JP2004048894A - Preheating method of non-cooled electromagnetic pump for liquid metal - Google Patents

Preheating method of non-cooled electromagnetic pump for liquid metal Download PDF

Info

Publication number
JP2004048894A
JP2004048894A JP2002202243A JP2002202243A JP2004048894A JP 2004048894 A JP2004048894 A JP 2004048894A JP 2002202243 A JP2002202243 A JP 2002202243A JP 2002202243 A JP2002202243 A JP 2002202243A JP 2004048894 A JP2004048894 A JP 2004048894A
Authority
JP
Japan
Prior art keywords
duct
temperature
liquid metal
electromagnetic pump
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002202243A
Other languages
Japanese (ja)
Other versions
JP4074145B2 (en
Inventor
Toshie Aizawa
相澤 利枝
Hiroyuki Ota
大田 裕之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002202243A priority Critical patent/JP4074145B2/en
Publication of JP2004048894A publication Critical patent/JP2004048894A/en
Application granted granted Critical
Publication of JP4074145B2 publication Critical patent/JP4074145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a preheating method of a non-cooled electromagnetic pump for liquid metal, for maintaining the healthiness of the electromagnetic pump in preheating for charging the liquid metal, and attaining high safety and efficiency. <P>SOLUTION: This preheating method of the non-cooled electromagnetic pump for liquid metal has a duct forming a liquid metal passage; an electromagnetic coil; an iron core; a support structure for supporting the iron core; and a casing for sealing the electromagnetic coil, the iron core, and the support structure. In preheating the electromagnetic pump to charge a liquid metal, since the temperature rise rate at the time of preheating the duct, the electromagnetic coil, the iron core, the support structure, and the casing is set at ≤ 20 °C per hour, the temperature differences between the duct and the casing, and between the duct and the support structure can be restrained, thus preventing breakage to the support structure. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液体金属冷却型高速炉の冷却材主循環ポンプとして適用される無冷却型電磁ポンプや液体金属を流動するための無冷却型電磁ポンプの予熱方法に関する。
【0002】
【従来の技術】
従来の電磁ポンプは冷却型であり、ダクトの外周側に冷却型電磁ポンプが設置されており、ダクトと鉄心及びコイル間に絶縁材が設けられてある。このため、液体金属を充填するために配管をヒータで暖める予熱時にも、ダクトからの温度上昇は遮断され、冷却型電磁ポンプ内部構造物は温度上昇しない。ダクトとケーシング間、ダクトと鉄心を支持する支持構造物間に温度差が生じないので、冷却型電磁ポンプはダクトとケーシング間、鉄心と支持構造物間及びダクトと支持構造物間との温度差による破損を考慮する必要はなかった。
【0003】
ところが、無冷却型電磁ポンプが液体金属中に浸漬して設置され、電磁ポンプ内部構造物である電磁コイルのジュール熱、ダクトの渦電流や鉄心の渦電流による発熱は電磁コイル健全性や鉄心及び支持構造物の機能を保持するために鉄心、ダクト、内部ガスやケーシングを介して液体金属中に放熱するが、無冷却型電磁ポンプはこの放熱を妨げるダクトと鉄心及びコイル間に絶縁材を設けていなかった。しかし、予熱時にはダクトがヒータ加熱により温度上昇し、ダクトと支持構造物間及び鉄心と支持構造物間で温度差が生じる。また、予熱時は液体金属がないためケーシングはほとんど温度上昇せず、ダクトとケーシング間にも温度差が生じる。このようなダクトとケーシング間、鉄心と支持構造物及びダクトと支持構造物間の温度差による破損を考慮した無冷却型電磁ポンプの予熱方法について従来は何ら対策はとられていなかった。
【0004】
一般の三相誘導型電磁ポンプは、三相巻線を流体の流れ方向、電磁ポンプの軸方向に各相の順に分布させ配置する。そして、三相巻線に三相交流電流を流して、この電流の流れ方向に進行磁場を発生させ、いわゆる「フレミングの右手の法則」の応用により、導電性流体である液体金属に誘導電流を流す。この誘導電流と進行磁界との相互作用により電磁力が生じ、この電磁力が液体金属を流す力となりポンプとして作用する。この電磁力は誘導電動機におけるトルクを発生する力、リニアモータにおける推力等と同じである。三相誘導型電磁ポンプは、この原理に基づいて液体金属を移送する。
【0005】
ここで、従来の電磁ポンプを図5の一部切除した斜視図及び図6の断面図を参照して説明する。
電磁ポンプ1は、液体金属、例えば液体ナトリウムなどの導電性流体2を流すために、外側ダクト3及び内側ダクト4により同心の二重管構造の二重ダクトを構成し、その外側ダクト3と内側ダクト4により形成された環状流路5内を導電性流体2が流動するようになっている。
【0006】
