JP2004050865A - Vehicle fender part structure - Google Patents

Vehicle fender part structure Download PDF

Info

Publication number
JP2004050865A
JP2004050865A JP2002207028A JP2002207028A JP2004050865A JP 2004050865 A JP2004050865 A JP 2004050865A JP 2002207028 A JP2002207028 A JP 2002207028A JP 2002207028 A JP2002207028 A JP 2002207028A JP 2004050865 A JP2004050865 A JP 2004050865A
Authority
JP
Japan
Prior art keywords
fender
reinforcing member
vehicle
impact
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002207028A
Other languages
Japanese (ja)
Inventor
Chihiro Oishi
大石 ちひろ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2002207028A priority Critical patent/JP2004050865A/en
Publication of JP2004050865A publication Critical patent/JP2004050865A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle fender part structure for improving the shock absorbing performance against a collision object. <P>SOLUTION: In the vehicle fender part structure with a fender panel 30 fitted to an upper frame 20 extending along the longitudinal direction of a vehicle body, a step-like reinforcing member 50 is stretched between a side surface of a longitudinal surface part 41 of a fender bracket 40 and a lower surface of an upper surface part 43 over the fender bracket 40 extending in the longitudinal direction of the vehicle body and having a longitudinal wall part 41 with a lower end thereof coupled with the upper frame 20 and extending in the vertical direction and the upper surface part 43 bent from an upper edge of the longitudinal wall part 41, extending in a substantially horizontal direction, and coupled with a flange part 34 of the fender panel 30. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は車体の構造部材にフェンダパネルを取り付けた車両のフェンダ部構造に関する。
【0002】
【従来の技術】
車両のフェンダパネルに上方から作用する衝撃荷重に対するエネルギ吸収特性の向上を図り、衝突体への衝撃を緩和する車両のフェンダ部構造としては、例えば特開2001−334958号公報に記載の構造がある。
【0003】
この構造は、図12に車体前部の要部斜視図を示し、かつ図13にそのII−II線断面を示すように、エンジンルームの上方を開閉するフード101(図13を参照)の左右両側にフェンダパネル102を備えている。フェンダパネル102はアウタパネル部103と、車幅方向内方上部の見切り部104と、この見切り部104から下方へ延びる縦壁部105とが連続形成され、縦壁部105の下端に一体形成された複数の略門形のブラケット部106を介して車体構造部材であるアッパフレーム110に取り付け支持されている。
【0004】
そして、車両に上方から衝突体が衝突してフェンダパネル102の見切り部104部分に衝撃荷重が入力した際に、フェンダパネル102のブラケット部106の上片106a、前片106b、後片106cが共に座屈変形して衝撃エネルギを吸収することによって衝突体への衝撃を緩和するものである。
【0005】
【発明が解決しようとする課題】
しかしながら、この車両のフェンダ部構造においては、フード101の側端縁近傍に略上方から衝突体が衝突した際に、フード101に作用した衝撃エネルギをブラケット部106の上片106a、前片106b、後片106cの各座屈変形、即ちブラケット部106全体が略同時に変形して吸収することから、衝撃後の初期段階においてブラケット部106が急激に変形して滑らかに連続する衝撃エネルギ吸収特性が得られず、衝突体への十分な衝撃緩和が達成できないことが懸念される。また、変形によって衝撃エネルギを吸収するブラケット部106には、フェンダパネル102をアッパフレーム110に取り付け支持するための十分な剛性強度が要求され、しかもフェンダパネル102それ自体にブラケット部106を一体形成することから、ブラケット部106の変形による衝撃エネルギ吸収特性を微細に調整することが困難である。
【0006】
従って、かかる点に鑑みなされた本発明の目的は、衝突体への衝撃緩和性能の向上を図る車両のフェンダ部構造を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成する請求項1に記載の車両のフェンダ部構造の発明は、車体の前後方向に沿って延設される車体構造部材にフェンダパネルを取り付ける車両のフェンダ部構造において、下端が上記車体構造部材に結合されて上下方向に延びる縦壁部及び該縦壁部の上端縁から折曲して略水平に延びて上記フェンダパネルに結合する上面部を有して車体前後方向に延在するフェンダブラケットと、該フェンダブラケットに取り付けられ、上方から上記フェンダパネルへ入力された衝撃荷重の衝撃エネルギ吸収特性を変形によって調整する補強部材とを備えたことを特徴とする。
【0008】
請求項1の発明によると、フェンダパネルへ入力された衝撃エネルギ吸収特性を変形によって調整する補強部材がフェンダブラケットに取り付けられることから、上方からの衝撃荷重に対するフェンダブラケットの支持剛性が比較的高く設定される。そして、入力された衝撃荷重によるフェンダブラケット及び補強部材が変形する初期段階における衝撃加速度が上昇して十分に衝撃エネルギを吸収し、残存する衝撃エネルギが減少する。この結果、残存する衝撃エネルギの減少によりフェンダブラケット及び補強部材が変形する後半段階における急激な衝撃加速度の上昇が抑制されて衝撃緩和性能の向上が得られ、衝突体に与える衝撃が大幅に緩和できる。更に補強部材を衝撃エネルギ吸収特性の異なる他の補強部材に代えることによって、他の車体部材に影響することなく容易に微細な衝撃緩和特性を調整することができる。
【0009】
請求項2に記載の発明は、請求項1の車両のフェンダ部構造において、上記補強部材は、上記フェンダブラケットの縦壁部の側面と上面部の下面との間に掛け渡され、かつ略水平方向に延びる水平部と略上下方向に延びる縦面部が交互に繰り返されて連続する階段状であることを特徴とする。
【0010】
請求項2の発明によると、補強部材を水平部と縦面部が交互に繰り返されて連続する階段状に形成する比較的簡単な構成によって、上方から衝撃荷重が入力された際、各水平部と縦面部の連続部となる折曲形成された各折曲線が連続的に押し潰されて変形し、この連続する変形によって衝撃によるフェンダブラケット及び補強部材の変形する初期段階において十分に衝撃エネルギが吸収され、変形の後半段階における急激な衝撃加速度の上昇が抑制されて衝突体に与える衝撃が大幅に緩和される。
【0011】
請求項3に記載の発明は、請求項2の車両のフェンダ部構造において、上記補強部材は、上下方向の寸法が互いに異なる複数の縦面部及び車幅方向の寸法が互いに異なる複数の水平部の少なくとも一方を有することを特徴とする。
【0012】
請求項3の発明によると、互いの縦面部の上下方向の寸法或いは互いの水平部の車幅方向の寸法を異ならせることによって、微細な衝撃エネルギ吸収特性を調整することができる。
【0013】
請求項4に記載の発明は、請求項2の車両のフェンダ部構造において、上記補強部材の連続する水平部と縦面部とに亘って連続して配設された第2補強部材を備えたことを特徴とする。
【0014】
請求項4の発明によると、第2補強部材によって補強部材の変形強度が調整され、補強部材による衝撃エネルギの吸収特性が容易に調整されて衝突体に与える衝撃を有効的にが緩和され、更に安全性が確保される。
【0015】
請求項5に記載の発明は、請求項2または3の車両のフェンダ部構造において、上記補強部材は、異なる材質からなる複数の構成部材が連結して形成されたことを特徴とする。
【0016】
請求項5の発明によると、異なる材質からなる複数の構成部材を連結して補強部材を形成することによって、異なる材質に特性に従って補強部材の変形強度が調整され、衝撃エネルギの吸収特性が調整されて衝突体に与える衝撃を有効的に緩和される。
【0017】
請求項6に記載の発明は、請求項2〜4のいずれかの車両のフェンダ部構造において、上記フェンダブラケットの縦壁部の側面と上面部の下面との間に互いに離間して上記補強部材が複数掛け渡されたことを特徴とする。
【0018】
請求項6の発明によると、複数の補強部材を配設ことから、各補強部材に入力する衝撃荷重に応じて各補強部材が変形して衝撃エネルギを吸収し、より有効的な衝撃エネルギの吸収特性が得られ、衝撃体に対する衝撃の緩和が得れる。
【0019】
【発明の実施の形態】
(第1実施の形態)
本発明による車両のフェンダ部構造の第1実施の形態を、図1乃至図8を参照して説明する。なお、図中矢印Fは車体前方方向、矢印UPは車体上方方向、矢印INは車幅方向内方向を示す。
【0020】
図1は車両1の前部斜視図であり、図2は図1のI−I線断面図である。車両の前部には、エンジンルームの上方を開閉自在に覆うフード10と、エンジンルームの側部を形成するフェンダパネル30を備え、フード10とフェンダパネル30の境界aが、フード10の車幅方向の側端縁10aに沿って車体前後方向に延びている。
【0021】
フード10は、このフード10の上面を形成するフードパネルアウタ11を有し、フードパネルアウタ11の車幅方向側縁部の下面側には、上方が開口した断面略ハット状で車体前後方向に延びるフードパネルインナ12が配置されて、その外側縁部がヘミング加工によってフードパネルアウタ11に固定されている。このフードパネルアウタ11とフードパネルインナ12によって形成される車体前後方向に延在する中空閉断面部13は、フード10の骨格を構成している。
【0022】
一方、車両1は、フード10の側端縁10aの下方に位置してエンジンルームの側部に沿って車体前後方向に配設された車体構造部材であるアッパフレーム20を備えている。アッパフレーム20は、車幅方向外側が開放された断面略コ字状で車体前後方向に延在するアッパフレームインナ21と、車幅方向外側が開放された断面略コ字状でアッパフレームインナ21の両端縁部分21a、21bに各々端縁部分22a、22bが各々重ねられて結合するアッパフレームアウタ22とによって車体前後方向に延在する略矩形の中空閉断面形状に構成されている。このアッパフレーム20は、後方端が車室とエンジンルームとの間で車幅方向に延在する車体構造部材であるバルクヘッド25に結合されている。
【0023】
