚工法に比べて、工種,工程が少なくなって、経済的になる。
【0011】
前記高靭性セメントボードは、予めその背面側に吸水を規制する吸水調整剤を塗布することができる。
【0012】
この構成によれば、高靭性セメントボードの背面側に吸水調整剤を塗布しているので、コンクリートやモルタルなどの硬化性材料を打設した際に、硬化性材料からの水分吸水が抑制され、過剰な吸水に伴う、付着力や曲げ強度の低下などの不都合を回避することができる。
【0013】
この場合の吸水調整剤は、エチレン酢酸ビニル共重合体エマルジョンを主成分とする水溶性液体を用いることができ、この水溶液を所定の希釈倍率で希釈して、高靭性セメントボードに塗布する。
【0014】
前記高靭性セメントボードには、製造過程で、プレス脱水する際に、金網などの凹凸形成部材を挟み込むことにより、高さが1mm程度で、間隔が1〜2mm程度の凹凸部を形成することができる。
【0015】
この構成によれば、高靭性セメントボードと硬化性材料との間の付着力を増強することができる。
【0016】
前記高靭性セメントボードは、所定長さで、所定厚みの角形形状に形成され、複数の前記高靭性セメントボードを前記既設構造物の外周に設置する際に、隣接する前記高靭性セメントボード間を炭素繊維またはアラミド繊維シートで接合することができる。
【0017】
前記高靭性セメントボードは、前記既設構造物の表面から所定の間隔を隔てて配置され、前記間隔内にコンクリート,モルタルなどの硬化性材料を充填して、前記硬化性材料を硬化させることにより、前記既設構造物に一体化させることができる。
【0018】
前記高靭性セメントボードは、一端が前記既設構造物に埋設されたアンカーにより、前記間隔を設けるようにして支持され、前記間隔内に鉄筋,PCストランドなどの補強鋼材を配置した後に、前記硬化性材料を充填することができる。
この構成は、高靭性セメントボードだけでは、既設構造物の補強効果が不足する場合に採用されるが、この場合でも、セメントボードの耐久性により、モルタルなどの硬化性材料の被り量を少なくすることができる。
【0019】
また、本発明では、前記高靭性セメントボードは、前記既設構造物の表面に隣接設置され、前記高靭性セメントボードの表面側から、硬化性樹脂を注入し、前記硬化性樹脂の硬化により、前記既設構造物に一体化させることができる。
【0020】
【発明の実施の形態】
以下、本発明の好適な実施の形態について、添付図面に基づいて詳細に説明する。図1から図3は、本発明にかかる既設構造物の補強工法の第1実施例を示している。
【0021】
図1は、本実施例の補強工法を既設構造物としての橋脚部10に適用した場合の施工終了状態を示している。本実施例の補強工法は、橋脚部10(既設構造物)の外表面の全面に渡って補強材12を配設し、この補強材12を橋脚部10と一体的に結合させている。
【0022】
補強材12は、高靭性セメントボード14と、高靭性セメントボード14を相互に接合する繊維シート16とから構成されている。高靭性セメントボード14は、その背面側にコンクリートやモルタル,樹脂モルタルなどの硬化性材料を打設する際に、打設範囲を隔成する堰板と兼用されるものであって、例えば、短辺の長さが900mmで、長辺の長さが1800mm程度の長方形の平板に形成されている。
【0023】
本実施例の高靭性セメントボード14は、曲げ強度が30MPa以上で、スパン18cmで、最大撓みが25mm以上の性能を備えている。このような高靭性セメントボート14は、セメントを主体として、所定厚み、例えば、約10mm程度の厚みを有し、補強繊維(耐アルカリ性に優れたPVA繊維)をセメントマトリックス中に2次元的にランダム配向させた形態になっている。
【0024】
このような高靭性セメントボード14は、例えば、その配合比は、補強繊維が3重量%、普通セメントが60〜95重量%、無機鉱物類が0〜35重量%、その他の混和材が2〜3重量%含まれるように構成される。
【0025】
このような配合比の高靭性セメントボード14は、例えば、厚みが6mmであれば、曲げ強度が33MPa,引張り強度が15MPa,曲げ変位が22mmの性能を備え、アルミニウムと同等の性能を有している。
【0026】
また、本実施例の高靭性セメントボード14には、製造過程で、プレス脱水する際に、金網などの凹凸形成部材を挟み込むことにより、高さが1mm程度で、間隔が1〜2mm程度の凹凸部を形成することが望ましい。このような凹凸部を設けると、高靭性セメントボード14と硬化性材料との間の付着力を増強することができる。
【0027】
一方、繊維シート16は、例えば、炭素繊維ないしはアラミド繊維からなる長繊維を長手方向に沿って引きそろえて、所定の幅に形成したものであって、図2に示すように、前後左右方向に隣接配置される高靭性セメントボード14の接合端部間に跨るように、接着固定され、複数の高靭性セメントボード14を相互に接合する。
