JP2004304893A - Electromagnetic pump - Google Patents

Electromagnetic pump Download PDF

Info

Publication number
JP2004304893A
JP2004304893A JP2003093160A JP2003093160A JP2004304893A JP 2004304893 A JP2004304893 A JP 2004304893A JP 2003093160 A JP2003093160 A JP 2003093160A JP 2003093160 A JP2003093160 A JP 2003093160A JP 2004304893 A JP2004304893 A JP 2004304893A
Authority
JP
Japan
Prior art keywords
electromagnetic
duct
electromagnetic pump
bottom plate
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003093160A
Other languages
Japanese (ja)
Other versions
JP4256192B2 (en
Inventor
Toshie Aizawa
利枝 相澤
Minoru Funato
稔 船渡
Kenji Katsuki
健治 香月
Hiroyuki Ota
裕之 大田
Hiroaki Abe
宏章 阿部
Junzo Taguchi
淳三 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003093160A priority Critical patent/JP4256192B2/en
Publication of JP2004304893A publication Critical patent/JP2004304893A/en
Application granted granted Critical
Publication of JP4256192B2 publication Critical patent/JP4256192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic pump, in which an iron core is brought into close contact with the outer periphery of an external duct by a uniform clamping force in the peripheral direction with a small clamping mechanism and which has small external dimensions and little pressure loss. <P>SOLUTION: This electromagnetic pump, including a plurality of external iron cores 3 and a plurality of solenoid coils 2 provided at the outer periphery of a tubular external duct 5; a casing 23 which is connected to the external duct 5 via a bottom plate 29 and covers the external iron cores 3 and the outer periphery of each of the solenoid coils 2; and an internal stator 12 provided in the central hole of the external duct 5 at an arbitrary gap, comprises a disc-shaped ring 27a, which connects the ends of the plurality of external iron cores 3 to each other or is connected to the bottom plate 29. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電磁力によって液体金属を移送する電磁ポンプに関する。
【0002】
【従来の技術】
従来の電磁ポンプとしては、例えば下記特許文献1に記載された構造のものが知られている。すなわち、磁場を発生する環状の電磁コイルと、磁気回路を構成する鉄心と、鉄心をダクトに密着させるクランプ機構を備えている。鉄心は多数枚の電磁鋼板を積み重ねてブロックをつくり、複数のブロックを周方向に配置している。更に、これらポンプ内部構造物を覆ってステンレスのケーシングが設けられており、このケーシングの形状は通常筒状である。このケーシングを貫通して設置された筒状の外側ダクトと、この外側ダクト内に挿入された筒状の内側ダクトが設けられている。この外側ダクトと内側ダクトとの間に液体金属が流れる流路が形成されている。
【0003】
流路を挟んで外側ダクトより外部および内側ダクトより内部に電磁コイルおよび鉄心等(これら構造物をステータと称す)が設置されている構造をダブルステータ型電磁ポンプという。また、内側ステータ内部に鉄心のみを設置する構造をシングルステータ型電磁ポンプという。これらステータの端部にケーシングと接続した底板が設けられている。またケーシング内に設けられた電磁コイルに交流電流を通電するケーブルが備えられている。液体金属は、ダクトの一方の開口である流体入口から吸い込まれ、流路内の電磁力で昇圧され、ダクトの他方の開口である流体出口から外部へ圧送される。
【0004】
電磁ポンプは液体金属の導電性を利用して液体金属を移送するポンプであり、一般に知られている三相誘導型電磁ポンプにおいては、三相巻線が流体の流れ方向である電磁ポンプの軸方向に各相の順に分布配置されている。そして、三相巻線に三相交流電流を流して、この電流の流れ方向に進行磁界を発生させ、いわゆるフレミングの右手の法則により、導電性流体である液体金属に誘導電流を流す。この誘導電流と進行磁界の相互作用により電磁力が生じ、この電磁力が液体金属を移送する駆動力となり、ポンプとして作用する。この電磁力は誘導電動機におけるトルクを発生する力、リニアモータにおける推力等と同じである。
【0005】
従来の電磁ポンプは、耐熱性に優れた電磁コイルを使用していることと、鉄心とダクトを密着させポンプ内部発熱を液体金属に熱移行させているため、ポンプ内部を冷却する装置が不要であり、液体金属内に電磁ポンプを沈めて設置することが可能である(このタイプのポンプを浸漬型電磁ポンプという)。このとき、鉄心とダクトを密着させるクランプ機構として板バネや皿バネを用いている。また、従来の浸漬型電磁ポンプのケーブルポートはケーシング上部に設けており、電磁コイルのケーブルは鉄心ブロックと鉄心ブロックの間を配線しており、最終的に鉄心上部で束ねている。このとき、多数ある電磁コイルのケーブルは数ブロックある鉄心間に均等配置している。
【0006】
【特許文献1】
特開昭62−178153号公報
【0007】
【発明が解決しようとする課題】
従来の浸漬型の電磁ポンプは、ケーブル取出し部がポンプの上部であるため、ポンプ高さが高く外形寸法が大きく、圧損も大きくなるという問題がある。また、ポンプ内部発熱を液体金属に熱移行させるため鉄心を外側ダクトの外周に押し付けて密着させているが、この押し付けるクランプ機構の寸法が大きく密着度合いが周方向に不均一であるという問題がある。
【0008】
そこで本発明は、小さいクランプ機構によって周方向に均一なクランプ力で鉄心が外側ダクトの外周に密着され、全体の外形寸法が小さく圧損の少ない電磁ポンプを提供することを目的とする。
【0009】
【課題を解決する為の手段】
請求項1の発明は、筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記複数の外側鉄心の端部を相互に結合しあるいは前記底板に結合する円板リングを備えた構成とする。
【0010】
請求項2の発明は、筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記複数の外側鉄心の背面を緊縛し前記外側鉄心を前記外側ダクトの外周面へ押し付ける一部切り欠きリングを備えた構成とする。
【0011】
請求項3の発明は、筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記内側ステータは、丸棒状あるいは短冊状あるいは楔形断面の鉄心を備えた構成とする。
【0012】
請求項4の発明は、筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記底板に着脱自由に取り付けられ前記内側ステータを支持するフロースカートを備えた構成とする。
【0013】
請求項5の発明は、筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記ケーシングの側面に、前記電磁コイルに交流電流を通電する配線を取り出すポートを備えた構成とする。
【0014】
請求項6の発明は、筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記複数の電磁コイルは、前記電磁コイルの周上の同一箇所の二つの前記外側鉄心の間においてまとめて配線接続されている構成とする。
【0015】
請求項7の発明は、筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記底板は前記外側鉄心の端面に嵌合する溝を有する構成とする。
【0016】
請求項8の発明は、筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記ケーシングは矩形である構成とする。
【0017】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
図1は第1の実施の形態の電磁ポンプの構造を示す。すなわちこの電磁ポンプは、外側ダクト5にはめ込む構造に設けられ磁場を発生する電磁コイル2と、磁気回路を形成する外側鉄心3と、これらポンプ内部構造物を覆うステンレス製のケーシング22を備えている。外側ダクト5と電磁コイル2と外側鉄心3とケーシング22によって外側ステータ11が構成され、この外側ステータ11の内側に同軸に内側ステータ12が設けられている。内側ステータ12の中には内側鉄心が設けられている。外側ダクト5の内周面と内側ステータ12の外周面のあいだが液体金属の流路となる。
【0018】
外側鉄心3は短冊形状としている。また、この電磁ポンプの電源は3相交流電源を用いており、電磁コイル2は3相交流電流を通電するために機内配線(ケーブル)で接続されている。したがって、このケーブルを外部に取り出すケーブルポート26を備えている。これは浸漬型の電磁ポンプである。
【0019】
また本実施の形態の電磁ポンプは、外側鉄心3の上部および下部に円板リング27aを溶接接合して設け、上部または下部の両方の円板リング27aは底板29とも溶接接合されている。
【0020】
この円板リング27aと溶接接合の組み合わせの作用は次のようになる。すなわち、浸漬型の電磁ポンプは、電磁コイル2のジュール発熱があるため、これらの発熱を液体金属に熱移行させるために外側鉄心3を外側ダクト5に押し付けておくことが必要である。この時、外側鉄心3の温度は電磁コイル2のジュール発熱等によって液体金属温度より高くなる。このため液体金属とほぼ同等温度の外側ダクト5と外側鉄心3では温度差がつき、熱膨張に差が生じる。また、この膨張した際に周方向に鉄心変位しないように固定する必要もある。本実施の形態においては円板リング27aと溶接接合の組み合わせによりこれらの温度差による外側ダクト5と外側鉄心3の熱膨張差を吸収し、円板リング27aによって径方向均一に外側鉄心3を外側ダクト5に密着させる作用がある。
【0021】
従来の電磁ポンプは、外側ダクト5に外側鉄心3を押し付けるクランプ機構として板バネや皿バネを適用しており、これらの構造物は非常に大型となる。本実施の形態における円板リング27aと溶接接合の組み合わせは設置場所もほとんど取らないため外側鉄心3を外側ダクト5に密着・押し付けるクランプ機構として小型化される。このことにより径方向均一なクランプ力と電磁ポンプの小型化が達成される。