外側ダクト3の外側には多数枚の電磁鋼板を積み重ねた外側鉄心6が周方向に配置されている。各外側鉄心6の外側ダクト側の端部に形成されたスロット7内に環状の外側電磁コイル8が軸方向に多数配置されており、これら外側電磁コイル8は三相交流が進行磁場を作るように結線されている。外側鉄心6は、多数枚ある電磁鋼板の周方向両端に端板を設置し、その電磁鋼板を外側鉄心6の周方向に設けた穴に差し込まれた固定具で固定する構成となっている。また、内側ダクト4の内側には多数枚の電磁鋼板を積み重ねた内側鉄心9が周方向に配されており、各内側鉄心4に形成されたスロット内に内側電磁コイル13が軸方向に多数配置されている。
【0007】
このように構成された電磁ポンプ1は、外側電磁コイル8に三相交流電流を供給することにより、導電性流体2が吸込口である流体入口10から環状流路5を流れ、吐出口である流体出口11から外部へ移送される。そして、外側電磁コイル8に発生するジュール損失や、外側鉄心6に発生する鉄損等の内部発熱、及び導電性流体2からの入熱等を外側鉄心6の外周側に配設されたケーシング12内に外部から冷媒を循環させて除熱するのが一般的である。
【0008】
【発明が解決しようとする課題】
無冷却型電磁ポンプのように通常運転時にコイルのジュール熱や鉄心の渦電流及びダクトの渦電流による発熱を液体金属に放熱するシステムの場合、電磁ポンプ内部構造物は液体金属がない予熱時と通常運転時とで内部構造物の温度分布が異なり、ダクトとケーシング間、鉄心と支持構造物間及びダクトと支持構造物間に温度差がつき、ダクト、ケーシング及び支持構造物が破損する恐れがある。
【0009】
すなわち、従来の無冷却型電磁ポンプでは、予熱時はダクトをヒータで加熱しているが、ケーシング及び支持構造物はヒータの加熱はなく、さらにケーシングは周囲に液体金属もないため大気と同程度の温度もしくはダクトの温度上昇に伴い若干の温度上昇が見込めるが、ダクトとケーシング間、ダクトと支持構造物間に通常運転時以上に温度差がつきやすいという問題がある。
【0010】
本発明は、上記情況に対処するためになされたもので、その課題は、液体金属を充填させる予熱時に電磁ポンプの健全性を維持し、安全性が高く、効率のよい液体金属無冷却型励磁ポンプの予熱方法を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、液体金属流路を形成するダクトと、電磁コイルと、鉄心と、前記鉄心を支持する支持構造物と、前記電磁コイルと鉄心と支持構造物を密閉するケーシングを有する液体金属用無冷却型電磁ポンプの予熱方法において、液体金属を充填するために当該電磁ポンプを予熱する際、前記ダクトと電磁コイルと鉄心と支持構造物とケーシングの予熱時の温度上昇率を毎時20℃以下に設定することを特徴とする。
【0012】
請求項2記載の発明は、請求項1記載の液体金属用無冷却型電磁ポンプの予熱方法において、昇温過程及び昇温終了時において、ダクト温度とケーシング温度の温度差を100℃以下、鉄心温度と支持構造温度の温度差を50℃以下、ダクト温度と支持構造物温度の温度差を80℃以下に制限することを特徴とする。
【0013】
請求項1及び請求項2によると、ダクトの温度上昇率を徐々に上げることにより、ダクトとケーシング間、ダクトと支持構造物間の温度差を抑える予熱方法であるので、支持構造物の破損を防止できる。
【0014】
請求項3記載の発明は、請求項1または請求項2記載の液体金属用無冷却型電磁ポンプの予熱方法において、電磁コイルに交流電流を通電することで生ずるコイルのジュール熱、鉄心の渦電流及びダクトの渦電流を加熱源として利用することを特徴とする。
【0015】
請求項3によると、電磁コイルに通電することで、ダクト、鉄心等に渦電流が流れるので、ダクトは、ヒータ加熱に加えダクト渦電流による発熱があるため、ダクト温度上昇を抑えることができる。
【0016】
請求項4記載の発明は、請求項3記載の液体金属用無冷却型電磁ポンプの予熱方法において、電磁ポンプに通電する周波数を定格周波数以下に設定することを特徴とする。
請求項4によると、交流電流周波数を電磁ポンプの定格周波数以下に設定しているので、ダクトの温度上昇が抑制される。
【0017】
請求項5記載の発明は、請求項3記載の液体金属用無冷却型電磁ポンプの予熱方法において、電磁ポンプに通電する交流電流を定格電流の30%以下に設定することを特徴とする。
請求項5によると、電磁コイルの通電電流を定格電流の30%以下とすることで、ダクトの温度上昇が抑えられる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図を参照して説明する。
図1は本発明の実施形態(請求項1ないし請求項5対応)の電磁ポンプの要部拡大断面図、図2は図1のII−II矢視断面図である。
【0019】
電磁ポンプ1においては、外側鉄心6が外側ダクト3の周りに放射状に配置され、外側電磁コイル8がこの外側鉄心6で軸方向に挟み込んで配置されている。これら鉄心6、電磁コイル8、電磁コイル及び鉄心を支持する支持構造物はケーシング12内に密閉配置されている。外側ダクト3及びケーシング12の材質は非磁性体で導電性流体(液体金属)2による腐食がしにくく、かつ高温で十分な強度を有する材質を適用しており、鉄心の材質は強磁性体の材質を適用している。
【0020】
また、本実施形態の電磁ポンプ1の径方向支持構造物は外側鉄心6の径方向両端部をサイドプレート14によって挟み込んだ構成とされており、この一対のサイドプレート14は、それらが挟み込んでいる1つの外側鉄心6の外周側に突出して互いに対向しており、これらのサイドプレート14突出部の対向部分に、軸方向に沿う長尺なアライメントプレート15が嵌合され、ボルト15aによって締着されている。サイドプレート14とアライメントプレート15との熱膨張を同じにするために熱膨張率が同等の材料、例えば同材質材料により構成している。
【0021】
外側鉄心6のさらに外周側には、アライメントプレート15の外周面側から径方向支持を行うためのフレーム16及びバッキングリング17が配置されている。フレーム16とバッキングリング17とはボルト17aにより固定され、これらが軸方向に沿って複数連結されている。
【0022】
さらに、アライメントプレート15の背面には、複数の板ばねからなる径方向スプリングプレート18が配置されている。この径方向スプリングプレート18は、それぞれの中央部でフレーム16にボルト18aにより固定されており、両端部分が、アライメントプレート15の背面に設けた径方向スプリングプレート受け19に弾性的に当接し、これにより、クランプ機構が構成されている。すなわち、外側鉄心6とアライメントプレート15との径方向変位は、径方向スプリングプレート受け19を介して径方向スプリングプレート18に伝わる。そして、径方向スプリングプレート18の変形によって反力が生じ、これによりクランプ機構が構成される。
【0023】
電磁ポンプ1は、液体金属2を充填させるための予熱時には配管(ダクト)をヒータで暖める。ダクト温度上昇に伴い、この熱が鉄心、支持構造物及びケーシングへ伝熱される。この時、ヒータ加熱によりダクトのみが急激に温度上昇すると、鉄心、支持構造物及びケーシングの温度が追従せず、ダクト温度とケーシング温度間、ダクト温度と鉄心温度間、ダクト温度と支持構造物温度間で温度差が生じ、この温度差が内部構造物の機能保持できない温度となり、ダクト、ケーシング及び支持構造物が破損する恐れがある。このような破損を防止するために、内部構造物との温度上昇率を制限し、内部構造物の健全性を図るようにしている。すなわち、内部温度上昇率は、鉄心温度、電磁コイル温度、支持構造物温度及びケーシング温度を徐々に上昇させるため毎時20℃(毎分0.3℃)以下となるように設定する。さらに各温度を毎時20℃以下となるように各温度を監視制御装置で監視し、毎時20℃以上になる時は監視制御装置からの制御信号でダクトのヒータのON/OFF制御を行い、内部構造物の温度上昇率を毎時20℃以下となるようコントロールする。