【0028】
橋脚部10の補強を行う際には、まず、多数の高靭性セメントボード14を使用して、これを橋脚部10の表面側に配設する。この場合、高靭性セメントボード14は、図3に示すように、橋脚部10の表面から所定の間隔18(例えば、30mm程度)を隔てて、アンカー20により支持される。
【0029】
また、高靭性セメントボード14は、橋脚部10の全面を覆うように配置され、各ボード14間の接合が、繊維シート16の接着によりボード14の表面側から行われる。
【0030】
この際に、高靭性セメントボード14の表面側には、支保工22が配置され、その設置ズレなどを防止する。アンカー20は、その一端側が橋脚部10に埋設され、他端側にセメントボード14が係止される。
なお、橋脚部10の表面は、例えば、塩害による損傷部分あれば、高靭性セメントボード14を設置する前に、損傷部分の除去処理および表面の整形などが行われる。
【0031】
また、間隔18内に、鉄筋,PCストランドなどの補強鋼材24を設置する際には、これらの補強鋼材24を高靭性セメントボード14の配置前に組み付ける。このような補強鋼材24は、高靭性セメントボード14だけでは、既設構造物の補強効果が不足する場合に採用されるが、この場合でも、セメントボード14の耐久性により、モルタルなどの硬化性材料28の被り量を少なくすることができる。
【0032】
さらに、本実施例の場合には、高靭性セメントボード14には、橋脚部10の外周に組付けられる前に、予めその背面側に吸水を規制する吸水調整剤26が塗布される。
【0033】
吸水調整剤26は、高靭性セメントボード14の背面側にコンクリートやモルタルなどの硬化性材料28を打設した際に、硬化性材料28からの水分吸水を抑制して、過剰な吸水に伴う、付着力や曲げ強度の低下などの不都合を回避するために塗布される。
【0034】
この場合の吸水調整剤26は、エチレン酢酸ビニル共重合体エマルジョンを主成分とする水溶性液体を用いることができ、この水溶液を所定の希釈倍率で希釈して、高靭性セメントボードに塗布する。このような水溶液には、例えば、ハイレックス(日本化成株式会社製商品名)を用いることができる。
【0035】
橋脚部10の外周に高靭性セメントボード14が配置されると、間隔18内に、コンクリートまたはモルタルなどの硬化性材料28が打設され、硬化性材料28が硬化することにより、高靭性セメントボード14は、橋脚部10の外表面に一体がされて、その補強工事が終了する。
【0036】
この場合、高靭性セメントボード14は、硬化性材料28を打設する際の堰板として機能する。この際に、セメントボード14は、高靭性を備えているので、これを製造する際に、所定の曲率で湾曲形成することができる。
【0037】
さて、以上のように構成した既設構造物の補強工法によれば、高靭性セメントボード14の高い靭性とせん断強度により、橋脚部10(既設構造物)の曲げ補強,せん断補強が可能になる。
【0038】
また、高靭性セメントボード14は、鋼板に比べで軽量なので、鋼板巻き立て工法と比べて、架設労力が少なくなり、経済的になる。さらに、高靭性セメントボード14は、モルタルなどを打設する際には、堰板兼用の埋設型枠となるので、堰板の解体が不要になり、養生期間も必要としないので、断面増厚工法に比べて、工種,工程が少なくなって、経済的になる。
【0039】
なお、本実施例の場合、高靭性セメントボード14を埋設型枠として使用し、コンクリートなどの硬化性材料28と構造的に一体化し、セメントボード14を引張材として利用する場合、接合部での引張力の伝達は、繊維シート16を介して行われる。
【0040】
この場合、繊維シート16に炭素繊維シートを採用すると、その引っ張り強度は、5000N/mmの高強度材料であり、このようなシートを接合部に接着すると、引張力を十分に伝達することができる。圧縮力は、ボード14同士の接触により直接伝達することができるため、繊維シート16に剛性がなくても継手として十分に機能する。
【0041】
図4は、本発明に係る既設構造物の補強工法の第2実施例を示しており、上記実施例と同一もしくは相当する部分には、同一符号を付してその説明を省略するとともに、以下にその特徴点についてのみ説明する。
【0042】
同図に示した補強工法では、橋脚部10の補強材12には、第1実施例と同様に、高靭性セメントボード14と繊維シート16とが用いられる。高靭性セメントボード14は、橋脚部10の表面に、第1実施例のように間隔18を設けることなく、隣接設置される。
【0043】
高靭性セメントボード14の設置には、上記実施例と同様な、アンカー20が用いられる。そして、高靭性セメントボード14の設置が終了すると、高靭性セメントボード14の表面側から、硬化性樹脂30を注入し、セメントボード14の背面側で、硬化性樹脂30を硬化させることにより、セメントボード14を橋脚部10に一体化させる。