【0022】
さらに、この第1の実施の形態の電磁ポンプは、内側ステータ12が貫通する平面板12aを設け、この平面板12aとフロースカート13をボルト13aでケーシング22の底板29に固定した構造である。平面板12aの形状は、長方形や円板形状等がある。内側ステータ12は、ケーシング22や電磁ポンプを設置している建屋等に固定しておく必要があるが、この平面板12aとボルト13aによって内側ステータ12をケーシング22に固定することができる。また、このボルト13aによる固定は内側ステータ12の着脱を容易にする効果もある。
【0023】
なお、本実施の形態の電磁ポンプにおいては、ケーシング22を矩形形状とし、矩形のケーシングの四角に外側鉄心3を設置している。このような構造であると、ケーシング22の内部スペースを有効に活用することができ、電磁ポンプを小型化することができる。
【0024】
つぎに本発明の第2の実施の形態の電磁ポンプを図2を参照して説明する。この第2の実施の形態の電磁ポンプは、第1の実施の形態の電磁ポンプとほぼ同じ内部構造を有し、外側鉄心3のまわりにC字状の一部切り欠きリング27bを備えた構造となっている。一部切り欠きリング27bは外側鉄心3の軸方向に1個以上設置しており、この一部切り欠きリング27bと外側鉄心3は溶接によって、もしくは外側鉄心3に溝を切って結合している。一部切り欠きリング27bとしては強度の高いインコネル等が用いられる。
【0025】
一部切り欠きリング27bは、その形状によってバネ力が働き、温度差による外側ダクト5と外側鉄心3の熱膨張差を吸収する。一部切り欠きリング27bの材質は硬くして、径方向均一に外側鉄心3を外側ダクト5に密着させる。従来の電磁ポンプは、外側ダクト5に外側鉄心3を押し付けるクランプ機構として板バネや皿バネを適用しており、これらの構造物は非常に大型となる。それに対して本実施の形態における一部切り欠きリング27bの場合は設置場所もほとんど取らないため外側鉄心3を外側ダクト5に密着・押し付けるクランプ機構として小型化される。このことにより径方向均一なクランプ力と電磁ポンプの小型化に効果がある。
【0026】
上記のような第1または第2の実施の形態の電磁ポンプの使用例を図3を参照して、液体金属としてプリント基板を接合するはんだを用いた場合を説明する。図3は、浸漬型の電磁ポンプ1をはんだ槽16内に設置した状態を示す。溶融はんだ17を収納するはんだ槽16内に、溶融はんだ17が噴流するノズル15と電磁ポンプ1とノズル15までの配管18を設置している。
【0027】
溶融はんだ17は電磁ポンプ1によって加圧されて移送され、ノズル15から噴流する。この噴流はんだ14の上をプリント基板19が通過してプリント基板19のリード線が接合される。このように第1または第2の実施の形態の電磁ポンプ1は溶融はんだ17内に浸漬して使用される。
【0028】
電磁ポンプ1は、図1あるいは図2に示した内部構造で、電磁コイル2に通電するケーブルを取り出すポート26をケーシング22の側面とした構造である。このポート26ははんだ槽16を貫通して設置され、ボルトによってはんだ槽に固定されている。ポート26の設置位置は溶融はんだ17の液面より下方であり、ポート26は溶融はんだ17のシール構造も備えている。
【0029】
ポート26がケーシング22の側面に設置されているので、通常鉄心の上部で行っていた電磁コイルの機内配線を鉄心の側面で行うことができ、電磁ポンプの高さを低減することができる。このことにより、電磁ポンプの小型化に効果がある。さらに電磁ポンプの高さを低減できることにより配管圧損も低減することができる。
【0030】
また、溶融はんだ17は空気雰囲気で酸化し、はんだ酸化物が生成されるが、このはんだ酸化物は導電性がないため、溶融はんだ17と一緒に移送されるとプリント基板19のリード線を接合できない部分が生じてしまう。第1または第2の実施の形態では、従来電磁ポンプの上部にあったポート26をケーシング22の側面に設置したため、電磁ポンプを完全に溶融はんだ17の液面下に設置することができ、液面にあるはんだ酸化物を移送しないようにしやすい効果がある。
【0031】
つぎに本発明の第3の実施の形態を図4を参照して説明する。この実施の形態の電磁ポンプは、内側ステータ12内に設けられる内側鉄心を丸棒23、短冊24と楔形25の組み合わせ、あるいは短冊24と丸棒23の組み合わせとしたものである。この内側鉄心は内側ステータ12内にできるだけ隙間なく設置する。これは、鉄心の無い部分は磁気抵抗が大きく、漏れ磁束が生じるため電磁力が小さくなるからである。浸漬型の電磁ポンプは誘導電流と進行磁界との相互作用により電磁力を生じ、この電磁力が液体金属を移送する力となり、ポンプとして作用する。このため磁気回路が構成されないと液体金属を移送する力とならない。本実施の形態は、内側鉄心を内側ステータ内面に隙間無く配置することにより、電磁ポンプの寸法を変更せずに電磁力つまり液体金属を移送する力を増加する効果がある。このことにより、電磁ポンプの小型化に効果がある。
【0032】
つぎに本発明の第4の実施の形態を図5を用いて説明する。図5はコイル間接続図を示す。この図は環状コイルを360℃展開したものである。
本実施の形態の電磁ポンプにおいては、電磁コイル2は3相交流電流が通電できる構造とし、各相の電磁コイル2同士はケーブルによる機内配線28で接続され、この機内配線28は一方向の外側鉄心3の間にまとめて設けられている。図5に示した鉄心番号を用いて説明すると、例えば従来は鉄心No1と鉄心No2の間、鉄心No2と鉄心No3の間、鉄心No3と鉄心No4の間及び鉄心No4と鉄心No1の間に均等にケーブルを設置して配線している。本実施の形態では、鉄心No3と鉄心No4の間にケーブルを集中させ、他の鉄心間にはケーブルを配置していない。この事により、ケーブル配線をしていない他の鉄心間はケーブル配線のスペースが不要となり、電磁ポンプが小型となる効果がある。更に、ケーブルを一方向の鉄心間にまとめて配線することにより、製作時の作業効率をあげる効果もある。
【0033】
つぎに本発明の第5の実施の形態を図6を用いて説明する。図6は底板29の平面図である。本実施の形態の電磁ポンプは、溝30を形成した底板29を備えている。底板29の溝30は外側鉄心3の寸法に合わせて十字に設けられている。溝30の深さは数mm程度である。溝30によって外側鉄心3の周方向位置は固定され、電磁ポンプの運転時はもちろん、製作時・移動時にも周方向にずれることがない。これにより、外側鉄心3の周方向の位置がずれることによって発生する隙間が生じず、鉄心3間に空間があるため磁気抵抗が大きくなり電磁力が低下することを防ぐことができる。
【0034】
以上第1〜第5の実施の形態を説明したが、これらの実施の形態の複数のものの構成を備えた実施の形態も可能であり、その場合には複合された作用効果を生じる。
【0035】
【発明の効果】
本発明によれば、小さいクランプ機構によって周方向に均一なクランプ力で鉄心が外側ダクトの外周に密着され、全体の外形寸法が小さく圧損の少ない電磁ポンプを提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の電磁ポンプを示し、(a)は全体の断面図、(b)は(a)のb−b線に沿う断面図。
【図2】本発明の第2の実施の形態の電磁ポンプを示し、(a)は全体の断面図、(b)は(a)のb−b線に沿う断面図。
【図3】本発明の第1,第2の実施の形態の電磁ポンプの使用例を示す図。
【図4】本発明の第3の実施の形態の電磁ポンプの要部を示し、(a),(b),(c)はそれぞれ異なる実施例の断面図。
【図5】本発明の第4の実施の形態の電磁ポンプの要部を示す展開図。
【図6】本発明の第5の実施の形態の電磁ポンプの要部を示す平面図。
【符号の説明】
1…電磁ポンプ、2…電磁コイル、3…外側鉄心、5…外側ダクト、11…外側ステータ、12…内側ステータ、12a…平面板、13…フロースカート、13a…フロースカート固定ボルト、14…噴流はんだ、15…ノズル、16…はんだ槽、17…溶融はんだ、18…配管、19…プリント基板、20…内側鉄心固定ボルト、21…磁気回路、22…ケーシング、23…丸棒内側鉄心、24…短冊内側鉄心、25…楔形内側鉄心、26…ケーブルポート、27a…円板リング、27b…一部切り欠きリング、28…機内配線、29…底板、30…溝、F…液体金属の流れ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic pump for transferring liquid metal by electromagnetic force.
[0002]
[Prior art]
As a conventional electromagnetic pump, for example, one having a structure described in Patent Document 1 below is known. That is, an annular electromagnetic coil that generates a magnetic field, an iron core that forms a magnetic circuit, and a clamp mechanism that brings the iron core into close contact with the duct are provided. The iron core forms a block by stacking a large number of magnetic steel sheets, and a plurality of blocks are arranged in the circumferential direction. Further, a stainless steel casing is provided so as to cover the internal structure of the pump, and the casing is usually cylindrical. A cylindrical outer duct installed through the casing and a cylindrical inner duct inserted into the outer duct are provided. A flow path through which the liquid metal flows is formed between the outer duct and the inner duct.
[0003]
A structure in which an electromagnetic coil, an iron core, and the like (these structures are referred to as a stator) are provided outside the outer duct and inside the inner duct with the flow path interposed therebetween is referred to as a double-stator electromagnetic pump. A structure in which only the iron core is installed inside the inner stator is called a single-stator electromagnetic pump. Bottom plates connected to the casing are provided at the ends of these stators. In addition, a cable for supplying an alternating current to an electromagnetic coil provided in the casing is provided. The liquid metal is sucked in from the fluid inlet, which is one opening of the duct, is pressurized by electromagnetic force in the flow path, and is pumped to the outside from the fluid outlet, which is the other opening of the duct.