【0024】
また、電磁ポンプ1において径方向スプリングプレート18は電磁ポンプの通常運転時に電磁コイルで発生したジュール熱が鉄心を介して液体金属2へ放熱するため鉄心背面にあるアライメントプレート15をスプリングプレート18の変形によって生じる反力で押し付けている。さらにポンプ運転時には組立時に比べて外側鉄心6と外側ダクト3の隙間が広がる傾向にある。そこで、組立時に径方向スプリングを予め変形させて反力が発生する状態としている。系統つまりダクト配管内を真空引きした場合、ダクトに外圧がかかり、さらに予め変形させている径方向スプリングプレート18の反力及びヒータ加熱によるダクトの径方向熱膨張が加わり、ダクトが座屈する恐れがある。このため、系統真空引き時にダクト座屈防止の観点から、ダクト温度と支持構造物温度の温度差を80℃以下に制御している。
【0025】
次に、外側鉄心6の軸方向一端側(図1の上部)においては、鉄心押え20が、アライメントプレート15にボルト(図示しない)によって固定されている。また、フレーム16の同端部側には、上部押え板21がボルト21aによって固定されている。さらに、上部鉄心押え20と上部押え板21とが、キー22によって周方向及び径方向に位置決めされている。そして、上部押え板21の外側面とフレーム16のフランジ23との間に、弾性板からなる軸方向スプリングプレート24が、ボルト23aによって挟持固定されている。この軸方向スプリングプレート24に、上部鉄心押え20上に取り付けた軸方向スプリングプレート受け26が当接している。
【0026】
このような構造により、外側鉄心6とアライメントプレート15との間の軸方向変位は、上部鉄心押え20及び軸方向スプリングプレート受け26を介して軸方向スプリングプレート24に伝わり、軸方向スプリングプレート24の変形によって反力が生じ、クランプ機構が構成されている。この軸方向スプリングプレート24は応力保持の観点から、鉄心温度と支持構造物温度(アライメントプレートは支持構造物の一部)の温度差を50℃以下に制限している。
【0027】
図3は図1の実施形態に係る流体循環を示す電磁ポンプの縦断面図である。 図に示すように、電磁ポンプ1はダクト3,4上部にベローズ28を設置し、ダクト及びケーシング12とを結合している。このベローズ28によりケーシング12の温度とダクト3,4の温度の熱膨張変位を吸収する構成となっている。
【0028】
次に、本実施形態の運転方法について説明する。
電磁ポンプ1の通常運転時に電磁ポンプ1は液体金属2に浸漬しているので、ケーシング12もダクトと同様に周囲の液体金属2の温度とほぼ同じ温度になり、ダクト温度とケーシング温度の温度差がほとんどつかない。予熱時はダクト温度のみ上昇し、ダクトの熱で徐々にケーシング12が伝熱されていくが、ダクト温度とケーシング温度の温度差は通常運転時に比べて予熱時は大きくなる。ダクトの軸方向熱膨張は電磁ポンプ1軸方向上端部に設置してあるベローズ28で吸収されるが、この温度差が大きくなるとベローズ28の熱膨張を吸収できる範囲を超え、ベローズ28が破損する恐れがある。このベローズ28の破損を防ぐためにダクト温度とケーシング温度の温度差を100℃以下に制御する。
【0029】
ダクトのヒータ加熱に加え、電磁コイルに3相交流電流を通電し、電磁コイルのジュール熱、鉄心の渦電流、ダクトの渦電流による発熱を利用して、鉄心、支持構造物及びケーシング12の温度を上昇させる。電磁コイルに3相交流電流を通電することにより、電磁ポンプ1内部にヒータがあることと同様の効果があり、ダクト温度と鉄心温度、ダクト温度と支持構造物温度、ダクト温度とケーシング12温度の温度差を低減する効果がある。さらに、内部構造物の温度を上昇させて温度制御を行うことで、温度上昇率と温度差制限を満足し、予熱時間を短縮することもできる。
【0030】
電磁コイルに3相交流電流を通電する際、ダクトにも渦電流による発熱があり、ダクト温度と各構造物温度の温度差は大きくなる。そこで、ダクト温度上昇抑制の観点から交流電流周波数を当該電磁ポンプ1の定格周波数以下に設定する。
【0031】
電磁コイルに3相交流電流を通電すると電磁コイルのジュール熱、鉄心及びダクトの渦電流による発熱で電磁ポンプ1の内部温度が上昇する。この時、通電電流値を電磁ポンプ1の定格電流とした場合、内部構造物の温度上昇率がダクト温度上昇率より高くなる恐れがあり、温度上昇率の制限、温度差制限を満足しない。温度上昇の制限と温度差制限を満足させるために、電磁コイルの通電電流を定格電流の30%以下とし、予熱時の各構造物の温度制御を行う。
【0032】
上記の予熱方法を考慮して電磁ポンプの外側ステータ部の予熱を実施した予熱特性図を図4に示す。この予熱特性図から、ダクト、鉄心、支持構造物及びケーシングの健全性は十部満足できることがわかる。
【0033】
【発明の効果】
以上説明したように、本発明によれば、液体金属を充填させる予熱時にダクト、鉄心、鉄心及び電磁コイルを支持する支持構造物の破損を防止し、液体金属を充填させる予熱時間を短縮することができるので、液体金属を充填させる予熱時に電磁ポンプの健全性を維持し、安全性が高く、効率のよい液体金属無冷却型電磁ポンプの予熱方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の要部拡大図。
【図2】図1のII−II矢視断面図。
【図3】図1の実施形態に係る流体循環を示す電磁ポンプの縦断面図。
【図4】電磁ポンプの外側ステータ部の予熱特性図。
【図5】従来の電磁ポンプの一部切除した斜視図。
【図6】図6の横断面図。
【符号の説明】
1…電磁ポンプ、2…導電性流体(液体金属)、3…外側ダクト、4…内側ダクト、5…環状流路、6…外側鉄心、7…スロット、8…外側電磁コイル、9…内側鉄心、10…流体入口、11…流体出口、12…ケーシング、13…内側電磁コイル、14…サイドプレート、15…アライメントプレート、15a,17a,18a,21a,23a…ボルト、16…フレーム、17…バッキングリング、18…径方向スプリングプレート、19…径方向スプリングプレート受け、20…上部鉄心押え、21…上部押え板、22…キー、23…フランジ、24…軸方向スプリングプレート、25…ボルト、26…軸方向スプリングプレート受け、27…タンク、28…ベローズ、29…外側ステータ、30…内側ステータ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an uncooled electromagnetic pump applied as a coolant main circulation pump of a liquid metal cooled fast reactor and a method of preheating an uncooled electromagnetic pump for flowing liquid metal.
[0002]
[Prior art]
