JP2004047229A - Photoelectric conversion element using electrolyte solution containing aminopyridine group compound and dye-sensitizing solar cell therewith - Google Patents

Photoelectric conversion element using electrolyte solution containing aminopyridine group compound and dye-sensitizing solar cell therewith Download PDF

Info

Publication number
JP2004047229A
JP2004047229A JP2002201622A JP2002201622A JP2004047229A JP 2004047229 A JP2004047229 A JP 2004047229A JP 2002201622 A JP2002201622 A JP 2002201622A JP 2002201622 A JP2002201622 A JP 2002201622A JP 2004047229 A JP2004047229 A JP 2004047229A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
group
compound
carbon atoms
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002201622A
Other languages
Japanese (ja)
Other versions
JP4019140B2 (en
Inventor
Hitoshi Kusama
草間 仁
Hironori Arakawa
荒川 裕則
Kazuhiro Sayama
佐山 和弘
Kojiro Hara
原 浩二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002201622A priority Critical patent/JP4019140B2/en
Publication of JP2004047229A publication Critical patent/JP2004047229A/en
Application granted granted Critical
Publication of JP4019140B2 publication Critical patent/JP4019140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element having a high open-voltage, and also provide a dye-sensitizing solar cell therewith. <P>SOLUTION: A photoelectric conversion element comprises a semiconductor layer electrode, a couple electrodes, and electrolyte solution. Further, the electrolyte solution containing an aminopyridine group compound shown by the formula of the image 1 is used (in which R<SP>1</SP>, R<SP>2</SP>, R<SP>3</SP>, R<SP>4</SP>, and R<SP>5</SP>each represent, independently, a hydrogen atom or alkyl group having 1 to 6 carbon atoms or alkenyl group having 2 to 6 carbon atoms or cycloalkyl group having 3 to 6 carbon atoms or benzil group or pyridyl group or pyridylmethyl group. Further, R<SP>1</SP>and R<SP>2</SP>, R<SP>2</SP>and R<SP>3</SP>, R<SP>3</SP>and R<SP>4</SP>, R<SP>4</SP>and R<SP>5</SP>may be connected each other and may form an annular structure). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高い開放電圧を有する電解質溶液およびそれを用いた光電変換素子に関する。
【0002】
【従来の技術】
太陽光発電に使用する太陽電池として、単結晶シリコン、多結晶シリコン、アモルファスシリコン、テルル化カドミウム、セレン化インジウム銅等の化合物を用いた太陽電池が実用化若しくは主な研究開発の対象となっているが、家庭用電源等に広く普及させる上では製造コストが高いこと、原材料の確保が困難であること、エネルギーペイバックタイムが長いこと等の問題点があり、これらを克服する必要がある。一方、電池の大面積化や低価格化を目的として有機材料を用いた太陽電池が多く提案されているが、一般にこのような太陽電池は光電変換効率が低く、耐久性も悪いという問題がある。
Nature, 第353巻, 737〜740頁 (1991)、米国特許 4190950号、WO 94/04497号等は、ルテニウム錯体色素により分光増感された二酸化チタン多孔質薄膜を作用電極とする色素増感半導体型の光電変換素子及び太陽電池、並びにこれを作製するための材料及び製造技術を開示している。
【0003】
これらの色素増感半導体型太陽電池は、半導体層電極、対電極、およびそれらの電極間に挟持された電解質層とから構成される。光電変換材料である半導体層電極において、半導体層表面には、可視光領域に吸収スペクトルを有する光増感色素が吸着されている。
これらの電池において、半導体層電極に光を照射すると、この電極側で電子が発生し、該電子は電気回路を通って対電極に移動する。対電極に移動した電子は、電解質中のイオンによって運ばれ、半導体層電極にもどる。このような過程が繰返されて電気エネルギーが取出される。
この色素増感半導体型光電変換素子の第一の利点は、二酸化チタン等の安価な酸化物半導体を高純度に精製することなく用いることができるため安価な光電変換素子を提供できる点であり、第二の利点は、用いる色素の吸収がブロードなため可視光線のほぼ全ての波長領域の光を電気に変換できることである。しかし、取り出し電圧が十分に得られないという問題があった。これは、電極から電荷輸送材料へ、光の照射とは関係なく逆電流が流れることに起因しており、この逆電流を十分に防止する手段はなかった。
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は、光の照射の有無に関わらず流れる逆電流を防止することにより、開放電圧を高めた光電変換素子を提供することにある。
【0005】
【課題を解決するための手段】
そこで、本発明者らは前記課題を解決すべく、鋭意研究を重ねた結果、半導体層電極、対電極、電解質溶液からなる光電変換素子であって、アミノピリジン系化合物からなる電解質溶液を用いることにより、高い開放電圧を発現する光電変換素子の開発に成功した。
即ち、本発明は、一般式(I)
【化4】

