JP2004051835A - Polylactic acid composite material and its molded product - Google Patents

Polylactic acid composite material and its molded product Download PDF

Info

Publication number
JP2004051835A
JP2004051835A JP2002212738A JP2002212738A JP2004051835A JP 2004051835 A JP2004051835 A JP 2004051835A JP 2002212738 A JP2002212738 A JP 2002212738A JP 2002212738 A JP2002212738 A JP 2002212738A JP 2004051835 A JP2004051835 A JP 2004051835A
Authority
JP
Japan
Prior art keywords
polylactic acid
polyamide
nylon
composite material
acid composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002212738A
Other languages
Japanese (ja)
Inventor
Hirotaka Okamoto
岡本 浩孝
Makoto Ouchi
大内 誠
Mitsuru Nakano
中野 充
Arimitsu Usuki
臼杵 有光
Yasushi Kageyama
影山 裕史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2002212738A priority Critical patent/JP2004051835A/en
Publication of JP2004051835A publication Critical patent/JP2004051835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polylactic acid composite material excellent in impact resistance while keeping heat resistance and rigidity in a high level. <P>SOLUTION: The polylactic acid composite material comprises 100 pts. wt. polylactic acid and 1-100 pts. wt. non-rigid polyamide represented by general formula (I) or general formula (II) (wherein R<SP>1</SP>, R<SP>2</SP>and R<SP>3</SP>are alkylene groups in which carbon numbers in main chain parts are 6-18, 6-18 and 4-16, respectively; p and q are each a positive integer). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ポリ乳酸複合材料及びそれを用いた成形体に関する。
【0002】
【従来の技術】
ポリ乳酸は、微生物や酵素の働きにより分解される性質、いわゆる生分解性を示し、その分解生成物は人体に無害な乳酸と二酸化炭素と水になることから、医療用材料や汎用樹脂の代替物として注目されている。
【0003】
ところで、かかるポリ乳酸は結晶性樹脂であるが、その特性は一般的に脆い。そのため、ポリ乳酸を用いた樹脂成形体においては、衝撃力が作用するとミクロクラックが生じ、それらが繋って系全般に伝播することによって樹脂成形体の破壊が起こるという問題があり、耐衝撃性などの点で十分な特性を得ることが困難であった。
【0004】
そこで、かかる問題点を改善すべく、例えば、特開2001−49098号公報においては乳酸系樹脂にポリアミド系エラストマーを添加することにより粘着性を付与することが開示されている。
【0005】
しかしながら、上記公報記載のように乳酸系樹脂に大日本インキ化学株式会社製のグリラックスE−500(商品名、以下同様に商品名)、A−150、A−250、A−300、A−350などのポリアミド系エラストマーを添加するといった従来の方法の場合、耐衝撃性の向上は認められるもののその効果は未だ十分ではなかった。また、このようなポリアミド系エラストマ−を添加した場合には、剛性や耐熱性が低下するという問題もあった。
【0006】
【発明が解決しようとする課題】
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、耐熱性及び剛性を高水準に維持しつつ、耐衝撃性に優れたポリ乳酸複合材料及びそれを用いた成形体を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、特定の軟質ポリアミドをポリ乳酸に添加した場合に、耐熱性及び剛性を高水準に維持しつつ、耐衝撃性に優れたポリ乳酸複合材料が得られることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明のポリ乳酸複合材料は、ポリ乳酸と、前記ポリ乳酸100重量部に対して1〜100重量部の下記一般式(I)又は(II):
【0009】
【化3】

Figure 2004051835
【0010】
【化4】
Figure 2004051835
[式(I)及び(II)中、R、R及びRは、同一でも異なっていてもよく、それぞれ炭素数4〜30のアルキレン基を示し、R、R及びRの主鎖部分の炭素数をそれぞれl、m及びnとすると、前記l、m及びnがそれぞれ下記条件:
l=6〜18の整数、
m=6〜18の整数、
n=4〜16の整数、かつ、
m+n=11〜34の整数
を満たすものであり、p及びqは正の整数を示す。]
で表される軟質ポリアミドと、を含有することを特徴とするものである。
【0011】
また、本発明のポリ乳酸複合材料においては、前記軟質ポリアミドが、ナイロン11、ナイロン12、ナイロン6/9、ナイロン6/10、ナイロン6/12からなる群から選ばれる少なくとも1種の軟質ポリアミドであることが好ましい。
【0012】
更に、本発明の成形体は、上記本発明のポリ乳酸複合材料を成形して得られるものである。
【0013】
【発明の実施の形態】
以下、本発明の好適な実施形態について詳細に説明する。
【0014】
本発明のポリ乳酸複合材料は、ポリ乳酸と、前記ポリ乳酸100重量部に対して1〜100重量部の軟質ポリアミドと、を含有することを特徴とするものである。
【0015】
先ず、本発明にかかるポリ乳酸について説明する。前記ポリ乳酸は、下記一般式(III):
【0016】
【化5】
Figure 2004051835
(式中、rは整数を示す)
で表される繰り返し単位を有するポリマーである。当該ポリ乳酸の重量平均分子量は特に制限されないが、好ましくは10,000以上であり、より好ましくは50,000以上であり、さらに好ましくは100,000以上である。ポリ乳酸の重量平均分子量が前記下限値未満であると、強度、弾性率等の機械物性が不十分となる傾向にある。また、ポリ乳酸の重量平均分子量は、400,000以下であることが好ましい。この重量平均分子量を超えると、成形加工性が不十分となる傾向にある。
【0017】
ポリ乳酸の重合方法は特に制限されず、D−乳酸、L−乳酸の直接重合でもよく、乳酸の環状2量体であるD−ラクチド、L−ラクチド、meso−ラクチドの開環重合であってもよい。また、ポリ乳酸が上記D−体原料とL−体原料との共重合体である場合、D−体原料又はL−体原料のうちの一方の含有割合が90mol%以上であることが好ましく、97mol%以上であることがより好ましく、99mol%以上であることがさらに好ましい。D−体又はL−体のうちの双方が90mol%未満であると、立体規則性の低下により結晶化が阻害され、本発明により得られる効果が十分に発現しない傾向にある。
【0018】
このようにして得られるポリ乳酸は光学異性を示すが、当該ポリ乳酸はD−体、L−体、DL−体のいずれであってもよい。また、構成成分の主体がD−体であるポリ乳酸と、構成成分の主体がL−体であるポリ乳酸とが任意の割合でブレンドされたものを用いてもよい。
【0019】
さらに、本発明にかかるポリ乳酸においては、乳酸又はラクチドに加えて、グリコリド、カプロラクトン等の他の重合性単量体を更に重合させて共重合体としてもよく、各種有機、無機フィラー等が添加されていてもよい。また、当該他の重合性単量体の単独重合により得られるポリマーをポリ乳酸とブレンドしてもよい。なお、当該他の重合性単量体に由来する重合鎖がポリマー全量に占める割合は、モノマー換算で50mol%以下であることが好ましい。
【0020】
本発明のポリ乳酸複合材料においては、ポリ乳酸と後述する軟質ポリアミドを混合することにより、ポリ乳酸のエステル結合と軟質ポリアミドのアミド結合の間でエステル−アミド交換反応が起こり、ポリ乳酸と軟質ポリアミドとの相溶性が向上したことにより、耐熱性及び剛性を高水準に維持しつつ耐衝撃性が大きく向上したと、本発明者らは推察する。
【0021】
次に、本発明にかかる軟質ポリアミドについて説明する。前記軟質ポリアミドは、下記一般式(I)又は(II)で表されるものである。
【0022】
【化6】
Figure 2004051835
【0023】
【化7】
Figure 2004051835
【0024】
一般式(I)及び(II)において、R、R及びRは、同一でも異なっていてもよく、それぞれ炭素数4〜30のアルキレン基を示し、R、R及びRの主鎖部分の炭素数をそれぞれl、m及びnとすると、前記l、m及びnがそれぞれl=6〜18の整数であり、m=6〜18の整数であり、n=4〜16の整数であり、かつ、m+n=11〜34の整数であるものであり、p及びqは正の整数を示す。
【0025】
このような炭素数4〜30のアルキレン基としては、側鎖を有していても有していなくてもよく、具体的には、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、トリデカメチレン基、テトラデカメチレン基などの一般式−C2n−で表されるアルキレン基、アルキル基等を側鎖として有する1−メチルペンタメチレン基、2−メチルペンタメチレン基、2−エチルペンタメチレン基、3−メチルペンタメチレン基、1−メチルヘキサメチレン基、1−メチルヘプタメチレン基等が挙げられる。
【0026】
前記Rの主鎖部分の炭素数であるlは、6〜18の整数であり、9〜17の整数が好ましい。前記Rの主鎖部分の炭素数であるmは、6〜18の整数であり、6〜12の整数が好ましい。前記Rの主鎖部分の炭素数であるnは、4〜16の整数であり、6〜14の整数が好ましい。
【0027】
さらに、本発明にかかる前記一般式(I)及び(II)で表される軟質ポリアミド(軟質ナイロン)としては、前記一般式(I)におけるl=10であるポリアミド11(ポリウンデカノラクタム)、前記一般式(I)におけるl=11であるポリアミド12(ポリラウリルラクタム)、前記一般式(II)におけるm=6、n=7であるポリアミド6/9(ポリヘキサメチレンノナン酸ジアミド)、前記一般式(II)におけるm=6、n=8であるポリアミド6/10(ポリヘキサメチレンセバシン酸ジアミド)、前記一般式(II)におけるm=6、n=10であるポリアミド6/12(ポリヘキサメチレンドデカン酸ジアミド)等が挙げられ、より好ましくはナイロン11、ナイロン12、ナイロン6/9、ナイロン6/10、ナイロン6/12である。なお、ポリアミドとは、酸アミド結合−CONH−を有する重合体の総称であり、このうち線状重合体をナイロンというが、一般には「ナイロン」がポリアミドに代わり使用されることが多い。なお、このような軟質ポリアミド(軟質ナイロン)は市販されている。
【0028】
また、本発明に係る軟質ポリアミドの「軟質」とは、室温での曲げ弾性率が2GPa未満(ただし、可塑剤、強化剤などの充填剤を含まない)であることをいう。
【0029】
前記軟質ポリアミドの重量平均分子量は、好ましくは5000以上であり、より好ましくは10,000以上であり、さらに好ましくは15,000以上である。前記下限値未満であると、耐熱性、耐衝撃性が不十分となる傾向にある。また、このような軟質ポリアミドの重量平均分子量は、100,000以下であることが好ましい。前記軟質ポリアミドの重量平均分子量が、100,000を超えると成型加工性が低下する傾向にある。なお、前記一般式(I)及び(II)におけるp及びqは、上記重量平均分子量の範囲を満たす正の整数である。
【0030】
本発明に係る軟質ポリアミドの含有量は、前記ポリ乳酸100重量部に対して1〜100重量部であり、5〜100重量部であることが好ましく、10〜80重量部であることがより好ましく、20〜70重量部であることが更に好ましい。このような軟質ポリアミドの含有量が前記下限値未満であると、衝撃改善効果が十分に発現しない傾向にあり、他方、前記上限値を超えると成形加工性が低下する傾向にある。
【0031】
(ポリ乳酸複合材料の製造方法)
次に、本発明のポリ乳酸複合材料の製造方法について説明する。本発明のポリ乳酸複合材料は、前記ポリ乳酸中に前記軟質ポリアミドを均一に混合せしめることが可能な方法であればよく、例えば以下の方法で得ることが可能である。すなわち、ポリ乳酸と軟質ポリアミドとを混合し溶融混練することによって所望形状のポリ乳酸複合材料が得られる。このような溶融混練には、単軸押出機、二軸押出機、三軸以上の多軸押出機等の各種押出機、ブラベンダーミキサーやバンバリーミキサーなどのバッチ式混練機、射出成形機などが用いられる。このような装置としては、2種の高分子を溶融させて混練できる装置であれば、何を用いてもよい。なお、より良い機械的特性を有するポリ乳酸複合材料を得るためには十分な混練を行う必要があり、二軸以上の多軸押出機を用いることが好ましい。その場合、混練ゾーンをできるだけ長くし、かつ滞留時間をできるだけ長くすることが好ましい。具体的には、混練ゾーンのL/Dが10以上であり、かつ滞留時間が2分以上であることが好ましい。
【0032】
これにより、ポリ乳酸と、軟質ポリアミドとが十分に均一に混合されるので、耐熱性及び剛性を高水準に維持しつつ、耐衝撃性に優れた本発明のポリ乳酸複合材料を容易に且つ確実に得ることができる。
【0033】
前記溶融混練における温度は特に制限されないが、好ましくは170〜260℃である。当該温度が前記下限値未満であると、ポリ乳酸の溶融が不十分となり、軟質ポリアミドがポリ乳酸中に均一に分散しにくくなる傾向にある。また、当該温度が前記上限値を超えると、ポリ乳酸の分子量が低下してポリ乳酸複合材料の物性が損なわれる(例えば脆化)傾向にある。
【0034】
次に、本発明の成形体について説明する。本発明の成形体は、前述の通り、本発明のポリ乳酸複合材料を用いて得られるものである。本発明の成形体の形状、厚みなどは特に制限されず、射出成形品、押出成形品、圧縮成形品、ブロー成形品、シート、フィルム、糸、ファブリックなどのいずれでもよい。より具体的には、バンパー、ラジエーターグリル、サイドモール、ガーニッシュ、ホイールカバー、エアロパーツ、インストルメントパネル、ドアトリム、シートファブリック、ドアハンドル、フロアマットなどの自動車部品、家電製品のハウジング、製品包装用フィルム、防水シート、各種容器、ボトルなどが挙げられる。また、本発明の成形体をシートとして使用する場合には、紙又は他のポリマーシートと積層し、多層構造の積層体として使用してもよい。
【0035】
また、本発明の成形体を製造するに際し、その成形方法は特に制限されず、射出成形、押出成形、ブロー成形、インフレーション成形、異形押出成形、射出ブロー成形、真空圧空成形、紡糸などのいずれにも好適に使用することができる。
【0036】
【実施例】
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。
【0037】
実施例1
(ポリ乳酸と軟質ポリアミドとの溶融混練及び成形)
ポリ乳酸(島津製作所製:Lacty#5400)と軟質ポリアミドとしてナイロン12(宇部興産製:ウベスタ3024B、前記一般式(I)におけるl=11であるポリアミド12)を70:30(重量比)でドライブレンドしたものをスクリューを備える二軸押出機(日本製鋼所製:TEX30α、L/D=45.5)を用い、スクリュー回転数300rpm、シリンダ設定温度180℃、樹脂供給速度5kg/hで溶融混練して目的のポリ乳酸複合材料を得た。得られたポリ乳酸複合材料をストランド状に押し出した後、水で急冷し、ストランドカッターでペレットとした。
【0038】
得られたポリ乳酸ペレットを射出成形機(日精樹脂工業社製:PS40E2ASE及びFS75型)を用い、金型温度、冷却時間をそれぞれ40℃、40sとしてJIS1号型引張試験片および角柱状試験片(80mm×10mm×4mm)を射出成形した。
【0039】
(耐衝撃性、剛性、耐熱性の評価)
この成形条件で得られた試験片を用いてJIS K 7110に規定される「硬質プラスチックのアイゾット衝撃試験方法」に準じてIzod衝撃試験を行い、Izod衝撃値(逆ノッチ付き、単位:kJ/m)を測定した。また、同様の試験片を用いてJIS K 7113に規定される「プラスチックの引張試験方法」に準じて引張試験を行い、引張強さ(MPa)、引張破断伸び(%)、引張弾性率(GPa)を測定した。また角柱状試験片を120℃、2時間真空下でアニール処理して結晶化させた後、JIS K 7191に規定される「硬質プラスチックの荷重たわみ温度試験方法」に準じて荷重たわみ温度(℃)を測定した。これらの試験により得られた結果及び軟質ポリアミドの融点(℃)を表1に示す。なお、アニール処理の際には試験片の変形を防ぐため表面が平滑な板に試験片を挟み、荷重をかけた上で恒温槽内へ静置した。
【0040】
実施例2
軟質ポリアミドとして、ナイロン12の代わりにナイロン11(アトフィナ・ジャパン製:リルサンBMNO、前記一般式(I)におけるl=10であるポリアミド11)を用いたこと以外は実施例1と同様にしてポリ乳酸ペレットを得た。そして、得られたポリ乳酸ペレットを用いて実施例1と同様にして試験片を成形し、Izod衝撃値、引張強さ、引張破断伸び、引張弾性率及び荷重たわみ温度を測定した。得られた結果及び軟質ポリアミドの融点(℃)を表1に示す。
【0041】
実施例3
軟質ポリアミドとして、ナイロン12の代わりにナイロン6/12(ダイセル・デグサ製:ダイアミドD12、前記一般式(II)におけるm=6、n=10であるポリアミド6/12)を用い、溶融混練時のシリンダ設定温度を210℃としたこと以外は実施例1と同様にしてポリ乳酸ペレットを得た。そして、得られたポリ乳酸ペレットを用いて実施例1と同様にして試験片を成形し、Izod衝撃値、引張強さ、引張破断伸び、引張弾性率及び荷重たわみ温度を測定した。得られた結果及び軟質ポリアミドの融点(℃)を表1に示す。
【0042】
実施例4
軟質ポリアミドとして、ナイロン12の代わりにナイロン6/10(アルドリッチ(Aldrich)製:ペレット形状試薬、前記一般式(II)におけるm=6、n=8であるポリアミド6/10)を用い、溶融混練時のシリンダ設定温度を230℃としたこと以外は実施例1と同様にしてポリ乳酸ペレットを得た。そして、得られたポリ乳酸ペレットを用いて実施例1と同様にして試験片を成形し、Izod衝撃値、引張強さ、引張破断伸び、引張弾性率及び荷重たわみ温度を評価した。得られた結果及び軟質ポリアミドの融点(℃)を表1に示す。
【0043】
実施例5
軟質ポリアミドとして、ナイロン12の代わりにナイロン6/9(アルドリッチ(Aldrich)製:ペレット形状試薬、前記一般式(II)におけるm=6、n=7であるポリアミド6/9)を用い、溶融混練時のシリンダ設定温度を205℃としたこと以外は実施例1と同様にしてポリ乳酸ペレットを得た。そして、得られたポリ乳酸ペレットを用いて実施例1と同様にして試験片を成形し、Izod衝撃値、引張強さ、引張破断伸び、引張弾性率及び荷重たわみ温度を測定した。得られた結果及び軟質ポリアミドの融点(℃)を表1に示す。
【0044】
比較例1
ポリ乳酸を軟質ポリアミドとブレンドすることなく実施例1と同様にしてポリ乳酸ペレットを得た。そして、得られたポリ乳酸ペレットを用いて実施例1と同様にして試験片を成形し、Izod衝撃値、引張強さ、引張破断伸び、引張弾性率及び荷重たわみ温度を測定した。得られた結果を表2に示す。
【0045】
比較例2
ナイロン12の代わりに硬質ポリアミドであるナイロン6(宇部興産製:宇部ナイロン1024B、前記一般式(I)におけるl=5であるポリアミド6)を用い、溶融混練時のシリンダ設定温度を215℃としたこと以外は実施例1と同様にしてポリ乳酸ペレットを得た。そして、得られたポリ乳酸ペレットを用いて実施例1と同様にして試験片を成形し、Izod衝撃値、引張強さ、引張破断伸び、引張弾性率及び荷重たわみ温度を測定した。得られた結果及び軟質ポリアミドの融点(℃)を表2に示す。
【0046】
比較例3
ナイロン12の代わりに硬質ポリアミドであるナイロン6/6(宇部興産製:宇部ナイロン2020B、前記一般式(II)におけるm=6、n=4であるポリアミド6/6)を用い、溶融混練時のシリンダ設定温度を260℃としたこと以外は実施例1と同様にしてポリ乳酸ペレットを得た。そして、得られたポリ乳酸ペレットを用いて実施例1と同様にして試験片を成形し、Izod衝撃値、引張強さ、引張破断伸び、引張弾性率及び荷重たわみ温度を測定した。得られた結果及び軟質ポリアミドの融点(℃)を表2に示す。
【0047】
比較例4
ナイロン12の代わりに硬質ポリアミドであるナイロン4/6(DSM JSRエンプラ製:Stanyl TS300、前記一般式(II)におけるm=4、n=4であるポリアミド4/6)を用い、溶融混練時のシリンダ設定温度の290℃としたこと以外は実施例1と同様にしてポリ乳酸ペレットを得た。そして、得られたポリ乳酸ペレットを用いて実施例1と同様にして試験片の成形を試みた。しかし、溶融混練時の温度が高くポリ乳酸の分解が激しかったため、試験片の作製ができず、Izod衝撃値、引張強さ、引張破断伸び、引張弾性率及び荷重たわみ温度の測定を行うことができなかった。よって、結果が得られなかったため表2には軟質ポリアミドの融点(℃)のみ記載し、他の項目は「−」を用いて示す。
【0048】
比較例5
ナイロン12の代わりにポリアミド系熱可塑性エラストマー(ダイセル・デグサ製:ダイアミド PAE E40、ナイロン12とポリエーテルから成るブロック共重合体エラストマー)を用いたこと以外は実施例1と同様にしてポリ乳酸ペレットを得た。そして、得られたポリ乳酸ペレットを用いて実施例1と同様にして試験片を成形し、Izod衝撃値、引張強さ、引張破断伸び、引張弾性率及び荷重たわみ温度を測定した。得られた結果及び軟質ポリアミドの融点(℃)を表2に示す。
【0049】
【表1】
Figure 2004051835
【0050】
【表2】
Figure 2004051835
【0051】
表1、2に示した結果から明らかなように実施例1〜5で得られた本発明のポリ乳酸複合材料は、軟質ポリアミドを溶融混練しなかった比較例1のポリ乳酸材料に比べて、耐衝撃性の十分な向上が確認された。また、これらのポリ乳酸複合材料は、剛性(引張弾性率)の低下も比較的少なく、荷重たわみ温度については同等またはそれ以上であることから耐熱性も十分に維持されていることが確認された。
【0052】
一方、硬質ポリアミドであるナイロン6及びナイロン6/6を溶融混練した比較例2及び3のポリ乳酸複合材料は、剛性及び耐熱性は維持しているものの、耐衝撃性の低下が確認された。また、ポリアミド系熱可塑性エラストマーを溶融混練した比較例5のポリ乳酸複合材料は、衝撃強度の向上は認められたものの剛性及び耐熱性が大幅に低下していることが確認された。なお、硬質ポリアミドであるナイロン4/6を溶融混練した比較例4は、溶融混練時の温度が高くポリ乳酸の分解が激しかったため、試験片の作製ができず、各測定を行うことができなかった。
【0053】
【発明の効果】
以上説明した通り、本発明によれば、耐熱性及び剛性を高水準に維持しつつ、耐衝撃性に優れたポリ乳酸複合材料を得ることが可能となる。本発明のポリ乳酸複合材料を用いた本発明の成形体は、バンパー、ラジエーターグリルなどの自動車部品、家電製品のハウジングなどとして、非常に有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polylactic acid composite material and a molded article using the same.
[0002]
[Prior art]
Polylactic acid exhibits the property of being degraded by the action of microorganisms and enzymes, so-called biodegradability, and its decomposition products become harmless lactic acid, carbon dioxide, and water, and are used as substitutes for medical materials and general-purpose resins. It is attracting attention as an object.
[0003]
By the way, such polylactic acid is a crystalline resin, but its properties are generally brittle. Therefore, in a resin molded article using polylactic acid, when an impact force acts, microcracks are generated, and there is a problem that the resin molded article is destroyed due to the connection and propagation throughout the system, and the impact resistance is high. Thus, it was difficult to obtain sufficient characteristics.
[0004]
Then, in order to improve such a problem, for example, Japanese Patent Application Laid-Open No. 2001-49098 discloses that a polyamide-based elastomer is added to a lactic acid-based resin to impart tackiness.
[0005]
However, as described in the above-mentioned publication, Glyak E-500 (trade name, hereinafter similarly trade name), A-150, A-250, A-300, A- In the case of a conventional method such as adding a polyamide elastomer such as 350, improvement in impact resistance was recognized, but the effect was not yet sufficient. Further, when such a polyamide-based elastomer is added, there is a problem that rigidity and heat resistance are reduced.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems of the related art, and provides a polylactic acid composite material having excellent impact resistance while maintaining heat resistance and rigidity at a high level, and a molded article using the same. The purpose is to do.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, when a specific soft polyamide was added to polylactic acid, heat resistance and rigidity were maintained at a high level, and excellent impact resistance was obtained. The inventors have found that a polylactic acid composite material can be obtained, and have completed the present invention.
[0008]
That is, the polylactic acid composite material of the present invention comprises polylactic acid and 1 to 100 parts by weight of the following general formula (I) or (II):
[0009]
Embedded image
Figure 2004051835
[0010]
Embedded image
Figure 2004051835
Wherein (I) and (II), R 1, R 2 and R 3 may be the same or different, each represent an alkylene group having 4 to 30 carbon atoms, the R 1, R 2 and R 3 Assuming that the number of carbon atoms in the main chain portion is 1, m and n, respectively, said l, m and n are the following conditions:
l = integer from 6 to 18,
m = an integer from 6 to 18,
n = integer from 4 to 16, and
m + n = 11 to 34 are satisfied, and p and q are positive integers. ]
And a soft polyamide represented by the formula:
[0011]
In the polylactic acid composite material of the present invention, the soft polyamide is at least one soft polyamide selected from the group consisting of nylon 11, nylon 12, nylon 6/9, nylon 6/10, and nylon 6/12. Preferably, there is.
[0012]
Further, the molded article of the present invention is obtained by molding the above-mentioned polylactic acid composite material of the present invention.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail.
[0014]
The polylactic acid composite material of the present invention is characterized by containing polylactic acid and 1 to 100 parts by weight of a soft polyamide with respect to 100 parts by weight of the polylactic acid.
[0015]
First, the polylactic acid according to the present invention will be described. The polylactic acid has the following general formula (III):
[0016]
Embedded image
Figure 2004051835
(Where r represents an integer)
Is a polymer having a repeating unit represented by the following formula: The weight average molecular weight of the polylactic acid is not particularly limited, but is preferably 10,000 or more, more preferably 50,000 or more, and further preferably 100,000 or more. If the weight average molecular weight of the polylactic acid is less than the lower limit, mechanical properties such as strength and elastic modulus tend to be insufficient. Further, the weight average molecular weight of the polylactic acid is preferably 400,000 or less. If the weight average molecular weight is exceeded, the moldability tends to be insufficient.
[0017]
The polymerization method of the polylactic acid is not particularly limited, and may be direct polymerization of D-lactic acid or L-lactic acid, and may be ring-opening polymerization of D-lactide, L-lactide, meso-lactide which is a cyclic dimer of lactic acid. Is also good. When the polylactic acid is a copolymer of the D-form raw material and the L-form raw material, the content ratio of one of the D-form raw material and the L-form raw material is preferably 90 mol% or more, It is more preferably at least 97 mol%, further preferably at least 99 mol%. When both the D-form and the L-form are less than 90 mol%, crystallization is inhibited due to a decrease in stereoregularity, and the effects obtained by the present invention tend not to be sufficiently exhibited.
[0018]
The polylactic acid thus obtained exhibits optical isomerism, and the polylactic acid may be any of D-form, L-form and DL-form. Further, a mixture of polylactic acid whose main component is D-form and polylactic acid whose main component is L-form may be used at an arbitrary ratio.
[0019]
Furthermore, in the polylactic acid according to the present invention, in addition to lactic acid or lactide, other polymerizable monomers such as glycolide and caprolactone may be further polymerized to form a copolymer, and various organic and inorganic fillers may be added. It may be. Further, a polymer obtained by homopolymerization of the other polymerizable monomer may be blended with polylactic acid. In addition, the ratio of the polymer chains derived from the other polymerizable monomers to the total amount of the polymer is preferably 50 mol% or less in monomer conversion.
[0020]
In the polylactic acid composite material of the present invention, by mixing polylactic acid and a soft polyamide described below, an ester-amide exchange reaction occurs between an ester bond of the polylactic acid and an amide bond of the soft polyamide, and the polylactic acid and the soft polyamide The present inventors speculate that the improvement in compatibility with the above greatly improved the impact resistance while maintaining the heat resistance and rigidity at high levels.
[0021]
Next, the soft polyamide according to the present invention will be described. The flexible polyamide is represented by the following general formula (I) or (II).
[0022]
Embedded image
Figure 2004051835
[0023]
Embedded image
Figure 2004051835
[0024]
In the general formulas (I) and (II), R 1 , R 2 and R 3 may be the same or different, each represents an alkylene group having 4 to 30 carbon atoms, and R 1 , R 2 and R 3 Assuming that the number of carbon atoms in the main chain portion is 1, m, and n, l, m, and n are each an integer of l = 6 to 18, m is an integer of 6 to 18, and n is 4 to 16. It is an integer and m + n is an integer of 11 to 34, and p and q are positive integers.
[0025]
Such an alkylene group having 4 to 30 carbon atoms may or may not have a side chain, and specifically includes a tetramethylene group, a pentamethylene group, a hexamethylene group, and a heptamethylene group. , octamethylene group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, tridecamethylene group, the general formula -C n H 2n such as tetradecamethylene group - in the alkylene group represented, an alkyl group Examples thereof include a 1-methylpentamethylene group, a 2-methylpentamethylene group, a 2-ethylpentamethylene group, a 3-methylpentamethylene group, a 1-methylhexamethylene group, a 1-methylheptamethylene group, and the like, which are included as side chains.
[0026]
L is the number of carbon atoms in the main chain portion of the R 1 is 6 to 18 integer, preferably an integer of 9-17. M is the number of carbon atoms in the main chain portion of said R 2 is 6 to 18 integer, integer from 6-12 is preferred. N is the number of carbon atoms in the main chain portion of said R 3 is an integer of 4-16, 6-14 preferably an integer.
[0027]
Further, as the soft polyamide (soft nylon) represented by the general formulas (I) and (II) according to the present invention, polyamide 11 (polyundecanolactam), wherein l = 10 in the general formula (I), A polyamide 12 (polylauryl lactam) where l = 11 in the general formula (I), a polyamide 6/9 (polyhexamethylene nonanoic acid diamide) where m = 6 and n = 7 in the general formula (II), Polyamide 6/10 (polyhexamethylene sebacic acid diamide) in which m = 6 and n = 8 in the general formula (II), and polyamide 6/12 (poly) in which m = 6 and n = 10 in the general formula (II) Hexamethylene dodecanoic acid diamide), and more preferably nylon 11, nylon 12, nylon 6/9, nylon 6/10, nylon It is down 6/12. In addition, polyamide is a generic name of polymers having an acid amide bond -CONH-, and among them, a linear polymer is called nylon, but "nylon" is often used in place of polyamide. In addition, such a soft polyamide (soft nylon) is commercially available.
[0028]
The term “soft” of the flexible polyamide according to the present invention means that the flexural modulus at room temperature is less than 2 GPa (however, a filler such as a plasticizer and a reinforcing agent is not included).
[0029]
The weight average molecular weight of the flexible polyamide is preferably 5,000 or more, more preferably 10,000 or more, and still more preferably 15,000 or more. If it is less than the lower limit, heat resistance and impact resistance tend to be insufficient. The weight average molecular weight of such a soft polyamide is preferably 100,000 or less. If the weight average molecular weight of the soft polyamide exceeds 100,000, moldability tends to decrease. Here, p and q in the general formulas (I) and (II) are positive integers satisfying the above range of the weight average molecular weight.
[0030]
The content of the soft polyamide according to the present invention is 1 to 100 parts by weight, preferably 5 to 100 parts by weight, more preferably 10 to 80 parts by weight based on 100 parts by weight of the polylactic acid. And more preferably 20 to 70 parts by weight. If the content of such a soft polyamide is less than the lower limit, the effect of improving the impact tends to be insufficient, while if it exceeds the upper limit, the moldability tends to decrease.
[0031]
(Method for producing polylactic acid composite material)
Next, a method for producing the polylactic acid composite material of the present invention will be described. The polylactic acid composite material of the present invention may be any method capable of uniformly mixing the soft polyamide in the polylactic acid, and can be obtained by, for example, the following method. That is, a polylactic acid composite material having a desired shape can be obtained by mixing and melting and kneading polylactic acid and a soft polyamide. For such melt kneading, various extruders such as a single-screw extruder, a twin-screw extruder, a multi-screw extruder having three or more screws, a batch-type kneader such as a Brabender mixer and a Banbury mixer, and an injection molding machine are used. Used. As such an apparatus, any apparatus can be used as long as it can melt and knead two kinds of polymers. In order to obtain a polylactic acid composite material having better mechanical properties, it is necessary to perform sufficient kneading, and it is preferable to use a multi-screw extruder having two or more screws. In that case, it is preferable to make the kneading zone as long as possible and the residence time as long as possible. Specifically, it is preferable that the L / D of the kneading zone is 10 or more and the residence time is 2 minutes or more.
[0032]
As a result, the polylactic acid and the soft polyamide are sufficiently uniformly mixed, so that the polylactic acid composite material of the present invention having excellent impact resistance can be easily and reliably maintained at a high level of heat resistance and rigidity. Can be obtained.
[0033]
The temperature in the melt kneading is not particularly limited, but is preferably 170 to 260 ° C. When the temperature is lower than the lower limit, the melting of the polylactic acid becomes insufficient, and the soft polyamide tends to be hardly uniformly dispersed in the polylactic acid. If the temperature exceeds the upper limit, the molecular weight of the polylactic acid tends to decrease, and the physical properties of the polylactic acid composite material tend to be impaired (for example, embrittlement).
[0034]
Next, the molded article of the present invention will be described. As described above, the molded article of the present invention is obtained by using the polylactic acid composite material of the present invention. The shape and thickness of the molded article of the present invention are not particularly limited, and may be any of injection molded articles, extruded molded articles, compression molded articles, blow molded articles, sheets, films, threads, fabrics, and the like. More specifically, automotive parts such as bumpers, radiator grills, side moldings, garnishes, wheel covers, aero parts, instrument panels, door trims, seat fabrics, door handles, floor mats, housings for home appliances, films for product packaging , Waterproof sheets, various containers, bottles and the like. When the molded article of the present invention is used as a sheet, it may be laminated with paper or another polymer sheet and used as a laminate having a multilayer structure.
[0035]
In producing the molded article of the present invention, the molding method is not particularly limited, and may be any of injection molding, extrusion molding, blow molding, inflation molding, profile extrusion molding, injection blow molding, vacuum pressure molding, spinning, and the like. Can also be suitably used.
[0036]
【Example】
Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[0037]
Example 1
(Melting and kneading of polylactic acid and soft polyamide and molding)
Polylactic acid (Lacty # 5400, manufactured by Shimadzu Corporation) and nylon 12 (Ubesta 3024B, manufactured by Ube Industries, polyamide 12 with l = 11 in the general formula (I)) were dried at 70:30 (weight ratio) as a soft polyamide. Using a twin-screw extruder (manufactured by Nippon Steel Works: TEX30α, L / D = 45.5) equipped with a screw, the blended material is melt-kneaded at a screw rotation speed of 300 rpm, a cylinder set temperature of 180 ° C., and a resin supply speed of 5 kg / h. Thus, the desired polylactic acid composite material was obtained. The obtained polylactic acid composite material was extruded into strands, quenched with water, and pelletized with a strand cutter.
[0038]
The obtained polylactic acid pellets were molded using an injection molding machine (manufactured by Nissei Plastics Industries, Ltd .: PS40E2ASE and FS75) at a mold temperature and a cooling time of 40 ° C. and 40 s, respectively. (80 mm × 10 mm × 4 mm) was injection molded.
[0039]
(Evaluation of impact resistance, rigidity and heat resistance)
Using the test piece obtained under these molding conditions, an Izod impact test was performed in accordance with the “Izod impact test method for hard plastics” specified in JIS K 7110, and the Izod impact value (with reverse notch, unit: kJ / m) 2 ) was measured. Further, a tensile test was performed using the same test piece according to the “Plastic tensile test method” defined in JIS K 7113, and the tensile strength (MPa), tensile elongation at break (%), and tensile modulus (GPa) ) Was measured. Further, the prismatic test piece is annealed at 120 ° C. for 2 hours under vacuum to crystallize, and then subjected to a load deflection temperature (° C.) according to “Method for testing load deflection temperature of hard plastic” specified in JIS K 7191. Was measured. Table 1 shows the results obtained from these tests and the melting point (° C.) of the flexible polyamide. At the time of the annealing treatment, the test piece was sandwiched between plates having a smooth surface to prevent deformation of the test piece, a load was applied, and the test piece was allowed to stand still in a thermostat.
[0040]
Example 2
Polylactic acid was prepared in the same manner as in Example 1 except that nylon 11 (manufactured by Atofina Japan: Rilsan BMNO, polyamide 11 in which l = 10 in the general formula (I)) was used instead of nylon 12. A pellet was obtained. Using the obtained polylactic acid pellets, a test piece was formed in the same manner as in Example 1, and the Izod impact value, tensile strength, tensile elongation at break, tensile modulus, and deflection temperature under load were measured. Table 1 shows the obtained results and the melting point (° C.) of the flexible polyamide.
[0041]
Example 3
Nylon 6/12 (manufactured by Daicel Degussa: Daiamide D12, polyamide 6/12 in which m = 6 and n = 10 in the above general formula (II)) is used instead of nylon 12 as the soft polyamide. Polylactic acid pellets were obtained in the same manner as in Example 1 except that the cylinder set temperature was 210 ° C. Using the obtained polylactic acid pellets, a test piece was formed in the same manner as in Example 1, and the Izod impact value, tensile strength, tensile elongation at break, tensile modulus, and deflection temperature under load were measured. Table 1 shows the obtained results and the melting point (° C.) of the flexible polyamide.
[0042]
Example 4
Melt kneading using nylon 6/10 (manufactured by Aldrich: pellet-shaped reagent, polyamide 6/10 with m = 6 and n = 8 in the general formula (II)) instead of nylon 12 as the soft polyamide Polylactic acid pellets were obtained in the same manner as in Example 1 except that the cylinder set temperature at that time was 230 ° C. A test piece was formed using the obtained polylactic acid pellets in the same manner as in Example 1, and the Izod impact value, tensile strength, tensile elongation at break, tensile modulus, and deflection temperature under load were evaluated. Table 1 shows the obtained results and the melting point (° C.) of the flexible polyamide.
[0043]
Example 5
Melt kneading using nylon 6/9 (manufactured by Aldrich: pellet-shaped reagent, polyamide 6/9 with m = 6 and n = 7 in the general formula (II)) instead of nylon 12 as the soft polyamide Polylactic acid pellets were obtained in the same manner as in Example 1 except that the cylinder set temperature at that time was 205 ° C. Using the obtained polylactic acid pellets, a test piece was formed in the same manner as in Example 1, and the Izod impact value, tensile strength, tensile elongation at break, tensile modulus, and deflection temperature under load were measured. Table 1 shows the obtained results and the melting point (° C.) of the flexible polyamide.
[0044]
Comparative Example 1
Polylactic acid pellets were obtained in the same manner as in Example 1 without blending the polylactic acid with the soft polyamide. Using the obtained polylactic acid pellets, a test piece was formed in the same manner as in Example 1, and the Izod impact value, tensile strength, tensile elongation at break, tensile modulus, and deflection temperature under load were measured. Table 2 shows the obtained results.
[0045]
Comparative Example 2
In place of nylon 12, nylon 6 which is a hard polyamide (Ube Industries, Ltd .: Ube nylon 1024B, polyamide 6 where l = 5 in the above general formula (I)) was used, and the cylinder set temperature during melt-kneading was set to 215 ° C. Except for this, a polylactic acid pellet was obtained in the same manner as in Example 1. Using the obtained polylactic acid pellets, a test piece was formed in the same manner as in Example 1, and the Izod impact value, tensile strength, tensile elongation at break, tensile modulus, and deflection temperature under load were measured. Table 2 shows the obtained results and the melting point (° C.) of the flexible polyamide.
[0046]
Comparative Example 3
Instead of nylon 12, a hard polyamide, nylon 6/6 (Ube Industries, Ltd .: Ube Nylon 2020B, polyamide 6/6 in which m = 6 and n = 4 in the above general formula (II)) is used for melt kneading. Polylactic acid pellets were obtained in the same manner as in Example 1 except that the cylinder set temperature was 260 ° C. Using the obtained polylactic acid pellets, a test piece was formed in the same manner as in Example 1, and the Izod impact value, tensile strength, tensile elongation at break, tensile modulus, and deflection temperature under load were measured. Table 2 shows the obtained results and the melting point (° C.) of the flexible polyamide.
[0047]
Comparative Example 4
A nylon 4/6 (manufactured by DSM JSR Engineering Plastics: Stanyl TS300, polyamide 4/6 in which m = 4 and n = 4 in the above general formula (II)), which is a hard polyamide, is used in place of nylon 12, and melt kneading is performed. Polylactic acid pellets were obtained in the same manner as in Example 1 except that the cylinder set temperature was 290 ° C. Then, molding of a test piece was attempted in the same manner as in Example 1 using the obtained polylactic acid pellets. However, the temperature at the time of melt-kneading was so high that the decomposition of polylactic acid was intense, so that test specimens could not be prepared, and Izod impact value, tensile strength, tensile elongation at break, tensile modulus, and deflection temperature under load could be measured. could not. Therefore, since no result was obtained, only the melting point (° C.) of the soft polyamide is described in Table 2, and the other items are indicated using “−”.
[0048]
Comparative Example 5
Polylactic acid pellets were prepared in the same manner as in Example 1 except that a polyamide thermoplastic elastomer (manufactured by Daicel Degussa: Daiamide PAE E40, a block copolymer elastomer composed of nylon 12 and polyether) was used instead of nylon 12. Obtained. Using the obtained polylactic acid pellets, a test piece was formed in the same manner as in Example 1, and the Izod impact value, tensile strength, tensile elongation at break, tensile modulus, and deflection temperature under load were measured. Table 2 shows the obtained results and the melting point (° C.) of the flexible polyamide.
[0049]
[Table 1]
Figure 2004051835
[0050]
[Table 2]
Figure 2004051835
[0051]
As is clear from the results shown in Tables 1 and 2, the polylactic acid composite materials of the present invention obtained in Examples 1 to 5 were compared with the polylactic acid material of Comparative Example 1 in which the soft polyamide was not melt-kneaded. It was confirmed that the impact resistance was sufficiently improved. In addition, these polylactic acid composite materials showed a relatively small decrease in rigidity (tensile elastic modulus), and had a heat deflection temperature equal to or higher than that of the polylactic acid composite material. Therefore, it was confirmed that the heat resistance was sufficiently maintained. .
[0052]
On the other hand, in the polylactic acid composite materials of Comparative Examples 2 and 3 in which nylon 6 and nylon 6/6, which are hard polyamides, were melt-kneaded, the rigidity and heat resistance were maintained, but a decrease in impact resistance was confirmed. In addition, it was confirmed that the polylactic acid composite material of Comparative Example 5 in which the polyamide thermoplastic elastomer was melt-kneaded exhibited an improvement in impact strength, but a significant decrease in rigidity and heat resistance. In Comparative Example 4, in which nylon 4/6, which is a hard polyamide, was melt-kneaded, the temperature at the time of melt-kneading was high and polylactic acid was severely decomposed. Was.
[0053]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a polylactic acid composite material having excellent impact resistance while maintaining high levels of heat resistance and rigidity. The molded article of the present invention using the polylactic acid composite material of the present invention is very useful as automobile parts such as bumpers and radiator grills, housings for home electric appliances, and the like.

Claims (3)

ポリ乳酸と、前記ポリ乳酸100重量部に対して1〜100重量部の下記一般式(I)又は(II):
Figure 2004051835
Figure 2004051835
[式(I)及び(II)中、R、R及びRは、同一でも異なっていてもよく、それぞれ炭素数4〜30のアルキレン基を示し、R、R及びRの主鎖部分の炭素数をそれぞれl、m及びnとすると、前記l、m及びnがそれぞれ下記条件:
l=6〜18の整数、
m=6〜18の整数、
n=4〜16の整数、かつ、
m+n=11〜34の整数
を満たすものであり、p及びqは正の整数を示す。]
で表される軟質ポリアミドと、を含有することを特徴とするポリ乳酸複合材料。
Polylactic acid and 1 to 100 parts by weight of the following general formula (I) or (II) based on 100 parts by weight of the polylactic acid:
Figure 2004051835
Figure 2004051835
Wherein (I) and (II), R 1, R 2 and R 3 may be the same or different, each represent an alkylene group having 4 to 30 carbon atoms, the R 1, R 2 and R 3 Assuming that the number of carbon atoms in the main chain portion is 1, m and n, respectively, said l, m and n are the following conditions:
l = integer from 6 to 18,
m = an integer from 6 to 18,
n = integer from 4 to 16, and
m + n = 11 to 34 are satisfied, and p and q are positive integers. ]
And a soft polyamide represented by the formula:
前記軟質ポリアミドが、ナイロン11、ナイロン12、ナイロン6/9、ナイロン6/10及びナイロン6/12からなる群から選ばれる少なくとも1種の軟質ポリアミドであることを特徴とする請求項1に記載のポリ乳酸複合材料。2. The flexible polyamide according to claim 1, wherein the flexible polyamide is at least one soft polyamide selected from the group consisting of nylon 11, nylon 12, nylon 6/9, nylon 6/10, and nylon 6/12. 3. Polylactic acid composite material. 請求項1又は2に記載のポリ乳酸複合材料を成形して得られる成形体。A molded article obtained by molding the polylactic acid composite material according to claim 1.
JP2002212738A 2002-07-22 2002-07-22 Polylactic acid composite material and its molded product Pending JP2004051835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212738A JP2004051835A (en) 2002-07-22 2002-07-22 Polylactic acid composite material and its molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212738A JP2004051835A (en) 2002-07-22 2002-07-22 Polylactic acid composite material and its molded product

Publications (1)

Publication Number Publication Date
JP2004051835A true JP2004051835A (en) 2004-02-19

Family

ID=31935580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212738A Pending JP2004051835A (en) 2002-07-22 2002-07-22 Polylactic acid composite material and its molded product

Country Status (1)

Country Link
JP (1) JP2004051835A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100068A (en) * 2005-09-09 2007-04-19 Toray Ind Inc Thermoplastic resin composition and molded product thereof
JP2007224290A (en) * 2006-01-25 2007-09-06 Toray Ind Inc Thermoplastic resin composition and molded product thereof
FR2902433A1 (en) * 2006-06-16 2007-12-21 Arkema France Composite, useful to make e.g. molded-, extruded- and thermoformed object to make parts of mobile telephone and computer, comprises polymer composition of polylactic acid matrix, polyamide, functionalized polyolefin, and polyoxymethylene
FR2911879A1 (en) * 2007-01-29 2008-08-01 Arkema France Composite material for the production of formed objects such as sheet or tubing, contains a polyamide such as polyamide 11, plus poly-lactic acid and possibly a compatibiliser
JP2008231302A (en) * 2007-03-22 2008-10-02 Unitika Ltd Flame retardant and flexible resin composition, and molded article from the same
JP2008305717A (en) * 2007-06-08 2008-12-18 Hitachi Ltd Environmentally-adaptable electrical apparatus
JP2010265336A (en) * 2009-05-12 2010-11-25 Fuji Kasei Kogyo Co Ltd Resin composition based on poly(lactic acid)
US9187597B1 (en) 2014-10-21 2015-11-17 International Business Machines Corporation Flame-retardant polylactic acid (PLA) by grafting through of phosphorus-containing polymers directly to PLA backbone
US9193818B1 (en) 2014-10-29 2015-11-24 International Business Machines Corporation Toughened polylactic acid (PLA) by grafting through of impact-modifying polymers directly to PLA backbone
US9228044B2 (en) 2014-04-02 2016-01-05 International Business Machines Corporation Versatile, facile and scalable route to polylactic acid-backbone graft and bottlebrush copolymers
US9458268B2 (en) 2014-04-02 2016-10-04 International Business Machines Corporation Lactide-functionalized polymer
US9505858B2 (en) 2014-10-21 2016-11-29 International Business Machines Corporation Polylactic acid (PLA) with low moisture vapor transmission rates by grafting through of hydrophobic polymers directly to PLA backbone

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100068A (en) * 2005-09-09 2007-04-19 Toray Ind Inc Thermoplastic resin composition and molded product thereof
JP2007224290A (en) * 2006-01-25 2007-09-06 Toray Ind Inc Thermoplastic resin composition and molded product thereof
JP2009540090A (en) * 2006-06-16 2009-11-19 アルケマ フランス Composite material based on polylactic acid and polyamide with improved impact resistance, its production method and its use
FR2902433A1 (en) * 2006-06-16 2007-12-21 Arkema France Composite, useful to make e.g. molded-, extruded- and thermoformed object to make parts of mobile telephone and computer, comprises polymer composition of polylactic acid matrix, polyamide, functionalized polyolefin, and polyoxymethylene
WO2007144543A1 (en) * 2006-06-16 2007-12-21 Arkema France Composite based on polylactic acid and a polyamide, having improved impact resistance, its manufacturing process and use
KR101111368B1 (en) 2006-06-16 2012-02-24 아르끄마 프랑스 Composite based on polylactic acid and a polyamide, having improved impact resistance, its manufacturing process and use
US8076406B2 (en) 2006-06-16 2011-12-13 Arkema France Composite based on polylactic acid and a polyamide, having improved impact strength, and its manufacturing process and use
JP2010516852A (en) * 2007-01-29 2010-05-20 アルケマ フランス Composite material based on polyamide / polylactic acid, its production method and its use
US9169392B2 (en) 2007-01-29 2015-10-27 Arkema France Composite material based on polyamide and on poly(lactic acid), manufacturing process and use thereof
WO2008107615A1 (en) * 2007-01-29 2008-09-12 Arkema France Composite material based on polyamide and on poly(lactic acid), manufacturing process and use thereof
FR2911879A1 (en) * 2007-01-29 2008-08-01 Arkema France Composite material for the production of formed objects such as sheet or tubing, contains a polyamide such as polyamide 11, plus poly-lactic acid and possibly a compatibiliser
CN101622313B (en) * 2007-01-29 2012-02-29 阿克马法国公司 Composite material based on polyamide and on poly(lactic acid), manufacturing process and use thereof
JP2008231302A (en) * 2007-03-22 2008-10-02 Unitika Ltd Flame retardant and flexible resin composition, and molded article from the same
JP2008305717A (en) * 2007-06-08 2008-12-18 Hitachi Ltd Environmentally-adaptable electrical apparatus
JP2010265336A (en) * 2009-05-12 2010-11-25 Fuji Kasei Kogyo Co Ltd Resin composition based on poly(lactic acid)
US9228044B2 (en) 2014-04-02 2016-01-05 International Business Machines Corporation Versatile, facile and scalable route to polylactic acid-backbone graft and bottlebrush copolymers
US9228050B2 (en) 2014-04-02 2016-01-05 International Business Machines Corporation Versatile, facile and scalable route to polylactic acid-backbone graft and bottlebrush copolymers
US9458268B2 (en) 2014-04-02 2016-10-04 International Business Machines Corporation Lactide-functionalized polymer
US9879103B2 (en) 2014-04-02 2018-01-30 International Business Machines Corporation Initiation of controlled radical polymerization from lactide monomer
US9187597B1 (en) 2014-10-21 2015-11-17 International Business Machines Corporation Flame-retardant polylactic acid (PLA) by grafting through of phosphorus-containing polymers directly to PLA backbone
US9505858B2 (en) 2014-10-21 2016-11-29 International Business Machines Corporation Polylactic acid (PLA) with low moisture vapor transmission rates by grafting through of hydrophobic polymers directly to PLA backbone
US9725548B2 (en) 2014-10-21 2017-08-08 International Business Machines Corporation Polylactic acid (PLA) with low moisture vapor transmission rates by grafting through of hydrophobic polymers directly to PLA backbone
US9193818B1 (en) 2014-10-29 2015-11-24 International Business Machines Corporation Toughened polylactic acid (PLA) by grafting through of impact-modifying polymers directly to PLA backbone

Similar Documents

Publication Publication Date Title
CN1272381C (en) Free-flowing polyester moulding composition
JP5008015B2 (en) Aliphatic polyester composition and molded article thereof
US6733854B2 (en) Polyamide resin composition and synthetic resin product prepared therefrom
JP2736279B2 (en) Polyarylene sulfide resin composition
JP2003246926A (en) Molding material, molded product produced therefrom and use of the same
JP2010502818A (en) Polyamide resin composition
JP2004051835A (en) Polylactic acid composite material and its molded product
JP2004051666A (en) Polylactic acid composite material and molded product
KR20080007650A (en) Thermoplastic elastomer blend, method of manufacture and use thereof
KR20200082436A (en) Polyamide resin composition and article comprising the same
JP3589314B2 (en) Polyamide resin composition and molded article thereof
WO2016086318A1 (en) A polymer blend comprising a polyamide polymer, a polyester polymer and an epoxy-based compatibilizer
KR101694904B1 (en) Polyoxymethylene Resin Composition and Molding Including the Same
KR20100079518A (en) Polymeric composite materials comprising poly lactic acid
JPH0641443A (en) Resin composition for vibration-damping material
JP2771901B2 (en) Polyarylene sulfide resin composition and method for producing the same
JPH051304B2 (en)
JP4241243B2 (en) Aliphatic polyester composition and molded article thereof
JPH0525374A (en) Thermoplastic elastomer composition
KR100409068B1 (en) Composition of thermoplastic polyesteric resin improved mechanical strength
EP0624623A1 (en) Polymer composition
JP7102870B2 (en) Thermoplastic resin composition, thermoplastic resin molded product and method for producing the same
JP3332401B2 (en) Resin composition for blow molding and hollow molded article thereof
JPH0491164A (en) Polyamide resin composition
JP2007084642A (en) Polyester resin composition