A conventional electromagnetic pump is a cooling type, and a cooling type electromagnetic pump is installed on an outer peripheral side of a duct, and an insulating material is provided between the duct, an iron core, and a coil. Therefore, even at the time of preheating in which the pipe is heated by the heater to fill the liquid metal, the temperature rise from the duct is shut off, and the temperature of the internal structure of the cooling type electromagnetic pump does not rise. Because there is no temperature difference between the duct and the casing, and between the duct and the supporting structure supporting the iron core, the cooling type electromagnetic pump uses the temperature difference between the duct and the casing, between the iron core and the supporting structure, and between the duct and the supporting structure. There was no need to consider the damage due to.
[0003]
However, an uncooled electromagnetic pump is installed immersed in liquid metal, and the Joule heat of the electromagnetic coil, the internal structure of the electromagnetic pump, and the heat generated by the eddy current of the duct and the eddy current of the iron core, make the electromagnetic coil sound and the core and In order to maintain the function of the supporting structure, heat is radiated into the liquid metal through the iron core, duct, internal gas and casing, but the non-cooling type electromagnetic pump is provided with insulating material between the duct, the iron core, and the coil that prevents this heat radiation. I didn't. However, at the time of preheating, the temperature of the duct rises due to the heating of the heater, and a temperature difference occurs between the duct and the support structure and between the iron core and the support structure. Further, at the time of preheating, the temperature of the casing hardly rises because there is no liquid metal, and a temperature difference occurs between the duct and the casing. Conventionally, no measures have been taken with respect to such a preheating method of the non-cooling type electromagnetic pump in consideration of the damage caused by the temperature difference between the duct and the casing, between the iron core and the support structure, and between the duct and the support structure.
[0004]
In a general three-phase induction type electromagnetic pump, three-phase windings are distributed and arranged in the order of each phase in the fluid flow direction and the axial direction of the electromagnetic pump. Then, a three-phase alternating current is passed through the three-phase winding to generate a traveling magnetic field in the flow direction of the current. By applying the so-called "Fleming's right-hand rule", an induced current is applied to the liquid metal, which is a conductive fluid. Shed. An interaction between the induced current and the traveling magnetic field generates an electromagnetic force, which acts as a force for flowing the liquid metal and acts as a pump. This electromagnetic force is the same as the torque generating force in the induction motor, the thrust in the linear motor, and the like. The three-phase induction type electromagnetic pump transfers liquid metal based on this principle.
[0005]
Here, a conventional electromagnetic pump will be described with reference to a partially cut-away perspective view of FIG. 5 and a cross-sectional view of FIG.