Figure 2004047229
(ただし、R1、R2、R3、R4、R5はそれぞれ独立して水素原子または炭素数1〜6のアルキル基または炭素数2〜6のアルケニル基または炭素数3〜6のシクロアルキル基またはベンジル基またはピリジル基またはピリジルメチル基である。R1とR2、R2とR3、R3とR4、R4とR5が互いに結合し環状構造を形成してもよい。)により表され、R1、R2、R3、R4、R5のうち少なくとも1つが下記一般式(II−1)〜(II−2)
【化5】
Figure 2004047229
【化6】
Figure 2004047229
(ただし、R6、R7、R8はそれぞれ独立して水素原子または炭素数1〜6のアルキル基または炭素数2〜6のアルケニル基または炭素数3〜6のシクロアルキル基またはベンジル基またはピリジル基またはピリジルメチル基である。R6とR7が互いに結合し環状構造を形成してもよい。k、lは0〜6の整数、m、nは1〜6の整数である。)により表されるアミノピリジン系化合物を含有してなる電解質溶液を用いたことを特徴とする光電変換素子である。
【0006】
また、本発明においては、電解質溶液に、さらに酸化還元系電解質を含むことができる。
さらに詳述すると、本発明においては、酸化還元系電解質としてハロゲンイオンを対イオンとするハロゲン化合物及びハロゲン分子を用いることができる。
また、ハロゲン化合物がヨウ素化合物で、ハロゲン分子がヨウ素であることが好ましい。とくに、ハロゲン化合物がヨウ素の無機塩及び/または有機塩であるのがより好ましい。
さらにまた、ハロゲン化合物が臭素化合物で、ハロゲン分子が臭素であることが好ましい。とくに、ハロゲン化合物が臭素の無機塩及び/または有機塩であるのがより好ましい。
本願発明の光電変換素子の典型的な例が、色素増感型太陽電池であり、半導体層電極として半導体酸化物を用い、その表面を色素で覆った電極を用いるものであり、当業者はこのような構成を熟知している。
本発明は、当然、このような多様な光電変換素子を用いた色素増感型太陽電池を提供することもできる。
【0007】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明のアミノピリジン系化合物を含有する電解質溶液は、電解質と溶媒からなる。
本発明に好ましく用いることのできるアミノピリジン系化合物としては、下記一般式(I)により表されるものであることが好ましい。
【化7】
Figure 2004047229
以下に一般式(I)で表される本発明のアミノピリジン系化合物について詳しく説明する。R、R、R、R、Rはそれぞれ独立して水素原子または炭素数1〜6のアルキル基または炭素数2〜6のアルケニル基または炭素数3〜6のシクロアルキル基またはベンジル基またはピリジル基またはピリジルメチル基である。RとR、RとR、RとR、RとRが互いに結合し環状構造を形成してもよく、かつ、R、R、R、R、Rのうち少なくとも1つが下記一般式(II−1)〜(II−2)で表されるものである。
【化8】
Figure 2004047229
【化9】
Figure 2004047229
ここで、一般式(II)中、R、R、Rはそれぞれ独立して水素原子または炭素数1〜6のアルキル基または炭素数2〜6のアルケニル基または炭素数3〜6のシクロアルキル基またはベンジル基またはピリジル基またはピリジルメチル基である。RとRが互いに結合し環状構造を形成してもよい。k、lは0〜6の整数、m、nは1〜6の整数である。
【0008】
電解質溶液に対するアミノピリジン系化合物の濃度は0.001mol/l〜10mol/lの範囲内であり、一層好ましい範囲は0.01mol/l〜5mol/lであり、特に好ましい範囲は0.05mol/l〜2mol/lであり、最も好ましい範囲は0.1mol/l〜1mol/lである。また、これらは単独または2種以上を組み合わせて用いることが出来る。
【0009】
本発明で使用する酸化還元系電解質にはハロゲンイオンを対イオンとするハロゲン化合物及びハロゲン分子からなるハロゲン系酸化還元系電解質、フェロシアン酸塩−フェリシアン酸塩やフェロセン−フェリシアニウムイオンなどの金属錯体等の金属酸化還元系電解質、アルキルチオール−アルキルジスルフィド、ビオロゲン色素、ヒドロキノン−キノン等の芳香族酸化還元系電解質などをあげることができるが、ハロゲン系酸化還元系電解質が好ましい。
本発明の電解質はヨウ素分子とヨウ化物の組み合わせ(ヨウ化物としてはLiI、NaI、KI、CsI、CaI2 などの金属ヨウ化物、あるいはテトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイドなど4級アンモニウム化合物のヨウ素塩など)、臭素分子と臭化物の組み合わせ(臭化物としてはLiBr、NaBr、KBr、CsBr、CaBr2 などの金属臭化物、あるいはテトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド、イミダゾリウムブロマイドなど4級アンモニウム化合物の臭素塩など)のほか、フェロシアン酸塩−フェリシアン酸塩やフェロセン−フェリシニウムイオンなどの金属錯体、ポリ硫化ナトリウム、アルキルチオール−アルキルジスルフィドなどのイオウ化合物、ビオロゲン色素、ヒドロキノン−キノンなどを用いることができる。
この中でもヨウ素分子とLiIやピリジニウムヨーダイド、イミダゾリウムヨーダイドなど4級アンモニウム化合物のヨウ素塩を組み合わせた電解質、もしくは臭素分子とBrIやピリジニウムブロマイド、イミダゾリウムブロマイドなど4級アンモニウム化合物の臭素塩を組み合わせた電解質が好ましい。上述した電解質は混合して用いてもよい。
【0010】
電解質の好ましい濃度は0.1M〜10Mであり、さらに好ましくは0.2M〜4Mである。また、電解液にヨウ素もしくは臭素を添加する場合の好ましいヨウ素もしくは臭素の添加濃度は0.01M〜0.5Mである。
酸化還元電解質を溶解するために用いる溶媒としては、アミノピリジン系化合物および酸化還元系電解質を溶解し、イオン伝導性に優れた化合物が望ましい。溶媒としては水性溶媒および有機溶媒のいずれも使用できるが、アミノピリジン系化合物および酸化還元系電解質をより安定化するため、有機溶媒が好ましい。
例えばこのような溶媒としては、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3−メチル−2−オキサゾリジノンなどの複素環化合物、ジオキサン、ジエチルエーテルなどのエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテルなどの鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物、ジメチルスルフォキシド、スルフォランなど非プロトン性の極性物質等の有機溶剤等が挙げられる。
このなかでも、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物が特に好ましい。これらは、単独または2種以上を組み合わせて用いることが出来る。
【0011】
本発明のアミノピリジン系化合物を含有する電解質溶液を用いた光電変換素子は負極、正極及び電荷分離層から成る。光電変換素子としては一般的に光エネルギーを電気エネルギーに変換する素子全体を指す。
本発明のアミノピリジン系化合物を含有する電解質溶液を用いた光電変換素子は、種々の材料に使用可能であるが、色素増感型太陽電池に特に最適である。色素増感型太陽電池は半導体電極、対極、電解質溶液で構成される。半導体電極は酸化チタン、酸化亜鉛などの金属酸化物半導体を導電性ガラスなどの導電性材料表面に薄膜化させて、その酸化物半導体薄膜に光増感色素を吸着担持することにより得られる。
対極は導電性ガラスなどの導電性材料表面に白金などを蒸着して得られる。得られた半導体電極と対峙するように対極を配置する。その隙間に電解質溶液を充填して光電変換素子の周囲を樹脂で封止して色素増感型太陽電池となる。
前記導電性材料としては、導電性を有するものであればどのようなものでもよく、例えば、透明ないし半透明のガラス基板やプラスチック板上に、例えば、フッ素あるいはアンチモンドープの酸化スズ(NESA)、スズドープの酸化インジウム(ITO)、酸化亜鉛などの導電性透明酸化物半導体薄膜をコートしたもの、好ましくは、フッ素ドープの酸化スズ薄膜をコートしたもの等が用いられる。
【0012】
本発明で用いられる半導体薄膜は、ナノ粒子(粒子径5〜2000nm)からなるナノポーラス構造を有する化合物半導体で構成することができる。その材料としては、例えば、酸化チタン、酸化インジウム、酸化スズ、酸化ビスマス、酸化ジルコニウム、酸化タンタル、酸化ニオブ、酸化タングステン、酸化鉄、酸化ガリウム、酸化ニッケルなどの単一金属酸化物、チタン酸ストロンチウム、チタン酸バリウム、ニオブ酸カリウム、タンタル酸ナトリウムなどの複合酸化物、ヨウ化銀、臭化銀、ヨウ化銅、臭化銅などの金属ハロゲン化物、硫化亜鉛、硫化チタン、硫化インジウム、硫化ビスマス、硫化カドミウム、硫化ジルコニウム、硫化タンタル、硫化銀、硫化銅、硫化スズ、硫化タングステン、硫化モリブデン、セレン化カドミウム、セレン化ジルコニウム、セレン化亜鉛、セレン化チタン、セレン化インジウム、セレン化タングステン、セレン化モリブデン、セレン化ビスマス、テルル化カドミウム、テルル化タングステン、テルル化モリブデン、テルル化亜鉛、テルル化ビスマスなどのカルコゲナイド化合物、さらには、これらの化合物を二種類以上含む混合化合物半導体材料(例えば、酸化スズ/酸化亜鉛、酸化スズ/酸化チタン)が挙げられるが、これらに限定されない。
【0013】
前記した半導体薄膜の膜厚は、0.1〜100μmであり、好ましくは、1〜30μmである。
光増感色素としては、種々の可視光領域および/または赤外光領域に吸収を持つものを用いることができる。
このような光増感色素には、構造上の制限は特になく、たとえば、アゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、フタロシアニン系色素、ペリレン系色素、インジゴ系色素、ナフタロシアニン系色素、および中心金属としてルテニウムなどを有するビピリジル錯体など、種々の色素が使用できる。その中でも、フタロシアニン系色素、ナフタロシアニン系色素、およびビピリジル錯体のような金属錯体色素は、高い量子収率を有し、光に対する耐久性がよいため、光電変換材料には適している。
なお、金属錯体色素の場合においては、Cu、Ni、Fe、Co、V、Sn、Si、Ti、Ge、Cr、Zn、Ru、Mg、Al、Pb、Mn、In、Mo、Y、Zr、Nb、Sb、La、W、Pt、Ta、Ir、Pd、Os、Ga、Tb、Eu、Rb、Bi、Se、As、Sc、Ag、Cd、Hf、Re、Au、Ac、Tc、Te、Rhなどの金属が用いられる。この中でも、Cu、Ti、Zn、Al、Fe、V、Si、Ru等の金属錯体色素は高い量子効率を有する。
【0014】
本発明においては、半導体薄膜表面と強固に吸着するために、該色素は分子中にカルボキシル基、アルコキシ基、ヒドロキシル基、スルホン酸基、エステル基、メルカプト基、ホスホニル基などの置換基を有するものが好ましい。
光増感色素の半導体薄膜上への吸着は、色素溶液中に半導体薄膜を浸し、室温で1分〜10日、あるいは加熱条件下で1分から24時間放置することによりおこなう。好ましくは、室温で12時間以上放置する方法である。光増感色素を半導体薄膜上に吸着させる場合に用いる溶媒は、光増感色素を溶解する溶媒なら何でも良い。例えば、メタノール、エタノール、イソプロパノール、t−ブタノール等のアルコール溶媒、ベンゼン等の炭化水素溶媒の他、テトラヒドロフラン、アセトニトリルなどの有機溶媒、さらには、それらの混合溶媒である。好ましくは、エタノール又はt−ブタノールとアセトニトリルの混合溶媒である。光増感色素を半導体薄膜上に吸着させる場合の色素溶液の濃度は、0.01mMから飽和量であり、好ましくは、0.1〜0.5mMである。
【0015】
次に、実施例を挙げて本発明を具体的に説明するが、本発明はそれらの実施例のみに限定されるものではない。
(実施例1〜18)
溶媒がアセトニトリルでヨウ化リチウム0.1M、ヨウ素0.05M、ヨウ化ジメチルプロピルイミダゾリウム0.62Mを溶解した電解質溶液を調製した。
溶媒がアセトニトリルでヨウ化リチウム0.1M、ヨウ素0.05M、ヨウ化ジメチルプロピルイミダゾリウム0.62Mを溶解した電解質溶液を調製した。
ここに下記に示すアミノピリジン系化合物をそれぞれ濃度0.5Mになるように別々に添加し、溶解した。
実施例1は、化合物No1を添加したものを云い、化合物No2を添加したものを実施例2以下順次、実施例3〜18と云う。
【化10】
Figure 2004047229
この電解液を、導電性ガラス付き増感色素(下記化合物)担持多孔質酸化チタン半導体薄膜(厚さ20μm)に滴下した。
【化11】
Figure 2004047229
対電極でこれを覆い、光電変換素子を構成した。
得られた光電変換素子に、Xeランプを光源として強度100mW/cm2の光を照射した。表1に得られた開放電圧を示した。なお、表1中には、比較例として、アミノピリジン系化合物を加えていない電解液を用いた光電変換素子の結果も示した。
【0016】
【表1】
Figure 2004047229
表1の結果から、アミノピリジン系化合物を電解液に添加すると、開放電圧が上昇することが明らかである。
【0017】
【発明の効果】
以上説明したように、半導体層電極、対電極、電解質溶液からなる光電変換素子であって、前期の一般式からなる群より選ばれたアミノピリジン系化合物を含有する電解質溶液を用いることにより、非常に高い開放電圧を示す光電変換素子を得ることができ、開放電圧の高い太陽電池を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolyte solution having a high open-circuit voltage and a photoelectric conversion element using the same.