[0004]
Electromagnetic pumps are pumps that transfer liquid metal using the conductivity of liquid metal.In a generally known three-phase induction type electromagnetic pump, the shaft of the electromagnetic pump in which the three-phase winding is in the flow direction of the fluid is used. Are distributed in the order of each phase in the direction. Then, a three-phase alternating current is caused to flow through the three-phase winding to generate a traveling magnetic field in the flowing direction of the current, and an induced current is caused to flow through the liquid metal as the conductive fluid according to the so-called Fleming's right-hand rule. An electromagnetic force is generated by the interaction between the induced current and the traveling magnetic field, and the electromagnetic force becomes a driving force for transferring the liquid metal, and acts as a pump. This electromagnetic force is the same as the torque generating force in the induction motor, the thrust in the linear motor, and the like.
[0005]
The conventional electromagnetic pump uses an electromagnetic coil with excellent heat resistance, and closes the iron core and the duct to transfer heat generated inside the pump to liquid metal, eliminating the need for a device to cool the inside of the pump. Yes, it is possible to install an electromagnetic pump submerged in liquid metal (this type of pump is called an immersion electromagnetic pump). At this time, a leaf spring or a disc spring is used as a clamp mechanism for bringing the iron core into close contact with the duct. Further, the cable port of the conventional immersion type electromagnetic pump is provided at the upper part of the casing, and the cable of the electromagnetic coil is wired between the iron core blocks, and finally bundled at the upper part of the iron core. At this time, the cables of a large number of electromagnetic coils are evenly arranged between several blocks of iron cores.
[0006]
[Patent Document 1]
JP-A-62-178153
[Problems to be solved by the invention]
The conventional immersion type electromagnetic pump has a problem that the pump height is high, the external dimensions are large, and the pressure loss is large since the cable take-out portion is located above the pump. Further, in order to transfer the heat generated inside the pump to the liquid metal, the iron core is pressed against the outer periphery of the outer duct so as to be in close contact therewith. However, there is a problem that the size of the clamp mechanism for pressing is large and the degree of close contact is not uniform in the circumferential direction. .
[0008]
Therefore, an object of the present invention is to provide an electromagnetic pump in which the iron core is closely adhered to the outer periphery of the outer duct with a uniform clamping force in the circumferential direction by a small clamping mechanism, and the overall outer dimensions are small and the pressure loss is small.
[0009]
[Means for solving the problem]
According to a first aspect of the present invention, a plurality of outer cores and a plurality of electromagnetic coils provided on the outer periphery of a cylindrical outer duct and an outer peripheral side of the outer core and the electromagnetic coil connected to the outer duct via a bottom plate are provided. In an electromagnetic pump having a casing to be covered and an inner stator provided with a gap in a center hole of the outer duct, a disc connecting ends of the plurality of outer cores to each other or to the bottom plate. It is configured to have a ring.
[0010]
According to a second aspect of the present invention, a plurality of outer cores and a plurality of electromagnetic coils provided on the outer periphery of a cylindrical outer duct, and an outer peripheral side of the outer core and the electromagnetic coil connected to the outer duct via a bottom plate are provided. In an electromagnetic pump including a casing to be covered and an inner stator provided with a gap in a center hole of the outer duct, a back surface of the plurality of outer cores is tightened to move the outer cores to an outer peripheral surface of the outer duct. The structure is provided with a partially cut-out ring to be pressed.
[0011]
According to a third aspect of the present invention, a plurality of outer cores and a plurality of electromagnetic coils provided on the outer periphery of a cylindrical outer duct, and an outer peripheral side of the outer core and the electromagnetic coil connected to the outer duct via a bottom plate are provided. In an electromagnetic pump having a casing to be covered and an inner stator provided with a gap in a center hole of the outer duct, the inner stator has a core having a round bar shape, a strip shape, or a wedge-shaped cross section. .
[0012]
According to a fourth aspect of the present invention, a plurality of outer cores and a plurality of electromagnetic coils provided on the outer periphery of a cylindrical outer duct and an outer peripheral side of the outer core and the electromagnetic coil connected to the outer duct via a bottom plate are provided. An electromagnetic pump comprising a casing to be covered and an inner stator provided with a gap in a center hole of the outer duct, comprising a flow skirt detachably attached to the bottom plate and supporting the inner stator. I do.