【0044】
硬化性樹脂30は、予め高靭性セメントボード14の適宜箇所に穿設された注入孔32から、その背面側に注入される。
【0045】
以上のように構成した補強工法によっても、上記実施例と同等の作用効果が得られる。なお、上記実施例では、既設構造物として橋脚部10の補強に本発明を適用した場合を例示したが、本発明の実施は、これに限定されることはなく、例えば、橋脚床版などの補強にも適用することができる。
【0046】
【発明の効果】
以上、実施例で詳細に説明したように、本発明にかかる既設構造物の補強工法によれば、工程の多岐化と労力の増大化を回避しつつ、経済的に補強が行える。
【図面の簡単な説明】
【図1】本発明にかかる既設構造物の補強工法の施工終了状態の外観図である。
【図2】図1のA部拡大図である。
【図3】本発明にかかる補強工法の第1実施例を示す施工時の断面説明図である。
【図4】本発明にかかる補強工法の第2実施例を示す施工時の断面説明図である。
【符号の説明】
10             橋脚部(既設構造物)
12             補強材
14             高靭性セメントボード
16             繊維シート
18             間隔
20             アンカー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for reinforcing an existing structure, and more particularly to a method for reinforcing a high-toughness cement board as a reinforcing material.
[0002]
[Prior art]
Existing concrete structures, for example, piers of road bridges and railway bridges, or floor slabs are sometimes reinforced for the purpose of improving earthquake resistance and bending resistance. In addition, existing concrete structures may be rehabilitated for the above-mentioned purpose at the same time as repairing aging due to salt damage and neutralization.
[0003]
Conventionally, as a method used for such reinforcement, there are a method of increasing the cross-section of an existing structure with concrete or mortar, a method of increasing the cross-section, a method of rolling a steel sheet around the surface of the existing structure, and the like. The reinforcement method had the following technical problems.
[0004]
[Problems to be solved by the invention]
In other words, in the case of the cross-section thickening method, the required performance may be satisfied without the use of reinforcing bars, but if the bending strength or shear strength is intended to be increased, the reinforcing bars must be assembled. In addition, installation and removal of concrete or mortar setting dams, and further curing of concrete or mortar are required, resulting in a problem that the process is diversified and the construction period becomes long.