[0002]
[Prior art]
Solar cells using compounds such as single-crystal silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and copper indium selenide have been commercialized or used for main research and development. However, there are problems such as high production cost, difficulty in securing raw materials, and long energy payback time for widespread use in household power supplies and the like, and it is necessary to overcome these problems. On the other hand, many solar cells using an organic material have been proposed for the purpose of increasing the area and cost of the battery, but such solar cells generally have a problem that the photoelectric conversion efficiency is low and the durability is poor. .
Nature, Vol. 353, 737-740 (1991), U.S. Pat. No. 4,190,950, WO 94/04497, etc. disclose a dye-sensitized semiconductor using a titanium dioxide porous thin film spectrally sensitized with a ruthenium complex dye as a working electrode. A type of photoelectric conversion element and a solar cell, and materials and manufacturing techniques for manufacturing the same are disclosed.
[0003]
These dye-sensitized semiconductor solar cells are composed of a semiconductor layer electrode, a counter electrode, and an electrolyte layer sandwiched between the electrodes. In a semiconductor layer electrode which is a photoelectric conversion material, a photosensitizing dye having an absorption spectrum in a visible light region is adsorbed on a surface of the semiconductor layer.
In these batteries, when light is applied to the semiconductor layer electrode, electrons are generated on the electrode side, and the electrons move to the counter electrode through an electric circuit. The electrons transferred to the counter electrode are carried by ions in the electrolyte and return to the semiconductor layer electrode. Such a process is repeated to extract electric energy.
The first advantage of the dye-sensitized semiconductor photoelectric conversion device is that an inexpensive photoelectric conversion device can be provided because an inexpensive oxide semiconductor such as titanium dioxide can be used without purification with high purity. The second advantage is that since the absorption of the dye used is broad, almost all wavelengths of visible light can be converted into electricity. However, there is a problem that a sufficient take-out voltage cannot be obtained. This is because a reverse current flows from the electrode to the charge transporting material irrespective of light irradiation, and there is no means for sufficiently preventing the reverse current.
[0004]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a photoelectric conversion element in which an open circuit voltage is increased by preventing a reverse current flowing regardless of the presence or absence of light irradiation.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the inventors of the present invention have conducted intensive studies, and have found that a photoelectric conversion element including a semiconductor layer electrode, a counter electrode, and an electrolyte solution, and using an electrolyte solution including an aminopyridine-based compound. As a result, the development of a photoelectric conversion element exhibiting a high open-circuit voltage was successfully achieved.
That is, the present invention relates to a compound represented by the general formula (I):
Embedded image
Figure 2004047229
(However, R1, R2, R3, R4, and R5 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or a benzyl group. Or a pyridyl group or a pyridylmethyl group; R1 and R2, R2 and R3, R3 and R4, R4 and R5 may be bonded to each other to form a cyclic structure), and R1, R2, R3, and R4. , R5 has at least one of the following general formulas (II-1) to (II-2)
Embedded image
Figure 2004047229
Embedded image
Figure 2004047229
(However, R6, R7 and R8 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a benzyl group, a pyridyl group or R6 and R7 may combine with each other to form a cyclic structure; k and l are integers from 0 to 6, and m and n are integers from 1 to 6. A photoelectric conversion element using an electrolyte solution containing a pyridine-based compound.
[0006]
In the present invention, the electrolyte solution may further contain a redox electrolyte.
More specifically, in the present invention, a halogen compound and a halogen molecule having a halogen ion as a counter ion can be used as the redox electrolyte.
It is preferable that the halogen compound is an iodine compound and the halogen molecule is iodine. In particular, the halogen compound is more preferably an inorganic salt and / or an organic salt of iodine.
Furthermore, it is preferable that the halogen compound is a bromine compound and the halogen molecule is bromine. In particular, the halogen compound is more preferably an inorganic and / or organic salt of bromine.
A typical example of the photoelectric conversion element of the present invention is a dye-sensitized solar cell, in which a semiconductor oxide is used as a semiconductor layer electrode, and an electrode whose surface is covered with a dye is used. I am familiar with such a configuration.
The present invention can, of course, also provide a dye-sensitized solar cell using such various photoelectric conversion elements.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The electrolyte solution containing the aminopyridine compound of the present invention comprises an electrolyte and a solvent.
The aminopyridine-based compound that can be preferably used in the present invention is preferably a compound represented by the following general formula (I).
Embedded image
Figure 2004047229