フェンダパネル30は、アウタパネル部31の上部が車幅方向内方側に湾曲し、かつフード10の側端縁10aに対向する見切り部32から下方に折曲されて下方向に延びる縦壁部33が形成されている。この縦壁部33の下端部に車幅方向内方に向かって折曲されてフード10の側端縁10aよりも車幅方向内方側にまで延びてフード10の側縁部分10Aの下方に重なるフランジ部34が車体前後方向に延在して形成されている。
【0024】
このフェンダパネル30のフランジ部34は、フェンダブラケット40を介してアッパフレーム20の上面に結合されている。フェンダブラケット40は、図2に断面図を示し、かつ図3に斜視図に示すように、略垂直で上下方向に延びる縦壁部41と、この縦壁部41の下端縁41aから車幅方向外方に折曲されて略水平に延びる下面部42と、縦壁部41の上端縁41bから車幅方向内方に折曲されて略水平に延びる上面部43を有する車体前後方向に延在する断面略Z字状である。フェンダブラケット40の下面部42がアッパフレーム20の上面に重ねられてアッパフレームインナ21及びアッパフレームアウタ22の各端部分21a、22aと共にスポット溶接され、かつ上面部43がフェンダパネル30に形成されたフランジ部34の下面に重ねられてスポット溶接されている。
【0025】
フェンダブラケット40に形成された縦壁部41の下端縁41a近傍と、上面部43の先端43a近傍との間に補強部材50が掛け渡されて配設されている。
【0026】
補強部材50は、図2に断面図を示すと共に図3及び図4に斜視図を示すように、フェンダブラケット40の縦壁部41の下端縁41aに沿って縦壁部41の車幅方向内側の側面にスポット溶接される略矩形の下側結合部51と、下側結合部51の上縁に沿って車幅方向内方に折曲する第1折曲線51aから略水平に延びる略矩形の第1水平部52と、第1水平部52の内縁に沿って上方に折曲する第2折曲線52aから上方に延びる略矩形の第1縦面部53と、第1縦面部53の上縁に沿って車幅方向内方に折曲する第3折曲線53aから略水平に延びる略矩形の第2水平部54と、第2水平部54の内縁に沿って上側に折曲する第4折曲線54aから上方に延びる略矩形の第2縦面部55と、第2縦面部55の上縁に沿って車幅方向内方に折曲する第5折曲線55aから略水平に延びて上面部43の先端43aに沿って上面部43の下面に結合される略矩形の上側結合部56とが連続形成された断面階段状に形成されている。
【0027】
この階段状に形成される補強部材50は、下側結合部51と、第1水平部52と、第1縦面部53と、第2水平部54と、第2縦面部55と、上側結合部56とが連続形成された矩形平板状の素材を、第1折曲線51a、第2折曲線52a、第3折曲線53a、第4折曲線54a及び第5折曲線55aにおいて折曲形成することによって容易に成形できる。
【0028】
このように形成された補強部材50は、縦壁部41の下端縁41aに沿って縦壁部41の車幅方向内方の側面に下側結合部51を重ね、かつ上面部43の先端43aに沿って上面部43の下面に上側結合部56を重ね、互いに重合する縦壁部41と下側結合部51をスポット溶接すると共に、上面部43と上側結合部56とフランジ34とを共にスポット溶接することによって、図2に示すようにフェンダブラケット40の縦壁部41の下端縁41a近傍と、上面部43の先端43a近傍との間に掛け渡されて配設される。
【0029】
次に、このように形成されたフェンダ部構造の作用を説明する。
【0030】
フード10とフェンダパネル30との境界a近傍に上方から衝突体Sが衝突して、図5に矢印Aで示すように略上方から下方へ向けて衝撃荷重が入力した場合には、フード10の側端縁10a近傍部分が下方に押し下げられ、フード10の下方に配置されたフェンダパネル30のフランジ部34がフード10によって図5に示すように下方へ押圧されて変形する。
【0031】
ここで、仮に図6に示すようにフェンダブラケット40の縦壁部41の下端縁41aの近傍と上面部43の先端43a近傍との間に掛け渡されて配設されるフェンダブラケット50が省略されている場合には、フェンダパネル30のフランジ部34を下方から支持するフェンダブラケット40の上面部43が、縦壁部41の上端縁41b側から車幅方向内方に折曲形成されたオーバハング状態であり、上方からの荷重に対する支持剛性が比較的低く、特に上面部43は縦壁部41側に対して先端43a側の支持剛性が低くい。このため、フェンダパネル30を介して上方から衝撃荷重が入力した際、その衝撃荷重に対する抗力が小さくフェンダブラケット40が急激に座屈変形してフェンダブラケット40の変形による十分な衝撃エネルギの吸収が妨げられる。即ち、図7に衝撃荷重に対する衝撃加速度と時間の関係を示す衝撃加速度−時間線図に、実線Gで示すように、衝撃によるフェンダブラケット40の変形における初期段階において低い衝撃加速度で変形して十分な衝撃エネルギの吸収が得られず、フェンダブラケット40の変形の後半段階において急激に衝撃加速度が上昇して衝突体に大きな衝撃を与えることが懸念される。
【0032】
一方、本実施の形態によると、フェンダブラケット40の上側結合部43の先端43a近傍と縦壁部41の下端41a近傍の側面に掛け渡された階段状に折曲形成された補強部材50によって補剛されて、上方から入力される衝撃荷重に対するフェンダブラケット40の支持剛性が比較的高く設定される。
【0033】
従って、フード10に上方から衝撃体Sによる衝撃荷重が作用すると、図5に示すように、フード10が変形してフェンダパネル30のフランジ部34を介してフェンダブラケット40の上面部43に衝撃荷重が伝達される。
【0034】
この衝撃荷重によってフェンダブラケット40は、その変形によって上面部43の先端43a近傍と縦壁部41の下端41a近傍間に架設された補強部材50を押し潰し、かつフェンダブラケット40を座屈変形させて、補強部材50及びフェンダブラケット40の変形によって衝撃エネルギを吸収する。
【0035】
この補強部材50の変形による衝撃エネルギの吸収は、例えば、折曲形成された第5折曲線55a、第4折曲線54a、第3折曲線53a、第2折曲線52a、第1折曲線51aが連続的に押し潰されて変形し、この補強部材50及びフェンダブラケット40の変形における初期段階において衝撃エネルギが効率的に吸収されて残存する衝撃エネルギが減少し、残存する衝撃エネルギの減少により補強部材50及びフェンダブラケット40の変形の後半段階での急激な変化が抑制されて滑らかに連続する衝撃加速度変化が維持されて有効的な衝撃エネルギの吸収が得られ、衝撃体Sに対する衝撃の緩和が得れる。
【0036】
即ち、図7に破線Gaで示すように、補強部材50による抗力によって衝撃による変形の初期段階における衝撃加速度を十分上昇させて、初期段階において十分に衝撃エネルギを吸収する。その結果、残存する衝撃エネルギが減少し、衝撃による変形の後半段階における急激な衝撃加速度の上昇が抑制されて、衝突体Sに与える衝撃が大幅に緩和され、衝突体Sに対する安全性が確保される。
【0037】
一方、補強部材50を、種々の更に異なる衝撃エネルギ吸収特性の補強部材50と代えることによって、容易に微細な衝撃加速度の変化、即ち衝撃エネルギ吸収特性が調整でき、微細な衝撃緩和特性を調整することができる。
【0038】
例えば、図8に補強部材50の斜視図を示すように、第1水平部52、第2水平部54の車幅方向の寸法L1とL2及び第1縦面部52、第2縦面部53の上下方向の寸法L3とL4を変えることによって、補強部材50による衝撃の際の衝撃加速度の変化が調整されて、フェンダパネル30の変形速度の微細な調整及びフェンダブラケット40及び補強部材50による微細な衝撃エネルギ吸収特性を調整することができる。即ち、補強部材50は、上下方向の寸法が互いに異なる複数の縦面部及び車幅方向の寸法が互いに異なる複数の水平部の少なくとも一方を有することによって、微細な衝撃エネルギ吸収特性を調整することができる。
【0039】
この微細な変形速度や衝撃エネルギ吸収特性の調整は、補強部材50の車体前後方向の長さL5や補強部材50の板厚等を種々変更することによっても容易に行える。なお、この異なる衝撃エネルギ吸収特性の補強部材50と代えることは、他の車体部材に影響することなく容易に行え、補強部材50を代えることによる微細な衝撃緩和特性の調整は車体構造を大きく変更することなく容易に行うことができる。
【0040】
(第2実施の形態)
本発明による車両のフェンダ部構造の第2実施の形態を、図9を参照して説明する。なお、本実施の形態は、複数の補強部材50をフェンダブラケット40に互いに離間して部分的に配置したことを特徴とし、他の構成は第1実施の形態と同一であり、該部の構成を主に説明する。
【0041】
図9は、補強部材50の斜視図であり、各補強部材50は、上記第1実施の形態の補強部材50に対し、車体前後方向の寸法L5が小さく設定され、フェンダブラケット40縦壁部41の下端縁41aに沿って結合される略矩形の下側結合部51と、下側結合部51の上縁に沿って車幅方向内方に折曲する第1折曲線51aから略水平に延びる略矩形の第1水平部52と、第1水平部52の内縁に沿って折曲する第2折曲線52aから上方に延びる略矩形の第1縦面部53と、第1縦面部53の上縁に沿って車幅方向内方に折曲する第3折曲線53aから略水平に延びる第2水平部54と、第2水平部54の内縁に沿って上側に折曲する第4折曲線54aから上方に延びる第2縦面部55と、第2縦面部55の上縁に沿って車幅方向内方に折曲する第5折曲線55aから略水平に延びて上面部43の先端43aに沿って上面部43の下面に結合される上側結合部56とが連続形成された階段状に形成されている。
【0042】
このように形成された各補強部材50は、各補強部材50の下側結合部51を縦壁部41の下端縁41a近傍にスポット溶接し、かつ上面部43の先端43a近傍の下面に上側結合部56をスポット溶接することによって、互いに車体前後方向に所定間隔Lだけ離間してフェンダブラケット40の縦壁部41の下端縁41a近傍と上面部43の先端43a近傍との間に掛け渡されて配設される。
【0043】
そして、第1実施の形態と同様にフード10に上方から衝撃体Sによる衝撃が入力されると、フード10が変形してフェンダパネル30のフランジ部34を介してフェンダブラケット40の上面部43に衝撃荷重が伝達される。
【0044】
衝撃荷重によってフェンダブラケット40は、その上面部43の先端43a側が上面部43の先端近傍と縦壁部41の下端41a近傍間に架設された各補強部材50を、各々の補強部材50に入力する衝撃荷重に相応して押し潰し、かつフェンダブラケット40を座屈変形させて衝撃エネルギを吸収する。
【0045】
この各補強部材50の変形による衝撃エネルギの吸収は、各々入力する衝撃荷重に応じて折曲形成された第5折曲線55a、第4折曲線54a、第3折曲線53a、第2折曲線52a、第1折曲線51aが連続的に押し潰されて座屈変形し、この連続する変形の初期段階において十分に衝撃エネルギが吸収され、残存する衝撃エネルギが減少し、変形の後半段階における急激な変化がない滑らかに連続する衝撃加速度の変化が維持されて有効的な衝撃エネルギの吸収が得られ、衝撃体Sに対する衝撃の緩和が得れる。
【0046】
即ち、衝撃により入力された際、各部分に入力された各部の衝撃荷重に相応した各々の補強部材50による抗力によって各部の変形初期段階において衝撃加速度を上昇させて十分に衝撃エネルギを吸収し、変形の後半段階における衝撃加速度の急激な上昇を抑制することによって、残存する衝撃エネルギが減少し、更に衝突体に与える衝撃を有効的に緩和され、更に安全性が確保される。
【0047】
各補強部材50間の離間寸法Lは、各部の要求衝撃エネルギ吸収特性に応じて調整することもできる。また、各補強部材50間が離間することによって、上記第1実施の形態に比べ、軽量化が得られると共に、各部の要求衝撃エネルギ吸収特性に応じて各補強部材50間を変更することによって各部に相応した衝撃加速度の調整が可能になる。更に、各補強部材50の板厚や形状を変えて各部の要求衝撃エネルギ特性に応じた種々調整ができる。例えば、図8と同様に第1水平部52、第2水平部54の車幅方向の寸法L1とL2及び第1縦面部52、第2縦面部53の上下方向の寸法L3とL4を変えて、補強部材50の荷重に対する座屈変形の特性を調整して衝撃エネルギ特性を調整できる。また、補強部材50は、3個に限定されることなく2個或いは4個以上の複数個配設することもできる。