[0005]
Further, in this method, the weight of the structure increases due to the increase in the cross-section of the structure, so that the foundation may need to be reinforced.
[0006]
On the other hand, in the case of the steel sheet winding method, since the weight of the steel sheet is large, a large amount of labor is required for winding, and since the steel sheet is easily corroded, it is necessary to perform anticorrosion coating, especially in the case of salt damage. Has a high anticorrosion grade, and the construction method is expensive.
[0007]
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide an existing structure that can be economically reinforced while avoiding diversification of processes and an increase in labor. An object of the present invention is to provide a method for reinforcing objects.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for reinforcing an existing structure, wherein a reinforcing material is disposed on a surface of the existing structure, and the reinforcing material is integrally connected to the existing structure. As the material, a high-toughness cement boat having a bending strength of 30 MPa or more, a span of 18 cm, and a maximum deflection of 25 mm or more was used.
[0009]
According to the reinforcing method for an existing structure configured as described above, the high toughness and shear strength of the high-toughness cement board enable bending and shear reinforcement of the existing structure. In addition, since the high toughness cement board is lighter than a steel plate, the labor required for erection is less than that of a steel plate winding method, and it is economical.
[0010]
Furthermore, the high-toughness cement board is used as a buried formwork that also serves as a weir plate when casting mortar, etc., so dismantling of the weir plate is not necessary and the curing period is not required. The number of processes and processes is reduced as compared with, and it becomes economical.
[0011]
The high-toughness cement board may be preliminarily coated on its back side with a water-absorbing regulator for regulating water absorption.
[0012]
According to this configuration, since the water absorption adjusting agent is applied to the back side of the high toughness cement board, when a hardening material such as concrete or mortar is poured, water absorption from the hardening material is suppressed, Inconveniences such as a decrease in adhesion and bending strength due to excessive water absorption can be avoided.
[0013]
In this case, a water-soluble liquid containing ethylene-vinyl acetate copolymer emulsion as a main component can be used as the water absorption adjusting agent. This aqueous solution is diluted at a predetermined dilution ratio and applied to a high-toughness cement board.
[0014]
In the high toughness cement board, in the manufacturing process, when dewatering by pressing, it is possible to form an uneven portion having a height of about 1 mm and an interval of about 1 to 2 mm by sandwiching an uneven forming member such as a wire mesh. it can.
[0015]
According to this configuration, the adhesive force between the high-toughness cement board and the curable material can be enhanced.
[0016]
The high-toughness cement board is formed in a rectangular shape having a predetermined length and a predetermined thickness, and when installing a plurality of the high-toughness cement boards on the outer periphery of the existing structure, a gap between the adjacent high-toughness cement boards is provided. It can be joined with a carbon fiber or aramid fiber sheet.
[0017]
The high-toughness cement board is disposed at a predetermined distance from the surface of the existing structure, and by filling a hardening material such as concrete or mortar in the space, and hardening the hardening material, It can be integrated with the existing structure.
[0018]
The high-toughness cement board is supported at one end by an anchor embedded in the existing structure so as to provide the space, and after arranging a reinforcing steel material such as a reinforcing bar or a PC strand in the space, the hardening is performed. Material can be filled.
This configuration is adopted when the reinforcing effect of the existing structure is insufficient with only the high-toughness cement board, but even in this case, due to the durability of the cement board, the covering amount of the hardening material such as mortar is reduced. be able to.
[0019]
Further, in the present invention, the high toughness cement board is installed adjacent to the surface of the existing structure, from the surface side of the high toughness cement board, injects a curable resin, and by curing the curable resin, It can be integrated with existing structures.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 to 3 show a first embodiment of a method for reinforcing an existing structure according to the present invention.
[0021]
FIG. 1 shows a completed construction state when the reinforcing method of the present embodiment is applied to a pier 10 as an existing structure. In the reinforcing method according to the present embodiment, a reinforcing member 12 is provided over the entire outer surface of the pier 10 (existing structure), and the reinforcing member 12 is integrally connected to the pier 10.