Hereinafter, the aminopyridine-based compound of the present invention represented by Formula (I) will be described in detail. R 1 , R 2 , R 3 , R 4 , and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or It is a benzyl group, a pyridyl group or a pyridylmethyl group. R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 may be bonded to each other to form a cyclic structure, and R 1 , R 2 , R 3 , R 4 , At least one of R 5 is represented by the following general formulas (II-1) to (II-2).
Embedded image
Figure 2004047229
Embedded image
Figure 2004047229
Here, in the general formula (II), R 6 , R 7 , and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a 3 to 6 carbon atoms. A cycloalkyl group, a benzyl group, a pyridyl group, or a pyridylmethyl group. R 6 and R 7 may combine with each other to form a cyclic structure. k and l are integers of 0 to 6, and m and n are integers of 1 to 6.
[0008]
The concentration of the aminopyridine-based compound in the electrolyte solution is in the range of 0.001 mol / l to 10 mol / l, more preferably 0.01 mol / l to 5 mol / l, and particularly preferably 0.05 mol / l. 22 mol / l, and the most preferred range is 0.1 mol / l to 1 mol / l. These can be used alone or in combination of two or more.
[0009]
The redox electrolyte used in the present invention includes a halogen compound having a halogen ion as a counter ion and a halogen redox electrolyte comprising a halogen molecule, and a metal such as ferrocyanate-ferricyanate or ferrocene-ferricyanium ion. Metal redox electrolytes such as complexes, alkylthiol-alkyl disulfides, viologen dyes, and aromatic redox electrolytes such as hydroquinone-quinone can be mentioned, and halogen-based redox electrolytes are preferred.
The electrolyte of the present invention is a combination of an iodine molecule and an iodide (e.g., a metal iodide such as LiI, NaI, KI, CsI, or CaI2, or a quaternary such as tetraalkylammonium iodide, pyridinium iodide, imidazolium iodide). Combination of bromine molecules and bromide (such as iodine salt of ammonium compound), metal bromide such as LiBr, NaBr, KBr, CsBr and CaBr2, or quaternary ammonium compound such as tetraalkylammonium bromide, pyridinium bromide and imidazolium bromide. Bromine salts), metal complexes such as ferrocyanate-ferricyanate and ferrocene-ferricinium ions, and sodium salts such as sodium polysulfide and alkyl thiol-alkyl disulfide. C compounds, viologen dyes, hydroquinone - quinone or the like can be used.
Among them, an electrolyte in which iodine molecules are combined with iodide salts of quaternary ammonium compounds such as LiI, pyridinium iodide, and imidazolium iodide, or a bromine molecule is combined with bromine salts of quaternary ammonium compounds such as BrI, pyridinium bromide, and imidazolium bromide. Electrolytes are preferred. The above-mentioned electrolytes may be used as a mixture.
[0010]
The preferred concentration of the electrolyte is 0.1M to 10M, more preferably 0.2M to 4M. When iodine or bromine is added to the electrolytic solution, the preferable concentration of iodine or bromine is 0.01 M to 0.5 M.
As a solvent used for dissolving the oxidation-reduction electrolyte, a compound which dissolves an aminopyridine-based compound and an oxidation-reduction-based electrolyte and has excellent ion conductivity is desirable. As the solvent, any of an aqueous solvent and an organic solvent can be used, but an organic solvent is preferable in order to further stabilize the aminopyridine compound and the redox electrolyte.
For example, such solvents include ethylene carbonate, carbonate compounds such as propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, dioxane, ether compounds such as diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether, Chain ethers such as polyethylene glycol dialkyl ether and polypropylene glycol dialkyl ether, alcohols such as methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether and polypropylene glycol monoalkyl ether, ethylene glycol , Propylene glycol, polyethylene glycol, Polyhydric alcohols such as propylene glycol and glycerin, nitrile compounds such as acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile; organic solvents such as aprotic polar substances such as dimethyl sulfoxide and sulfolane; Is mentioned.
Of these, carbonate compounds such as ethylene carbonate and propylene carbonate, and nitrile compounds such as acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile are particularly preferred. These can be used alone or in combination of two or more.
[0011]
The photoelectric conversion device using the electrolyte solution containing the aminopyridine compound of the present invention comprises a negative electrode, a positive electrode, and a charge separation layer. The photoelectric conversion element generally refers to an entire element that converts light energy into electric energy.
The photoelectric conversion device using the electrolyte solution containing the aminopyridine compound of the present invention can be used for various materials, but is particularly suitable for a dye-sensitized solar cell. A dye-sensitized solar cell includes a semiconductor electrode, a counter electrode, and an electrolyte solution. The semiconductor electrode is obtained by forming a thin film of a metal oxide semiconductor such as titanium oxide or zinc oxide on the surface of a conductive material such as conductive glass, and adsorbing and supporting a photosensitizing dye on the oxide semiconductor thin film.
The counter electrode is obtained by depositing platinum or the like on the surface of a conductive material such as conductive glass. A counter electrode is arranged so as to face the obtained semiconductor electrode. The gap is filled with an electrolyte solution, and the periphery of the photoelectric conversion element is sealed with a resin to obtain a dye-sensitized solar cell.
The conductive material may be any material as long as it has conductivity. For example, on a transparent or translucent glass substrate or a plastic plate, for example, fluorine or antimony-doped tin oxide (NESA), One coated with a conductive transparent oxide semiconductor thin film such as tin-doped indium oxide (ITO) or zinc oxide, preferably coated with a fluorine-doped tin oxide thin film, or the like is used.