The electromagnetic pump 1 forms a concentric double duct structure with an outer duct 3 and an inner duct 4 in order to flow a conductive fluid 2 such as liquid metal, for example, liquid sodium. The conductive fluid 2 flows in an annular flow path 5 formed by the duct 4.
[0006]
Outside the outer duct 3, an outer iron core 6 in which a number of electromagnetic steel sheets are stacked is arranged in a circumferential direction. A large number of annular outer electromagnetic coils 8 are arranged in the axial direction in slots 7 formed at the outer duct side end of each outer iron core 6 so that the three-phase alternating current forms a traveling magnetic field. Is connected to The outer iron core 6 has a configuration in which end plates are provided at both ends in the circumferential direction of a large number of magnetic steel sheets, and the electromagnetic steel sheets are fixed by fixing tools inserted into holes provided in the circumferential direction of the outer iron core 6. Inside the inner duct 4, an inner core 9 formed by stacking a number of electromagnetic steel sheets is arranged in the circumferential direction, and a number of inner electromagnetic coils 13 are arranged in a slot formed in each inner core 4 in the axial direction. Have been.
[0007]
The electromagnetic pump 1 configured as described above supplies a three-phase alternating current to the outer electromagnetic coil 8 so that the conductive fluid 2 flows through the annular flow path 5 from the fluid inlet 10 which is a suction port, and is a discharge port. The fluid is transferred from the fluid outlet 11 to the outside. The internal heat generated by the Joule loss generated in the outer electromagnetic coil 8, the iron loss generated in the outer iron core 6, the heat input from the conductive fluid 2, and the like are transferred to the casing 12 disposed on the outer peripheral side of the outer iron core 6. Generally, heat is removed by circulating a refrigerant from the inside to the outside.
[0008]
[Problems to be solved by the invention]
In a system such as an uncooled electromagnetic pump that radiates the heat generated by the Joule heat of the coil, the eddy current of the iron core, and the eddy current of the duct to the liquid metal during normal operation, the internal structure of the electromagnetic pump is the same as during preheating without liquid metal The temperature distribution of the internal structure differs from that during normal operation, and there is a temperature difference between the duct and casing, between the iron core and the support structure, and between the duct and the support structure, and there is a possibility that the duct, casing and support structure may be damaged. is there.
[0009]
That is, in the conventional non-cooling type electromagnetic pump, the duct is heated by the heater at the time of preheating, but the casing and the supporting structure are not heated by the heater, and since the casing has no liquid metal around, the same level as the atmosphere. Although a slight temperature rise can be expected with the temperature of the duct or the temperature of the duct, there is a problem that a temperature difference between the duct and the casing and between the duct and the support structure tends to be larger than in the normal operation.
[0010]
The present invention has been made in order to cope with the above situation, and an object of the present invention is to maintain the integrity of an electromagnetic pump during preheating for filling a liquid metal, to provide a highly safe, efficient liquid metal non-cooling type excitation. An object of the present invention is to provide a method for preheating a pump.
[0011]
[Means for Solving the Problems]
In order to solve the above problem, the invention according to claim 1 includes a duct that forms a liquid metal flow path, an electromagnetic coil, an iron core, a support structure that supports the iron core, and a support structure that supports the electromagnetic coil and the iron core. In the method for preheating an uncooled electromagnetic pump for liquid metal having a casing that seals a structure, when preheating the electromagnetic pump to fill liquid metal, the duct, the electromagnetic coil, the iron core, the supporting structure, and the casing The temperature rise rate during preheating is set to 20 ° C. or less per hour.
[0012]
According to a second aspect of the present invention, in the method for preheating the non-cooling type electromagnetic pump for liquid metal according to the first aspect, the temperature difference between the duct temperature and the casing temperature is 100 ° C. or less in the heating process and at the end of the heating. The temperature difference between the temperature and the support structure temperature is limited to 50 ° C. or less, and the temperature difference between the duct temperature and the support structure temperature is limited to 80 ° C. or less.
[0013]
According to the first and second aspects, the preheating method is to suppress the temperature difference between the duct and the casing and between the duct and the support structure by gradually increasing the temperature rise rate of the duct. Can be prevented.
[0014]
According to a third aspect of the present invention, in the method for preheating a liquid metal non-cooling type electromagnetic pump according to the first or second aspect, Joule heat of the coil and eddy current of the iron core generated by applying an alternating current to the electromagnetic coil. And the eddy current of the duct is used as a heating source.
[0015]
According to the third aspect, when the electromagnetic coil is energized, an eddy current flows through the duct, the iron core, and the like. Therefore, since the duct generates heat due to the duct eddy current in addition to the heater heating, the duct temperature can be suppressed from rising.
[0016]
According to a fourth aspect of the present invention, in the method for preheating a non-cooling type electromagnetic pump for liquid metal according to the third aspect, the frequency for energizing the electromagnetic pump is set to a rated frequency or less.
According to the fourth aspect, since the AC current frequency is set to be equal to or lower than the rated frequency of the electromagnetic pump, the temperature rise of the duct is suppressed.
[0017]
According to a fifth aspect of the present invention, in the method for preheating a non-cooling type electromagnetic pump for liquid metal according to the third aspect, an alternating current supplied to the electromagnetic pump is set to 30% or less of a rated current.
According to the fifth aspect, the temperature increase of the duct is suppressed by setting the current supplied to the electromagnetic coil to 30% or less of the rated current.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an enlarged sectional view of a main part of an electromagnetic pump according to an embodiment (corresponding to claims 1 to 5) of the present invention, and FIG. 2 is a sectional view taken along line II-II of FIG.
[0019]
In the electromagnetic pump 1, the outer core 6 is radially arranged around the outer duct 3, and the outer electromagnetic coil 8 is arranged so as to be axially sandwiched by the outer core 6. The iron core 6, the electromagnetic coil 8, and the support structure that supports the electromagnetic coil and the iron core are hermetically disposed in a casing 12. The material of the outer duct 3 and the casing 12 is a non-magnetic material which is hardly corroded by the conductive fluid (liquid metal) 2 and has a sufficient strength at a high temperature. The material of the iron core is a ferromagnetic material. Material is applied.
[0020]
Further, the radial support structure of the electromagnetic pump 1 of the present embodiment has a configuration in which both radial ends of the outer iron core 6 are sandwiched by side plates 14, and the pair of side plates 14 are sandwiched therebetween. A long alignment plate 15 extending along the axial direction is fitted to the projecting portions of the one outer core 6 and facing each other, and the opposed portions of the side plate 14 projecting portions are fitted and fastened by bolts 15a. ing. In order to make the thermal expansion of the side plate 14 and that of the alignment plate 15 the same, they are made of a material having the same thermal expansion coefficient, for example, the same material.
[0021]
Further on the outer peripheral side of the outer core 6, a frame 16 and a backing ring 17 for radially supporting from the outer peripheral surface side of the alignment plate 15 are arranged. The frame 16 and the backing ring 17 are fixed by bolts 17a, and a plurality of these are connected along the axial direction.
[0022]
Further, a radial spring plate 18 including a plurality of leaf springs is arranged on the back surface of the alignment plate 15. The radial spring plates 18 are fixed to the frame 16 by bolts 18a at the respective center portions, and both end portions elastically abut against a radial spring plate receiver 19 provided on the back surface of the alignment plate 15. Constitute a clamp mechanism. That is, the radial displacement between the outer core 6 and the alignment plate 15 is transmitted to the radial spring plate 18 via the radial spring plate receiver 19. Then, a reaction force is generated by the deformation of the radial spring plate 18, thereby forming a clamp mechanism.
[0023]
The electromagnetic pump 1 warms a pipe (duct) with a heater during preheating for filling the liquid metal 2. This heat is transferred to the iron core, the supporting structure, and the casing as the duct temperature rises. At this time, if the temperature of only the duct rises sharply due to the heating of the heater, the temperature of the iron core, the supporting structure and the casing does not follow, and the temperature between the duct temperature and the casing temperature, between the duct temperature and the iron core temperature, and between the duct temperature and the supporting structure temperature. There is a temperature difference between the two, and this temperature difference becomes a temperature at which the function of the internal structure cannot be maintained, and the duct, the casing, and the support structure may be damaged. In order to prevent such breakage, the rate of temperature rise with the internal structure is limited to ensure the soundness of the internal structure. That is, the internal temperature rise rate is set to 20 ° C./hour (0.3 ° C./minute) or less in order to gradually increase the core temperature, the electromagnetic coil temperature, the support structure temperature, and the casing temperature. Further, each temperature is monitored by a monitoring and control device so that each temperature becomes 20 ° C. or less, and when the temperature becomes 20 ° C. or more, ON / OFF control of a duct heater is performed by a control signal from the monitoring and control device. The temperature rise rate of the structure is controlled to be 20 ° C. or less per hour.
[0024]
Further, in the electromagnetic pump 1, the radial spring plate 18 deforms the alignment plate 15 on the back of the core to deform the spring plate 18 because Joule heat generated by the electromagnetic coil during the normal operation of the electromagnetic pump radiates to the liquid metal 2 through the iron core. It is pressed by the reaction force generated by. Further, the gap between the outer core 6 and the outer duct 3 tends to be wider during the operation of the pump than at the time of assembly. Therefore, the radial spring is preliminarily deformed at the time of assembly to generate a reaction force. When the system, that is, the duct piping is evacuated, an external pressure is applied to the duct, and the reaction force of the radial spring plate 18 that has been deformed in advance and the radial thermal expansion of the duct due to the heating of the heater are applied, which may cause the duct to buckle. is there. For this reason, the temperature difference between the duct temperature and the temperature of the supporting structure is controlled to 80 ° C. or less from the viewpoint of preventing duct buckling during system evacuation.
[0025]
Next, at one axial end (upper part in FIG. 1) of the outer iron core 6, the iron core retainer 20 is fixed to the alignment plate 15 by bolts (not shown). On the same end side of the frame 16, an upper holding plate 21 is fixed by bolts 21a. Further, the upper iron core presser 20 and the upper presser plate 21 are positioned in the circumferential direction and the radial direction by the key 22. An axial spring plate 24 made of an elastic plate is sandwiched and fixed between the outer surface of the upper holding plate 21 and the flange 23 of the frame 16 by bolts 23a. An axial spring plate receiver 26 mounted on the upper iron core retainer 20 is in contact with the axial spring plate 24.
[0026]
With such a structure, the axial displacement between the outer core 6 and the alignment plate 15 is transmitted to the axial spring plate 24 via the upper core retainer 20 and the axial spring plate receiver 26, and the axial displacement of the axial spring plate 24 is prevented. The deformation generates a reaction force, and constitutes a clamp mechanism. The axial spring plate 24 limits the temperature difference between the iron core temperature and the temperature of the supporting structure (the alignment plate is a part of the supporting structure) to 50 ° C. or less from the viewpoint of maintaining the stress.
[0027]
FIG. 3 is a vertical sectional view of the electromagnetic pump showing the fluid circulation according to the embodiment of FIG. As shown in the figure, the electromagnetic pump 1 has a bellows 28 installed above ducts 3 and 4, and connects the duct and the casing 12. The bellows 28 absorbs the thermal expansion displacement of the temperature of the casing 12 and the temperatures of the ducts 3 and 4.
