JPH06121521A - Electromagnetic pump - Google Patents

Electromagnetic pump

Info

Publication number
JPH06121521A
JPH06121521A JP4271302A JP27130292A JPH06121521A JP H06121521 A JPH06121521 A JP H06121521A JP 4271302 A JP4271302 A JP 4271302A JP 27130292 A JP27130292 A JP 27130292A JP H06121521 A JPH06121521 A JP H06121521A
Authority
JP
Japan
Prior art keywords
electromagnetic pump
duct
laminated core
conductive fluid
stator coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4271302A
Other languages
Japanese (ja)
Inventor
Nozomi Sato
望 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4271302A priority Critical patent/JPH06121521A/en
Publication of JPH06121521A publication Critical patent/JPH06121521A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To provide an electromagnetic pump in which heat generated in a stator coil section can be dissipated efficiently to the outside, efficiency can be enhanced in heat recovery and in pump, and preheating can be carried out without causing a significant temperature difference in the electromagnetic pump. CONSTITUTION:The electromagnetic pump comprises a double cylindrical duct for feeding conductive fluid to an annulus channel 3 formed between inside and outside duscts 5, 4, a plurality of laminated core blocks 1 having slots disposed on the outer periphery of the double cylindrical duct, and a large number of stator coils 2 for feeding AC three-phase current to establish a traveling field in the annulus channel arranged in the slot of the laminated core block 1 where the conductive fluid is present. Thermal insulation material 12 is placed in a casing 9 containing the laminated core block 1 and the stator coil 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導電性流体に外部から進
行磁場を与えて該流体に誘導電流を誘起させ、この誘導
電流と外部磁場の相互作用によりポンピング作用を起こ
させる三相交流誘導型電磁ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-phase AC induction type in which a traveling magnetic field is applied to a conductive fluid from outside to induce an induced current in the fluid, and a pumping action is caused by the interaction between the induced current and the external magnetic field. Regarding electromagnetic pumps.

【0002】[0002]

【従来の技術】三相誘導形電磁ポンプは三相交流巻線を
電磁ポンプの流れの方向に各相の順に分布させて配置
し、この巻線に三相交流を流すと流体の流れの方向に進
行磁界が発生する。この進行磁界が導電性流体のあるダ
クトの中にも通るようにしてあると、フレミングの右手
の法則により流体中に電圧が誘起され、それによって誘
導電流が流れる。この誘導電流と進行磁界の一部の成分
とが作用して電磁力となり、流体が流れるように力を受
けることによりポンプとして働くことになる。この電磁
力は誘導電動機におけるトルク、リニアモータにおける
進力と同じである。三相誘導形電磁ポンプは構造上大別
して(1)フラット リニア形電磁ポンプ、(2)アニ
ュラ リニア形電磁ポンプの2種類に分けられる。本発
明はそのうちのアニュラ リニア形電磁ポンプに関する
ものであり、以下その構造について説明する。
2. Description of the Related Art In a three-phase induction type electromagnetic pump, three-phase AC windings are arranged in the direction of flow of the electromagnetic pump in order of distribution of respective phases. A traveling magnetic field is generated at. If this traveling magnetic field is made to pass through a duct containing a conductive fluid, Fleming's right-hand rule induces a voltage in the fluid, which causes an induced current. This induced current and a part of the component of the traveling magnetic field act to generate an electromagnetic force, which acts as a pump by receiving the force so that the fluid flows. This electromagnetic force is the same as the torque in the induction motor and the advancing force in the linear motor. The three-phase induction type electromagnetic pumps are roughly classified into two types: (1) flat linear type electromagnetic pumps and (2) annular linear type electromagnetic pumps. The present invention relates to an annular linear type electromagnetic pump, and the structure thereof will be described below.

【0003】アニュラ リニア形電磁ポンプは流路断面
が環状であることからALIP(Annular Linear Induc
tion Pump の略)と呼ばれている。ダクト構造の信頼
性、安全性が高いので、近年主流となっている電磁ポン
プである。図2にALIPの基本的な構造を示す。構造
上の特長としては次のような点が挙げられる。 (1)導電性流体を流すダクトは外側ダクト4と内側ダ
クト5によって同心二重管構造となっており、流体が流
れるアニュラス流路3を形作っている。
Since an annular linear type electromagnetic pump has an annular flow passage cross section, it has an ALIP (Annular Linear Inducer)
Abbreviation of tion pump). Since the duct structure has high reliability and safety, it is an electromagnetic pump that has become mainstream in recent years. Figure 2 shows the basic structure of ALIP. The structural features include the following. (1) The duct through which the conductive fluid flows has a concentric double-tube structure by the outer duct 4 and the inner duct 5, and forms the annulus passage 3 through which the fluid flows.

【0004】(2)固定子には交流磁場の磁気回路を形
成するためスロットを有した鉄心を周方向に積み重ねた
積層鉄心ブロック1を外周ダクト4の外側に複数個周方
向に配置してある。この場合、積層面がダクトに向いて
さらにスロットが内側にくるようにして鉄心全体が放射
状となるようにしてある。このスロット内にはリング状
の固定子コイル2が配置されている。コイルは軸方向に
多数配置され三相交流電流が進行磁場を作るように結線
されている。 (3)内側ダクト5の内部には磁気回路を形成するため
の積層内部鉄心6が納められている。 (4)流体は入口7から電磁ポンプ内に入りアニュラス
流路3を流れながら圧力が誘起され出口8から出てい
く。 (5)コイル2は外部に設けられたファン(図示せず)
によって循環するガスで冷却されている。
(2) On the stator, a plurality of laminated iron core blocks 1 each having an iron core having slots for forming a magnetic circuit of an alternating magnetic field stacked in the circumferential direction are arranged outside the outer peripheral duct 4 in the circumferential direction. . In this case, the laminated surface faces the duct, and the slots are further inward so that the entire iron core is radial. A ring-shaped stator coil 2 is arranged in this slot. A large number of coils are arranged in the axial direction and are connected so that a three-phase alternating current creates a traveling magnetic field. (3) Inside the inner duct 5, a laminated inner iron core 6 for forming a magnetic circuit is housed. (4) The fluid enters the electromagnetic pump through the inlet 7, pressure is induced while flowing through the annulus flow path 3, and exits through the outlet 8. (5) The coil 2 is an external fan (not shown)
It is cooled by the circulating gas.

【0005】近年電磁ポンプの大容量化及び設置場所の
制限をなくし電磁ポンプを使用したプラントのより設計
向上を目指すため電磁ポンプをよりコンパクト化し、さ
らにこの電磁ポンプを設置場所を節約しプラント全体の
利点を出すために流体内に浸漬して運転することが要求
されてきた。以上の要求を満たす方法としてはコイルを
従来のように強制ガス冷却で冷却するのではなく、冷却
ガスを循環させない外被表面冷却とする必要がある。こ
の様にすると以下の多くの利点がある。 (1)冷却ガスを循環させるスペースが省略でき外形寸
法が小さくできる。 (2)冷却ガスを循環させるための外部装置が不要とな
る。 (3)冷却ガスを本体と外部装置の間を循環させるため
の配管が不要となるので浸漬型としては大きな利点があ
る。
In recent years, the electromagnetic pump has been made more compact in order to increase the capacity of the electromagnetic pump and eliminate restrictions on the installation place to improve the design of a plant using the electromagnetic pump. It has been required to operate submerged in a fluid to provide advantages. As a method of satisfying the above requirements, the coil is not cooled by forced gas cooling as in the conventional case, but it is necessary to cool the surface of the jacket without circulating the cooling gas. This has many advantages as follows. (1) The space for circulating the cooling gas can be omitted, and the external dimensions can be reduced. (2) An external device for circulating the cooling gas is unnecessary. (3) Since the piping for circulating the cooling gas between the main body and the external device is not required, there is a great advantage as the immersion type.

【0006】(4)また外被表面冷却とすると、ある程
度の大容量機になった場合、従来機では出来なかった内
部鉄心にもコイルを配置できるので、さらに電磁ポンプ
の出力が増大しよりコンパクトに出来るようになる。
(4) Further, when the outer surface is cooled, the coil can be arranged in the internal iron core, which cannot be done by the conventional machine when the machine becomes a large-capacity machine to some extent, so that the output of the electromagnetic pump is further increased and the apparatus is more compact. You will be able to.

【0007】外被表面冷却とした場合、コイルで発生す
る熱損失はコイルから鉄心に伝達させ、鉄心からダクト
またはフレームに伝達させて流体内に熱を逃がす必要が
ある。したがって、コイルから流体まで熱抵抗を出来る
だけ小さくする事が重要であり、そのためにそれらの構
造物は運転時に相互に接触しているようにすることがポ
イントとなる。
In the case of cooling the surface of the jacket, it is necessary to transfer the heat loss generated in the coil from the coil to the iron core, and from the iron core to the duct or frame to release the heat into the fluid. Therefore, it is important to reduce the thermal resistance from the coil to the fluid as much as possible, and for that reason, the point is that those structures are in contact with each other during operation.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、出来る
だけ電磁ポンプの出力を大きくするにはコイルに多くの
電流を流す。このためコイルの温度上昇は出来るだけ小
さくする必要がある。また一般に導電性流体は温度の高
いものを利用することが多いので、これに浸漬する電磁
ポンプは高温の状態で運転されることになる。
However, in order to maximize the output of the electromagnetic pump, a large amount of current is passed through the coil. For this reason, it is necessary to minimize the temperature rise of the coil. In general, a conductive fluid having a high temperature is used in many cases, so that the electromagnetic pump immersed in the conductive fluid is operated at a high temperature.

【0009】電磁ポンプは室温で組み立てられ、最大 6
00℃以下の種々の温度で運転される。したがって、この
如何なる温度においても各構造物間での熱膨脹差による
ストレスを受けないようにしてコイルに発生した熱を効
率良く流体に逃がす必要がある。
Electromagnetic pumps are assembled at room temperature and can
It is operated at various temperatures below 00 ° C. Therefore, at any temperature, it is necessary to efficiently release the heat generated in the coil to the fluid so as not to be stressed by the difference in thermal expansion between the structures.

【0010】この様な電磁ポンプでポンプ容量の大容量
化及びコンパクト化を図る場合、発熱部となっている固
定子コイルに発生する熱を効率良く流体に逃がすことに
よって固定子コイルに流す電流を出来るだけ多くするこ
とがポイントになる。
In order to increase the pump capacity and make it compact with such an electromagnetic pump, the heat generated in the stator coil, which is the heat generating portion, is efficiently released to the fluid, so that the current flowing in the stator coil is increased. The point is to do as much as possible.

【0011】従来の電磁ポンプにおいては、コイルで発
生した熱はブロックを介して外側ダクトに伝えられ、外
側ダクトから導電性液体中に移送される。ところがダク
トと積層鉄心ブロックとの間に熱伸び差を逃げるために
ギャップが必要であり、このギャップが熱伝達を低下さ
せ、コイルに発生した熱を効率良く流体に逃がすことが
出来ない課題があった。また、予熱の際にケーシング底
部の昇温速度が遅い、上下外部ダクト間に大きな温度差
が生じる等、電磁ポンプを均一に昇温することが難しか
った。
In the conventional electromagnetic pump, the heat generated in the coil is transferred to the outer duct through the block and transferred from the outer duct into the conductive liquid. However, a gap is required between the duct and the laminated core block to escape the difference in thermal expansion, and this gap reduces heat transfer, and there is a problem that the heat generated in the coil cannot be efficiently released to the fluid. It was Further, it is difficult to uniformly raise the temperature of the electromagnetic pump, such as a slow rate of temperature rise at the bottom of the casing during preheating and a large temperature difference between the upper and lower external ducts.

【0012】本発明は上記課題を解決するためになされ
たもので、固定子コイル部内で発生した熱を外部へ効率
よく放散させることが出来るとともに熱回収の効率が良
くポンプ効率が改善でき、予熱の際に電磁ポンプ内に大
きな温度差を生じさせることなく、容易に予熱のできる
電磁ポンプを提供することにある。
The present invention has been made in order to solve the above problems, and can efficiently dissipate the heat generated in the stator coil portion to the outside, improve the efficiency of heat recovery, improve the pump efficiency, and improve the preheating. An object of the present invention is to provide an electromagnetic pump that can be easily preheated without causing a large temperature difference in the electromagnetic pump.

【0013】[0013]

【課題を解決するための手段】本発明は外側ダクトとの
間に形成されるアニュラス流路に導電性流体を流す二重
円筒ダクトと、この二重円筒ダクトの外周上に配置した
スロットを有する複数の積層鉄心ブロックと、この積層
鉄心ブロックのスロットに配置された前記導電性流体が
存在する前記アニュラス流路に進行磁場を作るための三
相交流電流を流す多数の固定子コイルとからなる電磁ポ
ンプにおいて、前記積層鉄心ブロック及び固定子コイル
を収納するケーシング内に耐熱絶縁材を配設して成るこ
とを特徴とする。
DISCLOSURE OF THE INVENTION The present invention has a double cylindrical duct for flowing a conductive fluid in an annulus passage formed between the outer duct and a slot arranged on the outer circumference of the double cylindrical duct. Electromagnetic composed of a plurality of laminated core blocks and a large number of stator coils for flowing a three-phase alternating current to create a traveling magnetic field in the annulus flow path in which the conductive fluid is arranged in the slots of the laminated core blocks. In the pump, a heat-resistant insulating material is arranged in a casing that houses the laminated core block and the stator coil.

【0014】[0014]

【作用】固定子コイル部内で発生した熱を耐熱絶縁材を
介して外側ダクト及びケーシングから導電性流体へ放散
させる。この放熱によって固定子コイル部内で発生した
熱を導電性流体中に回収し、ポンプの効率を向上させる
ことができる。また、予熱の際に固定子コイル部内で発
生した熱を耐熱絶縁材を介して電磁ポンプ全体に熱を伝
えることが可能になり均一に昇温させることができる。
The heat generated in the stator coil portion is dissipated from the outer duct and the casing to the conductive fluid through the heat resistant insulating material. The heat generated in the stator coil portion due to this heat dissipation can be recovered in the conductive fluid, and the efficiency of the pump can be improved. Further, the heat generated in the stator coil portion at the time of preheating can be transmitted to the entire electromagnetic pump through the heat resistant insulating material, and the temperature can be uniformly raised.

【0015】[0015]

【実施例】図1を参照しながら本発明に係る電磁ポンプ
の一実施例を説明する。なお、図1は電磁ポンプの構成
を示す縦断面図である。すなわち、複数の積層鉄心ブロ
ック1はケーシング9内に円周方向にほぼ等間隔で配置
されており、この積層鉄心ブロック1の内部には固定子
コイル2が軸方向に多数配置されている。また積層鉄心
ブロック1内にはアニュラス流路3を形成する外側ダク
ト4と内側ダクト5が二重円筒ダクト構造となって配設
されている。内側ダクト5内には内部鉄心6が挿入され
ている。図1で示すアニュラス流路3の下側は導電性流
体が流入する流体入口7で上側は流体出口8となってい
る。また、ケーシング9内にはケーシング底部から流体
液面10近傍まで耐熱絶縁材12が充填されており、上部を
不活性ガス11の雰囲気に保持された状態で流体内に浸漬
される。なお、内側ダクト5と内部鉄心6との関係は従
来の構造と同様であるのでその説明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an electromagnetic pump according to the present invention will be described with reference to FIG. 1 is a vertical cross-sectional view showing the structure of the electromagnetic pump. That is, the plurality of laminated core blocks 1 are arranged in the casing 9 at substantially equal intervals in the circumferential direction, and a large number of stator coils 2 are arranged inside the laminated core block 1 in the axial direction. Further, in the laminated core block 1, an outer duct 4 and an inner duct 5 forming an annulus passage 3 are arranged in a double cylindrical duct structure. An inner iron core 6 is inserted in the inner duct 5. The lower side of the annulus channel 3 shown in FIG. 1 is a fluid inlet 7 into which a conductive fluid flows, and the upper side is a fluid outlet 8. The casing 9 is filled with a heat-resistant insulating material 12 from the bottom of the casing to the vicinity of the fluid surface 10, and the upper part is immersed in the fluid while being kept in the atmosphere of the inert gas 11. The relationship between the inner duct 5 and the inner iron core 6 is the same as that of the conventional structure, and the description thereof is omitted.

【0016】しかして、上記構成の電磁ポンプにおい
て、固定子コイル2で発生した熱は耐熱絶縁材を介して
外側ダクト4及びケーシング9の外側に伝えられ、流体
に効率良く回収され、固定子コイル2の発熱量を大きく
することができ小型大容量の電磁ポンプを構成すること
ができる。また、予熱の際に固定子コイル2で発生した
熱を耐熱絶縁材12を介してケーシング9内全体に伝えら
れ、電磁ポンプ内部を均一に予熱することが容易とな
る。
In the electromagnetic pump having the above structure, however, the heat generated in the stator coil 2 is transferred to the outside of the outer duct 4 and the casing 9 via the heat resistant insulating material, and is efficiently recovered by the fluid, so that the stator coil The calorific value of 2 can be increased, and a small-sized and large-capacity electromagnetic pump can be configured. Further, the heat generated in the stator coil 2 at the time of preheating is transmitted to the entire inside of the casing 9 through the heat resistant insulating material 12, and it becomes easy to uniformly preheat the inside of the electromagnetic pump.

【0017】[0017]

【発明の効果】本発明によれば、固定子コイルで発生し
た熱を効率よく除去することができ、固定子コイルの温
度上昇を抑制し、固定子コイルの発熱を従来より大きく
することができる。よって、ポンプの効率が改善され、
より小型化された大容量の電磁ポンプを提供することが
できる。また電磁ポンプの予熱を容易に行うことができ
る。
According to the present invention, the heat generated in the stator coil can be efficiently removed, the temperature rise of the stator coil can be suppressed, and the heat generation of the stator coil can be made larger than before. . Therefore, the efficiency of the pump is improved,
It is possible to provide a more compact and large-capacity electromagnetic pump. Moreover, the preheating of the electromagnetic pump can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電磁ポンプの一実施例を示す縦断
面図。
FIG. 1 is a vertical sectional view showing an embodiment of an electromagnetic pump according to the present invention.

【図2】従来の電磁ポンプの一部を切欠いて示す斜視
図。
FIG. 2 is a perspective view showing a conventional electromagnetic pump with a part cut away.

【符号の説明】[Explanation of symbols]

1…積層鉄心ブロック 2…固定子コイル 3…アニュラス流路 4…外側ダクト 5…内側ダクト 6…内部鉄心 7…流体入口 8…流体出口 9…ケーシング 10…流体液面 11…不活性ガス雰囲気 12…耐熱絶縁材 1 ... Laminated core block 2 ... Stator coil 3 ... Annulus flow path 4 ... Outer duct 5 ... Inner duct 6 ... Inner core 7 ... Fluid inlet 8 ... Fluid outlet 9 ... Casing 10 ... Fluid surface 11 ... Inert gas atmosphere 12 … Heat resistant insulation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外側ダクトと内側ダクトとの間に形成さ
れるアニュラス流路に導電性流体を流す二重円筒ダクト
と、この二重円筒ダクトの外周上に配置したスロットを
有する複数の積層鉄心ブロックと、この積層鉄心ブロッ
クのスロットに配置された前記導電性流体が存在する前
記アニュラス流路に進行磁場を作るための三相交流電流
を流す多数の固定子コイルとからなる電磁ポンプにおい
て、前記積層鉄心ブロック及び固定子コイルを収納する
ケーシング内に耐熱絶縁材を配設して成ることを特徴と
する電磁ポンプ。
1. A double cylindrical duct for flowing a conductive fluid in an annulus passage formed between an outer duct and an inner duct, and a plurality of laminated cores having slots arranged on the outer periphery of the double cylindrical duct. In an electromagnetic pump consisting of a block and a number of stator coils that flow a three-phase alternating current to create a traveling magnetic field in the annulus flow path in which the conductive fluid is placed in the slots of the laminated core block, An electromagnetic pump, characterized in that a heat-resistant insulating material is provided in a casing that houses a laminated core block and a stator coil.
【請求項2】 前記耐熱絶縁材は酸化アルミニウム、酸
化ベリリウム、窒化ケイ素、マグネシア、高温用絶縁油
から選択された一部材から成ることを特徴とする請求項
1記載の電磁ポンプ。
2. The electromagnetic pump according to claim 1, wherein the heat-resistant insulating material is one member selected from aluminum oxide, beryllium oxide, silicon nitride, magnesia, and insulating oil for high temperature.
JP4271302A 1992-10-09 1992-10-09 Electromagnetic pump Pending JPH06121521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4271302A JPH06121521A (en) 1992-10-09 1992-10-09 Electromagnetic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4271302A JPH06121521A (en) 1992-10-09 1992-10-09 Electromagnetic pump

Publications (1)

Publication Number Publication Date
JPH06121521A true JPH06121521A (en) 1994-04-28

Family

ID=17498154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4271302A Pending JPH06121521A (en) 1992-10-09 1992-10-09 Electromagnetic pump

Country Status (1)

Country Link
JP (1) JPH06121521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114640235A (en) * 2022-05-09 2022-06-17 浙江大学 Electromagnetic pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114640235A (en) * 2022-05-09 2022-06-17 浙江大学 Electromagnetic pump

Similar Documents

Publication Publication Date Title
US3447002A (en) Rotating electrical machine with liquid-cooled laminated stator core
JP6302736B2 (en) Rotating electric machine
JPH04229049A (en) Liquid cooling of rotor for electric machine
US4031422A (en) Gas cooled flux shield for dynamoelectric machine
US4412785A (en) Pumping apparatus
GB1590222A (en) Superconducting dynamoelectric machine having a liquid metal shield
JP2000511393A (en) A rotating electric machine that cools axially
US3508092A (en) Heat sink for stator winding of dynamo-electric machine
JPS6277036A (en) Liquid cooling type stationary exciting system for rotary electric machine
GB1577389A (en) Annular linear induction pump with an externally supported duct
WO2022020382A1 (en) Magnetohydrodynamic pump for molten salts and method of operating
US3908140A (en) Liquid-cooled rotor for dynamoelectric machines
US3155856A (en) Dynamoelectric machinery
US4002936A (en) Electric submersible pump
JPH06121521A (en) Electromagnetic pump
JP3281022B2 (en) Electromagnetic pump
JPH10304647A (en) Electromagnetic pump
US6727610B2 (en) Generator having flange baffle and method for controlling ventilation flow
JP2760640B2 (en) Electromagnetic pump
JP2714336B2 (en) Immersion type electromagnetic pump
JPH06217522A (en) Electrmagnetic pump
US2986663A (en) Rotor construction for dynamoelectric machines
US3260209A (en) Electromagnetic pump
JP2005185095A (en) Heat management of rotor end coil
US2099575A (en) Dynamo-electric machine