【0048】
(第3実施の形態)
本発明による車両のフェンダ部構造の第3実施の形態を、図10を参照して説明する。なお、本実施の形態は、複数の補強部材、本実施の形態では2個の補強部材50に第2補強部材60を配設したことを特徴とし、他の構成は第1実施の形態と同一であり、該部の構成を主に説明する。
【0049】
各補強部材50は、フェンダブラケット40縦壁部41の下端縁41aに沿って結合される下側結合部51と、下側結合部51の上縁に沿って車幅方向内方に折曲する第1折曲線51aから略水平に延びる第1水平部52と、第1水平部52の内縁に沿って折曲する第2折曲線52aから上方に延びる第1縦面部53と、第1縦面部53の上縁に沿って車幅方向内側に折曲する第3折曲線53aから略水平に延びる第2水平部54と、第2水平部54の内縁に沿って上側に折曲する第4折曲線54aから上方に延びる第2縦面部55と、第2縦面部55の上縁に沿って車幅方向内側に折曲する第5折曲線55aから略水平に延びて上面部43の先端43aに沿って上面部43の下面に結合される上側結合部56とが連続形成された断面階段状に形成されている。
【0050】
この階段状に形成された各補強部材50の連続する水平部と縦面部、例えば第1縦面部53から第2水平部54に亘って、補強部材50と異なる材質、例えばアルミニウム或いは樹脂製で断面略L字状に連続して一体成形されたブロック状の第2補強部材60が一体的に設けられ、補強部材50の変形強度を調整している。
【0051】
このように第2補強部材60によって変形強度が調整された各補強部材50は、各補強部材50の下側結合部51を縦壁部41の下端縁41a近傍にスポット溶接し、かつ上面部43の先端43a近傍下面に上側結合部56をスポット溶接することによって、互いに車体前後方向に所定間隔Lだけ離間してフェンダブラケット40の縦壁部41の下端縁41a近傍と上面部43の先端43a近傍との間に掛け渡されて配設される。
【0052】
そして、第1実施に形態と同様にフード10に上方から衝撃体Sによる衝撃が入力されると、フード10が変形してフェンダパネル30のフランジ部34を介してフェンダブラケット40の上面部43に衝撃荷重が伝達される。
【0053】
衝撃荷重によってフェンダブラケット40は、その上面部43の先端43a近傍と縦壁部41の下端41a近傍間に架設された各補強部材50を、各々の補強部材50に入力される衝撃荷重に相応して押し潰し、かつフェンダブラケット40を座屈変形させて衝撃エネルギを吸収する。
【0054】
この各補強部材50の変形による衝撃エネルギの吸収は、各々入力する衝撃荷重に応じて各補強部材50の第5折曲線55a、第4折曲線54a、第3折曲線53a、第2折曲線52a、第1折曲線51aが連続的に押し潰されて座屈変形し、かつその座屈変形が第2補強部材60によって調整されて急激な変化がない滑らかに連続する衝撃加速度が維持されて有効的な衝撃エネルギの吸収が得られ、衝撃体Sに対する衝撃の緩和が得れる。
【0055】
即ち、衝撃荷重の作用する分布状況に相応して第2補強部材60によって変形強度が調整された各補強部材50による抗力によって衝撃による変形の初期段階において衝撃加速度を上昇させて十分に衝撃エネルギを吸収し、残存する衝撃エネルギが減少する。その結果、衝撃による変形の後半段階における衝撃加速度の急激な上昇を抑制することによって、衝突体に与える衝撃が有効的に緩和され、更に安全性が確保される。
【0056】
各部の要求衝撃エネルギ吸収特性に応じて、第2補強部材60を厚さ等の差違による変形特性の異なるものに変えることによって、各補強部材50の変形速度等の調整が可能になり、各補強部材50による衝撃エネルギ特性の調整が容易にできる。
【0057】
(第4実施の形態)
本発明による車両のフェンダ部構造の第4実施の形態を、図11によって説明する。なお、本実施の形態は、異なった材質によって補強部材70を構成したことを特徴とし、他の構成は第1実施の形態と同一であり、該部の構成を主に説明する。
【0058】
図11は、補強部材70の斜視図であり、各補強部材70は、図11に示すように、フェンダブラケット40縦壁部41の下端縁41aに沿って結合される下側結合部71及びこの下側結合部71の上縁に沿って車幅方向内側に折曲する第1折曲線71aから略水平に延びる第1水平部72とからなる断面L字状の鋼板製の下部補強部材70Aと、下部補強部材70Aの第1水平部72の内方端に接合して上方の延びる第1縦面部73及び第1縦面部73の上縁に沿って車幅方向内側に折曲する第3折曲線73aから略水平に延びる第2水平部74を有する断面L字状で下部補強部材70Aと異なる材質、例えばアルミニウム或いは樹脂製の中間補強部材70Bと、中間補強部材70Bの第2水平部74に接合されて上方に延びる第2縦面部75及び第2縦面部75の上縁に沿って車幅方向内側に折曲する第5折曲線75aから略水平に延びて上面部43の先端43aに沿って上面部43の下面に結合される鋼板製の上側結合部76を有する上部補強部材70Cとが連続形成された断面階段状に形成されている。
【0059】
このように材質の異なる下部補強部材70A、中間補強部材70B、上部補強部材70Cによって変形強度が調整された各補強部材70は、各補強部材70の下側結合部71を縦壁部41の下端縁41a近傍にスポット溶接し、かつ上面部43の先端43a近傍下面に上側結合部76スポット溶接することによって、互いに車体前後方向に離間してフェンダブラケット40の縦壁部1の下端縁41a近傍と上面部43の先端43a近傍との間に掛け渡されて配設される。
【0060】
そして、第1実施の形態と同様にフード10に上方から衝撃体Sによる衝撃が与えられると、フード10が変形してフェンダパネル30のフランジ部34を介してフェンダブラケット40の上面部43に衝撃荷重が伝達される。
【0061】
衝撃荷重によってフェンダブラケット40は、その上面部43の先端43a近傍と縦壁部41の下端41a近傍間に架設された各補強部材70を、各々の補強部材70に入力する衝撃荷重に相応して押し潰し、かつフェンダブラケット40を座屈変形させて衝撃エネルギを吸収する。
【0062】
この各補強部材70の変形による衝撃エネルギの吸収は、各々入力する衝撃荷重に応じて各補強部材70の第5折曲線75a、第4折曲線74a、第3折曲線73a、第2折曲線72a、第1折曲線71aが連続的に押し潰されて座屈変形し、かつその座屈変形が下部補強部材70A、中間補強部材70B、上部補強部材70Cの各部材の異なる材質によって調整されて急激な変化がない滑らかに連続する衝撃加速度が維持されて有効的な衝撃エネルギの吸収が得られ、衝撃体Sに対する衝撃の緩和が得れる。
【0063】
即ち、衝撃荷重の作用する分布状況に相応して下部補強部材70A、中間補強部材70B、上部補強部材70Cの特性によって変形強度が調整された各補強部材70による抗力によって衝撃による変形の初期段階において衝撃加速度を上昇させて十分に衝撃エネルギを吸収して残存する衝撃エネルギを減少させる。その結果、衝撃による変形の後半段階における衝撃加速度の急激な上昇を抑制することによって、上記第1実施の形態に加え更に衝突体に与える衝撃が有効的に緩和され、更に安全性が確保される。
【0064】
また、各部の要求衝撃エネルギ吸収特性に応じて、変形特性の異なる他の材質からなる中間補強部材70Bを用いることによって、各補強部材70の変形速度等の調整が可能になり、各補強部材70による衝撃エネルギ特性の調整が容易にできる。
【0065】
なお、本発明は上記実施の形態に限定されることなく、発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上記第1及び第2形態の補強部材50に、更に第3実施の形態のようにブロック状の第2補強部材を配設して衝撃エネルギ吸収特性を調整することもできる。また、上記各階段状に形成された折曲部を増減させて段数を適宜選択することによって更に衝撃エネルギ吸収特性を調整することもできる。
【0066】
【発明の効果】
以上説明した本発明の車両のフェンダ部構造によると、車体の前後方向に延設される車体構造部材フェンダパネルを取り付ける車両のフェンダ部構造において、下端が車体構成部材に結合されて上下方向の延びる縦壁部及び該縦壁部の上端縁から折曲して略水平に延びてフェンダパネルに結合する上面部を有して車体前後方向に延在するフェンダブラケットと、変形によってフェンダパネルへ入力された衝撃エネルギ吸収特性を調整する補強部材とを備えることから、上方からの衝撃荷重が入力された際、フェンダブラケット及び補強部材が変形する初期段階における衝撃加速度が十分上昇して衝撃エネルギを吸収し、残存する衝撃エネルギを減少し、その結果、変形の後半段階における急激な衝撃加速度の上昇を抑制することによって、衝突体に与える衝撃を大幅に緩和することができる。また、補強部材を異なる衝撃エネルギ吸収特性の他の補強部材と代えることによって、他の車体部材に影響することなく容易に微細な衝撃緩和特性を調整することができる。
【図面の簡単な説明】
【図1】本発明による車両のフェンダ部構造の第1実施の形態の概要を示す車体の前部斜視図である。
【図2】図1のI−I線断面図である。
【図3】フェンダブラケット及び補強部材の結合状態を示す斜視図である。
【図4】補強部材の斜視図である。
【図5】フェンダ部の変形状態を示す断面図である。
【図6】作用を比較する車両のフェンダ部構造の参考図である。
【図7】衝撃加速度−時間線図である。
【図8】補強部材の他の実施の形態を示す斜視図である。
【図9】本発明による車両のフェンダ部構造の第2実施の形態の概要を示す補強部材の斜視図である。
【図10】本発明による車両のフェンダ部構造の第3実施の形態の概要を示す補強部材の斜視図である。
【図11】本発明による車両のフェンダ部構造の第4実施の形態の概要を示す補強部材の斜視図である。
【図12】従来の車両のフェンダ部構造を示す車体前部の要部斜視図である。
【図13】図12のII−II線断面である。
【符号の説明】
1   車両
10   フード
20   アッパフレーム(車体構造部材)
30   フェンダパネル
31   アウタパネル部
33   縦壁部
34   フランジ部
40   フェンダブラケット
41   縦壁部
41a  下端縁
41b  上端縁
42   下面部
43   上面部
50   補強部材
51   下側結合部
51a  第1折曲線
52   第1水平部
52a  第2折曲線
53   第1縦面部
53a  第3折曲線
54   第2水平部
54a  第4折曲線
55   第2縦面部
55a  第5折曲線
56   上側結合部
60   第2補強部材
70   補強部材
70A  下部補強部材
70B  中間補強部材
70C  上部補強部材
71   下側結合部
71a  第1折曲線
72   第1水平部
72a  第2折曲線
73   第1縦面部
73a  第3折曲線
74   第2水平部
74a  第4折曲線
75   第2縦面部
75a  第5折曲線
76   上側結合部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fender structure of a vehicle in which a fender panel is attached to a structural member of a vehicle body.
[0002]
[Prior art]
As a fender structure of a vehicle for improving energy absorption characteristics against an impact load acting on a fender panel of the vehicle from above and reducing an impact to a collision body, for example, there is a structure described in JP-A-2001-334958. .
[0003]