[0022]
The reinforcing material 12 includes a high-toughness cement board 14 and a fiber sheet 16 that joins the high-toughness cement board 14 to each other. The high-toughness cement board 14 is also used as a weir plate that separates a casting area when a hardening material such as concrete, mortar, or resin mortar is cast on the back side thereof. It is formed in a rectangular flat plate having a side length of 900 mm and a long side length of about 1800 mm.
[0023]
The high toughness cement board 14 of the present embodiment has a performance of a flexural strength of 30 MPa or more, a span of 18 cm, and a maximum deflection of 25 mm or more. Such a high-toughness cement boat 14 has a predetermined thickness, for example, a thickness of about 10 mm, mainly composed of cement, and has two-dimensionally random reinforcing fibers (PVA fibers having excellent alkali resistance) in a cement matrix. It is oriented.
[0024]
Such a high toughness cement board 14 has, for example, a compounding ratio of 3% by weight of reinforcing fiber, 60 to 95% by weight of ordinary cement, 0 to 35% by weight of inorganic minerals, and 2 to 2% of other admixtures. It is configured to contain 3% by weight.
[0025]
For example, if the thickness is 6 mm, the high toughness cement board 14 having such a mixing ratio has a performance of a bending strength of 33 MPa, a tensile strength of 15 MPa, and a bending displacement of 22 mm, and has the same performance as aluminum. I have.
[0026]
Further, in the high-toughness cement board 14 of the present embodiment, during press dewatering in the manufacturing process, the unevenness forming member such as a wire mesh is sandwiched, so that the unevenness having a height of about 1 mm and an interval of about 1 to 2 mm is provided. It is desirable to form a part. By providing such an uneven portion, the adhesive force between the high-toughness cement board 14 and the curable material can be enhanced.
[0027]
On the other hand, the fiber sheet 16 is formed, for example, by arranging long fibers made of carbon fibers or aramid fibers in the longitudinal direction to form a predetermined width, and as shown in FIG. The plurality of high-toughness cement boards 14 are bonded and fixed so as to straddle between the joining ends of the high-toughness cement boards 14 arranged adjacent to each other.
[0028]
When reinforcing the pier 10, first, a number of high toughness cement boards 14 are used and disposed on the surface side of the pier 10. In this case, as shown in FIG. 3, the high toughness cement board 14 is supported by the anchor 20 at a predetermined distance 18 (for example, about 30 mm) from the surface of the pier 10.
[0029]
The high-toughness cement board 14 is arranged so as to cover the entire surface of the pier 10, and the bonding between the boards 14 is performed from the front side of the board 14 by bonding the fiber sheet 16.
[0030]
At this time, a shoring 22 is arranged on the surface side of the high-toughness cement board 14 to prevent misalignment thereof. One end of the anchor 20 is embedded in the bridge pier 10, and the cement board 14 is locked to the other end.
If the surface of the pier 10 is damaged by, for example, salt damage, a process of removing the damaged portion and shaping the surface are performed before the high-toughness cement board 14 is installed.
[0031]
Further, when reinforcing steel materials 24 such as reinforcing bars and PC strands are installed in the space 18, these reinforcing steel materials 24 are assembled before the high-toughness cement board 14 is arranged. Such a reinforcing steel material 24 is employed when the reinforcing effect of the existing structure is insufficient with only the high-toughness cement board 14. However, even in this case, due to the durability of the cement board 14, a hardening material such as mortar is used. 28 can be reduced.
[0032]
Further, in the case of the present embodiment, before being attached to the outer periphery of the pier 10, a water absorption adjusting agent 26 for restricting water absorption is applied to the high toughness cement board 14 before it is assembled on the outer periphery of the pier 10.
[0033]
When the hardening material 28 such as concrete or mortar is cast on the back side of the high-toughness cement board 14, the water-absorbing adjuster 26 suppresses water absorption from the hardening material 28, resulting in excessive water absorption. It is applied to avoid inconveniences such as a decrease in adhesive strength and bending strength.
[0034]
In this case, the water absorption adjusting agent 26 can be a water-soluble liquid containing an ethylene-vinyl acetate copolymer emulsion as a main component. The aqueous solution is diluted at a predetermined dilution ratio and applied to a high-toughness cement board. For such an aqueous solution, for example, Hilex (trade name, manufactured by Nippon Kasei Co., Ltd.) can be used.
[0035]
When the high-toughness cement board 14 is disposed on the outer periphery of the pier 10, a hardening material 28 such as concrete or mortar is poured into the space 18, and the hardening material 28 is hardened, so that the high-toughness cement board 14 is hardened. 14 is integrated with the outer surface of the pier 10, and the reinforcement work is completed.
[0036]
In this case, the high toughness cement board 14 functions as a weir plate when the hardening material 28 is cast. At this time, since the cement board 14 has high toughness, it can be formed with a predetermined curvature when manufacturing the cement board.
[0037]
Now, according to the reinforcing method for the existing structure configured as described above, the high toughness and shear strength of the high-toughness cement board 14 enable the bending and shear reinforcement of the pier 10 (the existing structure).
[0038]
Further, since the high toughness cement board 14 is lighter in weight than a steel plate, the labor for erection is reduced compared to the steel plate winding method, and it is economical. Furthermore, the high-toughness cement board 14 becomes a buried formwork that also serves as a weir plate when casting mortar or the like, so that dismantling of the weir plate becomes unnecessary, and a curing period is not required. Compared with the construction method, the number of construction steps and processes are reduced, and it becomes more economical.
[0039]
In the case of the present embodiment, when the high-toughness cement board 14 is used as an embedding formwork, is structurally integrated with a hardening material 28 such as concrete, and when the cement board 14 is used as a tensile material, it is difficult to use the cement board 14 at a joint. Transmission of the tensile force is performed via the fiber sheet 16.
[0040]
In this case, if a carbon fiber sheet is adopted as the fiber sheet 16, its tensile strength is a high-strength material of 5000 N / mm 2. When such a sheet is bonded to the joint, the tensile force can be sufficiently transmitted. it can. Since the compressive force can be transmitted directly by contact between the boards 14, even if the fiber sheet 16 does not have rigidity, the fiber sheet 16 functions sufficiently as a joint.
[0041]
FIG. 4 shows a second embodiment of the method of reinforcing an existing structure according to the present invention. The same or corresponding parts as those in the above embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Only the characteristic points will be described.
[0042]
In the reinforcing method shown in the figure, a high-toughness cement board 14 and a fiber sheet 16 are used as the reinforcing material 12 of the pier 10 as in the first embodiment. The high-toughness cement board 14 is installed adjacent to the surface of the pier 10 without providing the space 18 as in the first embodiment.
[0043]
An anchor 20 similar to the above embodiment is used for installing the high-toughness cement board 14. When the setting of the high-toughness cement board 14 is completed, the curable resin 30 is injected from the front side of the high-toughness cement board 14, and the hardening resin 30 is hardened on the back side of the cement board 14, thereby setting the cement. The board 14 is integrated with the pier 10.
[0044]
The curable resin 30 is injected into the back side of the high-toughness cement board 14 from an injection hole 32 previously drilled at an appropriate position.
[0045]
The same operation and effect as in the above embodiment can be obtained by the reinforcing method configured as described above. In addition, in the said Example, the case where this invention was applied to reinforcement of the pier 10 as an existing structure was illustrated, However, implementation of this invention is not limited to this, For example, a pier floor slab etc. It can also be applied to reinforcement.
[0046]
【The invention's effect】
As described above in detail in the embodiments, according to the method of reinforcing an existing structure according to the present invention, economic reinforcement can be performed while avoiding diversification of steps and increase in labor.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an external view of a state in which a reinforcement method for an existing structure according to the present invention has been completed.
FIG. 2 is an enlarged view of a portion A in FIG.
FIG. 3 is an explanatory sectional view at the time of construction showing a first embodiment of a reinforcing method according to the present invention.
FIG. 4 is an explanatory sectional view at the time of construction showing a second embodiment of the reinforcing method according to the present invention.
[Explanation of symbols]
10 Pier (existing structure)
12 Reinforcement 14 High toughness cement board 16 Fiber sheet 18 Interval 20 Anchor

Claims (7)

既設構造物の表面に補強材を配設して、前記補強材を前記既設構造物に一体的に結合させる既設構造物の補強工法において、
前記補強材に、曲げ強度が30MPa以上で、スパン18cmで、最大撓みが25mm以上の高靭性セメントボートを用いることを特徴とする既設構造物の補強工法。
In a reinforcing method of an existing structure, a reinforcing material is disposed on a surface of the existing structure, and the reinforcing material is integrally connected to the existing structure.
A method for reinforcing an existing structure, wherein a high-toughness cement boat having a bending strength of 30 MPa or more, a span of 18 cm and a maximum deflection of 25 mm or more is used as the reinforcing material.
前記高靭性セメントボードは、予めその背面側に吸水を規制する吸水調整剤を塗布することを特徴とする請求項1記載の既設構造物の補強工法。The method for reinforcing an existing structure according to claim 1, wherein the high-toughness cement board is preliminarily coated on its back side with a water-absorbing regulator for regulating water absorption. 前記高靭性セメントボードには、製造過程で、プレス脱水する際に、金網などの凹凸形成部材を挟み込むことにより、高さが1mm程度で、間隔が1〜2mm程度の凹凸部を形成することを特徴とする請求項1または2記載の既設構造物の補強工法。In the high toughness cement board, during the press dewatering in the manufacturing process, by sandwiching an uneven forming member such as a wire mesh, to form an uneven portion having a height of about 1 mm and an interval of about 1 to 2 mm. The method for reinforcing an existing structure according to claim 1 or 2, wherein 前記高靭性セメントボードは、所定長さで、所定厚みの角形形状に形成され、複数の前記高靭性セメントボードを前記既設構造物の外周に設置する際に、隣接する前記高靭性セメントボード間を炭素繊維またはアラミド繊維シートで接合することを特徴とする請求項1〜3のいずれか1項記載の既設構造物の補強工法。The high-toughness cement board is formed in a rectangular shape having a predetermined length and a predetermined thickness, and when installing a plurality of the high-toughness cement boards on the outer periphery of the existing structure, a space between the adjacent high-toughness cement boards is provided. The method for reinforcing an existing structure according to any one of claims 1 to 3, wherein the bonding is performed using a carbon fiber or an aramid fiber sheet. 前記高靭性セメントボードは、前記既設構造物の表面から所定の間隔を隔てて配置され、前記間隔内にコンクリート,モルタルなどの硬化性材料を充填して、前記硬化性材料を硬化させることにより、前記既設構造物に一体化させることを特徴とする請求項1〜4のいずれか1項記載の既設構造物の補強工法。The high-toughness cement board is arranged at a predetermined distance from the surface of the existing structure, and by filling a hardening material such as concrete or mortar in the space, and hardening the hardening material, The method for reinforcing an existing structure according to any one of claims 1 to 4, wherein the method is integrated with the existing structure. 前記高靭性セメントボードは、一端が前記既設構造物に埋設されたアンカーにより、前記間隔を設けるようにして支持され、前記間隔内に鉄筋,PCストランドなどの補強鋼材を配置した後に、前記硬化性材料を充填することを特徴とする請求項1〜5のいずれか1項記載の既設構造物の補強工法。The high-toughness cement board is supported at one end by an anchor embedded in the existing structure so as to provide the space, and after arranging a reinforcing steel material such as a reinforcing bar or a PC strand in the space, the hardening is performed. The method for reinforcing an existing structure according to any one of claims 1 to 5, wherein a material is filled. 前記高靭性セメントボードは、前記既設構造物の表面に隣接設置され、前記高靭性セメントボードの表面側から、硬化性樹脂を注入し、前記硬化性樹脂の硬化により、前記既設構造物に一体化させることを特徴とする請求項1〜4のいずれか1項記載の既設構造物の補強工法。The high-toughness cement board is installed adjacent to the surface of the existing structure, and injects a curable resin from the surface side of the high-toughness cement board, and is integrated with the existing structure by curing the curable resin. The method for reinforcing an existing structure according to any one of claims 1 to 4, wherein:
JP2002209425A 2002-07-18 2002-07-18 Reinforcement method for existing structures Expired - Fee Related JP4085726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209425A JP4085726B2 (en) 2002-07-18 2002-07-18 Reinforcement method for existing structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209425A JP4085726B2 (en) 2002-07-18 2002-07-18 Reinforcement method for existing structures

Publications (2)

Publication Number Publication Date
JP2004052310A true JP2004052310A (en) 2004-02-19
JP4085726B2 JP4085726B2 (en) 2008-05-14

Family

ID=31933277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209425A Expired - Fee Related JP4085726B2 (en) 2002-07-18 2002-07-18 Reinforcement method for existing structures

Country Status (1)

Country Link
JP (1) JP4085726B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177492A (en) * 2005-12-27 2007-07-12 East Japan Railway Co Pier reinforcing method
CN109537475A (en) * 2018-11-26 2019-03-29 山东交通学院 The method and ruggedized construction of bent cap reinforcing are carried out using carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177492A (en) * 2005-12-27 2007-07-12 East Japan Railway Co Pier reinforcing method
CN109537475A (en) * 2018-11-26 2019-03-29 山东交通学院 The method and ruggedized construction of bent cap reinforcing are carried out using carbon fiber

Also Published As

Publication number Publication date
JP4085726B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
US10640977B2 (en) Concrete structure using reinforcing panel including embedded reinforcing grid and method of repairing and reinforcing the same
KR100665876B1 (en) The prestressed opening trapezoid waveform still girder construction method of having installed concrete caisson in the upper flange
JP5285305B2 (en) Precast member joint structure
JP6652754B2 (en) Joint structure of precast concrete slab for rapid construction and its construction method
JP6338473B2 (en) Precast structure joining method
JP2005023726A (en) Joining structure of beam and floor slab and joining method for beam and floor slab
JP3762787B1 (en) Reinforcing structure of existing floor slab and method of reinforcing existing floor slab
KR20020037816A (en) Prestressed concrete slab reinforced by various section girder and construction method of simple and continuous supported slab bridge using the same
JP4022205B2 (en) Joining structure of members
KR20070088341A (en) Prestressed concrete composite corrugated steel plate structure and the manufacture method of this
KR20040105446A (en) Structures and Methods for Connection between Precast Decks and Prestressed Concrete Girders
KR102140167B1 (en) Strengthening method of concrete structures by pretensioning
JP2018193709A (en) Concrete structure applying continuous fiber reinforcing material and concrete member joining method
JP2003213623A (en) Upper structure of ridge
JP2003213623A6 (en) Bridge superstructure
JP4035075B2 (en) Reinforcing structure and method for existing wall-like structure
CN110747735A (en) Anchoring connection device for precast concrete bridge deck of steel-concrete composite beam
KR100583671B1 (en) Prestressed concrete beam manufactured by installing steel anchorage devices to various positions and reinforcing member to the upper and lower flanges, and construction method of bridge using the concrete beam
JP2021011778A (en) Road structure
JP3322637B2 (en) Construction method of cast-in-place concrete slab of bridge
JP2004052310A (en) Reinforcing construction method of existing structure
KR20190094644A (en) Prestressed Steel-Concrete Composite Girder
US20240026683A1 (en) Post-tensioned concrete with fibers for slabs on supports
JP5508070B2 (en) Joining structure and joining method of steel member and concrete member
KR20230092396A (en) Tendon buried concrete structure for external pre-tensioning reinforcement, and construction method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4085726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees