JP2004050204A - Ultrasonic welding method and cable suitable for ultrasonic welding - Google Patents

Ultrasonic welding method and cable suitable for ultrasonic welding Download PDF

Info

Publication number
JP2004050204A
JP2004050204A JP2002208859A JP2002208859A JP2004050204A JP 2004050204 A JP2004050204 A JP 2004050204A JP 2002208859 A JP2002208859 A JP 2002208859A JP 2002208859 A JP2002208859 A JP 2002208859A JP 2004050204 A JP2004050204 A JP 2004050204A
Authority
JP
Japan
Prior art keywords
stranded wire
ultrasonic welding
welding
aluminum
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002208859A
Other languages
Japanese (ja)
Inventor
Hideki Kamiyama
神山 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002208859A priority Critical patent/JP2004050204A/en
Publication of JP2004050204A publication Critical patent/JP2004050204A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic welding method by which a joining state high in reliability can efficiently be obtained, and to provide a cable which is suitable for ultrasonic welding. <P>SOLUTION: A liquid body (mixed liquid body) in which hard powder is mixed is interposed between the welding boundaries of the members 5 and 12 to be welded, and ultrasonic welding is performed. The mixed liquid body 4 in which hard powder is mixed is previously incorporated into metallic stranded wire 5 as the member to be welded, and, on the ultrasonic welding, the mixed liquid body 4 is flowed out from the metallic stranded wire 5 and is interposed between the welding boundaries. In the cable 1, the metallic stranded wire 5 comprising the mixed liquid body 4 is used as a conductor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、信頼性の高い接合状態が効率良く得られる超音波溶接方法および超音波溶接に適したケーブルに関する。
【0002】
【従来の技術】
近年、環境調和や資源エネルギーの節減などに高い関心が集まり、従来のガソリン自動車に代わって、電気自動車やハイブリッドカーが開発或いは実用化されている。そして、前記電気自動車などのバッテリーケーブルやワイヤハーネスには、軽量で、可撓性に優れ、リサイクルし易いアルミケーブルが採用される気運にある。
【0003】
前記アルミケーブル27は、図5に示すような、アルミ素線2を複数撚り合わせてアルミ撚線3とし、このアルミ撚線3をさらに複数撚り合わせて複合撚線25とし、この複合撚線25の外周に絶縁層6を被覆したものである。
なお、アルミケーブル27に用いられるアルミ素線2の径は、通常、0.15〜0.35mm程度であり、アルミ素線2の総数は40〜300本程度である。
【0004】
ところで、前記アルミケーブル27にバッテリー端子11を接続するには、図6に示すように、アルミケーブル27の端部の絶縁層6を除去して複合撚線25を露出させ、次にこの露出した複合撚線25の周囲をバッテリー端子11の圧着板26で包囲し、これを複合撚線25にプレス圧着して行われていた。
図6で、13はバッテリーターミナル、14はバッテリーターミナル13を把持するためのリング状把持部、15はリング状把持部14をバッテリーターミナル13に固定するためのボルトである。
【0005】
しかし、このプレス圧着法では、使用中の熱膨張収縮、振動疲労、曲げ歪みなどにより圧着部が弛み、良好な電気的接合が得られなくなることがあり、その改善策として超音波溶接法が提案された。
この超音波溶接法は、図7に示すように、露出した複合撚線25をバッテリー端子の断面凹状の板状基部12内に配し、前記複合撚線25の上面に超音波振動子(ホーン)17の端面を押し当てて超音波振動を付与し、溶接界面を相互に擦り合わせて前記溶接界面の酸化膜を剥離するとともに、超音波振動で生じる摩擦熱と圧力により被溶接部材同士12、25を接合する方法である。
図7で、18は固定台である。
【0006】
【発明が解決しようとする課題】
しかし、前記超音波溶接法では、溶接界面に酸化膜が残っていると、そこを起点に溶接部が剥がれ出すことがあるので、溶接界面の酸化膜は十分に剥離しておく必要があり、そのため、実操業では、酸化膜剥離のために、超音波振動は安全を見て長時間付与しており、生産性に支障を来していた。
【0007】
このような状況において、溶接界面に予め金属粉末を介在させて超音波振動を付与し、溶接界面の酸化膜の除去を促進する超音波溶接方法が提案された(特開平8−138822号公報)。
しかし、この方法は、超音波振動により、金属粉末が飛散したり局所に集積したりして酸化膜が溶接界面全体に渡って分布しなくなり、その結果、溶接界面に酸化膜が残存し、接合強度や接触抵抗が劣るという問題があった。
【0008】
このようなことから、本発明者等は、溶接界面の酸化膜を溶接界面全体に渡って迅速に剥離し得る超音波溶接方法を検討し、その結果、溶接界面に金属粉末を液状体に混和させて介在させることにより、前記金属粉末の飛散および局所集積の問題は解決し得ることを見いだし、さらに検討を重ねて本発明を完成させるに至った。
本発明の目的は、信頼性の高い接合状態が効率良く得られる超音波溶接方法および超音波溶接に適したケーブルを提供することにある。
【0009】
【課題を解決するための手段】
請求項1記載発明は、被溶接部材同士の溶接界面に硬質粉末が混和された液状体を介在させて超音波溶接することを特徴とする超音波溶接方法である。
【0010】
請求項2記載発明は、前記被溶接部材の一方が金属撚線であり、前記金属撚線に硬質粉末が混和された液状体を含有させておき、超音波溶接の際、前記液状体を前記金属撚線から流出させて前記溶接界面に介在させることを特徴とする請求項1記載の超音波溶接方法である。
【0011】
請求項3記載発明は、前記被溶接部材の一方がアルミ撚線であり、他方が銅端子であることを特徴とする請求項1または2記載の超音波溶接方法である。
【0012】
請求項4記載発明は、前記硬質粉末がアルミニウムまたは銅の金属粉末であることを特徴とする請求項1乃至3のいずれかに記載の超音波溶接方法である。
【0013】
請求項5記載発明は、前記金属撚線の空隙率が10〜30%であることを特徴とする請求項2乃至4のいずれかに記載の超音波溶接方法である。
【0014】
請求項6記載発明は、前記金属撚線が縮径加工されていることを特徴とする請求項2乃至4のいずれかに記載の超音波溶接方法である。
【0015】
請求項7記載発明は、前記硬質粉末が混和された液状体を含有する金属撚線を導体とすることを特徴とする超音波溶接に適したケーブルである。
【0016】
【発明の実施の形態】
請求項1記載発明は、溶接界面に硬質粉末が混和された液状体(以下、混和液状体と記す)を介在させて超音波溶接する方法であり、前記硬質粉末は超音波振動により溶接界面の酸化膜に衝突して前記酸化膜を迅速に研削し剥離する。また前記硬質粉末は液状体に混和されているため超音波振動によって飛散したり局所に集積したりせず酸化膜を溶接界面全体に渡って良好に研削し剥離する。従って超音波溶接が高い信頼性のもとで生産性良くなされる。
【0017】
請求項2記載発明は、被溶接部材が金属撚線の場合、前記金属撚線に混和液状体を含有させておき、この混和液状体を超音波振動で溶接界面に流出させる方法であり、この方法は、混和液状体を溶接界面に塗布する方法に較べて、超音波溶接時の作業性が良く推奨される。
【0018】
本発明では、金属撚線に混和液状体を含有させておくことにより、超音波溶接時の振動で素線表面の酸化膜も除去されて素線間の導通が良くなり、溶接部分の導電性が向上する。
【0019】
被溶接部材の一方が軟質部材で他方が硬質部材の場合、軟質部材は、超音波振動で硬質部材の酸化膜を研削し剥離するのが困難であるが、本発明では、溶接界面に硬質粉末を含む混和液状体を介在させておくので、前記硬質粉末が硬質部材の酸化膜を研削し剥離する。従って、本発明はアルミ導体(軟質)と銅端子(硬質)の溶接などに適用してその効果が顕著に発現される。
【0020】
本発明において、前記液状体に混和する硬質粉末には、金属粉末、炭素粉末、或いは酸化物、窒化物、炭化物などの粉末が適用できる。アルミニウム、銅、鉄などの金属粉末や炭素粉末などは導電性を有するため、溶接界面に残存しても接触抵抗に及ぼす影響が小さい。また硬質粉末の形状や大きさは、溶接界面の酸化膜を研削し剥離するものであれば、特に限定しない。
【0021】
本発明において、前記液状体には、硬質粉末を均一に混和させ、また硬質粉末の酸化膜を研削し剥離する作用を阻害しない任意の液状体が使用できる。特にグリースなどの粘稠な液状体は溶接界面に滞留し易いため、硬質粉末の前記作用を溶接界面全体に渡って持続させる効果があり推奨される。
【0022】
本発明において、硬質粉末を液状体に混和させる方法には、硬質粉末を添加し液状体を機械的に攪拌する方法、前記液状体に超音波振動を付与する方法などが挙げられる。
【0023】
前記金属撚線に混和液状体を含有させるには、(1)混和液状体を素線に塗布して撚り合わせる方法、(2)金属撚線を混和液状体内に通す方法、(3)金属撚線表面に混和液状体を塗布する方法、などが挙げられる。
【0024】
前記(2)、(3)の方法では、金属撚線は、ルーズ撚りしておくと混和液状体を含有させ易い。混和液状体を含有させたあとのルーズ撚線はダイスを通すなどして、通常のタイトな撚り合わせ状態に成形しておくのが良く、こうすることにより内部の余分な混和液状体が絞り出されてケーブルが軽量化し、また混和液状体の節減が図れる。
【0025】
本発明において、金属撚線の空隙率は、10%未満では混和液状体の含有量が少なくなって酸化膜を迅速に除去するのが困難になり、30%を超えるとケーブルが太くなって配線作業性が低下する。従って前記空隙率は10〜30%、特には15〜25%が望ましい。
【0026】
本発明において、被溶接部材となる金属撚線は、縮径加工することにより可撓性が向上して配線作業が容易になり、また省スペースも図れる。
特に導電率の低いアルミ撚線は、銅撚線と同量の電流を流すには線径が銅撚線より太くなるため、縮径加工による効果が大きい。
【0027】
因みに、剛性(可撓性とは逆の性質)は外径Dの4乗(D )に比例することから、金属撚線の外径Dが10%減少すると可撓性は約34%向上する。
【0028】
縮径加工した金属撚線は、空隙率が数%のため金属撚線内部に混和液状体を所定量含有させるのが困難であり、また素線間の隙間が狭いため混和液状体は外部に流出し難い。このため縮径加工した金属撚線では、混和液状体は金属撚線の表面に塗布して含有させる。
【0029】
請求項7記載発明は、混和液状体を含有する金属撚線を導体とするケーブルである。このケーブルは、超音波溶接の際の振動で、混和液状体が溶接界面に流出し、前記混和液状体に含まれる硬質粉末は超音波振動により溶接界面の酸化膜に衝突して前記酸化膜を迅速に研削し剥離する。また前記硬質粉末は液状体に混和されているため超音波振動によって飛散したり局所に集積したりせず酸化膜を溶接界面全体に渡って良好に研削し剥離する。従って、このケーブルを被溶接部材とする超音波溶接では、信頼性の高い超音波溶接部が生産性良く形成される。さらにこのケーブルは、前記混和液状体により水密性が高まり、素線の耐食性が向上する。
【0030】
以下に、本発明の超音波溶接方法を図を参照して具体的に説明する。
なお、本発明を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
【0031】
図1(イ)、(ロ)は本発明のアルミケーブル1の端部の絶縁層6を除去した状態のそれぞれ側面図および横断面図(a−a断面図)である。
このアルミケーブル1は、アルミ素線2を複数撚り合わせたアルミ撚線3の外周に混和液状体4を塗布し、この混和液状体4を塗布したアルミ撚線3を複数撚り合わせて複合撚線5とし、この複合撚線5に絶縁層6を被覆したものである。
【0032】
図2(イ)〜(ハ)は、本発明のアルミケーブルの他の実施形態を示すそれぞれ横断面図である。
図2(イ)に示すアルミケーブルは、アルミ素線2を複数撚り合わせたアルミ撚線3を、さらに複数撚り合わせ、その外周に混和液状体4を塗布して複合撚線5とし、その外周に絶縁層6を被覆したものである。
【0033】
図2(ロ)に示すアルミケーブルは、アルミ素線2を複数撚り合わせたアルミ撚線3の外周に混和液状体4を塗布し、その周囲にアルミ撚線3を複数撚り合わせて複合撚線5とし、さらにその外周に絶縁層6を被覆したものである。
【0034】
図2(ハ)に示すアルミケーブルは、図5に示した複合撚線25を縮径加工し、この縮径加工撚線7の外周に混和液状体4を塗布して複合撚糸線5とし、さらにその外周に絶縁層6を被覆したものである。
【0035】
次に、本発明の超音波溶接方法を図を参照して具体的に説明する。
図3(イ)、(ロ)に示すように、アルミケーブル1の端部の絶縁層6を除去して露出させた複合撚線5をバッテリー端子11の断面凹状の板状基部12に配し、次いで板状基部12内の露出した複合撚線5上面に超音波振動子17の端面を押し当てて超音波振動を付与し、溶接界面を相互に擦り合わせて前記溶接界面の酸化膜を研削し剥離するとともに、超音波振動で生じる摩擦熱と圧力により被溶接部材同士5、12を溶接する。
【0036】
前記溶接界面には、複合撚線5に含有される混和液状体4が流出し、前記混和液状体に含まれる硬質粉末は超音波振動により溶接界面の酸化膜に衝突して前記酸化膜を迅速に研削し剥離する。また前記硬質粉末は液状体に混和されているため超音波振動によって飛散したり局所に集積したりせず酸化膜を溶接界面全体に渡って良好に研削し剥離する。従って超音波溶接が高い信頼性のもとで生産性良くなされる。
【0037】
図4は、本発明のアルミケーブル1に、モーターやインバーターなどに用いられる機器端子21を超音波溶接する方法の説明図であり、(イ)は側面図、(ロ)は横断面図(b−b断面図)である。
機器端子21は、アルミケーブル1を固定するための固定片22、混和液状体4を含有する複合撚線5を超音波溶接するための断面半円状の板状基部23、機器ターミナル(図示せず)を接続するための接続穴部24を備えている。
【0038】
この機器端子21では、固定片22にアルミケーブル1の端部を固定し、断面半円状の板状基部23に露出した複合撚線5を配し、この複合撚線5上面に超音波振動子17の端面を押し当てて超音波振動を付与する。
図4(イ)、(ロ)で18は固定台である。
【0039】
前記板状基部23と複合撚線5との溶接界面には、複合撚線5に含有される混和液状体4が流出し、混和液状体4に含まれる硬質粉末は超音波振動により溶接界面の酸化膜に衝突して前記酸化膜を迅速に研削し剥離する。また前記硬質粉末は液状体に混和されているため超音波振動によって飛散したり局所に集積したりせず酸化膜を溶接界面全体に渡って良好に研削し剥離する。従って複合撚線5と板状基部22とは良好に超音波溶接される。
【0040】
【実施例】
以下に、本発明を実施例により詳細に説明する。
(実施例1)
図1(イ)、(ロ)に示したアルミケーブル1の端部の被覆層6を除去して露出した複合撚線5を、図3(イ)、(ロ)に示したように、バッテリー端子11の断面凹状の板状基部12内に配し、複合撚線5の上面に超音波振動子17の端面を押し当てて超音波振動を所定時間付与し、複合撚線5に板状基部12を超音波溶接した。
複合撚線5には、市販のグリースにアルミ合金粉末を混和した混和液状体4を含有させた。バッテリー端子11には板状基部12が銅製の銅端子を用いた。
超音波付与時間(溶接時間)は混和液状体を用いない従来の超音波溶接方法の半分の時間に設定した。
図2(イ)〜(ハ)に示したアルミケーブルについても、同様にして各々の複合撚線5にバッテリー端子11の板状基部12を超音波溶接した。
【0041】
このようにして得られた各々の超音波溶接体を腐食環境下に置き、溶接部に最大応力が掛かるように所定の曲げ歪みを繰り返し負荷して車載模擬促進試験を10日間行い、試験後の溶接部の接合強度および接触抵抗を調べた。
接合強度はアルミケーブル1を溶接部を挟んで両側から長さ方向に引張る剪断試験により調べた。接触抵抗は溶接部を挟んで電気抵抗を測定して調べた。
測定個数は接合強度および接触抵抗とも各3個づつとし、試験前の測定値を100としたときの前記促進試験後の比較値が3個とも95以上なら溶接状態または接触抵抗が良好(○)、95未満のものが1個でもあれば不良(×)と評価した。可撓性は、配線作業者の感触により、優れる(○)か極めて優れる(◎)かで評価した。
【0042】
(比較例1)
図5に示した従来のアルミケーブル27を用い、図6に示したプレス圧着法により露出した複合撚線25に圧着板26をプレス圧着し、このプレス圧着体について実施例1と同じ方法により、車載模擬促進試験を行い、溶接部の接合強度および接触抵抗を調べ、溶接状態を評価した。
【0043】
(比較例2)
図5に示した従来のアルミケーブル27を用い、溶接界面にAl合金粉末を介在させた他は、実施例1と同じ方法により超音波溶接し、実施例1と同じ方法により、車載模擬促進試験を行い、溶接部の接合強度および接触抵抗を調べ、溶接状態を評価した。
結果を表1に示す。
【0044】
【表1】

Figure 2004050204
【0045】
表1から明らかなように、実施例1のNo.1〜4(本発明例)は、いずれも接合強度が高く、接触抵抗が低く、良好な溶接状態を示した。
これは、超音波溶接時にアルミ撚線から混和液状体が溶接界面に流出し、前記混和液状体に含まれる硬質粉末が超音波振動により溶接界面の酸化膜に衝突して前記酸化膜を迅速に研削し剥離したためであり、また前記硬質粉末は液状体に混和されているため超音波振動によって飛散したり局所に集積したりせず酸化膜を溶接界面全体に渡って良好に研削し剥離したためである。さらにNo.4は複合撚線が縮径加工されているため可撓性が極めて優れた。
【0046】
これに対し、比較例1のNo.5はプレス圧着のため前記促進試験での曲げ歪みにより圧着部が弛み、また比較例2のNo.6はAl合金粉末を溶接界面にそのまま介在させたため超音波振動によりAl合金粉末が飛散したり、局所に集積したりして、Al合金粉末の効果が十分に得られず、酸化膜が部分的に残存し、いずれも溶接部は接合強度および接触抵抗が劣った。
【0047】
図1、図2に示した4種のアルミケーブルを図4に示した機器端子に、実施例1と同じ方法により超音波溶接し、実施例1と同じ方法により接合強度および接触抵抗を測定し、溶接状態を評価した。
その結果、いずれのアルミケーブルにおいても、実施例1の場合と同様の優れた溶接状態が得られた。
【0048】
前記実施例では、複合撚線を導体とするケーブルについて説明したが、本発明は、素線を集合撚りした集合撚線を導体とするケーブルに適用しても同様の効果が得られる。また、超音波振動は、超音波振動子を2個用いて、1個の振動子の端面を複合撚線の上面に押し当て、他の振動子の端面を凹状基部12の底部下面に押し当てて付与しても良い。
【0049】
【発明の効果】
以上に述べたように、本発明の超音波溶接方法では、被溶接部材同士の溶接界面に混和液状体を介在させるので、前記混和液状体中の硬質粉末は超音波振動により溶接界面の酸化膜に衝突して前記酸化膜を迅速に研削し剥離する。また前記硬質粉末は液状体に混和されているため超音波振動によって飛散したり局所に集積したりせず酸化膜を溶接界面全体に渡って良好に研削し剥離する。従って超音波溶接が高い信頼性のもとで生産性良くなされる。
【0050】
被溶接部材が金属撚線の場合は、混和液状体を金属撚線に含有させておくことにより溶接界面への混和液状体の供給が効率良くなされる。
【0051】
被溶接部材がアルミ撚線と銅製端子の場合は、銅製端子の酸化膜を比較的軟質なアルミ撚線によって研削し剥離するのが困難であるが、本発明では、硬質粉末が銅製端子の酸化膜を研削し剥離するため、良好な溶接状態が得られる。
【0052】
硬質粉末に導電性に優れる金属粉末を用いると溶接界面に硬質粉末が残存しても接触抵抗に及ぼす影響が小さい。
【0053】
被溶接部材となる金属撚線の空隙率を10〜30%に規定することにより、混和液状体が適量含有され、前記混和液状体内の金属粉末が酸化膜を良好に研削し剥離する。また金属撚線の径もそれほど太くならずケーブルが容易に扱える。
【0054】
被溶接部材となる金属撚線を縮径加工しておくことにより、可撓性(配線作業性)が向上し、また省スペースが図れる。特に、銅撚線より導電率が低く太径となるアルミ撚線において、その効果が大きい。
【0055】
本発明のケーブルは導体となる金属撚線に前記混和液状体を含有させたものなので超音波溶接性に優れるうえ、水密性および素線の耐食性に優れる。
依って、工業上顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明のアルミケーブルの実施形態を示す(イ)は側面図、(ロ)は横断面図(a−a断面図)である。
【図2】(イ)〜(ハ)は本発明のアルミケーブルの他の実施形態を示すそれぞれ横断面図である。
【図3】本発明の超音波溶接方法の実施形態を示す説明図で、(イ)は側面図、(ロ)は横断面図である。
【図4】本発明の超音波溶接方法の他の実施形態を示す説明図で、(イ)は側面図、(ロ)は横断面図である。
【図5】従来のアルミケーブルの横断面図である。
【図6】プレス圧着法の側面説明図である。
【図7】従来の超音波溶接方法の横断面説明図である。
【符号の説明】
1 本発明のアルミケーブル
2 アルミ素線
3 アルミ撚線
4 混和液状体
5 混和液状体が含有された複合撚線(金属撚線)
6 絶縁層
7 縮径加工撚線
11 超音波溶接用バッテリー端子
12 断面凹状の板状基部
13 バッテリーターミナル
14 リング状把持部
15 締付ボルト
17 超音波振動子
18 固定台
21 超音波溶接用機器端子
22 固定片
23 断面半円状の板状基部
24 接続穴
25 複合撚線
26 バッテリー端子の圧着板
27 従来のアルミケーブル
31 圧着用バッテリー端子[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an ultrasonic welding method and a cable suitable for ultrasonic welding in which a highly reliable bonding state can be efficiently obtained.
[0002]
[Prior art]
2. Description of the Related Art In recent years, there has been a great interest in environmental harmony and saving of energy resources, and electric vehicles and hybrid vehicles have been developed or put into practical use in place of conventional gasoline vehicles. The battery cables and wire harnesses of the electric vehicles and the like have a tendency to employ aluminum cables that are lightweight, have excellent flexibility, and are easy to recycle.
[0003]
As shown in FIG. 5, the aluminum cable 27 is formed by twisting a plurality of aluminum wires 2 to form an aluminum stranded wire 3, and further twisting the aluminum stranded wires 3 to form a composite stranded wire 25. Is covered with an insulating layer 6.
The diameter of the aluminum wires 2 used for the aluminum cable 27 is usually about 0.15 to 0.35 mm, and the total number of the aluminum wires 2 is about 40 to 300.
[0004]
By the way, in order to connect the battery terminal 11 to the aluminum cable 27, as shown in FIG. 6, the insulating layer 6 at the end of the aluminum cable 27 was removed to expose the composite stranded wire 25, and then this exposed wire was exposed. The periphery of the composite stranded wire 25 is surrounded by a crimp plate 26 of the battery terminal 11, and this is performed by press-compression to the composite stranded wire 25.
In FIG. 6, 13 is a battery terminal, 14 is a ring-shaped grip for gripping the battery terminal 13, and 15 is a bolt for fixing the ring-shaped grip 14 to the battery terminal 13.
[0005]
However, in this press bonding method, the thermal expansion and contraction during use, vibration fatigue, bending distortion, etc., may loosen the bonded part and prevent good electrical bonding from being obtained. Was done.
In this ultrasonic welding method, as shown in FIG. 7, an exposed composite stranded wire 25 is disposed in a plate-shaped base 12 having a concave cross section of a battery terminal, and an ultrasonic vibrator (horn) is provided on the upper surface of the composite stranded wire 25. ) 17 is pressed against the end face to apply ultrasonic vibration, the welding interfaces are rubbed against each other to peel off the oxide film at the welding interface, and the members to be welded 12 by friction heat and pressure generated by the ultrasonic vibration. 25 is joined.
In FIG. 7, reference numeral 18 denotes a fixed base.
[0006]
[Problems to be solved by the invention]
However, in the ultrasonic welding method, if an oxide film remains on the welding interface, the weld may be peeled off from there, so the oxide film on the welding interface needs to be sufficiently peeled off. For this reason, in actual operation, ultrasonic vibration was applied for a long period of time in view of safety due to oxide film peeling, which hindered productivity.
[0007]
In such a situation, there has been proposed an ultrasonic welding method in which a metal powder is interposed in advance at a welding interface to apply ultrasonic vibration to promote removal of an oxide film at the welding interface (Japanese Patent Application Laid-Open No. 8-138822). .
However, in this method, the metal powder is scattered or accumulated locally due to the ultrasonic vibration, so that the oxide film is not distributed over the entire welding interface, and as a result, the oxide film remains at the welding interface and the joining is performed. There was a problem that strength and contact resistance were inferior.
[0008]
In view of the above, the present inventors have studied an ultrasonic welding method capable of quickly peeling an oxide film at a welding interface over the entire welding interface, and as a result, mixing a metal powder with a liquid material at the welding interface. It has been found that the problem of scattering and local accumulation of the metal powder can be solved by interposing them, and the inventors have further studied and completed the present invention.
An object of the present invention is to provide an ultrasonic welding method and a cable suitable for ultrasonic welding in which a highly reliable joint state can be efficiently obtained.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 is an ultrasonic welding method, wherein ultrasonic welding is performed by interposing a liquid material mixed with hard powder at a welding interface between members to be welded.
[0010]
The invention according to claim 2 is characterized in that one of the members to be welded is a metal stranded wire, and the metal stranded wire contains a liquid material mixed with a hard powder, and at the time of ultrasonic welding, the liquid material is The ultrasonic welding method according to claim 1, wherein the ultrasonic welding is performed by flowing out from the metal stranded wire and intervening at the welding interface.
[0011]
The invention according to claim 3 is the ultrasonic welding method according to claim 1 or 2, wherein one of the members to be welded is an aluminum stranded wire and the other is a copper terminal.
[0012]
The invention according to claim 4 is the ultrasonic welding method according to any one of claims 1 to 3, wherein the hard powder is a metal powder of aluminum or copper.
[0013]
The invention according to claim 5 is the ultrasonic welding method according to any one of claims 2 to 4, wherein the porosity of the metal stranded wire is 10 to 30%.
[0014]
The invention according to claim 6 is the ultrasonic welding method according to any one of claims 2 to 4, wherein the metal stranded wire is subjected to diameter reduction processing.
[0015]
The invention according to claim 7 is a cable suitable for ultrasonic welding, characterized in that a conductor is a metal stranded wire containing a liquid material mixed with the hard powder.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 is a method of performing ultrasonic welding by interposing a liquid material mixed with hard powder (hereinafter referred to as a mixed liquid material) at a welding interface, wherein the hard powder is formed at the welding interface by ultrasonic vibration. The oxide film collides with the oxide film and is quickly ground and peeled. Further, since the hard powder is mixed with the liquid material, the oxide film does not scatter or accumulate locally due to the ultrasonic vibration, and the oxide film is favorably ground and peeled over the entire welding interface. Therefore, ultrasonic welding is performed with high reliability and high productivity.
[0017]
The invention according to claim 2 is a method in which, when the member to be welded is a metal stranded wire, a mixed liquid is contained in the metal stranded wire, and the mixed liquid is caused to flow out to a welding interface by ultrasonic vibration. As for the method, the workability at the time of ultrasonic welding is better recommended than the method of applying the mixed liquid to the welding interface.
[0018]
In the present invention, by containing the liquid mixture in the metal stranded wire, the oxide film on the surface of the wires is also removed by the vibration during ultrasonic welding, the conduction between the wires is improved, and the conductivity of the welded portion is improved. Is improved.
[0019]
When one of the members to be welded is a soft member and the other is a hard member, it is difficult for the soft member to grind and peel off the oxide film of the hard member by ultrasonic vibration. The hard powder grinds and separates the oxide film of the hard member because the mixed liquid containing the above is interposed. Therefore, when the present invention is applied to welding of an aluminum conductor (soft) and a copper terminal (hard), the effect is remarkably exhibited.
[0020]
In the present invention, a metal powder, a carbon powder, or a powder of an oxide, a nitride, a carbide, or the like can be applied to the hard powder mixed with the liquid material. Since metal powders such as aluminum, copper, and iron, and carbon powders have conductivity, even if they remain at the welding interface, the influence on the contact resistance is small. The shape and size of the hard powder are not particularly limited as long as the oxide film at the welding interface is ground and peeled off.
[0021]
In the present invention, as the liquid, any liquid that uniformly mixes the hard powder and does not hinder the action of grinding and peeling the oxide film of the hard powder can be used. In particular, a viscous liquid material such as grease tends to stay at the welding interface, and is therefore recommended because it has the effect of maintaining the above-described action of the hard powder over the entire welding interface.
[0022]
In the present invention, examples of the method of mixing the hard powder with the liquid include a method of adding the hard powder and mechanically stirring the liquid, and a method of applying ultrasonic vibration to the liquid.
[0023]
In order to make the stranded metal wire contain the admixed liquid, (1) a method of applying the admixed liquid to the element wires and twisting them, (2) a method of passing the stranded metal wire through the admixed liquid, (3) a method of metal twisting A method of applying a liquid mixture to the surface of the wire.
[0024]
In the methods (2) and (3), when the metal stranded wire is loosely twisted, the mixed liquid material is easily contained. The loose stranded wire after containing the mixed liquid should be molded into a normal tight twisted state by passing it through a die, etc., so that the excess mixed liquid inside can be squeezed out. As a result, the weight of the cable is reduced, and the amount of the mixed liquid material can be reduced.
[0025]
In the present invention, if the porosity of the metal stranded wire is less than 10%, the content of the admixed liquid becomes small, making it difficult to quickly remove the oxide film. Workability decreases. Therefore, the porosity is desirably 10 to 30%, particularly preferably 15 to 25%.
[0026]
In the present invention, by reducing the diameter of the metal stranded wire to be a member to be welded, flexibility is improved, wiring work is facilitated, and space can be saved.
In particular, an aluminum stranded wire having a low electrical conductivity has a larger diameter than a copper stranded wire when a current of the same amount as that of the copper stranded wire is applied, so that the effect of the diameter reduction is large.
[0027]
Incidentally, since the rigidity (the property opposite to the flexibility) is proportional to the fourth power (D 4 ) of the outer diameter D, when the outer diameter D of the metal stranded wire is reduced by 10%, the flexibility is improved by about 34%. I do.
[0028]
The reduced diameter metal stranded wire has a porosity of several percent, so it is difficult to contain a predetermined amount of the mixed liquid inside the metal stranded wire, and since the gap between the strands is narrow, the mixed liquid is outside. It is hard to leak. For this reason, in the metal stranded wire whose diameter has been reduced, the mixed liquid material is applied to the surface of the metal stranded wire and contained.
[0029]
According to a seventh aspect of the present invention, there is provided a cable having a metal stranded wire containing a mixed liquid as a conductor. In this cable, due to vibration during ultrasonic welding, the mixed liquid material flows out to the welding interface, and the hard powder contained in the mixed liquid material collides with the oxide film at the welding interface by ultrasonic vibration to form the oxide film. Grind and peel quickly. Further, since the hard powder is mixed with the liquid material, the oxide film does not scatter or accumulate locally due to the ultrasonic vibration, and the oxide film is favorably ground and peeled over the entire welding interface. Therefore, in the ultrasonic welding using this cable as a member to be welded, a highly reliable ultrasonic weld is formed with high productivity. Further, in this cable, the watertightness is enhanced by the mixed liquid, and the corrosion resistance of the strand is improved.
[0030]
Hereinafter, the ultrasonic welding method of the present invention will be specifically described with reference to the drawings.
In all the drawings for describing the present invention, components having the same function are denoted by the same reference numerals, and their repeated description will be omitted.
[0031]
FIGS. 1A and 1B are a side view and a cross-sectional view (a-a cross-sectional view) of the aluminum cable 1 of the present invention with the insulating layer 6 at the end removed.
This aluminum cable 1 is obtained by applying a mixed liquid 4 to the outer periphery of an aluminum twisted wire 3 in which a plurality of aluminum wires 2 are twisted, and twisting a plurality of the aluminum twisted wires 3 coated with the mixed liquid 4 to form a composite twisted wire. The composite stranded wire 5 is coated with an insulating layer 6.
[0032]
FIGS. 2A to 2C are cross-sectional views showing other embodiments of the aluminum cable of the present invention.
The aluminum cable shown in FIG. 2 (a) is obtained by twisting a plurality of aluminum strands 2 obtained by twisting a plurality of aluminum strands 2 and then twisting a plurality of strands. Covered with an insulating layer 6.
[0033]
The aluminum cable shown in FIG. 2 (b) is a composite twisted wire obtained by applying a liquid mixture 4 to the outer periphery of an aluminum twisted wire 3 in which a plurality of aluminum strands 2 are twisted, and twisting the aluminum twisted wire 3 around the circumference. 5, and the outer periphery thereof is covered with an insulating layer 6.
[0034]
In the aluminum cable shown in FIG. 2C, the composite stranded wire 25 shown in FIG. 5 is reduced in diameter, and the outer periphery of the reduced diameter stranded wire 7 is coated with the liquid mixture 4 to form the composite stranded wire 5. Further, the outer periphery thereof is covered with an insulating layer 6.
[0035]
Next, the ultrasonic welding method of the present invention will be specifically described with reference to the drawings.
As shown in FIGS. 3 (a) and 3 (b), the composite stranded wire 5 exposing and removing the insulating layer 6 at the end of the aluminum cable 1 is disposed on a plate-shaped base 12 having a concave cross section of the battery terminal 11. Then, the end face of the ultrasonic vibrator 17 is pressed against the exposed upper surface of the composite stranded wire 5 in the plate-shaped base 12 to apply ultrasonic vibration, and the welding interfaces are rubbed with each other to grind the oxide film on the welding interface. At the same time, the members 5 and 12 are welded to each other by frictional heat and pressure generated by ultrasonic vibration.
[0036]
At the welding interface, the admixed liquid 4 contained in the composite stranded wire 5 flows out, and the hard powder contained in the admixed liquid strikes the oxide film at the weld interface by ultrasonic vibration and quickly oxidizes the oxide film. And peel off. Further, since the hard powder is mixed with the liquid material, the oxide film does not scatter or accumulate locally due to the ultrasonic vibration, and the oxide film is favorably ground and peeled over the entire welding interface. Therefore, ultrasonic welding is performed with high reliability and high productivity.
[0037]
4A and 4B are explanatory views of a method for ultrasonically welding a device terminal 21 used for a motor, an inverter, or the like to the aluminum cable 1 of the present invention. FIG. 4A is a side view, and FIG. -B sectional view).
The equipment terminal 21 includes a fixing piece 22 for fixing the aluminum cable 1, a plate-shaped base 23 having a semicircular cross section for ultrasonically welding the composite stranded wire 5 containing the mixed liquid 4, and an equipment terminal (not shown). ) Is provided with a connection hole 24 for connection.
[0038]
In the device terminal 21, an end of the aluminum cable 1 is fixed to a fixing piece 22, and a composite stranded wire 5 exposed on a plate-like base 23 having a semicircular cross section is arranged. The ultrasonic vibration is applied by pressing the end face of the child 17.
In FIGS. 4A and 4B, reference numeral 18 denotes a fixed base.
[0039]
At the welding interface between the plate-like base 23 and the composite stranded wire 5, the mixed liquid 4 contained in the composite stranded wire 5 flows out, and the hard powder contained in the mixed liquid 4 is ultrasonically vibrated at the welding interface. The oxide film collides with the oxide film and is quickly ground and peeled. Further, since the hard powder is mixed with the liquid material, the oxide film does not scatter or accumulate locally due to the ultrasonic vibration, and the oxide film is favorably ground and peeled over the entire welding interface. Therefore, the composite stranded wire 5 and the plate-shaped base 22 are preferably ultrasonically welded.
[0040]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples.
(Example 1)
As shown in FIGS. 3A and 3B, the composite stranded wire 5 exposed by removing the covering layer 6 at the end of the aluminum cable 1 shown in FIGS. The terminal 11 is disposed in the plate-shaped base 12 having a concave cross section, and the end face of the ultrasonic transducer 17 is pressed against the upper surface of the composite stranded wire 5 to apply ultrasonic vibration for a predetermined time. 12 was ultrasonically welded.
The composite stranded wire 5 contained a mixed liquid 4 in which a commercially available grease was mixed with an aluminum alloy powder. A copper terminal having a plate-shaped base 12 made of copper was used as the battery terminal 11.
The ultrasonic application time (welding time) was set to half the time of the conventional ultrasonic welding method using no mixed liquid.
2A to 2C, the plate base 12 of the battery terminal 11 was ultrasonically welded to each of the composite stranded wires 5 in the same manner.
[0041]
Each ultrasonic welded body thus obtained is placed in a corrosive environment, and a predetermined bending strain is repeatedly applied so that the maximum stress is applied to the welded portion, and a vehicle simulation promotion test is performed for 10 days. The joint strength and contact resistance of the weld were examined.
The joining strength was examined by a shear test in which the aluminum cable 1 was pulled in the length direction from both sides of the weld. The contact resistance was determined by measuring the electrical resistance across the weld.
The measured number is three each for the joint strength and the contact resistance. If the comparison value after the accelerated test is 95 or more when the measured value before the test is 100, the welding state or the contact resistance is good (O). , 95 was evaluated as defective (x). The flexibility was evaluated as excellent (() or extremely excellent (◎) according to the feel of the wiring operator.
[0042]
(Comparative Example 1)
Using a conventional aluminum cable 27 shown in FIG. 5, a crimping plate 26 is press-compressed to the exposed composite stranded wire 25 by the press crimping method shown in FIG. An in-vehicle simulation promotion test was performed to examine the joint strength and contact resistance of the welded part, and to evaluate the welding condition.
[0043]
(Comparative Example 2)
Ultrasonic welding was performed by the same method as in Example 1 except that the aluminum alloy powder was interposed at the welding interface using the conventional aluminum cable 27 shown in FIG. Was performed, the joint strength and contact resistance of the welded portion were examined, and the welding state was evaluated.
Table 1 shows the results.
[0044]
[Table 1]
Figure 2004050204
[0045]
As is clear from Table 1, No. 1 of Example 1 was used. Nos. 1 to 4 (Examples of the present invention) all had high bonding strength, low contact resistance, and showed a good welding state.
This is because at the time of ultrasonic welding, the admixed liquid flows out of the aluminum stranded wire to the welding interface, and the hard powder contained in the admixed liquid collides with the oxide film at the welding interface due to ultrasonic vibration, and the oxide film is quickly formed. Because the hard powder is mixed with the liquid material, the oxide film does not scatter or accumulate locally due to the ultrasonic vibration, and the oxide film is successfully ground and peeled over the entire welding interface. is there. Furthermore, No. No. 4 was extremely excellent in flexibility because the composite stranded wire was subjected to diameter reduction processing.
[0046]
On the other hand, No. 1 of Comparative Example 1 No. 5 was press-compressed, and the crimped portion was loosened due to the bending strain in the accelerated test. In No. 6, since the Al alloy powder was directly interposed at the welding interface, the Al alloy powder scattered or was locally accumulated by ultrasonic vibration, and the effect of the Al alloy powder was not sufficiently obtained, and the oxide film was partially formed. In all cases, the welded portions were inferior in joint strength and contact resistance.
[0047]
The four types of aluminum cables shown in FIGS. 1 and 2 were ultrasonically welded to the equipment terminals shown in FIG. 4 by the same method as in Example 1, and the joint strength and contact resistance were measured by the same method as in Example 1. And the welding condition was evaluated.
As a result, in each of the aluminum cables, the same excellent welding state as in Example 1 was obtained.
[0048]
In the above-described embodiment, a cable using a composite stranded wire as a conductor has been described. However, the same effect can be obtained by applying the present invention to a cable using a collective stranded wire in which strands are collectively stranded as a conductor. The ultrasonic vibration is performed by using two ultrasonic vibrators and pressing the end face of one vibrator against the upper surface of the composite stranded wire and pressing the end face of another vibrator against the bottom lower surface of the concave base 12. May be provided.
[0049]
【The invention's effect】
As described above, in the ultrasonic welding method of the present invention, since the mixed liquid is interposed at the welding interface between the members to be welded, the hard powder in the mixed liquid is oxidized at the welding interface by ultrasonic vibration. And the oxide film is quickly ground and peeled off. Further, since the hard powder is mixed with the liquid material, the oxide film does not scatter or accumulate locally due to the ultrasonic vibration, and the oxide film is favorably ground and peeled over the entire welding interface. Therefore, ultrasonic welding is performed with high reliability and high productivity.
[0050]
When the member to be welded is a metal stranded wire, the mixing liquid is contained in the metal stranded wire so that the supply of the mixed liquid to the welding interface can be efficiently performed.
[0051]
When the member to be welded is an aluminum stranded wire and a copper terminal, it is difficult to grind and peel off the oxide film of the copper terminal with a relatively soft aluminum stranded wire. Since the film is ground and peeled, a good welding state can be obtained.
[0052]
When a metal powder having excellent conductivity is used as the hard powder, the influence on the contact resistance is small even if the hard powder remains at the welding interface.
[0053]
By setting the porosity of the metal stranded wire to be a member to be welded to 10 to 30%, an appropriate amount of the mixed liquid is contained, and the metal powder in the mixed liquid satisfactorily grinds and separates the oxide film. Also, the diameter of the metal stranded wire is not so large, and the cable can be easily handled.
[0054]
By reducing the diameter of the metal stranded wire to be the member to be welded, flexibility (wiring workability) is improved and space can be saved. In particular, the effect is large in an aluminum stranded wire having a lower conductivity and a larger diameter than a copper stranded wire.
[0055]
Since the cable of the present invention contains the above-mentioned liquid mixture in a metal stranded wire serving as a conductor, the cable is excellent in ultrasonic weldability, and is excellent in watertightness and corrosion resistance of the strand.
Therefore, a remarkable industrial effect is achieved.
[Brief description of the drawings]
FIG. 1A is a side view, and FIG. 1B is a cross-sectional view (a-a cross-sectional view) showing an embodiment of the aluminum cable of the present invention.
FIGS. 2A to 2C are cross-sectional views showing other embodiments of the aluminum cable of the present invention.
FIG. 3 is an explanatory view showing an embodiment of an ultrasonic welding method according to the present invention, wherein (A) is a side view and (B) is a transverse sectional view.
FIGS. 4A and 4B are explanatory views showing another embodiment of the ultrasonic welding method of the present invention, wherein FIG. 4A is a side view and FIG.
FIG. 5 is a cross-sectional view of a conventional aluminum cable.
FIG. 6 is an explanatory side view of the press bonding method.
FIG. 7 is an explanatory cross-sectional view of a conventional ultrasonic welding method.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 Aluminum cable 2 of the present invention 2 Aluminum strand 3 Aluminum stranded wire 4 Mixed liquid 5 Composite stranded wire containing mixed liquid (metal stranded wire)
Reference Signs List 6 Insulation layer 7 Reduced diameter stranded wire 11 Battery terminal for ultrasonic welding 12 Plate base 13 with concave cross section 13 Battery terminal 14 Ring-shaped gripping part 15 Tightening bolt 17 Ultrasonic vibrator 18 Fixed base 21 Terminal for ultrasonic welding Reference Signs List 22 Fixing piece 23 Plate base 24 with semicircular cross section Connection hole 25 Composite stranded wire 26 Crimp plate for battery terminal 27 Conventional aluminum cable 31 Battery terminal for crimp

Claims (7)

被溶接部材同士の溶接界面に硬質粉末が混和された液状体を介在させて超音波溶接することを特徴とする超音波溶接方法。An ultrasonic welding method, characterized in that ultrasonic welding is performed by interposing a liquid material mixed with a hard powder at a welding interface between members to be welded. 前記被溶接部材の一方が金属撚線であり、前記金属撚線に硬質粉末が混和された液状体を含有させておき、超音波溶接の際、前記液状体を前記金属撚線から流出させて前記溶接界面に介在させることを特徴とする請求項1記載の超音波溶接方法。One of the members to be welded is a metal stranded wire, and a liquid material mixed with a hard powder is contained in the metal stranded wire, and at the time of ultrasonic welding, the liquid material flows out of the metal stranded wire. The ultrasonic welding method according to claim 1, wherein the ultrasonic welding is performed at the welding interface. 前記被溶接部材の一方がアルミ撚線であり、他方が銅端子であることを特徴とする請求項1または2記載の超音波溶接方法。3. The ultrasonic welding method according to claim 1, wherein one of the members to be welded is an aluminum stranded wire and the other is a copper terminal. 前記硬質粉末がアルミニウムまたは銅の金属粉末であることを特徴とする請求項1乃至3のいずれかに記載の超音波溶接方法。The ultrasonic welding method according to any one of claims 1 to 3, wherein the hard powder is a metal powder of aluminum or copper. 前記金属撚線の空隙率が10〜30%であることを特徴とする請求項2乃至4のいずれかに記載の超音波溶接方法。The ultrasonic welding method according to any one of claims 2 to 4, wherein the porosity of the metal stranded wire is 10 to 30%. 前記金属撚線が縮径加工されていることを特徴とする請求項2乃至4のいずれかに記載の超音波溶接方法。The ultrasonic welding method according to any one of claims 2 to 4, wherein the metal stranded wire is reduced in diameter. 前記硬質粉末が混和された液状体を含有する金属撚線を導体とすることを特徴とする超音波溶接に適したケーブル。A cable suitable for ultrasonic welding, characterized in that a conductor is a metal stranded wire containing a liquid material mixed with the hard powder.
JP2002208859A 2002-07-17 2002-07-17 Ultrasonic welding method and cable suitable for ultrasonic welding Pending JP2004050204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208859A JP2004050204A (en) 2002-07-17 2002-07-17 Ultrasonic welding method and cable suitable for ultrasonic welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208859A JP2004050204A (en) 2002-07-17 2002-07-17 Ultrasonic welding method and cable suitable for ultrasonic welding

Publications (1)

Publication Number Publication Date
JP2004050204A true JP2004050204A (en) 2004-02-19

Family

ID=31932897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208859A Pending JP2004050204A (en) 2002-07-17 2002-07-17 Ultrasonic welding method and cable suitable for ultrasonic welding

Country Status (1)

Country Link
JP (1) JP2004050204A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277438A (en) * 2008-05-13 2009-11-26 Yazaki Corp Electric wire
JP2010528867A (en) * 2007-06-06 2010-08-26 シュンク・ソノシステムズ・ゲーエムベーハー Method and ultrasonic welding apparatus for conductive bonding of strands
WO2012063961A1 (en) * 2010-11-09 2012-05-18 Yazaki Corporation Ultrasonic bonding method for electric wires
CN105097091A (en) * 2015-09-11 2015-11-25 湖南华菱线缆股份有限公司 Medium-pressure prefabricated branch cable and manufacturing method thereof
JP2016001590A (en) * 2014-05-19 2016-01-07 古河電気工業株式会社 Wire connection structure and wire connection method
JP2017504150A (en) * 2013-12-02 2017-02-02 タイコ エレクトロニクス サブシー コミュニケーションズ エルエルシー Conductive water blocking material containing metal particles, optical cable, and method of constructing optical cable including the same
JP2018128447A (en) * 2016-12-15 2018-08-16 デルフィ・テクノロジーズ・インコーポレイテッド Method for predicting strength of ultrasonic weld-joint
WO2018180585A1 (en) * 2017-03-31 2018-10-04 東洋紡株式会社 Electrically conductive component and wire harness
WO2019081193A1 (en) * 2017-10-23 2019-05-02 Lisa Dräxlmaier GmbH Method for the integrally bonded joining of an electric cable to an electrical contact part, and electric cable arrangement
JP2019093445A (en) * 2017-11-28 2019-06-20 矢崎総業株式会社 Ultrasonic bonding method of conductor of wire, manufacturing method of wire with terminal, ultrasonic bonding device of conductor of wire, and wire
WO2019155705A1 (en) * 2018-02-06 2019-08-15 株式会社オートネットワーク技術研究所 Electric wire equipped with heat-shrinkable tube
JP2020175432A (en) * 2019-04-22 2020-10-29 矢崎総業株式会社 Ultrasonic joining method
US11699538B1 (en) * 2022-04-20 2023-07-11 Aptiv Technologies Limited High-voltage electrical cable with mixed conductors

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528867A (en) * 2007-06-06 2010-08-26 シュンク・ソノシステムズ・ゲーエムベーハー Method and ultrasonic welding apparatus for conductive bonding of strands
JP2009277438A (en) * 2008-05-13 2009-11-26 Yazaki Corp Electric wire
WO2012063961A1 (en) * 2010-11-09 2012-05-18 Yazaki Corporation Ultrasonic bonding method for electric wires
JP2017504150A (en) * 2013-12-02 2017-02-02 タイコ エレクトロニクス サブシー コミュニケーションズ エルエルシー Conductive water blocking material containing metal particles, optical cable, and method of constructing optical cable including the same
JP2020061371A (en) * 2013-12-02 2020-04-16 サブコム,エルエルシー Conductive water blocking material including metallic particles, optical cable, and method of constructing optical cable including the same
JP2016001590A (en) * 2014-05-19 2016-01-07 古河電気工業株式会社 Wire connection structure and wire connection method
CN105097091A (en) * 2015-09-11 2015-11-25 湖南华菱线缆股份有限公司 Medium-pressure prefabricated branch cable and manufacturing method thereof
JP2018128447A (en) * 2016-12-15 2018-08-16 デルフィ・テクノロジーズ・インコーポレイテッド Method for predicting strength of ultrasonic weld-joint
JPWO2018180585A1 (en) * 2017-03-31 2020-02-06 東洋紡株式会社 Electrically conductive parts and wire harness
WO2018180585A1 (en) * 2017-03-31 2018-10-04 東洋紡株式会社 Electrically conductive component and wire harness
TWI772391B (en) * 2017-03-31 2022-08-01 日商東洋紡股份有限公司 Electrically Conductive Parts and Wire Harnesses
US10873171B2 (en) 2017-10-23 2020-12-22 Lisa Dräxlmaier GmbH Method for the integrally bonded joining of an electric cable to an electrical contact part and electric cable arrangement
CN111264006A (en) * 2017-10-23 2020-06-09 利萨·德雷克塞迈尔有限责任公司 Method and wire arrangement for the materially bonded butt joining of a wire to an electrical contact
WO2019081193A1 (en) * 2017-10-23 2019-05-02 Lisa Dräxlmaier GmbH Method for the integrally bonded joining of an electric cable to an electrical contact part, and electric cable arrangement
CN111264006B (en) * 2017-10-23 2022-09-30 利萨·德雷克塞迈尔有限责任公司 Method and wire arrangement for the materially bonded butt joining of a wire to an electrical contact
JP2019093445A (en) * 2017-11-28 2019-06-20 矢崎総業株式会社 Ultrasonic bonding method of conductor of wire, manufacturing method of wire with terminal, ultrasonic bonding device of conductor of wire, and wire
WO2019155705A1 (en) * 2018-02-06 2019-08-15 株式会社オートネットワーク技術研究所 Electric wire equipped with heat-shrinkable tube
JP2020175432A (en) * 2019-04-22 2020-10-29 矢崎総業株式会社 Ultrasonic joining method
JP7057314B2 (en) 2019-04-22 2022-04-19 矢崎総業株式会社 Ultrasonic bonding method
US11699538B1 (en) * 2022-04-20 2023-07-11 Aptiv Technologies Limited High-voltage electrical cable with mixed conductors
EP4266327A1 (en) * 2022-04-20 2023-10-25 Aptiv Technologies Limited High-voltage electrical cable with mixed conductors

Similar Documents

Publication Publication Date Title
JP5660458B2 (en) Electric wire with terminal and manufacturing method thereof
JP5235369B2 (en) Wire harness, method for manufacturing the same, and method for connecting insulated wires
JP2004050204A (en) Ultrasonic welding method and cable suitable for ultrasonic welding
CN110612642B (en) Connecting part of connecting piece and stranded conductor
US9289848B2 (en) Method of attaching a wire cable terminal to a multi-strand wire cable
WO2014021275A1 (en) Aluminum electric wire with terminal
JP2013004406A (en) Manufacturing method of wire with terminal
JP2007305314A (en) Cable with terminal, manufacturing method therefor, ultrasonic welding method for joining terminal and cable, and ultrasonic welder
JP5369637B2 (en) Electric wire with terminal fitting and method for manufacturing the same
JP2010113946A (en) Method of connecting aluminum wire with cooper wire, and connector thereof
JP2014032819A (en) Aluminum electric wire
CN109861010A (en) Terminal connection method and terminal
JP6974135B2 (en) Terminal connection method
WO2010095646A1 (en) Method of connecting electrical wires together
WO2019225492A1 (en) Electric wire connection structure and electric wire connection method
EP3644443A1 (en) Wire connection structure
JP2016001551A (en) Cable and wire with crimped terminal
JP2011258468A (en) Terminal, electric wire with terminal and method for producing the same
JP5695987B2 (en) Single core wire and terminal crimping structure of single core wire
JP6316230B2 (en) Electric wire with connection terminal and method of manufacturing the electric wire
JP2011090804A (en) Electric wire with terminal fitting and method of manufacturing the same
JP5223798B2 (en) Electric wire connection structure and vehicle conductive path having the electric wire connection structure
FR2501923A1 (en) Ultrasonic vibration assisted crimp cable connector for stranded wires - compresses lug wings onto bared wire and onto wired insulation during or before application ultrasonic waves
JP6316229B2 (en) Electric wire with connection terminal and method of manufacturing the electric wire
JP4504529B2 (en) How to connect wires