[0013]
According to a fifth aspect of the present invention, a plurality of outer cores and a plurality of electromagnetic coils provided on the outer periphery of a cylindrical outer duct and an outer peripheral side of the outer core and the electromagnetic coil connected to the outer duct via a bottom plate are provided. In an electromagnetic pump including a casing to be covered and an inner stator provided with a gap in a center hole of the outer duct, a port is provided on a side surface of the casing to take out a wiring for supplying an alternating current to the electromagnetic coil. Configuration.
[0014]
According to a sixth aspect of the present invention, a plurality of outer cores and a plurality of electromagnetic coils provided on the outer periphery of a cylindrical outer duct, and an outer peripheral side of the outer core and the electromagnetic coil connected to the outer duct via a bottom plate are provided. In an electromagnetic pump including a casing to be covered and an inner stator provided with a gap in a center hole of the outer duct, the plurality of electromagnetic coils may include two outer coils at the same position on the circumference of the electromagnetic coil. The configuration is such that the wires are collectively connected between the iron cores.
[0015]
According to a seventh aspect of the present invention, a plurality of outer cores and a plurality of electromagnetic coils provided on the outer periphery of a cylindrical outer duct, and an outer peripheral side of the outer core and the electromagnetic coil connected to the outer duct via a bottom plate are provided. In an electromagnetic pump having a casing to be covered and an inner stator provided with a gap in a center hole of the outer duct, the bottom plate has a groove fitted to an end face of the outer core.
[0016]
The invention according to claim 8 is directed to a plurality of outer cores and a plurality of electromagnetic coils provided on an outer periphery of a cylindrical outer duct, and an outer peripheral side of the outer core and the electromagnetic coil connected to the outer duct via a bottom plate. In an electromagnetic pump including a casing to cover and an inner stator provided with a gap in a center hole of the outer duct, the casing has a rectangular shape.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the structure of the electromagnetic pump according to the first embodiment. That is, this electromagnetic pump includes an electromagnetic coil 2 provided in a structure fitted into the outer duct 5 to generate a magnetic field, an outer iron core 3 forming a magnetic circuit, and a stainless steel casing 22 covering these pump internal structures. . The outer duct 11, the electromagnetic coil 2, the outer core 3, and the casing 22 constitute an outer stator 11, and an inner stator 12 is provided coaxially inside the outer stator 11. An inner core is provided in the inner stator 12. Between the inner peripheral surface of the outer duct 5 and the outer peripheral surface of the inner stator 12, a liquid metal flow path is formed.
[0018]
The outer core 3 has a strip shape. The power supply of this electromagnetic pump uses a three-phase AC power supply, and the electromagnetic coil 2 is connected by in-machine wiring (cable) to supply a three-phase AC current. Therefore, a cable port 26 for taking out this cable to the outside is provided. This is an immersion type electromagnetic pump.
[0019]
In the electromagnetic pump according to the present embodiment, disk rings 27 a are provided on the upper and lower portions of outer core 3 by welding, and both upper and lower disk rings 27 a are also welded to bottom plate 29.
[0020]
The operation of the combination of the disk ring 27a and the welding joint is as follows. That is, since the immersion type electromagnetic pump generates Joule heat of the electromagnetic coil 2, it is necessary to press the outer iron core 3 against the outer duct 5 in order to transfer the generated heat to the liquid metal. At this time, the temperature of the outer core 3 becomes higher than the liquid metal temperature due to Joule heat of the electromagnetic coil 2 or the like. For this reason, there is a temperature difference between the outer duct 5 and the outer core 3 having substantially the same temperature as that of the liquid metal, resulting in a difference in thermal expansion. Further, it is necessary to fix the core so that it does not displace in the circumferential direction when the core expands. In the present embodiment, the combination of the disk ring 27a and the weld joint absorbs the difference in thermal expansion between the outer duct 5 and the outer core 3 due to the temperature difference, and the outer ring 3 is radially and uniformly outer by the disk ring 27a. There is an action of bringing the duct 5 into close contact with the duct 5.
[0021]
The conventional electromagnetic pump uses a leaf spring or a disc spring as a clamp mechanism for pressing the outer core 3 against the outer duct 5, and these structures become very large. Since the combination of the disc ring 27a and the welded joint in the present embodiment takes up almost no installation space, it is downsized as a clamp mechanism for pressing and pressing the outer core 3 against the outer duct 5. This achieves uniform radial clamping force and downsizing of the electromagnetic pump.
[0022]
Further, the electromagnetic pump according to the first embodiment has a structure in which a flat plate 12a through which the inner stator 12 penetrates is provided, and the flat plate 12a and the flow skirt 13 are fixed to the bottom plate 29 of the casing 22 with bolts 13a. The shape of the flat plate 12a includes a rectangular shape and a disk shape. The inner stator 12 needs to be fixed to the casing 22 or the building where the electromagnetic pump is installed, but the inner stator 12 can be fixed to the casing 22 by the flat plate 12a and the bolts 13a. Further, the fixing by the bolts 13a also has an effect of facilitating attachment and detachment of the inner stator 12.
[0023]
In the electromagnetic pump according to the present embodiment, the casing 22 has a rectangular shape, and the outer iron core 3 is provided in a square of the rectangular casing. With such a structure, the internal space of the casing 22 can be effectively used, and the size of the electromagnetic pump can be reduced.
[0024]
Next, an electromagnetic pump according to a second embodiment of the present invention will be described with reference to FIG. The electromagnetic pump according to the second embodiment has substantially the same internal structure as the electromagnetic pump according to the first embodiment, and has a C-shaped partially cutout ring 27b around the outer iron core 3. It has become. At least one partially cut ring 27b is provided in the axial direction of the outer core 3 and the partially cut ring 27b and the outer core 3 are joined to each other by welding or by forming a groove in the outer core 3. . A high-strength Inconel or the like is used as the partially notched ring 27b.
[0025]
The partially cut-out ring 27b receives a spring force due to its shape to absorb a difference in thermal expansion between the outer duct 5 and the outer core 3 due to a temperature difference. The material of the partially cut-out ring 27b is made hard so that the outer core 3 is brought into close contact with the outer duct 5 uniformly in the radial direction. The conventional electromagnetic pump uses a leaf spring or a disc spring as a clamp mechanism for pressing the outer core 3 against the outer duct 5, and these structures become very large. On the other hand, in the case of the partially cut-out ring 27b in the present embodiment, almost no installation space is required, so that the size of the clamp mechanism for pressing and pressing the outer core 3 against the outer duct 5 is reduced. This has an effect on radially uniform clamping force and downsizing of the electromagnetic pump.
[0026]
Referring to FIG. 3, an example of use of the electromagnetic pump according to the first or second embodiment will be described with reference to FIG. 3, in which a solder for joining a printed circuit board is used as a liquid metal. FIG. 3 shows a state where the immersion type electromagnetic pump 1 is installed in the solder bath 16. A nozzle 15 for jetting the molten solder 17, an electromagnetic pump 1, and a pipe 18 to the nozzle 15 are provided in a solder bath 16 for storing the molten solder 17.
[0027]
The molten solder 17 is transported by being pressurized by the electromagnetic pump 1 and jetted from the nozzle 15. The printed circuit board 19 passes over the jet solder 14, and the lead wires of the printed circuit board 19 are joined. As described above, the electromagnetic pump 1 according to the first or second embodiment is used by being immersed in the molten solder 17.
[0028]
The electromagnetic pump 1 has the internal structure shown in FIG. 1 or FIG. 2, and has a structure in which a port 26 for taking out a cable for energizing the electromagnetic coil 2 is a side surface of the casing 22. This port 26 is installed through the solder bath 16 and is fixed to the solder bath by bolts. The position of the port 26 is below the liquid level of the molten solder 17, and the port 26 also has a sealing structure for the molten solder 17.
[0029]
Since the port 26 is provided on the side surface of the casing 22, the in-machine wiring of the electromagnetic coil, which is normally performed on the upper portion of the iron core, can be performed on the side surface of the iron core, and the height of the electromagnetic pump can be reduced. This is effective in reducing the size of the electromagnetic pump. Further, since the height of the electromagnetic pump can be reduced, piping pressure loss can also be reduced.
[0030]
Further, the molten solder 17 is oxidized in an air atmosphere to generate a solder oxide. However, since the solder oxide is not conductive, when the molten solder 17 is transported together with the molten solder 17, the lead wires of the printed circuit board 19 are joined. Some parts cannot be created. In the first or second embodiment, the port 26, which was conventionally located at the top of the electromagnetic pump, is installed on the side surface of the casing 22, so that the electromagnetic pump can be completely installed below the liquid level of the molten solder 17, and This has the effect of making it difficult to transfer the solder oxide on the surface.
[0031]
Next, a third embodiment of the present invention will be described with reference to FIG. In the electromagnetic pump of this embodiment, the inner core provided in the inner stator 12 is a round bar 23, a combination of a strip 24 and a wedge 25, or a combination of a strip 24 and a round bar 23. This inner core is installed in the inner stator 12 with as little gap as possible. This is because a portion without an iron core has a large magnetic resistance and a leakage magnetic flux is generated, so that an electromagnetic force is reduced. The immersion type electromagnetic pump generates an electromagnetic force due to the interaction between the induced current and the traveling magnetic field, and the electromagnetic force becomes a force for transferring the liquid metal, and acts as a pump. For this reason, if the magnetic circuit is not formed, it will not be a force for transferring the liquid metal. This embodiment has an effect of increasing the electromagnetic force, that is, the force for transferring the liquid metal, without changing the dimensions of the electromagnetic pump, by arranging the inner core on the inner surface of the inner stator without any gap. This is effective in reducing the size of the electromagnetic pump.
[0032]
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 5 shows a connection diagram between the coils. In this figure, the annular coil is developed at 360 ° C.
In the electromagnetic pump according to the present embodiment, the electromagnetic coil 2 has a structure capable of passing a three-phase alternating current, and the electromagnetic coils 2 of each phase are connected to each other via a cable 28 inside the machine, and the internal wire 28 is arranged outside in one direction. It is provided collectively between the iron cores 3. Explaining using the core numbers shown in FIG. 5, for example, in the related art, between the cores No. 1 and No. 2, between the cores No. 2 and No. 3, between the cores No. 3 and No. 4, and even between the cores No. 4 and No. 1 Cables are installed and wired. In the present embodiment, the cables are concentrated between the iron cores No. 3 and No. 4, and no cables are arranged between the other iron cores. This eliminates the need for cable wiring space between the other iron cores that are not cabled, and has the effect of reducing the size of the electromagnetic pump. Furthermore, by arranging the cables collectively between the iron cores in one direction, there is also an effect of increasing the working efficiency at the time of manufacturing.
[0033]
Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a plan view of the bottom plate 29. The electromagnetic pump according to the present embodiment includes a bottom plate 29 in which a groove 30 is formed. The groove 30 of the bottom plate 29 is provided in a cross shape in accordance with the size of the outer core 3. The depth of the groove 30 is about several mm. The circumferential position of the outer core 3 is fixed by the groove 30, so that the outer core 3 does not shift in the circumferential direction not only during the operation of the electromagnetic pump, but also during manufacturing and movement. As a result, no gap is generated due to a shift in the circumferential position of the outer core 3, and the space between the cores 3 prevents the magnetic resistance from increasing and the electromagnetic force from lowering.
[0034]
Although the first to fifth embodiments have been described above, embodiments having a configuration of a plurality of these embodiments are also possible, in which case a combined effect is obtained.
[0035]
【The invention's effect】
According to the present invention, it is possible to provide an electromagnetic pump in which the iron core is closely adhered to the outer periphery of the outer duct with a uniform clamping force in the circumferential direction by a small clamping mechanism, and the overall outer dimensions are small and the pressure loss is small.
[Brief description of the drawings]
1A and 1B show an electromagnetic pump according to a first embodiment of the present invention, wherein FIG. 1A is an overall sectional view, and FIG. 1B is a sectional view taken along the line bb of FIG.
FIGS. 2A and 2B show an electromagnetic pump according to a second embodiment of the present invention, wherein FIG. 2A is an overall sectional view, and FIG. 2B is a sectional view taken along line bb of FIG.
FIG. 3 is a diagram showing an example of use of the electromagnetic pump according to the first and second embodiments of the present invention.
FIG. 4 is a sectional view of a main part of an electromagnetic pump according to a third embodiment of the present invention, in which (a), (b) and (c) are different examples.
FIG. 5 is a developed view showing a main part of an electromagnetic pump according to a fourth embodiment of the present invention.
FIG. 6 is a plan view showing a main part of an electromagnetic pump according to a fifth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electromagnetic pump, 2 ... Electromagnetic coil, 3 ... Outer iron core, 5 ... Outer duct, 11 ... Outer stator, 12 ... Inner stator, 12a ... Flat plate, 13 ... Flow skirt, 13a ... Flow skirt fixing bolt, 14 ... Jet Solder, 15 ... Nozzle, 16 ... Solder tank, 17 ... Molded solder, 18 ... Piping, 19 ... Printed circuit board, 20 ... Inner core fixing bolt, 21 ... Magnetic circuit, 22 ... Casing, 23 ... Round bar inner core, 24 ... Strip inner core, 25: wedge-shaped inner core, 26: cable port, 27a: disk ring, 27b: partially cut ring, 28: internal wiring, 29: bottom plate, 30: groove, F: flow of liquid metal.

Claims (8)

筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記複数の外側鉄心の端部を相互に結合しあるいは前記底板に結合する円板リングを備えたことを特徴とする電磁ポンプ。A plurality of outer cores and a plurality of electromagnetic coils provided on an outer periphery of a cylindrical outer duct; a casing connected to the outer duct via a bottom plate to cover outer peripheral sides of the outer core and the electromagnetic coil; and the outer duct An electromagnetic pump comprising: an inner stator provided with a gap in a center hole of the electromagnetic pump; and a disc ring connecting ends of the plurality of outer cores to each other or to the bottom plate. And electromagnetic pump. 筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記複数の外側鉄心の背面を緊縛し前記外側鉄心を前記外側ダクトの外周面へ押し付ける一部切り欠きリングを備えたことを特徴とする電磁ポンプ。A plurality of outer cores and a plurality of electromagnetic coils provided on an outer periphery of a cylindrical outer duct; a casing connected to the outer duct via a bottom plate to cover outer peripheral sides of the outer core and the electromagnetic coil; and the outer duct An inner stator provided with an air gap in the center hole of the electromagnetic pump, wherein a partially cut-out ring for binding the back surfaces of the plurality of outer cores and pressing the outer cores against the outer peripheral surface of the outer duct is provided. An electromagnetic pump, comprising: 筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記内側ステータは、丸棒状あるいは短冊状あるいは楔形断面の鉄心を備えたことを特徴とする電磁ポンプ。A plurality of outer cores and a plurality of electromagnetic coils provided on an outer periphery of a cylindrical outer duct; a casing connected to the outer duct via a bottom plate to cover outer peripheral sides of the outer core and the electromagnetic coil; and the outer duct An electromagnetic pump comprising: an inner stator provided with a gap in a center hole of the electromagnetic pump, wherein the inner stator has an iron core having a round bar shape, a strip shape, or a wedge-shaped cross section. 筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記底板に着脱自由に取り付けられ前記内側ステータを支持するフロースカートを備えたことを特徴とする電磁ポンプ。A plurality of outer cores and a plurality of electromagnetic coils provided on an outer periphery of a cylindrical outer duct; a casing connected to the outer duct via a bottom plate to cover outer peripheral sides of the outer core and the electromagnetic coil; and the outer duct An electromagnetic pump, comprising: an inner stator provided with a gap in a center hole thereof; and a flow skirt that is detachably attached to the bottom plate and supports the inner stator. 筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記ケーシングの側面に、前記電磁コイルに交流電流を通電する配線を取り出すポートを備えたことを特徴とする電磁ポンプ。A plurality of outer cores and a plurality of electromagnetic coils provided on an outer periphery of a cylindrical outer duct; a casing connected to the outer duct via a bottom plate to cover outer peripheral sides of the outer core and the electromagnetic coil; and the outer duct An electromagnetic pump comprising: an inner stator provided with a gap in a center hole of the electromagnetic pump, wherein a port for taking out a wiring for supplying an alternating current to the electromagnetic coil is provided on a side surface of the casing. pump. 筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記複数の電磁コイルは、前記電磁コイルの周上の同一箇所の二つの前記外側鉄心の間においてまとめて配線接続されていることを特徴とする電磁ポンプ。A plurality of outer cores and a plurality of electromagnetic coils provided on an outer periphery of a cylindrical outer duct; a casing connected to the outer duct via a bottom plate to cover outer peripheral sides of the outer core and the electromagnetic coil; and the outer duct And an inner stator provided with a gap in the center hole of the electromagnetic coil, the plurality of electromagnetic coils are collectively wired between the two outer cores at the same location on the circumference of the electromagnetic coil. An electromagnetic pump, being connected. 筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記底板は前記外側鉄心の端面に嵌合する溝を有することを特徴とする電磁ポンプ。A plurality of outer cores and a plurality of electromagnetic coils provided on an outer periphery of a cylindrical outer duct; a casing connected to the outer duct via a bottom plate to cover outer peripheral sides of the outer core and the electromagnetic coil; and the outer duct An electromagnetic pump, comprising: an inner stator provided with a gap in a center hole thereof, wherein the bottom plate has a groove fitted to an end face of the outer iron core. 筒状をなす外側ダクトの外周に設けられた複数の外側鉄心および複数の電磁コイルと、底板を介して前記外側ダクトに接続され前記外側鉄心および電磁コイルの外周側を覆うケーシングと、前記外側ダクトの中心孔に空隙を存して設けられた内側ステータとを備えた電磁ポンプにおいて、前記ケーシングは矩形であることを特徴とする電磁ポンプ。A plurality of outer cores and a plurality of electromagnetic coils provided on an outer periphery of a cylindrical outer duct; a casing connected to the outer duct via a bottom plate to cover outer peripheral sides of the outer core and the electromagnetic coil; and the outer duct An electromagnetic pump comprising: an inner stator provided with a gap in a center hole of the electromagnetic pump, wherein the casing is rectangular.
JP2003093160A 2003-03-31 2003-03-31 Electromagnetic pump Expired - Fee Related JP4256192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093160A JP4256192B2 (en) 2003-03-31 2003-03-31 Electromagnetic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093160A JP4256192B2 (en) 2003-03-31 2003-03-31 Electromagnetic pump

Publications (2)

Publication Number Publication Date
JP2004304893A true JP2004304893A (en) 2004-10-28
JP4256192B2 JP4256192B2 (en) 2009-04-22

Family

ID=33406019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093160A Expired - Fee Related JP4256192B2 (en) 2003-03-31 2003-03-31 Electromagnetic pump

Country Status (1)

Country Link
JP (1) JP4256192B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114531007A (en) * 2022-03-03 2022-05-24 上海交通大学 Electromagnetic pump for molten metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114531007A (en) * 2022-03-03 2022-05-24 上海交通大学 Electromagnetic pump for molten metal
CN114531007B (en) * 2022-03-03 2023-09-22 上海交通大学 Electromagnetic pump for molten metal

Also Published As

Publication number Publication date
JP4256192B2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
US5473207A (en) Cooling pads for water-cooled stator cores in dynamoelectric machines and methods of fabrication
KR101395186B1 (en) Permanent magnet canned motor pump with corrosion-protection housing
EP1257043B9 (en) Cooling of electrical machines
US2080678A (en) Motor construction
JP4942605B2 (en) Three-phase induction machine
JPH082172B2 (en) Electromagnetic linear induction pump
US11990815B2 (en) Canned rotodynamic flow machine for a molten salt nuclear reactor and an active magnetic bearing for use in a flow machine for a molten salt nuclear reactor
US4745320A (en) Induction motor
US20230361667A1 (en) Electromagnetic pump
US4828459A (en) Annular linear induction pump with an externally supported duct
JP5426232B2 (en) Electric motor cooling jacket
JPH077918A (en) Stator iron core
US4174190A (en) Annular linear induction pump with an externally supported duct
JP2004304893A (en) Electromagnetic pump
US2808002A (en) Linear electromagnetic pump having concentric fluid passages
JP3713172B2 (en) Static induction machine
US2988000A (en) Pumping apparatus
JP2008177325A (en) Stationary induction apparatus
US4776767A (en) Electromagnetic pump
JP2022524841A (en) Electromagnetic devices and systems for pumping, circulating, or transferring non-ferrous molten metals
JP3281022B2 (en) Electromagnetic pump
JP5678561B2 (en) Motor cooling device
JP2006042535A (en) Stator for rotary electric machine, and its manufacturing method
RU2819202C1 (en) Sealed rotary hydrodynamic unit for molten salt nuclear reactor and active magnetic bearing for use in rotary hydrodynamic unit for molten salt nuclear reactor
EP4287474A2 (en) Electromagnetic pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050620

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070222

A131 Notification of reasons for refusal

Effective date: 20080624

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120206

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130206

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20140206

LAPS Cancellation because of no payment of annual fees