[0028]
Next, the operation method of the present embodiment will be described.
Since the electromagnetic pump 1 is immersed in the liquid metal 2 during the normal operation of the electromagnetic pump 1, the temperature of the casing 12 also becomes substantially the same as the temperature of the surrounding liquid metal 2 like the duct, and the temperature difference between the duct temperature and the casing temperature. I can hardly get it. At the time of preheating, only the duct temperature rises, and the heat of the duct gradually transfers heat to the casing 12, but the temperature difference between the duct temperature and the casing temperature becomes larger during preheating than during normal operation. The axial thermal expansion of the duct is absorbed by the bellows 28 installed at the upper end of the electromagnetic pump 1 in the axial direction. However, if the temperature difference increases, the thermal expansion of the bellows 28 will be exceeded and the bellows 28 will be damaged. There is fear. In order to prevent the bellows 28 from being damaged, the temperature difference between the duct temperature and the casing temperature is controlled to 100 ° C. or less.
[0029]
In addition to heating the duct, a 3-phase alternating current is supplied to the electromagnetic coil, and the Joule heat of the electromagnetic coil, the eddy current of the iron core, and the heat generated by the eddy current of the duct are used to generate the temperature of the iron core, the supporting structure, and the casing 12. To rise. By applying a three-phase alternating current to the electromagnetic coil, the same effect as the presence of a heater inside the electromagnetic pump 1 is obtained, and the duct temperature and the core temperature, the duct temperature and the supporting structure temperature, the duct temperature and the casing 12 temperature are controlled. This has the effect of reducing the temperature difference. Further, by performing the temperature control by increasing the temperature of the internal structure, the temperature increase rate and the temperature difference restriction can be satisfied, and the preheating time can be shortened.
[0030]
When applying a three-phase alternating current to the electromagnetic coil, the duct also generates heat due to the eddy current, and the temperature difference between the duct temperature and each structure temperature increases. Therefore, the alternating current frequency is set to be equal to or lower than the rated frequency of the electromagnetic pump 1 from the viewpoint of suppressing a rise in the duct temperature.
[0031]
When a three-phase AC current is applied to the electromagnetic coil, the internal temperature of the electromagnetic pump 1 increases due to Joule heat of the electromagnetic coil and heat generated by eddy currents of the iron core and the duct. At this time, if the energizing current value is set to the rated current of the electromagnetic pump 1, the temperature rise rate of the internal structure may be higher than the duct temperature rise rate, and the temperature rise rate limitation and the temperature difference limitation are not satisfied. In order to satisfy the limitation of the temperature rise and the limitation of the temperature difference, the current supplied to the electromagnetic coil is set to 30% or less of the rated current, and the temperature of each structure during preheating is controlled.
[0032]
FIG. 4 shows a preheating characteristic diagram in which the outer stator portion of the electromagnetic pump is preheated in consideration of the above preheating method. From this preheating characteristic diagram, it can be seen that the soundness of the duct, the iron core, the supporting structure, and the casing can be sufficiently satisfied.
[0033]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent breakage of a duct, an iron core, a supporting structure supporting an iron core and an electromagnetic coil at the time of preheating for filling liquid metal, and to shorten a preheating time for filling liquid metal. Therefore, it is possible to provide a method for preheating a liquid metal non-cooling type electromagnetic pump that maintains the integrity of the electromagnetic pump at the time of preheating for filling the liquid metal, has high safety, and is efficient.
[Brief description of the drawings]
FIG. 1 is an enlarged view of a main part of an embodiment of the present invention.
FIG. 2 is a sectional view taken along the line II-II of FIG.
FIG. 3 is a longitudinal sectional view of the electromagnetic pump showing the fluid circulation according to the embodiment of FIG. 1;
FIG. 4 is a diagram showing a preheating characteristic of an outer stator portion of the electromagnetic pump.
FIG. 5 is a partially cutaway perspective view of a conventional electromagnetic pump.
FIG. 6 is a transverse sectional view of FIG. 6;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electromagnetic pump, 2 ... Conductive fluid (liquid metal), 3 ... Outer duct, 4 ... Inner duct, 5 ... Annular flow path, 6 ... Outer core, 7 ... Slot, 8 ... Outer electromagnetic coil, 9 ... Inner core Reference numeral 10: fluid inlet, 11: fluid outlet, 12: casing, 13: inner electromagnetic coil, 14: side plate, 15: alignment plate, 15a, 17a, 18a, 21a, 23a: bolt, 16: frame, 17: backing Ring, 18: radial spring plate, 19: radial spring plate receiver, 20: upper iron core retainer, 21: upper retainer plate, 22: key, 23: flange, 24: axial spring plate, 25: bolt, 26 ... Axial spring plate receiver, 27 ... tank, 28 ... bellows, 29 ... outer stator, 30 ... inner stator.