As shown in FIG. 12, a perspective view of a main part of a front portion of a vehicle body and FIG. 13 shows a cross section taken along line II-II of FIG. Fender panels 102 are provided on both sides. The fender panel 102 has an outer panel portion 103, a partitioning portion 104 at the upper part inward in the vehicle width direction, and a vertical wall portion 105 extending downward from the partitioning portion 104, and is formed integrally with a lower end of the vertical wall portion 105. It is attached to and supported by an upper frame 110 that is a vehicle body structural member via a plurality of substantially gate-shaped bracket portions 106.
[0004]
When the collision body collides with the vehicle from above and an impact load is applied to the parting portion 104 of the fender panel 102, the upper piece 106a, the front piece 106b, and the rear piece 106c of the bracket 106 of the fender panel 102 are both This is to absorb the impact energy by buckling deformation to reduce the impact on the collision body.
[0005]
[Problems to be solved by the invention]
However, in the fender structure of this vehicle, when a collision body collides with the vicinity of the side edge of the hood 101 from substantially above, the impact energy applied to the hood 101 is transferred to the upper piece 106a, the front piece 106b, Since each buckling deformation of the rear piece 106c, that is, the entire bracket portion 106 is deformed and absorbed substantially at the same time, in the initial stage after the impact, the bracket portion 106 is rapidly deformed to obtain a shock energy absorption characteristic that is smoothly continuous. Therefore, there is a concern that sufficient impact mitigation to the colliding body cannot be achieved. Further, the bracket portion 106 that absorbs impact energy by deformation needs to have sufficient rigidity to attach and support the fender panel 102 to the upper frame 110, and the bracket portion 106 is integrally formed with the fender panel 102 itself. Therefore, it is difficult to finely adjust the impact energy absorption characteristics due to the deformation of the bracket portion 106.
[0006]
Accordingly, an object of the present invention, which has been made in view of such a point, is to provide a fender structure of a vehicle for improving the performance of cushioning an impact body.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a vehicle fender structure in which a fender panel is attached to a vehicle body structural member extending in a front-rear direction of a vehicle body, wherein a lower end of the vehicle fender structure is provided. A vertical wall portion connected to the structural member and extending in the vertical direction; and a top wall portion bent from an upper end edge of the vertical wall portion, extending substantially horizontally, and connected to the fender panel, and extends in the vehicle longitudinal direction. A fender bracket, and a reinforcing member attached to the fender bracket and configured to adjust, by deformation, an impact energy absorption characteristic of an impact load input to the fender panel from above.
[0008]
According to the first aspect of the present invention, since the reinforcing member for adjusting the shock energy absorption characteristics input to the fender panel by deformation is attached to the fender bracket, the support rigidity of the fender bracket against an impact load from above is set relatively high. Is done. Then, the impact acceleration in the initial stage in which the fender bracket and the reinforcing member are deformed due to the inputted impact load is increased, the impact energy is sufficiently absorbed, and the remaining impact energy is reduced. As a result, a sudden increase in the impact acceleration in the latter half of the stage in which the fender bracket and the reinforcing member are deformed due to a decrease in the remaining impact energy is suppressed, whereby the impact mitigation performance is improved, and the impact given to the colliding body can be greatly reduced. . Further, by replacing the reinforcing member with another reinforcing member having a different impact energy absorbing characteristic, fine impact mitigation characteristics can be easily adjusted without affecting other vehicle body members.
[0009]
According to a second aspect of the present invention, in the vehicle fender structure of the first aspect, the reinforcing member is bridged between a side surface of the vertical wall portion of the fender bracket and a lower surface of the upper surface portion and is substantially horizontal. The horizontal portion extending in the vertical direction and the vertical portion extending in the substantially vertical direction are alternately repeated to form a continuous step.
[0010]
According to the invention of claim 2, by a relatively simple configuration in which the reinforcing member is formed in a continuous step shape by alternately repeating the horizontal portion and the vertical surface portion, when an impact load is input from above, each horizontal portion and Each bent curve that is a continuous portion of the vertical surface is continuously crushed and deformed, and due to this continuous deformation, impact energy is sufficiently absorbed in the initial stage where the fender bracket and the reinforcing member are deformed by the impact As a result, a sudden increase in the impact acceleration in the latter half of the deformation is suppressed, and the impact on the colliding body is greatly reduced.
[0011]
According to a third aspect of the present invention, in the vehicle fender structure of the second aspect, the reinforcing member includes a plurality of vertical surface portions having different vertical dimensions and a plurality of horizontal portions having different vehicle width dimensions. It has at least one.
[0012]
According to the third aspect of the present invention, fine impact energy absorption characteristics can be adjusted by making the vertical dimension of each vertical surface portion or the horizontal dimension of each horizontal portion different.
[0013]
According to a fourth aspect of the present invention, in the vehicle fender structure of the second aspect, a second reinforcing member is provided continuously over a continuous horizontal portion and a vertical surface portion of the reinforcing member. It is characterized by.
[0014]
According to the fourth aspect of the invention, the deformation strength of the reinforcing member is adjusted by the second reinforcing member, and the impact energy absorption characteristics of the reinforcing member are easily adjusted, so that the impact given to the collision body is effectively reduced. Safety is ensured.
[0015]
According to a fifth aspect of the present invention, in the vehicle fender structure of the second or third aspect, the reinforcing member is formed by connecting a plurality of constituent members made of different materials.
[0016]
According to the fifth aspect of the present invention, by forming a reinforcing member by connecting a plurality of constituent members made of different materials, the deformation strength of the reinforcing member is adjusted according to the characteristics of the different materials, and the shock energy absorbing characteristics are adjusted. Thus, the impact given to the collision body is effectively reduced.
[0017]
According to a sixth aspect of the invention, in the vehicle fender structure according to any one of the second to fourth aspects, the reinforcing member is separated from a side surface of a vertical wall portion of the fender bracket and a lower surface of an upper surface portion of the vehicle. Are multiplied.
[0018]
According to the sixth aspect of the present invention, since a plurality of reinforcing members are provided, each reinforcing member is deformed in accordance with an impact load inputted to each reinforcing member to absorb impact energy, thereby more effectively absorbing impact energy. Characteristics can be obtained, and the impact on the impact body can be reduced.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
A first embodiment of a vehicle fender structure according to the present invention will be described with reference to FIGS. In the drawings, arrow F indicates the forward direction of the vehicle body, arrow UP indicates the upward direction of the vehicle body, and arrow IN indicates the inward direction of the vehicle width.
[0020]
FIG. 1 is a front perspective view of the vehicle 1, and FIG. 2 is a sectional view taken along line II of FIG. A front portion of the vehicle includes a hood 10 that opens and closes an upper part of an engine room, and a fender panel 30 that forms a side portion of the engine room. Extending in the vehicle longitudinal direction along the side edge 10a of the vehicle.
[0021]
The hood 10 has a hood panel outer 11 that forms the upper surface of the hood 10, and has a substantially hat-shaped cross-section with an upper opening on the lower surface side of the hood panel outer 11 in the vehicle width direction. An extended hood panel inner 12 is arranged, and its outer edge is fixed to the hood panel outer 11 by hemming. The hollow closed cross-section 13 extending in the vehicle front-rear direction and formed by the hood panel outer 11 and the hood panel inner 12 constitutes a skeleton of the hood 10.
[0022]
On the other hand, the vehicle 1 is provided with an upper frame 20 which is a vehicle body structural member located below the side edge 10a of the hood 10 and disposed in the vehicle front-rear direction along the side of the engine room. The upper frame 20 includes an upper frame inner 21 having a substantially U-shaped cross-section having an open outer side in the vehicle width direction and extending in the vehicle front-rear direction, and an upper frame inner 21 having a substantially U-shaped cross section having an outer side opened in the vehicle width direction. The outer frame portions 22a and 22b are overlapped with the edge portions 22a and 22b, and the upper frame outer 22 is joined to each other to form a substantially rectangular hollow closed cross-sectional shape extending in the vehicle longitudinal direction. The rear end of the upper frame 20 is connected to a bulkhead 25 which is a vehicle body structural member extending in the vehicle width direction between the vehicle compartment and the engine room.
[0023]
The fender panel 30 has a vertical wall portion 33 in which the upper portion of the outer panel portion 31 is curved inward in the vehicle width direction, and is bent downward from the parting portion 32 facing the side edge 10 a of the hood 10 and extends downward. Is formed. The lower end of the vertical wall portion 33 is bent inward in the vehicle width direction, extends to the inward side in the vehicle width direction from the side edge 10a of the hood 10, and extends below the side edge portion 10A of the hood 10. An overlapping flange portion 34 is formed extending in the vehicle longitudinal direction.
[0024]
The flange portion 34 of the fender panel 30 is coupled to the upper surface of the upper frame 20 via a fender bracket 40. As shown in the cross-sectional view of FIG. 2 and the perspective view of FIG. 3, the fender bracket 40 has a vertical wall portion 41 extending substantially vertically and vertically and a lower end edge 41a of the vertical wall portion 41 extending in the vehicle width direction. A lower surface portion 42 that is bent outward and extends substantially horizontally, and an upper surface portion 43 that is bent inward in the vehicle width direction and extends substantially horizontally from the upper edge 41b of the vertical wall portion 41 and extends in the vehicle longitudinal direction. It has a substantially Z-shaped cross section. The lower surface portion 42 of the fender bracket 40 is overlapped on the upper surface of the upper frame 20 and spot-welded together with the respective end portions 21a and 22a of the upper frame inner 21 and the upper frame outer 22, and the upper surface portion 43 is formed on the fender panel 30. Spot welding is performed on the lower surface of the flange portion 34.
[0025]
A reinforcing member 50 is provided so as to extend between the vicinity of the lower edge 41 a of the vertical wall portion 41 formed on the fender bracket 40 and the vicinity of the front end 43 a of the upper surface portion 43.
[0026]
As shown in the cross-sectional view of FIG. 2 and the perspective views of FIGS. 3 and 4, the reinforcing member 50 is disposed inside the vertical wall portion 41 of the fender bracket 40 in the vehicle width direction along the lower edge 41 a of the vertical wall portion 41. And a substantially rectangular lower joint portion 51 spot-welded to the side surface of the lower joint portion 51, and a substantially rectangular shape extending substantially horizontally from a first fold curve 51a bent inward in the vehicle width direction along the upper edge of the lower joint portion 51. A first horizontal portion 52, a substantially rectangular first vertical surface portion 53 extending upward from a second fold curve 52a bent upward along an inner edge of the first horizontal portion 52, and an upper edge of the first vertical surface portion 53 A substantially rectangular second horizontal portion 54 extending substantially horizontally from a third bending curve 53a that is bent inward in the vehicle width direction, and a fourth bending curve that is bent upward along the inner edge of the second horizontal portion 54 A substantially rectangular second vertical surface portion 55 extending upward from 54a, and an inward in the vehicle width direction along the upper edge of the second vertical surface portion 55 A substantially rectangular upper connecting portion 56 that extends substantially horizontally from the fifth bent curve 55a and that is connected to the lower surface of the upper surface portion 43 along the tip 43a of the upper surface portion 43 is formed in a stepped cross-sectional shape. Have been.
[0027]
The reinforcing member 50 formed in a step-like shape includes a lower connecting portion 51, a first horizontal portion 52, a first vertical surface portion 53, a second horizontal portion 54, a second vertical surface portion 55, and an upper connecting portion. 56 is formed by bending a rectangular flat plate-shaped material formed continuously with the first bending curve 51a, the second bending curve 52a, the third bending curve 53a, the fourth bending curve 54a, and the fifth bending curve 55a. It can be easily molded.
[0028]
The reinforcing member 50 thus formed overlaps the lower connecting portion 51 on the inner side surface of the vertical wall portion 41 in the vehicle width direction along the lower edge 41 a of the vertical wall portion 41, and the distal end 43 a of the upper surface portion 43. The upper joint portion 56 is overlapped on the lower surface of the upper surface portion 43 along the line, and the vertical wall portion 41 and the lower joint portion 51 overlapping with each other are spot-welded, and the upper surface portion 43, the upper joint portion 56, and the flange 34 are spotted together. By welding, as shown in FIG. 2, the fender bracket 40 is bridged and disposed between the vicinity of the lower end edge 41 a of the vertical wall portion 41 and the vicinity of the front end 43 a of the upper surface portion 43.
[0029]
Next, the operation of the fender structure thus formed will be described.
[0030]
When the collision body S collides from above with the vicinity of the boundary a between the hood 10 and the fender panel 30 and an impact load is input from substantially above to below as shown by an arrow A in FIG. The portion near the side edge 10a is pushed down, and the flange portion 34 of the fender panel 30 arranged below the hood 10 is pressed downward by the hood 10 and deformed as shown in FIG.
[0031]
Here, as shown in FIG. 6, the fender bracket 50 that is provided so as to be bridged between the vicinity of the lower end edge 41 a of the vertical wall portion 41 of the fender bracket 40 and the vicinity of the front end 43 a of the upper surface portion 43 is omitted. In this case, the upper surface portion 43 of the fender bracket 40 that supports the flange portion 34 of the fender panel 30 from below is bent inward in the vehicle width direction from the upper end edge 41b of the vertical wall portion 41 in an overhang state. The support rigidity against a load from above is relatively low. In particular, the support rigidity of the upper surface 43 at the tip 43a side is lower than that at the vertical wall portion 41 side. For this reason, when an impact load is input from above through the fender panel 30, the resistance to the impact load is small, and the fender bracket 40 is rapidly buckled and deformed, so that absorption of sufficient impact energy due to deformation of the fender bracket 40 is impeded. Can be That is, in the impact acceleration-time diagram showing the relationship between the impact acceleration and the time with respect to the impact load in FIG. 7, as shown by the solid line G, the fender bracket 40 is sufficiently deformed at a low impact acceleration in the initial stage in the deformation of the fender bracket 40 due to the impact. Therefore, there is a concern that the impact acceleration may suddenly increase in the latter half of the deformation of the fender bracket 40 and give a large impact to the colliding body.
[0032]
On the other hand, according to the present embodiment, the reinforcing member 50 formed in a step-like manner is bridged over the side surface near the distal end 43a of the upper joint portion 43 of the fender bracket 40 and the lower end 41a of the vertical wall portion 41. The support rigidity of the fender bracket 40 with respect to the impact load input from above is set relatively high.
[0033]
Therefore, when an impact load from the impact body S acts on the hood 10 from above, the hood 10 is deformed and the impact load is applied to the upper surface 43 of the fender bracket 40 via the flange 34 of the fender panel 30 as shown in FIG. Is transmitted.
[0034]
Due to the impact load, the fender bracket 40 crushes the reinforcing member 50 erected between the vicinity of the distal end 43a of the upper surface portion 43 and the vicinity of the lower end 41a of the vertical wall portion 41, and buckles and deforms the fender bracket 40. The shock energy is absorbed by the deformation of the reinforcing member 50 and the fender bracket 40.
[0035]
The absorption of the impact energy due to the deformation of the reinforcing member 50 is performed, for example, by bending the fifth fold curve 55a, the fourth fold curve 54a, the third fold curve 53a, the second fold curve 52a, and the first fold curve 51a. In the initial stage of deformation of the reinforcing member 50 and the fender bracket 40, the impact energy is efficiently absorbed and the remaining impact energy is reduced, and the remaining impact energy is reduced. Abrupt changes in the latter half of the deformation of the fender bracket 50 and the fender bracket 40 are suppressed, and a smooth and continuous change in impact acceleration is maintained, so that effective absorption of impact energy is obtained and the impact on the impact body S is relaxed. It is.
[0036]
That is, as shown by a broken line Ga in FIG. 7, the impact acceleration in the initial stage of the deformation due to the impact is sufficiently increased by the reaction force of the reinforcing member 50, and the impact energy is sufficiently absorbed in the initial stage. As a result, the remaining impact energy is reduced, and a sudden increase in impact acceleration in the latter half of the deformation due to the impact is suppressed, so that the impact given to the colliding body S is greatly reduced, and safety for the colliding body S is secured. You.
[0037]
On the other hand, by replacing the reinforcing member 50 with a reinforcing member 50 having various different impact energy absorption characteristics, a minute change in impact acceleration, that is, an impact energy absorption characteristic can be easily adjusted, and a fine impact relaxation characteristic is adjusted. be able to.
[0038]
For example, as shown in a perspective view of the reinforcing member 50 in FIG. 8, the dimensions L1 and L2 of the first horizontal portion 52 and the second horizontal portion 54 in the vehicle width direction, and the upper and lower sides of the first vertical portion 52 and the second vertical portion 53. By changing the dimension L3 and L4 in the direction, the change of the impact acceleration at the time of the impact by the reinforcing member 50 is adjusted, and the fine adjustment of the deformation speed of the fender panel 30 and the minute impact by the fender bracket 40 and the reinforcing member 50 are performed. Energy absorption characteristics can be adjusted. That is, since the reinforcing member 50 has at least one of a plurality of vertical surface portions having different vertical dimensions and a plurality of horizontal portions having different vehicle width dimensions, it is possible to adjust fine impact energy absorption characteristics. it can.
[0039]
The fine adjustment of the deformation speed and the impact energy absorption characteristics can be easily performed by variously changing the length L5 of the reinforcing member 50 in the longitudinal direction of the vehicle body, the thickness of the reinforcing member 50, and the like. It should be noted that the replacement with the reinforcing member 50 having the different impact energy absorbing characteristics can be easily performed without affecting other vehicle body members, and the fine adjustment of the shock absorbing characteristics by replacing the reinforcing member 50 greatly changes the vehicle body structure. It can be easily performed without performing.
[0040]
(2nd Embodiment)
A second embodiment of the vehicle fender structure according to the present invention will be described with reference to FIG. Note that the present embodiment is characterized in that a plurality of reinforcing members 50 are partially arranged on the fender bracket 40 so as to be separated from each other, and the other configuration is the same as that of the first embodiment. Will be mainly described.
[0041]
FIG. 9 is a perspective view of the reinforcing members 50. Each reinforcing member 50 has a smaller dimension L5 in the vehicle longitudinal direction than the reinforcing member 50 of the first embodiment, and the fender bracket 40 has a vertical wall portion 41. And a substantially rectangular lower coupling portion 51 coupled along the lower edge 41a of the vehicle and a first folding curve 51a bent inward in the vehicle width direction along the upper edge of the lower coupling portion 51 to extend substantially horizontally. A substantially rectangular first horizontal portion 52, a substantially rectangular first vertical surface portion 53 extending upward from a second fold curve 52a bent along the inner edge of the first horizontal portion 52, and an upper edge of the first vertical surface portion 53 A second horizontal portion 54 extending substantially horizontally from a third fold curve 53a bent inward in the vehicle width direction along a fourth horizontal curve 54a and a fourth fold curve 54a bending upward along the inner edge of the second horizontal portion 54 A second vertical surface portion 55 extending upward, and folded inward in the vehicle width direction along an upper edge of the second vertical surface portion 55 An upper coupling portion 56 is coupled to the lower surface of the upper surface portion 43 extends substantially horizontally from the fifth folding line 55a along the distal end 43a of the upper surface portion 43 is formed continuously formed stepped to.
[0042]
Each reinforcing member 50 thus formed is spot-welded to the lower joint portion 51 of each reinforcing member 50 near the lower end edge 41a of the vertical wall portion 41 and is connected to the lower surface near the front end 43a of the upper surface portion 43 by upper welding. By spot welding the portion 56, the portion 56 is separated from the vicinity of the lower end edge 41a of the vertical wall portion 41 of the fender bracket 40 and the vicinity of the front end 43a of the upper surface portion 43 at a predetermined interval L in the vehicle longitudinal direction. Will be arranged.
[0043]
When an impact from the impact body S is input to the hood 10 from above in the same manner as in the first embodiment, the hood 10 is deformed and is placed on the upper surface 43 of the fender bracket 40 via the flange 34 of the fender panel 30. The impact load is transmitted.
[0044]
Due to the impact load, the fender bracket 40 inputs, to each of the reinforcing members 50, each of the reinforcing members 50 whose front end 43 a side of the upper surface 43 is bridged between the vicinity of the front end of the upper surface 43 and the vicinity of the lower end 41 a of the vertical wall portion 41. It crushes in response to the impact load and buckles the fender bracket 40 to absorb impact energy.
[0045]
The absorption of the impact energy due to the deformation of each reinforcing member 50 is achieved by the fifth fold curve 55a, the fourth fold curve 54a, the third fold curve 53a, and the second fold curve 52a which are bent in accordance with the respective input impact loads. The first fold curve 51a is continuously crushed and buckled and deformed. In the initial stage of the continuous deformation, the impact energy is sufficiently absorbed, the remaining impact energy is reduced, and the first half of the deformation is rapidly reduced. A smooth and continuous change of impact acceleration without any change is maintained, effective absorption of impact energy is obtained, and the impact on the impact body S is alleviated.
[0046]
That is, when input by an impact, the impact acceleration by each reinforcing member 50 corresponding to the impact load of each part input to each part increases the impact acceleration at the initial stage of deformation of each part, thereby sufficiently absorbing the impact energy, By suppressing a sudden increase in the impact acceleration in the latter half of the deformation, the remaining impact energy is reduced, the impact applied to the colliding body is effectively reduced, and safety is further ensured.
[0047]
The distance L between the reinforcing members 50 can be adjusted according to the required impact energy absorption characteristics of each part. Further, since the reinforcing members 50 are separated from each other, the weight can be reduced as compared with the first embodiment, and each reinforcing member 50 can be changed according to the required impact energy absorption characteristics of each part. It is possible to adjust the impact acceleration according to the above. Furthermore, various adjustments can be made in accordance with the required impact energy characteristics of each part by changing the plate thickness and shape of each reinforcing member 50. For example, the dimensions L1 and L2 of the first horizontal portion 52 and the second horizontal portion 54 in the vehicle width direction and the vertical dimensions L3 and L4 of the first vertical portion 52 and the second vertical portion 53 are changed as in FIG. The impact energy characteristics can be adjusted by adjusting the characteristics of the buckling deformation of the reinforcing member 50 with respect to the load. The number of the reinforcing members 50 is not limited to three, but may be two or four or more.
[0048]
(Third embodiment)
A third embodiment of the vehicle fender structure according to the present invention will be described with reference to FIG. Note that the present embodiment is characterized in that the second reinforcing member 60 is disposed on a plurality of reinforcing members, in this embodiment, two reinforcing members 50, and the other configuration is the same as that of the first embodiment. Therefore, the configuration of the unit will be mainly described.
[0049]
Each reinforcing member 50 is bent inward in the vehicle width direction along a lower connecting portion 51 connected along a lower edge 41 a of the fender bracket 40 vertical wall portion 41 and an upper edge of the lower connecting portion 51. A first horizontal portion 52 extending substantially horizontally from the first fold curve 51a, a first vertical surface portion 53 extending upward from a second fold curve 52a bent along the inner edge of the first horizontal portion 52, and a first vertical surface portion A second horizontal portion 54 extending substantially horizontally from the third fold curve 53a bent inward in the vehicle width direction along the upper edge of the 53, and a fourth fold bent upward along the inner edge of the second horizontal portion 54 A second vertical surface portion 55 extending upward from the curve 54a, and extending substantially horizontally from a fifth fold curve 55a bent inward in the vehicle width direction along the upper edge of the second vertical surface portion 55, to the distal end 43a of the upper surface portion 43 The upper connecting portion 56 connected to the lower surface of the upper surface portion 43 along the upper surface portion 43 is continuously formed in a stepped cross section. It is formed.
[0050]
A cross section made of a material different from the reinforcing member 50, for example, made of aluminum or resin, extends from a continuous horizontal portion and a vertical surface portion of each of the reinforcing members 50 formed in a step shape, for example, from the first vertical surface portion 53 to the second horizontal portion 54. A block-shaped second reinforcing member 60 continuously and integrally formed in a substantially L-shape is provided integrally, and adjusts the deformation strength of the reinforcing member 50.
[0051]
As described above, each reinforcing member 50 whose deformation strength is adjusted by the second reinforcing member 60 has the lower joint portion 51 of each reinforcing member 50 spot-welded to the vicinity of the lower edge 41 a of the vertical wall portion 41, and the upper surface portion 43. The upper joint portion 56 is spot-welded to the lower surface of the fender bracket 40 in the vicinity of the lower end edge 41a of the vertical wall portion 41 and the vicinity of the distal end 43a of the upper surface portion 43 by spot welding the lower surface of the fender bracket 40 near the front end 43a. It is laid between the two.
[0052]
When an impact from the impact body S is input to the hood 10 from above in the same manner as in the first embodiment, the hood 10 is deformed and is placed on the upper surface 43 of the fender bracket 40 via the flange 34 of the fender panel 30. The impact load is transmitted.
[0053]
Due to the impact load, the fender bracket 40 causes each of the reinforcing members 50 bridged between the vicinity of the tip 43a of the upper surface portion 43 and the vicinity of the lower end 41a of the vertical wall portion 41 to correspond to the impact load input to each of the reinforcing members 50. And crushes the fender bracket 40 to absorb the impact energy.
[0054]
The absorption of the impact energy due to the deformation of each reinforcing member 50 can be achieved by the fifth bending curve 55a, the fourth bending curve 54a, the third bending curve 53a, and the second bending curve 52a of each reinforcing member 50 according to the input impact load. The first bending curve 51a is continuously crushed and buckled, and the buckling deformation is adjusted by the second reinforcing member 60 to maintain a smoothly continuous impact acceleration without a sudden change. The impact energy can be effectively absorbed, and the impact on the impact body S can be alleviated.
[0055]
That is, the shock acceleration is increased in the initial stage of the deformation due to the shock by the reaction force of each reinforcing member 50 whose deformation strength is adjusted by the second reinforcing member 60 in accordance with the distribution state in which the shock load acts, so that the shock energy is sufficiently increased. Absorbed and remaining impact energy is reduced. As a result, by suppressing a rapid increase in the impact acceleration in the latter half of the deformation due to the impact, the impact applied to the colliding body is effectively reduced, and safety is further ensured.
[0056]
By changing the second reinforcing member 60 to one having a different deformation characteristic due to a difference in thickness or the like in accordance with the required impact energy absorption characteristics of each part, the deformation speed and the like of each reinforcing member 50 can be adjusted, and each reinforcing member can be adjusted. The adjustment of the impact energy characteristics by the member 50 can be easily performed.
[0057]
(Fourth embodiment)
A fourth embodiment of the vehicle fender structure according to the present invention will be described with reference to FIG. Note that the present embodiment is characterized in that the reinforcing member 70 is made of a different material, and the other configuration is the same as that of the first embodiment, and the configuration of this portion will be mainly described.
[0058]
FIG. 11 is a perspective view of the reinforcing member 70. As shown in FIG. 11, each reinforcing member 70 includes a lower connecting portion 71 connected along the lower end edge 41a of the vertical wall portion 41 of the fender bracket 40, and a lower connecting portion 71. A lower reinforcing member 70A made of a steel plate having an L-shaped cross section and comprising a first horizontal portion 72 extending substantially horizontally from a first folding curve 71a bent inward in the vehicle width direction along the upper edge of the lower coupling portion 71; A first vertical surface portion 73 joined to an inner end of the first horizontal portion 72 of the lower reinforcing member 70A and extending upward, and a third fold bent inward in the vehicle width direction along an upper edge of the first vertical surface portion 73. An intermediate reinforcing member 70B made of a material different from that of the lower reinforcing member 70A having an L-shaped cross section having a second horizontal portion 74 extending substantially horizontally from the curve 73a, for example, made of aluminum or resin, and a second horizontal portion 74 of the intermediate reinforcing member 70B. Second vertical surface portion joined and extending upward The fifth and second vertical surface portions 75 extend substantially horizontally from the fifth fold curve 75a bent inward in the vehicle width direction along the upper edges of the fifth and second vertical surface portions 75, and are joined to the lower surface of the upper surface portion 43 along the tip 43a of the upper surface portion 43. An upper reinforcing member 70 </ b> C having an upper connecting portion 76 made of a steel plate is formed in a continuous step shape in cross section.
[0059]
As described above, each of the reinforcing members 70 whose deformation strength is adjusted by the lower reinforcing member 70A, the intermediate reinforcing member 70B, and the upper reinforcing member 70C, which are made of different materials, connects the lower connecting portion 71 of each reinforcing member 70 to the lower end of the vertical wall portion 41. By spot welding near the edge 41a and spot welding to the lower surface near the front end 43a of the upper surface portion 43, the upper joint portion 76 is separated from each other in the longitudinal direction of the vehicle body and near the lower edge 41a of the vertical wall portion 1 of the fender bracket 40. It is arranged so as to be bridged between the top surface 43 and the vicinity of the tip 43a.
[0060]
When an impact from the impact body S is applied to the hood 10 from above in the same manner as in the first embodiment, the hood 10 is deformed and impacts on the upper surface 43 of the fender bracket 40 via the flange 34 of the fender panel 30. The load is transmitted.
[0061]
Due to the impact load, the fender bracket 40 causes each reinforcing member 70 bridged between the vicinity of the tip 43a of the upper surface portion 43 and the vicinity of the lower end 41a of the vertical wall portion 41 to correspond to the impact load input to each reinforcing member 70. It crushes and buckles the fender bracket 40 to absorb impact energy.
[0062]
The absorption of the impact energy due to the deformation of each reinforcing member 70 depends on the fifth impact curve 75a, the fourth fold curve 74a, the third fold curve 73a, and the second fold curve 72a of each reinforcement member 70 according to the input impact load. The first fold curve 71a is continuously crushed and buckled, and the buckling deformation is adjusted by different materials of the lower reinforcing member 70A, the intermediate reinforcing member 70B, and the upper reinforcing member 70C, and suddenly Smooth continuous impact acceleration without any change is maintained, effective absorption of impact energy is obtained, and the impact on the impact body S is alleviated.
[0063]
That is, in the initial stage of the deformation due to the impact due to the drag by the reinforcing members 70 whose deformation strength is adjusted by the characteristics of the lower reinforcing member 70A, the intermediate reinforcing member 70B, and the upper reinforcing member 70C in accordance with the distribution of the impact load. By increasing the impact acceleration, the impact energy is sufficiently absorbed to reduce the remaining impact energy. As a result, by suppressing a sharp increase in the impact acceleration in the latter half of the deformation due to the impact, the impact given to the colliding body is effectively alleviated in addition to the first embodiment, thereby further ensuring safety. .
[0064]
Further, by using the intermediate reinforcing member 70B made of another material having different deformation characteristics in accordance with the required impact energy absorption characteristics of each part, it is possible to adjust the deformation speed and the like of each reinforcing member 70, Can easily adjust the impact energy characteristics.
[0065]
It should be noted that the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the spirit of the invention. For example, it is also possible to arrange a second reinforcing member in a block shape as in the third embodiment on the reinforcing members 50 of the first and second embodiments to adjust the impact energy absorption characteristics. Further, the impact energy absorption characteristics can be further adjusted by increasing or decreasing the number of bent portions formed in each of the steps, and appropriately selecting the number of steps.
[0066]
【The invention's effect】
According to the fender structure of the vehicle of the present invention described above, in a fender structure of a vehicle to which a vehicle body structural member fender panel extending in the front-rear direction of the vehicle body is attached, a lower end is coupled to the vehicle body constituent member and extends in the vertical direction. A fender bracket having a vertical wall portion and an upper surface portion bent from the upper edge of the vertical wall portion and extending substantially horizontally and coupled to the fender panel, and extending in the vehicle front-rear direction, and input to the fender panel by deformation. And a reinforcing member that adjusts the shock energy absorption characteristics, when a shock load is input from above, the shock acceleration in the initial stage in which the fender bracket and the reinforcing member are deformed is sufficiently increased to absorb the shock energy. By reducing the remaining impact energy and consequently suppressing the sudden increase in impact acceleration in the second half of the deformation. The impact on the body can be greatly reduced. Further, by replacing the reinforcing member with another reinforcing member having different impact energy absorbing characteristics, fine impact mitigation characteristics can be easily adjusted without affecting other vehicle body members.
[Brief description of the drawings]
FIG. 1 is a front perspective view of a vehicle body showing an outline of a first embodiment of a fender structure of a vehicle according to the present invention.
FIG. 2 is a sectional view taken along line II of FIG.
FIG. 3 is a perspective view showing a combined state of a fender bracket and a reinforcing member.
FIG. 4 is a perspective view of a reinforcing member.
FIG. 5 is a sectional view showing a deformed state of the fender section.
FIG. 6 is a reference diagram of a fender structure of a vehicle for comparing operations.
FIG. 7 is an impact acceleration-time diagram.
FIG. 8 is a perspective view showing another embodiment of the reinforcing member.
FIG. 9 is a perspective view of a reinforcing member showing an outline of a second embodiment of the fender structure of the vehicle according to the present invention.
FIG. 10 is a perspective view of a reinforcing member showing an outline of a third embodiment of a vehicle fender structure according to the present invention.
FIG. 11 is a perspective view of a reinforcing member showing an outline of a fourth embodiment of a vehicle fender structure according to the present invention.
FIG. 12 is a perspective view of a main part of a front part of a vehicle body showing a fender structure of a conventional vehicle.
FIG. 13 is a sectional view taken along line II-II of FIG.
[Explanation of symbols]
1 vehicle
10 Food
20 Upper frame (body structural member)
30 Fender panel
31 Outer panel
33 vertical wall
34 Flange
40 Fender bracket
41 Vertical wall
41a Lower edge
41b top edge
42 Lower part
43 Upper surface
50 Reinforcement members
51 Lower joint
51a 1st bend curve
52 1st horizontal part
52a Second folded curve
53 1st vertical part
53a 3rd fold curve
54 2nd horizontal part
54a Fourth curve
55 Second vertical surface
55a Fifth fold curve
56 Upper joint
60 Second reinforcement member
70 Reinforcement members
70A Lower reinforcement member
70B Intermediate reinforcement member
70C Upper reinforcement member
71 Lower joint
71a First bend curve
72 1st horizontal part
72a Second folded curve
73 First vertical surface
73a 3rd fold curve
74 2nd horizontal part
74a Fourth fold curve
75 Second vertical surface
75a 5th fold curve
76 Upper joint

Claims (6)

車体の前後方向に沿って延設される車体構造部材にフェンダパネルを取り付ける車両のフェンダ部構造において、
下端が上記車体構造部材に結合されて上下方向に延びる縦壁部及び該縦壁部の上端縁から折曲して略水平に延びて上記フェンダパネルに結合する上面部を有して車体前後方向に延在するフェンダブラケットと、
該フェンダブラケットに取り付けられ、上方から上記フェンダパネルへ入力された衝撃荷重の衝撃エネルギ吸収特性を変形によって調整する補強部材とを備えたことを特徴とする車両のフェンダ部構造。
In a vehicle fender structure in which a fender panel is attached to a vehicle body structural member extending along the longitudinal direction of the vehicle body,
A vertical wall portion having a lower end coupled to the vehicle body structural member and extending in a vertical direction; and a top surface portion bent from an upper edge of the vertical wall portion, extending substantially horizontally, and coupled to the fender panel, and has a front-rear direction. A fender bracket extending to
A fender part structure for a vehicle, comprising: a reinforcing member attached to the fender bracket and adjusting, by deformation, an impact energy absorbing characteristic of an impact load input to the fender panel from above.
上記補強部材は、
上記フェンダブラケットの縦壁部の側面と上面部の下面との間に掛け渡され、かつ略水平方向に延びる水平部と略上下方向に延びる縦面部が交互に繰り返されて連続する階段状であることを特徴とする請求項1に記載の車両のフェンダ部構造。
The reinforcing member,
The fender bracket has a stair-like shape that extends between a side surface of a vertical wall portion and a lower surface of an upper surface portion, and a horizontal portion extending in a substantially horizontal direction and a vertical surface portion extending in a substantially vertical direction are alternately repeated to be continuous. The fender structure of a vehicle according to claim 1, wherein:
上記補強部材は、
上下方向の寸法が互いに異なる複数の縦面部及び車幅方向の寸法が互いに異なる複数の水平部の少なくとも一方を有することを特徴とする請求項2に記載の車両のフェンダ部構造。
The reinforcing member,
The vehicle fender structure according to claim 2, wherein the vehicle has at least one of a plurality of vertical surface portions having different vertical dimensions and a plurality of horizontal portions having different vehicle width directions.
上記補強部材の連続する水平部と縦面部とに亘って連続して配設された第2補強部材を備えたことを特徴とする請求項2または3に記載の車両のフェンダ部構造。The fender structure of a vehicle according to claim 2 or 3, further comprising a second reinforcing member disposed continuously over a continuous horizontal portion and a vertical surface portion of the reinforcing member. 上記補強部材は、
異なる材質からなる複数の構成部材が連結して形成されたことを特徴とする請求項2または3に記載の車両のフェンダ部構造。
The reinforcing member,
The vehicle fender structure according to claim 2 or 3, wherein a plurality of constituent members made of different materials are connected to each other.
上記フェンダブラケットの縦壁部の側面と上面部の下面との間に互いに離間して上記補強部材が複数掛け渡されたことを特徴とする請求項2〜4のいずれかに記載の車両のフェンダ部構造。The fender of a vehicle according to any one of claims 2 to 4, wherein a plurality of the reinforcing members are extended between the side surfaces of the vertical wall portion and the lower surface of the upper surface portion of the fender bracket so as to be separated from each other. Part structure.
JP2002207028A 2002-07-16 2002-07-16 Vehicle fender part structure Pending JP2004050865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002207028A JP2004050865A (en) 2002-07-16 2002-07-16 Vehicle fender part structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002207028A JP2004050865A (en) 2002-07-16 2002-07-16 Vehicle fender part structure

Publications (1)

Publication Number Publication Date
JP2004050865A true JP2004050865A (en) 2004-02-19

Family

ID=31931595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002207028A Pending JP2004050865A (en) 2002-07-16 2002-07-16 Vehicle fender part structure

Country Status (1)

Country Link
JP (1) JP2004050865A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1916178A1 (en) * 2006-10-25 2008-04-30 Toyota Jidosha Kabushiki Kaisha Vehicle fender panel mounting structure
KR100844689B1 (en) 2007-10-17 2008-07-07 현대자동차주식회사 Fender cover structure in vehicle
US7520562B2 (en) * 2003-01-15 2009-04-21 Bayerische Motoren Werke Aktiengesellschaft Supporting member for a fender
JP2010013053A (en) * 2008-07-07 2010-01-21 Honda Motor Co Ltd Rear body structure of vehicle
JP2010167943A (en) * 2009-01-23 2010-08-05 Toyota Motor Corp Cowl structure of vehicle
JP2012051486A (en) * 2010-09-02 2012-03-15 Mitsubishi Automob Eng Co Ltd Reinforcing member
JP2016060271A (en) * 2014-09-16 2016-04-25 富士重工業株式会社 Front upper structure of vehicle body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520562B2 (en) * 2003-01-15 2009-04-21 Bayerische Motoren Werke Aktiengesellschaft Supporting member for a fender
EP1916178A1 (en) * 2006-10-25 2008-04-30 Toyota Jidosha Kabushiki Kaisha Vehicle fender panel mounting structure
US7413239B2 (en) 2006-10-25 2008-08-19 Toyota Jidosha Kabushiki Kaisha Vehicle fender panel mounting structure
KR100844689B1 (en) 2007-10-17 2008-07-07 현대자동차주식회사 Fender cover structure in vehicle
JP2010013053A (en) * 2008-07-07 2010-01-21 Honda Motor Co Ltd Rear body structure of vehicle
JP2010167943A (en) * 2009-01-23 2010-08-05 Toyota Motor Corp Cowl structure of vehicle
JP2012051486A (en) * 2010-09-02 2012-03-15 Mitsubishi Automob Eng Co Ltd Reinforcing member
JP2016060271A (en) * 2014-09-16 2016-04-25 富士重工業株式会社 Front upper structure of vehicle body

Similar Documents

Publication Publication Date Title
US7097235B2 (en) Impact energy absorbing structure of vehicle frame member
JP4059187B2 (en) Vehicle hood structure
JP4407755B2 (en) Vehicle hood structure
JP4853101B2 (en) Front body structure of automobile
JP4235842B2 (en) Vehicle hood equipment
JP5176501B2 (en) Cowl structure at the front of the vehicle
JP5999134B2 (en) Vehicle front structure
JP2009234495A (en) Frame structure of automobile
JP5649527B2 (en) Vehicle hood
JP4483843B2 (en) Reinforcement structure of body frame
JP3947709B2 (en) Vehicle cowl structure
EP1389575B1 (en) Vehicle front-end body structure
CN109476349A (en) Vehicle body frames construction
JP7087973B2 (en) Body structure
JP2004050865A (en) Vehicle fender part structure
JP6484433B2 (en) Car cowl structure
JP2014118009A (en) Side vehicle body structure of vehicle
JP4725249B2 (en) Auto body structure
JP6164184B2 (en) Automotive hood structure
JP4617170B2 (en) Knee guard structure
JP6414705B2 (en) Vehicle side body structure
JP4876400B2 (en) Vehicle hood structure
JP2003063454A (en) Car body front structure for automobile
JP4415684B2 (en) Side member kick-up structure
JP7213292B2 (en) rear body structure