[0012]
The semiconductor thin film used in the present invention can be composed of a compound semiconductor having a nanoporous structure composed of nanoparticles (particle diameter: 5-2000 nm). Examples of the material include a single metal oxide such as titanium oxide, indium oxide, tin oxide, bismuth oxide, zirconium oxide, tantalum oxide, niobium oxide, tungsten oxide, iron oxide, gallium oxide, nickel oxide, and strontium titanate. , Barium titanate, potassium niobate, sodium tantalate, and other complex oxides; metal halides such as silver iodide, silver bromide, copper iodide, and copper bromide; zinc sulfide, titanium sulfide, indium sulfide, and bismuth sulfide , Cadmium sulfide, zirconium sulfide, tantalum sulfide, silver sulfide, copper sulfide, tin sulfide, tungsten sulfide, molybdenum sulfide, cadmium selenide, zirconium selenide, zinc selenide, titanium selenide, indium selenide, tungsten selenide, selenium Molybdenum fluoride, bismuth selenide, te Chalcogenide compounds such as cadmium fluoride, tungsten telluride, molybdenum telluride, zinc telluride, bismuth telluride, and mixed compound semiconductor materials containing two or more of these compounds (eg, tin oxide / zinc oxide, tin oxide / Titanium oxide), but is not limited thereto.
[0013]
The semiconductor thin film has a thickness of 0.1 to 100 μm, preferably 1 to 30 μm.
As the photosensitizing dye, those having absorption in various visible light regions and / or infrared light regions can be used.
There is no particular limitation on the structure of such a photosensitizing dye, and examples thereof include an azo dye, a quinone dye, a quinone imine dye, a quinacridone dye, a squarylium dye, a cyanine dye, a merocyanine dye, and triphenyl dye. Various dyes such as a methane dye, a xanthene dye, a porphyrin dye, a phthalocyanine dye, a perylene dye, an indigo dye, a naphthalocyanine dye, and a bipyridyl complex having ruthenium or the like as a central metal can be used. Among them, phthalocyanine dyes, naphthalocyanine dyes, and metal complex dyes such as bipyridyl complexes have high quantum yields and good durability against light, and thus are suitable for photoelectric conversion materials.
In the case of the metal complex dye, Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, Zr, Nb, Sb, La, W, Pt, Ta, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re, Au, Ac, Tc, Te, A metal such as Rh is used. Among them, metal complex dyes such as Cu, Ti, Zn, Al, Fe, V, Si, and Ru have high quantum efficiency.
[0014]
In the present invention, the dye has a substituent such as a carboxyl group, an alkoxy group, a hydroxyl group, a sulfonic acid group, an ester group, a mercapto group, or a phosphonyl group in the molecule in order to strongly adsorb to the semiconductor thin film surface. Is preferred.
The adsorption of the photosensitizing dye onto the semiconductor thin film is performed by immersing the semiconductor thin film in the dye solution and leaving it at room temperature for 1 minute to 10 days or under heating conditions for 1 minute to 24 hours. Preferably, it is a method of leaving at room temperature for 12 hours or more. The solvent used for adsorbing the photosensitizing dye on the semiconductor thin film may be any solvent that dissolves the photosensitizing dye. For example, in addition to alcohol solvents such as methanol, ethanol, isopropanol and t-butanol, hydrocarbon solvents such as benzene, organic solvents such as tetrahydrofuran and acetonitrile, and a mixed solvent thereof. Preferred is a mixed solvent of ethanol or t-butanol and acetonitrile. When the photosensitizing dye is adsorbed on the semiconductor thin film, the concentration of the dye solution is from 0.01 mM to a saturation amount, and preferably 0.1 to 0.5 mM.
[0015]
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to only these examples.
(Examples 1 to 18)
An electrolyte solution was prepared in which the solvent was acetonitrile in which lithium iodide 0.1M, iodine 0.05M, and dimethylpropyl imidazolium iodide 0.62M were dissolved.
An electrolyte solution was prepared in which the solvent was acetonitrile in which lithium iodide 0.1M, iodine 0.05M, and dimethylpropyl imidazolium iodide 0.62M were dissolved.
Here, the following aminopyridine-based compounds were separately added so as to have a concentration of 0.5 M, respectively, and dissolved.
Example 1 refers to the case where the compound No. 1 was added, and the case where the compound No. 2 was added is referred to as the examples 3 to 18 in the order of Example 2 and thereafter.
Embedded image
Figure 2004047229
This electrolytic solution was dropped onto a porous titanium oxide semiconductor thin film (thickness: 20 μm) supporting a sensitizing dye with conductive glass (the following compound).
Embedded image
Figure 2004047229
This was covered with a counter electrode to form a photoelectric conversion element.
The obtained photoelectric conversion element was irradiated with light having an intensity of 100 mW / cm 2 using a Xe lamp as a light source. Table 1 shows the obtained open circuit voltages. Table 1 also shows, as a comparative example, the results of a photoelectric conversion element using an electrolytic solution to which no aminopyridine-based compound was added.
[0016]
[Table 1]
Figure 2004047229
From the results in Table 1, it is apparent that the addition of the aminopyridine-based compound to the electrolytic solution increases the open-circuit voltage.
[0017]
【The invention's effect】
As described above, a photoelectric conversion element including a semiconductor layer electrode, a counter electrode, and an electrolyte solution, and using an electrolyte solution containing an aminopyridine-based compound selected from the group consisting of the above general formulas, A photoelectric conversion element exhibiting a high open-circuit voltage can be obtained, and a solar cell having a high open-circuit voltage can be provided.

Claims (9)

半導体層電極、対電極、電解質溶液からなる光電変換素子であって、アミノピリジン系化合物を含有する電解質溶液を用いたことを特徴とする光電変換素子。A photoelectric conversion element comprising a semiconductor layer electrode, a counter electrode, and an electrolyte solution, wherein an electrolyte solution containing an aminopyridine-based compound is used. アミノピリジン系化合物が下記一般式(I)
Figure 2004047229
(ただし、R、R、R、R、Rはそれぞれ独立して水素原子または炭素数1〜6のアルキル基または炭素数2〜6のアルケニル基または炭素数3〜6のシクロアルキル基またはベンジル基またはピリジル基またはピリジルメチル基である。RとR、RとR、RとR、RとRが互いに結合し環状構造を形成してもよい。)で表わされ、かつ、R、R、R、R、Rのうち少なくとも1つが下記一般式(II−1)〜(II−2)
Figure 2004047229
Figure 2004047229
(ただし、R、R、Rはそれぞれ独立して水素原子または炭素数1〜6のアルキル基または炭素数2〜6のアルケニル基または炭素数3〜6のシクロアルキル基またはベンジル基またはピリジル基またはピリジルメチル基である。RとRが互いに結合し環状構造を形成してもよい。k、lは0〜6の整数、m、nは1〜6の整数である。)で表わされる化合物であることを特徴とする請求項1に記載した光電変換素子。
The aminopyridine compound has the following general formula (I)
Figure 2004047229
(However, R 1 , R 2 , R 3 , R 4 , and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a cyclo group having 3 to 6 carbon atoms. An alkyl group, a benzyl group, a pyridyl group, or a pyridylmethyl group, R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 may be bonded to each other to form a cyclic structure; ), And at least one of R 1 , R 2 , R 3 , R 4 , and R 5 has the following general formula (II-1) to (II-2)
Figure 2004047229
Figure 2004047229
(However, R 6 , R 7 , and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a benzyl group or A pyridyl group or a pyridylmethyl group; R 6 and R 7 may combine with each other to form a cyclic structure; k and l are integers of 0 to 6; m and n are integers of 1 to 6) The photoelectric conversion device according to claim 1, wherein the compound is a compound represented by the following formula:
電解質溶液が、さらに酸化還元系電解質を含むことを特徴とした請求項1又は請求項2記載した光電変換素子。3. The photoelectric conversion device according to claim 1, wherein the electrolyte solution further contains a redox electrolyte. 酸化還元系電解質が、ハロゲンイオンを対イオンとするハロゲン化合物及びハロゲン分子である請求項1〜3のいずれかひとつに記載した光電変換素子。The photoelectric conversion element according to claim 1, wherein the oxidation-reduction electrolyte is a halogen compound and a halogen molecule having a halogen ion as a counter ion. ハロゲン化合物がヨウ素化合物で、ハロゲン分子がヨウ素である請求項4に記載した光電変換素子。The photoelectric conversion device according to claim 4, wherein the halogen compound is an iodine compound, and the halogen molecule is iodine. ヨウ素化合物がヨウ素の無機塩及び/または有機塩である請求項5に記載した光電変換素子。The photoelectric conversion element according to claim 5, wherein the iodine compound is an inorganic salt and / or an organic salt of iodine. ハロゲン化合物が臭素化合物で、ハロゲン分子が臭素である請求項4に記載した光電変換素子。The photoelectric conversion device according to claim 4, wherein the halogen compound is a bromine compound, and the halogen molecule is bromine. 臭素化合物が臭素の無機塩及び/または有機塩である請求項7に記載した光電変換素子。The photoelectric conversion device according to claim 7, wherein the bromine compound is an inorganic salt and / or an organic salt of bromine. 請求項1〜8のいずれかひとつに記載した光電変換素子を用いた色素増感型太陽電池。A dye-sensitized solar cell using the photoelectric conversion element according to claim 1.
JP2002201622A 2002-07-10 2002-07-10 Photoelectric conversion element using electrolyte solution containing aminopyridine compound and dye-sensitized solar cell using the same Expired - Lifetime JP4019140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201622A JP4019140B2 (en) 2002-07-10 2002-07-10 Photoelectric conversion element using electrolyte solution containing aminopyridine compound and dye-sensitized solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201622A JP4019140B2 (en) 2002-07-10 2002-07-10 Photoelectric conversion element using electrolyte solution containing aminopyridine compound and dye-sensitized solar cell using the same

Publications (2)

Publication Number Publication Date
JP2004047229A true JP2004047229A (en) 2004-02-12
JP4019140B2 JP4019140B2 (en) 2007-12-12

Family

ID=31708103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201622A Expired - Lifetime JP4019140B2 (en) 2002-07-10 2002-07-10 Photoelectric conversion element using electrolyte solution containing aminopyridine compound and dye-sensitized solar cell using the same

Country Status (1)

Country Link
JP (1) JP4019140B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1699063A1 (en) 2005-03-03 2006-09-06 Fuji Photo Film Co., Ltd. Semiconductor with adsorbed compound
US7236288B2 (en) 2005-03-03 2007-06-26 Fujifilm Corporation Functional device, electrochromic device, optical device, and image-taking unit
JP2008024634A (en) * 2006-07-20 2008-02-07 Sumitomo Seika Chem Co Ltd Compound for electroluminescent element and method for producing the same
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
KR101058101B1 (en) 2004-06-26 2011-08-24 삼성에스디아이 주식회사 Electrolytic solution composition and solar cell using same
WO2011158922A1 (en) * 2010-06-18 2011-12-22 ソニー株式会社 Photoelectric conversion element and method for producing same, and electronic device
JP2012243436A (en) * 2011-05-17 2012-12-10 Sony Corp Photoelectric conversion element, method for manufacturing the same, and electronic device
WO2014092066A1 (en) 2012-12-14 2014-06-19 シャープ株式会社 Photoelectric conversion element
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
WO2015033698A1 (en) * 2013-09-05 2015-03-12 富士フイルム株式会社 Photovoltaic conversion element, dye-sensitized photovoltaic cell, and reverse electron-transfer inhibitor for photovoltaic conversion element
WO2015033749A1 (en) * 2013-09-05 2015-03-12 富士フイルム株式会社 Photovoltaic conversion element, dye-sensitized photovoltaic cell, and electron-transfer promoter for photovoltaic conversion element
WO2015125587A1 (en) * 2014-02-24 2015-08-27 株式会社リコー Photoelectric conversion element and solar cell
US9202636B2 (en) 2010-12-21 2015-12-01 Konica Minolta Business Technologies, Inc. Photoelectric conversion element and dye-sensitized solar cell
JP2016122720A (en) * 2014-12-25 2016-07-07 積水化学工業株式会社 Electrolyte, photoelectric conversion element, and dye-sensitized solar battery
JP2016178102A (en) * 2015-03-18 2016-10-06 株式会社リコー Photoelectric conversion element and secondary battery
JP2018006622A (en) * 2016-07-05 2018-01-11 株式会社リコー Photoelectric conversion element and solar battery
JP2019208036A (en) * 2015-05-08 2019-12-05 株式会社リコー Photoelectric conversion element and manufacturing method of photoelectric conversion element
JP2020202395A (en) * 2015-03-20 2020-12-17 株式会社リコー Photoelectric conversion element and solar battery

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101058101B1 (en) 2004-06-26 2011-08-24 삼성에스디아이 주식회사 Electrolytic solution composition and solar cell using same
US7236288B2 (en) 2005-03-03 2007-06-26 Fujifilm Corporation Functional device, electrochromic device, optical device, and image-taking unit
US7446923B2 (en) 2005-03-03 2008-11-04 Fujifilm Corporation Semiconductor, functional device, electrochromic device, optical device, and image-taking unit
EP1699063A1 (en) 2005-03-03 2006-09-06 Fuji Photo Film Co., Ltd. Semiconductor with adsorbed compound
JP2008024634A (en) * 2006-07-20 2008-02-07 Sumitomo Seika Chem Co Ltd Compound for electroluminescent element and method for producing the same
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011158922A1 (en) * 2010-06-18 2011-12-22 ソニー株式会社 Photoelectric conversion element and method for producing same, and electronic device
CN102473990A (en) * 2010-06-18 2012-05-23 索尼公司 Photoelectric conversion element and method for producing same, and electronic device
US9202636B2 (en) 2010-12-21 2015-12-01 Konica Minolta Business Technologies, Inc. Photoelectric conversion element and dye-sensitized solar cell
JP2012243436A (en) * 2011-05-17 2012-12-10 Sony Corp Photoelectric conversion element, method for manufacturing the same, and electronic device
WO2014092066A1 (en) 2012-12-14 2014-06-19 シャープ株式会社 Photoelectric conversion element
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
JP2015053149A (en) * 2013-09-05 2015-03-19 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, and back migration preventing agent of electron for photoelectric conversion element
WO2015033698A1 (en) * 2013-09-05 2015-03-12 富士フイルム株式会社 Photovoltaic conversion element, dye-sensitized photovoltaic cell, and reverse electron-transfer inhibitor for photovoltaic conversion element
JP2015053148A (en) * 2013-09-05 2015-03-19 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, and migration accelerator of electron for photoelectric conversion element
WO2015033749A1 (en) * 2013-09-05 2015-03-12 富士フイルム株式会社 Photovoltaic conversion element, dye-sensitized photovoltaic cell, and electron-transfer promoter for photovoltaic conversion element
KR102112330B1 (en) * 2014-02-24 2020-05-19 가부시키가이샤 리코 Photoelectric conversion element and solar cell
KR20210073610A (en) * 2014-02-24 2021-06-18 가부시키가이샤 리코 Photoelectric conversion element and solar cell
KR20160124186A (en) * 2014-02-24 2016-10-26 가부시키가이샤 리코 Photoelectric conversion element and solar cell
CN106062985A (en) * 2014-02-24 2016-10-26 株式会社理光 Photoelectric conversion element and solar cell
JPWO2015125587A1 (en) * 2014-02-24 2017-03-30 株式会社リコー Photoelectric conversion element and solar cell
KR102330122B1 (en) 2014-02-24 2021-11-24 가부시키가이샤 리코 Photoelectric conversion element and solar cell
US11101080B2 (en) 2014-02-24 2021-08-24 Ricoh Company, Ltd. Photoelectric conversion element and solar cell
US10636579B2 (en) 2014-02-24 2020-04-28 Ricoh Company, Ltd. Photoelectric conversion element and solar cell
WO2015125587A1 (en) * 2014-02-24 2015-08-27 株式会社リコー Photoelectric conversion element and solar cell
JP2021005723A (en) * 2014-02-24 2021-01-14 株式会社リコー Photoelectric conversion element and solar cell
JP2016122720A (en) * 2014-12-25 2016-07-07 積水化学工業株式会社 Electrolyte, photoelectric conversion element, and dye-sensitized solar battery
JP2016178102A (en) * 2015-03-18 2016-10-06 株式会社リコー Photoelectric conversion element and secondary battery
JP2020202395A (en) * 2015-03-20 2020-12-17 株式会社リコー Photoelectric conversion element and solar battery
JP7092979B2 (en) 2015-03-20 2022-06-29 株式会社リコー Photoelectric conversion element and solar cell
JP2019208036A (en) * 2015-05-08 2019-12-05 株式会社リコー Photoelectric conversion element and manufacturing method of photoelectric conversion element
JP2018006622A (en) * 2016-07-05 2018-01-11 株式会社リコー Photoelectric conversion element and solar battery

Also Published As

Publication number Publication date
JP4019140B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
JP4235728B2 (en) Photoelectric conversion element using electrolyte solution containing benzimidazole compound and dye-sensitized solar cell using the same
JP4019140B2 (en) Photoelectric conversion element using electrolyte solution containing aminopyridine compound and dye-sensitized solar cell using the same
JP5404058B2 (en) Ionic liquid electrolyte
TWI567082B (en) A photoelectric conversion element, a photoelectrochemical cell, and a metal complex pigment used
JP4177172B2 (en) Dye-sensitized solar cell
WO2009116511A1 (en) Photosensitizing element and solar battery using the photosensitizing element
JPH11185836A (en) Photoelectric conversion element and light reproducing electrochemical cell
CN103492402A (en) Improved redox couple for electrochemical and optoelectronic devices
JPH11214730A (en) Photoelectric conversion element and opto-electric chemical battery
JP2000090991A (en) Photoelectrochemical battery
JP4111360B2 (en) Gel electrolyte, gel electrolyte for photoelectrochemical cell, and photoelectrochemical cell
JP4019139B2 (en) Photoelectric conversion element using electrolyte solution containing 2-n-propylpyridine and dye-sensitized solar cell using the same
JP4238350B2 (en) Photoelectric conversion element using electrolyte solution containing aminopyrimidine compound and dye-sensitized solar cell using the same
JP4460686B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP4264507B2 (en) Photoelectric conversion element and dye-sensitized solar cell using the same
JP4328857B2 (en) Photoelectric conversion element and dye-sensitized solar cell using the same
JP4264511B2 (en) Photoelectric conversion element and dye-sensitized solar cell using the same
JP2000036608A (en) Gel electrolyte, photoelectric transducer and optical regenerative photoelectric chemical cell
JP2000150007A (en) Photoelectric conversion element, its manufacture, and photo electrochemical battery
JP4370398B2 (en) Photoelectric conversion element and dye-sensitized solar cell using the same
JP2000036332A (en) Electrolyte, photoelectric conversion element, and photo-regenerative photo-electrochemical battery
JP4269054B2 (en) Photoelectric conversion element and dye-sensitized solar cell using the same
JP2000058891A (en) Electrolyte, electrolyte for photoelectric chemical cell, photoelectric chemical battery and pyridinium compound
JP4455868B2 (en) Dye-sensitized solar cell
JP2005108664A (en) Photoelectric conversion element and dye-sensitized solar cell using above

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

R150 Certificate of patent or registration of utility model

Ref document number: 4019140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term