Claims (5)

液体金属流路を形成するダクトと、電磁コイルと、鉄心と、前記鉄心を支持する支持構造物と、前記電磁コイルと鉄心と支持構造物を密閉するケーシングを有する液体金属用無冷却型電磁ポンプの予熱方法において、液体金属を充填するために当該電磁ポンプを予熱する際、前記ダクトと電磁コイルと鉄心と支持構造物とケーシングの予熱時の温度上昇率を毎時20℃以下に設定することを特徴とする液体金属用無冷却型電磁ポンプの予熱方法。Non-cooling type electromagnetic pump for liquid metal having a duct forming a liquid metal flow path, an electromagnetic coil, an iron core, a support structure for supporting the iron core, and a casing for sealing the electromagnetic coil, the iron core and the support structure In the preheating method, when preheating the electromagnetic pump to fill the liquid metal, the temperature rise rate at the time of preheating the duct, the electromagnetic coil, the iron core, the support structure, and the casing is set to 20 ° C. or less per hour. Characteristic method of preheating an uncooled electromagnetic pump for liquid metal. 請求項1記載の液体金属用無冷却型電磁ポンプの予熱方法において、昇温過程及び昇温終了時において、ダクト温度とケーシング温度の温度差を100℃以下、鉄心温度と支持構造温度の温度差を50℃以下、ダクト温度と支持構造物温度の温度差を80℃以下に設定することを特徴とする液体金属用無冷却型電磁ポンプの予熱方法。2. The method for preheating a non-cooling type electromagnetic pump for liquid metal according to claim 1, wherein a temperature difference between a duct temperature and a casing temperature is 100 ° C. or less, and a temperature difference between an iron core temperature and a support structure temperature in a heating process and at the end of the heating. And a temperature difference between the temperature of the duct and the temperature of the supporting structure is set to 80 ° C. or less. 請求項1または請求項2記載の液体金属用無冷却型電磁ポンプの予熱方法において、電磁コイルに交流電流を通電することで生ずるコイルのジュール熱、鉄心の渦電流及びダクトの渦電流を加熱源として利用することを特徴とする液体金属用無冷却型電磁ポンプの予熱方法。3. A method for preheating a non-cooling type electromagnetic pump for liquid metal according to claim 1 or 2, wherein a Joule heat of the coil, an eddy current of the iron core and an eddy current of the duct caused by applying an alternating current to the electromagnetic coil are heated. A method for preheating a non-cooling type electromagnetic pump for liquid metal, characterized in that it is used as a liquid metal. 請求項3記載の液体金属用無冷却型電磁ポンプの予熱方法において、電磁ポンプに通電する周波数を定格周波数以下に設定することを特徴とする液体金属用無冷却型電磁ポンプの予熱方法。4. The method for preheating a non-cooling type electromagnetic pump for liquid metal according to claim 3, wherein a frequency for energizing the electromagnetic pump is set to a rated frequency or less. 請求項3記載の液体金属用無冷却型電磁ポンプの予熱方法において、電磁ポンプに通電する交流電流を定格電流の30%以下に設定することを特徴とする液体金属用無冷却型電磁ポンプの予熱方法。4. A preheating method for an uncooled electromagnetic pump for liquid metal according to claim 3, wherein an alternating current supplied to the electromagnetic pump is set to 30% or less of a rated current. Method.
JP2002202243A 2002-07-11 2002-07-11 Preheating method of uncooled electromagnetic pump for liquid metal Expired - Fee Related JP4074145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202243A JP4074145B2 (en) 2002-07-11 2002-07-11 Preheating method of uncooled electromagnetic pump for liquid metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202243A JP4074145B2 (en) 2002-07-11 2002-07-11 Preheating method of uncooled electromagnetic pump for liquid metal

Publications (2)

Publication Number Publication Date
JP2004048894A true JP2004048894A (en) 2004-02-12
JP4074145B2 JP4074145B2 (en) 2008-04-09

Family

ID=31708480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202243A Expired - Fee Related JP4074145B2 (en) 2002-07-11 2002-07-11 Preheating method of uncooled electromagnetic pump for liquid metal

Country Status (1)

Country Link
JP (1) JP4074145B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114640235A (en) * 2022-05-09 2022-06-17 浙江大学 Electromagnetic pump
CN114640234A (en) * 2022-05-09 2022-06-17 浙江大学 Electromagnetic pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114640235A (en) * 2022-05-09 2022-06-17 浙江大学 Electromagnetic pump
CN114640234A (en) * 2022-05-09 2022-06-17 浙江大学 Electromagnetic pump

Also Published As

Publication number Publication date
JP4074145B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
US9203282B2 (en) Cooling support element for a stator segment of an electrical machine for a wind turbine
US6988389B2 (en) Continuous extrusion apparatus
JPH10290543A (en) Motor
US4324993A (en) Cooling medium baffling device in rotary electric machine
GB2501788A (en) Cooling hotspots in a stator core flange
JP5854550B2 (en) Stationary induction equipment, metal tube induction heating device, and involute iron core cooling structure
JP4074145B2 (en) Preheating method of uncooled electromagnetic pump for liquid metal
JP2001158020A (en) Split mold container for vulcanizing tire
JP2003319618A (en) Stator for use in electric motor with low core loss, and its manufacturing method
JPH10304647A (en) Electromagnetic pump
RU2283525C2 (en) Electrical machine with liquid-cooled stator
JP2714336B2 (en) Immersion type electromagnetic pump
JP4082830B2 (en) Electromagnetic pump and fluid circulation device using the pump
US3260209A (en) Electromagnetic pump
JPS5857678B2 (en) electromagnetic stirring device
JP2953964B2 (en) Liquid heating device using electromagnetic induction heating
CN115395757B (en) Electromagnetic pump
JP2003319587A (en) Small core loss inner rotor motor and its manufacturing method
JP2587156B2 (en) Induction heating coil
CN115001236B (en) Liquid metal electromagnetic pump
JPH06121521A (en) Electromagnetic pump
JPH06217522A (en) Electrmagnetic pump
JP2004304893A (en) Electromagnetic pump
JPH11186058A (en) Cooling device for stationary induction electric apparatus
JP2760640B2 (en) Electromagnetic pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060825

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4074145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees