JP2004046329A - Image contour enhancement device - Google Patents

Image contour enhancement device Download PDF

Info

Publication number
JP2004046329A
JP2004046329A JP2002199803A JP2002199803A JP2004046329A JP 2004046329 A JP2004046329 A JP 2004046329A JP 2002199803 A JP2002199803 A JP 2002199803A JP 2002199803 A JP2002199803 A JP 2002199803A JP 2004046329 A JP2004046329 A JP 2004046329A
Authority
JP
Japan
Prior art keywords
luminance difference
contour
difference
enhancement
edge enhancement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002199803A
Other languages
Japanese (ja)
Other versions
JP4190221B2 (en
Inventor
Tsutomu Takizawa
滝沢 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Pentax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentax Corp filed Critical Pentax Corp
Priority to JP2002199803A priority Critical patent/JP4190221B2/en
Publication of JP2004046329A publication Critical patent/JP2004046329A/en
Application granted granted Critical
Publication of JP4190221B2 publication Critical patent/JP4190221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Picture Signal Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of a pseudo signal in an endoscope and to provide a clear display picture. <P>SOLUTION: A luminance difference with adjacent pixels in respective pixels of image data is quantized within a prescribed range. A reference luminance difference is set to an almost intermediate value being the luminance difference which needs contour enhancement the most. The luminance difference whose difference with a reference luminance difference is the minimum is selected among the luminance differences with the adjacent pixels. In a region where the selected luminance difference becomes the reference luminance difference, a contour is enhanced the most. In a region where the difference between the selected luminance difference and the reference luminance difference becomes relatively large, a contour enhancement amount is relatively reduced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば内視鏡によって得られる画像に対して輪郭強調を施す輪郭強調装置に関するものである。
【0002】
【従来の技術】
従来、画像処理において、輪郭強調は画面領域全体に対して均等に施されている。すなわち、隣接画素との輝度差が小さい領域では、輪郭強調量が小さく掛けられ、得られる画像データの輝度値も元データに比べあまり増大させられない。一方、隣接画素との輝度差が大きい領域では、輪郭強調量が大きく掛けられ、得られる画像データの輝度値も増大させられる。これにより、領域ごとの輝度差が明確にされ、シャープな画像が得られる。
【0003】
しかし、輝度差が非常に大きくなると、輪郭強調量もそれに併せて大きく掛けられるので、画像データの輝度値が大きくなりすぎて、その領域にはハレーションなどの擬似信号が発生することがある。
【0004】
特に内視鏡によって得られる画像データは、その光学特性から暗い領域と明るい領域が混在しており、輝度差が大きい領域が多い。また、内視鏡の被観察体は体液等の液体が付着したものが多く、これらに光が照射された場合、光が過度に反射され、その近傍部分との輝度差が非常に大きくなることがある。したがって、内視鏡によって得られる画像は擬似信号が多く発生するため、不自然な画像になることが多い。また、輝度差が少ない暗い領域においては、ノイズが多く、この領域に輪郭強調が均等に施されると、ノイズが強調され、画質が劣化することがある。
【0005】
【発明が解決しようとする課題】
本発明は、輪郭強調による擬似信号の発生を防止して、鮮明で観察しやすい画像を得ることを目的としている。
【0006】
【課題を解決するための手段】
本発明に係る画像輪郭強調装置は、画像データを構成する各画素に対して隣接画素との輝度差に応じた輪郭強調を行う輪郭強調手段と、輝度差が予め設定されている基準輝度差となる領域において、輪郭強調における輪郭強調量を最大にする輪郭強調調整手段とを備える。輪郭強調調整手段は輝度差と基準輝度差との差が相対的に大きくなる領域において輪郭強調量を相対的に小さくすることが好ましい。これにより、輝度差が大きくなりすぎる領域において、輪郭強調量が抑制され、擬似信号の発生が防止される。
【0007】
画像データの輝度値は一定の範囲内で量子化され、基準輝度差は一定の範囲内の略中間値であることが好ましい。好ましくは、輪郭強調手段は、隣接画素との輝度差のうち基準輝度差との差が最も小さい輝度差に応じて輪郭強調を行う。画像データを得るための撮像装置は内視鏡であることが好ましい。
【0008】
輪郭強調調整手段は、輝度差が基準輝度差よりも小さいと検出される領域においてのみ輪郭強調を行うことが好ましい。また、輪郭強調調整手段は、輝度差が基準輝度差よりも大きいと検出される領域においてのみ輪郭強調を行ってもよい。これにより、必要に応じて、輝度差が大きい領域若しくは、小さい領域にて、輪郭強調を掛けないことが可能である。
【0009】
本発明に係る画像輪郭強調装置画像は、データに対して輪郭強調を行う輪郭強調手段と、隣接画素との輝度差が予め設定されている基準輝度差よりも小さいと検出される領域においてのみ輪郭強調を行う輪郭強調調整手段を備える。また、本発明に係る画像輪郭強調装置は、画像データに対して輪郭強調を行う輪郭強調手段と、隣接画素との輝度差が予め設定されている基準輝度差よりも大きいと検出される領域においてのみ輪郭強調を行う輪郭強調調整手段とを備える。
【0010】
また、本発明に係る画像輪郭強調方法は画像データを構成する各画素に対して隣接画素との輝度差に応じた輪郭強調を行う輪郭強調ステップと、輝度差が予め設定されている基準輝度差となる領域において、輪郭強調における輪郭強調量を最大にする輪郭強調調整ステップとを備える。
【0011】
【発明の実施の形態】
以下、本発明の実施形態について添付図面を参照して説明する。
図1は本発明の第1の実施形態である画像輪郭強調装置を備えた内視鏡システムを示し、内視鏡システムは、内視鏡10および画像処理装置から成る。内視鏡10は被写体から画像データを得るための撮像装置であり、画像処理装置は内視鏡10によって得られた画像データを画像として出力できるように処理するための装置である。
【0012】
CPU12では、制御情報が生成され、生成された制御情報はマスク生成回路13、輪郭強調回路14に送られる。マスク生成回路13と輪郭強調回路14は生成された制御情報に基づき制御される。
【0013】
内視鏡10によって得られた画像データは映像信号に変換され、映像信号は、加算器11に送られる。加算器11では、送られてきた映像信号に、マスク生成回路13で生成されたマスク情報が加算される。マスク情報が加算された映像信号は輪郭強調回路14に送られ、輪郭強調が掛けられる。
【0014】
輪郭強調が掛けられた映像信号は、映像信号処理回路15に送られ、映像信号処理回路15でA/D変換されるとともに、RGBに分離され、それぞれRメモリ16a、Gメモリ16b、Bメモリ16cに格納される。格納されたそれぞれの映像信号はビデオ画像処理回路17に入力され、D/A変換された後、出力モニタに画像として出力される。同期信号生成部18では同期信号が生成される。同期信号は、タイミング回路19に送られ、映像処理回路15、ビデオ処理回路17の動作タイミングの制御と、メモリ16a、16b、16cに対する書込みおよび読み出し制御に用いられる。
【0015】
図2は輪郭強調回路14を示す。輪郭強調回路14では、画像データを構成する各画素に対して、隣接画素との輝度差に応じた輪郭強調が行なわれる。なお、ここでは、輝度差は8ビット(256段階)で量子化され演算が行なわれているが、目的に応じて、分解能を変更してもよい。
【0016】
入力信号aは、遅延器20に送られると共に減算器21および加算器22に送られる。遅延器20では、入力信号aが1画素遅延させられ、1画素遅延信号bが得られる。1画素遅延信号bは、遅延器23に送られると共に、減算器21、24、26および加算器27に送られる。遅延器23では、1画素遅延信号bが1画素遅延させられ2画素遅延信号cが得られ、2画素遅延信号cは、加算器22および減算器24に送られる。
【0017】
加算器22では、入力信号aと2画素遅延信号cが加算された後、係数(1/2)が乗じられ、加算信号d(=(a+c)/2)が得られる。減算器26では、1画素遅延信号bから加算器22より送られてきた加算信号dが減ぜられ、輪郭強調信号e(=b−(a+c)/2)が得られる。得られた輪郭強調信号eは、乗算器28に送られる。
【0018】
減算器21では、1画素遅延信号bから入力信号aが減ぜられ、その絶対値(|b−a|)が求められる。減算器24でも同様に1画素遅延信号bから2画素遅延信号cが減ぜられ、その絶対値(|b−c|)が求められる。減算器21、24で求められた絶対値は隣接画素との輝度差としてフィルタ25に送られる。フィルタ25では、各画素における隣接画素との輝度差(|b−a|若しくは|b−c|)のうち基準輝度差との差が小さい輝度差が選択される。なお、|b−a|と|b−c|の値が等しくなった場合は、輝度差の値の大きい方が選択される。その選択された値は,フィルタ29に送られ、フィルタ29で基準輝度差より大きいか否かが読み取られ、基準輝度差以下であるならば、変換器30へ、基準輝度差より大きければ変換器31へと送られる。なお、基準輝度差は輪郭強調が最も必要とされる輝度差に設定される。本実施形態では、基準輝度差は、輝度差が量子化された範囲内の中間値である127と予め設定されている。
【0019】
変換器30、31では、フィルタ25で選択された輝度差が基準輝度差となる領域において輪郭強調量が最大になり、さらに選択された輝度差と基準輝度差との差が相対的に大きくなる領域において輪郭強調量が相対的に小さくなるように輪郭強調係数が設定される。すなわち、変換器30では、選択された輝度差が大きくなる領域の輪郭強調係数は大きくなるように、変換器31では、選択された輝度差の値が大きくなる領域の輪郭強調係数は小さくなるように設定されている。また、本実施形態では、選択された輝度差と輪郭強調係数の関係が比例関係となるように設定され、かつ輪郭強調係数の最小値は0で、最大値は1となるように設定されている。
【0020】
例えば、変換器30では、選択された輝度差が0となる画素の輪郭強調係数は0に、輝度差が1となる画素の輪郭強調係数は1/127に、輝度差が126となる画素の輪郭強調係数は126/127に、輝度差が127となる画素の輪郭強調係数は1となるように設定される。一方、変換器31では、輝度差が128となる画素の輪郭強調係数は1に、輝度差が129となる画素の輪郭強調係数は126/127に、輝度差が254となる画素の輪郭強調係数は1/127に、輝度差が255となる画素の輪郭強調係数は0となるように設定される。
【0021】
変換器30,31で求められた輪郭強調係数は、乗算器28に送られ、乗算器28では、輪郭強調信号eに輪郭強調係数が乗じられ、強調係数乗算信号f(=e×輪郭強調係数)が求められる。強調係数乗算信号fは加算器27に送られ、加算器27では、1画素遅延信号bに強調係数乗算信号fが加算され、出力信号gが得られる。
【0022】
図3から図5に輪郭強調回路14で得られる信号例を示す。
図3は入力信号aの各画素の輝度値が0、255、255、255、255、0、0であるとき、輪郭強調回路14で得られる信号例を示す。例えば、各画素の輝度差(|b−a|、|b−c|)は、左から1画素目の輝度差が0、0となり、2画素目が255、0となる。この場合において、フィルタ25(図2参照)では、例えば左から1画素目の2つの輝度差がそれぞれ0であるので、この画素における輝度差は0と選択される。2画素目の輝度差は255、0であるので、127との差が小さい0が選択される。以下の全ての画素についても同様に輝度差が選択され、本実施例においては、全ての画素における輝度差が0として選択される。
【0023】
選択された輝度差に応じて変換器30、31(図2参照)において各画素の輪郭強調係数が求められる。図3に示す信号では選択された輝度差がすべて0であるので、すべての画素における輪郭強調係数は0となる。
【0024】
加算器22(図2参照)では、加算信号dが求められ、減算器26で輪郭強調信号eが求められる。輪郭強調信号eは乗算器28に送られ、輪郭強調係数が乗ぜられる。図3の信号例の全ての画素において、輪郭強調係数は0となる。したがって、強調係数乗算信号fは、すべての画素の輝度値が0となり、出力信号gは1画素遅延信号bと同一の信号となる。このようにして、輝度差が最大(255)の画素には、輪郭強調が全く掛けられず、擬似信号の発生が防止される。
【0025】
図4は入力信号の各画素の輝度値が0、127、127、127、127、0、0のときの輪郭強調回路14で得られる信号例を示す。例えば、各画素の輝度差|b−a|、|b−c|は、左から1画素目の輝度差が0、0となり、2画素目が127,0となる。フィルタ25(図2参照)では、例えば、2画素目の輝度差は127、0であるので、127との差が小さい127が選択される。以下の全ての画素についても同様に輝度差が選択され、本実施例においては、左から0、127、127、0、0、127、127、0が各画素の輝度差として選択される。
【0026】
選択された輝度差に応じて変換器30、31(図2参照)において各画素の輪郭強調係数が求められる。図4に示す信号では選択された輝度差が0の画素における輪郭強調係数は0となる。一方、選択された輝度差が127の画素における輪郭強調係数は1となり、左から輪郭強調係数は0、1、1、0、0、1、1、0となる。減算器26で得られた輪郭強調信号eのそれぞれの画素に、これらの輪郭強調係数が乗算器28で乗ぜられ、強調係数乗算信号fが得られる。すなわち、選択された輝度差が基準輝度差と一致する画素では、輪郭強調信号eに輪郭強調係数の最大値である1が乗ぜられ強調係数乗算信号fが得られる。輪郭強調係数信号fには、一画素遅延信号bが加えられ出力信号gが得られる。このようにして、輝度差が基準輝度差となる画素においては、輪郭強調が最大に掛けられた出力信号gが得られる。
【0027】
図5は入力信号の各画素の輝度値が0、63、255、255、255、0、0のときの輪郭強調回路14で得られる信号例を示す。各画素の輝度差|b−a|、|b−c|は、例えば、左から1画素目の輝度差が0、0となり、2画素目が63、0となり、3画素目が192、63、4画素目が0、192となる。この場合において、各画素の輝度差は、127との差が小さい輝度差が選択されるので、それぞれ左から0、63、63、192、0、255、255が選択される。変換器30,31(図2参照)では、その輝度差に応じて輪郭強調係数が求められる。輪郭強調係数は、左から0、63/127、63/127、63/127、0、0、0となり、その輪郭強調係数に応じた輪郭強調係数信号fが得られる。輪郭強調係数信号fには、一画素遅延信号bが加えられ出力信号gが得られる。このようにして、信号が複雑な波形を示した場合でも、基準輝度差との差に応じて輪郭強調量が調整される。
【0028】
なお、本実施形態において、出力信号gは8ビットを超えてしまうこともあるが、その場合、出力信号における分解能が9ビット若しくは10ビットに変更される。
【0029】
本発明の第1の実施形態では、輝度差が大きい領域若しくは小さい領域では輪郭強調が抑制されるため、高輝度部や暗部の不自然な輪郭調教が低減できる。また、輪郭強調が必要な領域では輪郭強調が充分に掛けられるため、シャープな画像が得られる。
【0030】
なお、フィルタ29は図6に示すような構成にしても良い。すなわち、8ビットに量子化された輝度差がビット列に配列され、基準輝度値と比較される構成である。本実施形態においては、輝度差のデータが0であるならばすべてのビットが0にセットされる。そして、輝度差に応じて各ビットが1若しくは0にセットされていき、輝度差が255であるとき、すべてのビットが1にセットされる。輝度差のデータが127ならば、D0からD6ビットに1がセットされ、D7ビットに0がセットされる。輝度差のデータが128ならば、D7ビットに1が、D0からD6ビットに0がセットされる。
【0031】
フィルタ29では、この構成を利用して、D7ビットに1がセットされているか否かにより、フィルタ25で選択された輝度差が基準輝度差(127)より大きいか否かが判定される。D7ビットに1がセットされていなければ、輝度差が基準輝度差(127)以下なので、輪郭強調信号eは変換器30に送られる。D7ビットに1がセットされていれば、輝度差が基準輝度差(127)より大きいので、輪郭強調信号eは変換器31に送られる。本変形例では、輝度値の判別においてD7ビットが0か1であるかのみを判別するのみで良く、データが基準輝度差より大きいか否かが素早く判定される。
【0032】
図7に本発明の第2の実施形態における輪郭強調回路14を示す。第2の実施形態が第1の実施形態と相違する点は、変換器30、31と乗算器28の間にスイッチ32が取り付けられている点である。以下相違点のみを説明する。
【0033】
入力信号aは、第1の実施形態と同様の処理がなされ、減算器26で輪郭強調信号e(=b−(a+c)/2)が得られる。また、変換器30若しくは31でも、輝度差に応じて輪郭強調係数が得られる。スイッチ32は、目的に応じて、手動もしくは自動で変換器30、31のどちらか一方のみが、乗算回路28に接続されるように構成されている。
【0034】
スイッチ32によって、変換器30が乗算回路28に接続されると、輝度差が基準輝度差(127)以下と検出される領域においてのみ輪郭強調が掛けられ、輝度差が基準輝度差(127)より大きい領域において、輪郭強調が掛けられない。これは輝度値が大きい領域が多い場合、出力画像全体が明るくなりすぎることを防止するのに有効な手段である。
【0035】
一方、スイッチ32によって、変換器31が乗算器28に接続されると、輝度差が基準輝度差(127)よりも大きいと検出される領域においてのみ輪郭強調が掛けられ、輝度差が基準輝度差(127)以下の領域において、輪郭強調が掛けられない。輝度差の小さいノイズが多い場合、そのノイズの強調を防止するのに有効な手段である。
【0036】
以上のように第2の実施形態においては、目的に応じて、輝度差が大きい領域若しくは、小さい領域において選択的に、輪郭強調が掛けられない。これによりノイズ強調や擬似信号の抑制が効果的に抑えられる。
【0037】
なお、本発明の第1、第2の実施形態では、1画素遅延信号および2画素遅延により、出力信号が生成されているが、1画素遅延信号のみによって出力信号gが生成される構成にしてもよい。
【0038】
【発明の効果】
本発明においては、基準輝度差を観察に最適と考えられる輝度差に設定することにより、それぞれの輝度差における輪郭強調量が必要に応じて抑制される。これにより、擬似信号の発生やノイズの強調が防止され、鮮明な画像が得られる。
【図面の簡単な説明】
【図1】本発明の第一の実施形態である輪郭強調装置を備えた内視鏡システムを示すブロック図である。
【図2】本発明における輪郭強調回路の第1の実施形態を示す処理ブロック図である。
【図3】輝度差最大のときに輪郭強調回路で得られる信号を示す図である。
【図4】輝度差が中間値のときに輪郭強調回路で得られる信号を示す図である。
【図5】輪郭強調回路で得られる信号を示す図である。
【図6】フィルタで行なわれている処理の変形例を示す模式図である。
【図7】本発明における輪郭強調回路の第2の実施形態を示す処理ブロック図である。
【符号の説明】
10 内視鏡
14 輪郭強調回路
20、23 遅延器
21、24、26 減算器
22、27 加算器
25、29 フィルタ
30、31 変換器
32 スイッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a contour emphasizing device that performs contour emphasis on an image obtained by an endoscope, for example.
[0002]
[Prior art]
Conventionally, in image processing, contour emphasis has been uniformly applied to the entire screen area. That is, in a region where the luminance difference between adjacent pixels is small, the amount of edge enhancement is multiplied by a small amount, and the luminance value of the obtained image data is not much increased compared to the original data. On the other hand, in a region where the luminance difference between adjacent pixels is large, the contour enhancement amount is multiplied by a large amount, and the luminance value of the obtained image data is also increased. As a result, the brightness difference between the regions is clarified, and a sharp image is obtained.
[0003]
However, when the luminance difference becomes extremely large, the contour enhancement amount is also multiplied accordingly, so that the luminance value of the image data becomes too large, and a pseudo signal such as halation may be generated in the area.
[0004]
In particular, image data obtained by an endoscope has a mixture of dark and bright regions due to its optical characteristics, and many regions have a large luminance difference. In addition, many objects to be observed with an endoscope have liquids such as bodily fluids attached thereto, and when these are irradiated with light, the light is excessively reflected, and the luminance difference from the vicinity thereof becomes extremely large. There is. Therefore, many pseudo signals are generated in an image obtained by the endoscope, so that the image is often unnatural. Further, in a dark area where the luminance difference is small, there is a lot of noise. If contour enhancement is equally applied to this area, the noise is enhanced and the image quality may be degraded.
[0005]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to obtain a clear and easy-to-view image by preventing generation of a pseudo signal due to contour enhancement.
[0006]
[Means for Solving the Problems]
An image edge enhancement device according to the present invention includes an edge enhancement unit that performs edge enhancement in accordance with a brightness difference between adjacent pixels for each pixel constituting image data, and a reference brightness difference in which the brightness difference is set in advance. A region emphasis adjusting means for maximizing the amount of outline emphasis in the outline emphasis. It is preferable that the contour emphasis adjusting means makes the contour emphasis amount relatively small in a region where the difference between the luminance difference and the reference luminance difference is relatively large. Thus, in a region where the luminance difference becomes too large, the amount of contour enhancement is suppressed, and generation of a pseudo signal is prevented.
[0007]
Preferably, the luminance value of the image data is quantized within a certain range, and the reference luminance difference is a substantially intermediate value within the certain range. Preferably, the contour emphasizing means performs the contour emphasis in accordance with the luminance difference having the smallest difference from the reference luminance difference among the luminance differences with the adjacent pixels. The imaging device for obtaining image data is preferably an endoscope.
[0008]
It is preferable that the contour emphasis adjusting means performs the contour emphasis only in a region where the luminance difference is detected to be smaller than the reference luminance difference. Further, the contour emphasis adjusting means may perform the contour emphasis only on an area where the luminance difference is detected to be larger than the reference luminance difference. This makes it possible to prevent contour enhancement in a region where the luminance difference is large or small as necessary.
[0009]
The image edge enhancement device image according to the present invention includes an edge enhancement unit that performs edge enhancement on data, and an edge enhancement only in an area where a brightness difference between adjacent pixels is detected to be smaller than a preset reference brightness difference. A contour emphasis adjusting means for emphasizing is provided. In addition, the image edge enhancement device according to the present invention includes an edge enhancement unit that performs edge enhancement on image data, and an image enhancement unit that performs an edge enhancement on an area where a brightness difference between adjacent pixels is detected to be larger than a preset reference brightness difference. And a contour emphasis adjusting unit for performing contour emphasis only.
[0010]
The image edge enhancement method according to the present invention further includes an edge enhancement step of performing edge enhancement for each pixel constituting the image data according to a brightness difference between adjacent pixels, and a reference brightness difference in which the brightness difference is set in advance. And a contour emphasis adjusting step of maximizing the amount of contour emphasis in the contour emphasis in the following region.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows an endoscope system provided with an image contour enhancement device according to a first embodiment of the present invention. The endoscope system includes an endoscope 10 and an image processing device. The endoscope 10 is an imaging device for obtaining image data from a subject, and the image processing device is a device for processing image data obtained by the endoscope 10 so that the image data can be output as an image.
[0012]
In the CPU 12, control information is generated, and the generated control information is sent to the mask generation circuit 13 and the outline emphasis circuit 14. The mask generation circuit 13 and the outline emphasis circuit 14 are controlled based on the generated control information.
[0013]
The image data obtained by the endoscope 10 is converted into a video signal, and the video signal is sent to the adder 11. The adder 11 adds the mask information generated by the mask generation circuit 13 to the sent video signal. The video signal to which the mask information has been added is sent to the contour emphasizing circuit 14 and subjected to contour emphasis.
[0014]
The video signal on which the contour enhancement has been applied is sent to the video signal processing circuit 15, where the video signal is A / D-converted and separated into RGB by the video signal processing circuit 15, and is separated into R memory 16a, G memory 16b, and B memory 16c, respectively. Is stored in Each of the stored video signals is input to the video image processing circuit 17, subjected to D / A conversion, and then output as an image to an output monitor. The synchronization signal generator 18 generates a synchronization signal. The synchronization signal is sent to the timing circuit 19 and is used for controlling the operation timing of the video processing circuit 15 and the video processing circuit 17 and for controlling the writing and reading of the memories 16a, 16b and 16c.
[0015]
FIG. 2 shows the outline emphasis circuit 14. The contour emphasis circuit 14 performs contour emphasis on each pixel constituting the image data in accordance with a luminance difference between adjacent pixels. Here, the luminance difference is quantized by 8 bits (256 steps) and the calculation is performed, but the resolution may be changed according to the purpose.
[0016]
The input signal a is sent to the delay unit 20 and sent to the subtractor 21 and the adder 22. In the delay unit 20, the input signal a is delayed by one pixel, and a one-pixel delayed signal b is obtained. The one-pixel delay signal b is sent to the delay unit 23 and sent to the subtracters 21, 24, 26 and the adder 27. In the delay unit 23, the one-pixel delay signal b is delayed by one pixel to obtain a two-pixel delay signal c. The two-pixel delay signal c is sent to the adder 22 and the subtractor 24.
[0017]
In the adder 22, after the input signal a and the two-pixel delay signal c are added, the result is multiplied by a coefficient (1/2) to obtain an addition signal d (= (a + c) / 2). In the subtracter 26, the addition signal d sent from the adder 22 is subtracted from the one-pixel delay signal b, and an edge enhancement signal e (= b− (a + c) / 2) is obtained. The obtained contour emphasis signal e is sent to the multiplier 28.
[0018]
In the subtracter 21, the input signal a is subtracted from the one-pixel delay signal b, and its absolute value (| ba |) is obtained. Similarly, the subtracter 24 also subtracts the two-pixel delay signal c from the one-pixel delay signal b, and obtains the absolute value (| bc-). The absolute values obtained by the subtracters 21 and 24 are sent to the filter 25 as a luminance difference between adjacent pixels. The filter 25 selects a luminance difference having a small difference from the reference luminance difference among luminance differences (| ba | or | bc |) between each pixel and an adjacent pixel. If the values of | ba | and | bc− become equal, the one with the larger value of the luminance difference is selected. The selected value is sent to the filter 29, and the filter 29 reads whether or not the difference is larger than the reference luminance difference. It is sent to 31. Note that the reference luminance difference is set to a luminance difference at which contour enhancement is most required. In the present embodiment, the reference luminance difference is set in advance to 127 which is an intermediate value within a range where the luminance difference is quantized.
[0019]
In the converters 30 and 31, the contour enhancement amount is maximized in a region where the luminance difference selected by the filter 25 is the reference luminance difference, and the difference between the selected luminance difference and the reference luminance difference is relatively large. The contour emphasis coefficient is set so that the contour emphasis amount becomes relatively small in the region. That is, converter 30 increases the contour emphasis coefficient in the region where the selected luminance difference increases, and converter 31 decreases the contour emphasis coefficient in the region where the selected luminance difference value increases. Is set to In the present embodiment, the relationship between the selected luminance difference and the contour emphasis coefficient is set to be proportional, and the minimum value of the contour emphasis coefficient is set to 0 and the maximum value is set to 1 I have.
[0020]
For example, in the converter 30, the contour enhancement coefficient of the selected pixel whose luminance difference is 0 is 0, the contour enhancement coefficient of the pixel whose luminance difference is 1 is 1/127, and the pixel whose luminance difference is 126 is 126. The contour emphasis coefficient is set to 126/127, and the contour emphasis coefficient of a pixel having a luminance difference of 127 is set to 1. On the other hand, in the converter 31, the contour emphasis coefficient of the pixel whose luminance difference is 128 is 1, the contour emphasis coefficient of the pixel whose luminance difference is 129 is 126/127, and the contour emphasis coefficient of the pixel whose luminance difference is 254. Is set to 1/127, and the contour emphasis coefficient of a pixel having a luminance difference of 255 is set to 0.
[0021]
The contour emphasis coefficients obtained by the converters 30 and 31 are sent to a multiplier 28, where the contour emphasis signal e is multiplied by the contour emphasis coefficient, and an emphasis coefficient multiplication signal f (= e × contour emphasis coefficient) ) Is required. The enhancement coefficient multiplication signal f is sent to the adder 27, where the enhancement coefficient multiplication signal f is added to the one-pixel delay signal b to obtain an output signal g.
[0022]
3 to 5 show signal examples obtained by the contour emphasizing circuit 14.
FIG. 3 shows an example of a signal obtained by the contour emphasizing circuit 14 when the luminance value of each pixel of the input signal a is 0, 255, 255, 255, 255, 0, 0. For example, the brightness difference (| ba |, | bc |) of each pixel is such that the brightness difference of the first pixel from the left is 0, 0, and that of the second pixel is 255, 0. In this case, in the filter 25 (see FIG. 2), for example, since the two luminance differences of the first pixel from the left are each 0, the luminance difference in this pixel is selected as 0. Since the luminance difference of the second pixel is 255, 0, 0 having a small difference from 127 is selected. The luminance difference is similarly selected for all the following pixels, and in this embodiment, the luminance difference for all the pixels is selected as 0.
[0023]
The converters 30 and 31 (see FIG. 2) determine the outline emphasis coefficient of each pixel according to the selected luminance difference. In the signal shown in FIG. 3, the selected luminance differences are all 0, and thus the edge enhancement coefficients for all the pixels are 0.
[0024]
The adder 22 (see FIG. 2) calculates the addition signal d, and the subtracter 26 calculates the contour emphasis signal e. The contour emphasis signal e is sent to the multiplier 28, where it is multiplied by a contour emphasis coefficient. The contour enhancement coefficient is 0 for all the pixels in the signal example of FIG. Therefore, in the enhancement coefficient multiplication signal f, the luminance values of all pixels are 0, and the output signal g is the same signal as the one-pixel delay signal b. In this way, no contour emphasis is applied to the pixel having the maximum luminance difference (255), thereby preventing generation of a pseudo signal.
[0025]
FIG. 4 shows a signal example obtained by the contour emphasizing circuit 14 when the luminance value of each pixel of the input signal is 0, 127, 127, 127, 127, 0, 0. For example, as for the luminance differences | ba− || bc | of the respective pixels, the luminance difference of the first pixel from the left is 0, 0, and the luminance difference of the second pixel is 127, 0. In the filter 25 (see FIG. 2), for example, since the luminance difference of the second pixel is 127, 0, 127 having a small difference from 127 is selected. The luminance difference is similarly selected for all the pixels below, and in the present embodiment, 0, 127, 127, 0, 0, 127, 127, 0 from the left are selected as the luminance difference of each pixel.
[0026]
The converters 30 and 31 (see FIG. 2) determine the outline emphasis coefficient of each pixel according to the selected luminance difference. In the signal shown in FIG. 4, the contour emphasis coefficient of the selected pixel having the luminance difference of 0 is 0. On the other hand, the contour enhancement coefficient of the selected pixel having a luminance difference of 127 is 1, and the contour enhancement coefficients are 0, 1, 1, 0, 0, 1, 1, 0 from the left. Each pixel of the contour emphasis signal e obtained by the subtracter 26 is multiplied by these contour emphasis coefficients by the multiplier 28 to obtain an emphasis coefficient multiplication signal f. That is, at the pixel where the selected luminance difference matches the reference luminance difference, the outline emphasis signal e is multiplied by 1 which is the maximum value of the outline emphasis coefficient, and the emphasis coefficient multiplication signal f is obtained. The one-pixel delay signal b is added to the contour emphasis coefficient signal f, and an output signal g is obtained. In this manner, an output signal g with the maximum edge enhancement is obtained for a pixel whose luminance difference is equal to the reference luminance difference.
[0027]
FIG. 5 shows an example of a signal obtained by the contour emphasizing circuit 14 when the luminance value of each pixel of the input signal is 0, 63, 255, 255, 255, 0, 0. The luminance difference | ba− || bc | of each pixel is, for example, that the luminance difference of the first pixel from the left is 0, 0, the second pixel is 63, 0, and the third pixel is 192, 63. And the fourth pixel is 0,192. In this case, since a luminance difference between each pixel and a difference from 127 is small, 0, 63, 63, 192, 0, 255, 255 are selected from the left. In the converters 30 and 31 (see FIG. 2), an outline emphasis coefficient is obtained according to the luminance difference. The contour enhancement coefficients are 0, 63/127, 63/127, 63/127, 0, 0, 0 from the left, and a contour enhancement coefficient signal f corresponding to the contour enhancement coefficient is obtained. The one-pixel delay signal b is added to the contour emphasis coefficient signal f, and an output signal g is obtained. In this way, even when the signal has a complicated waveform, the contour enhancement amount is adjusted according to the difference from the reference luminance difference.
[0028]
In this embodiment, the output signal g may exceed 8 bits, but in this case, the resolution of the output signal is changed to 9 bits or 10 bits.
[0029]
In the first embodiment of the present invention, contour enhancement is suppressed in a region where the luminance difference is large or small, so that unnatural contour training in a high luminance portion or a dark portion can be reduced. In a region where contour enhancement is required, a sharp image is obtained because the contour enhancement is sufficiently applied.
[0030]
Note that the filter 29 may be configured as shown in FIG. That is, the luminance difference quantized to 8 bits is arranged in a bit string and compared with the reference luminance value. In the present embodiment, if the luminance difference data is 0, all bits are set to 0. Then, each bit is set to 1 or 0 according to the luminance difference, and when the luminance difference is 255, all bits are set to 1. If the data of the luminance difference is 127, 1 is set in the D0 to D6 bits, and 0 is set in the D7 bit. If the luminance difference data is 128, 1 is set in the D7 bit and 0 is set in the D0 to D6 bits.
[0031]
Using this configuration, the filter 29 determines whether or not the luminance difference selected by the filter 25 is larger than the reference luminance difference (127) based on whether or not the D7 bit is set to 1. If the D7 bit is not set to 1, the luminance difference is equal to or smaller than the reference luminance difference (127), and the contour emphasis signal e is sent to the converter 30. If the D7 bit is set to 1, the luminance difference is larger than the reference luminance difference (127), and the contour emphasis signal e is sent to the converter 31. In this modification, it is only necessary to determine whether the D7 bit is 0 or 1 in the determination of the luminance value, and it is quickly determined whether or not the data is larger than the reference luminance difference.
[0032]
FIG. 7 shows an outline emphasis circuit 14 according to the second embodiment of the present invention. The second embodiment is different from the first embodiment in that a switch 32 is provided between the converters 30 and 31 and the multiplier 28. Hereinafter, only the differences will be described.
[0033]
The input signal a is subjected to the same processing as in the first embodiment, and the contour emphasis signal e (= b− (a + c) / 2) is obtained by the subtractor 26. Also, the converter 30 or 31 can also obtain an outline emphasis coefficient according to the luminance difference. The switch 32 is configured such that only one of the converters 30 and 31 is connected to the multiplication circuit 28 manually or automatically according to the purpose.
[0034]
When the converter 30 is connected to the multiplying circuit 28 by the switch 32, contour emphasis is applied only to a region where the luminance difference is detected to be equal to or smaller than the reference luminance difference (127), and the luminance difference is compared with the reference luminance difference (127). In a large area, contour enhancement is not applied. This is an effective means for preventing the entire output image from becoming too bright when there are many areas having a large luminance value.
[0035]
On the other hand, when the converter 32 is connected to the multiplier 28 by the switch 32, contour enhancement is applied only to an area where the luminance difference is detected to be larger than the reference luminance difference (127), and the luminance difference is changed to the reference luminance difference. (127) In the following areas, contour enhancement is not applied. When there is a lot of noise with a small luminance difference, this is an effective means for preventing the noise from being emphasized.
[0036]
As described above, in the second embodiment, contour enhancement is not selectively applied to a region having a large luminance difference or a region having a small luminance difference depending on the purpose. This effectively suppresses noise enhancement and suppression of pseudo signals.
[0037]
In the first and second embodiments of the present invention, the output signal is generated by the one-pixel delay signal and the two-pixel delay, but the output signal g is generated only by the one-pixel delay signal. Is also good.
[0038]
【The invention's effect】
In the present invention, by setting the reference luminance difference to a luminance difference considered to be optimal for observation, the amount of contour enhancement at each luminance difference is suppressed as necessary. Thereby, generation of a pseudo signal and enhancement of noise are prevented, and a clear image is obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating an endoscope system including a contour emphasis device according to a first embodiment of the present invention.
FIG. 2 is a processing block diagram showing a first embodiment of the contour emphasizing circuit according to the present invention.
FIG. 3 is a diagram showing a signal obtained by an outline emphasizing circuit when the luminance difference is maximum.
FIG. 4 is a diagram illustrating a signal obtained by an outline emphasizing circuit when a luminance difference is an intermediate value.
FIG. 5 is a diagram illustrating signals obtained by an outline emphasis circuit.
FIG. 6 is a schematic diagram showing a modified example of the processing performed by the filter.
FIG. 7 is a processing block diagram showing a second embodiment of the contour emphasizing circuit according to the present invention.
[Explanation of symbols]
Reference Signs List 10 endoscope 14 contour emphasis circuit 20, 23 delay unit 21, 24, 26 subtractor 22, 27 adder 25, 29 filter 30, 31 converter 32 switch

Claims (10)

画像データを構成する各画素に対して隣接画素との輝度差に応じた輪郭強調を行う輪郭強調手段と、前記輝度差が予め設定されている基準輝度差となる領域において、前記輪郭強調における輪郭強調量を最大にする輪郭強調調整手段とを備える画像輪郭強調装置。Contour enhancing means for performing contour enhancement in accordance with the luminance difference between adjacent pixels for each pixel constituting the image data; and a contour in the contour emphasis in a region where the luminance difference is a preset reference luminance difference. An image edge enhancement device comprising: an edge enhancement adjustment unit that maximizes an enhancement amount. 前記輪郭強調調整手段が前記輝度差と前記基準輝度差との差が相対的に大きくなる前記領域において前記輪郭強調量を相対的に小さくすることを特徴とする請求項1に記載する画像輪郭強調装置。2. The image edge enhancement according to claim 1, wherein the edge enhancement adjustment unit relatively reduces the edge enhancement amount in the region where the difference between the luminance difference and the reference luminance difference is relatively large. apparatus. 前記画像データの輝度値を一定の範囲内で量子化し、前記基準輝度差を前記範囲の略中間値とすることを特徴とする請求項1に記載する画像輪郭強調装置。2. The image contour emphasizing device according to claim 1, wherein the luminance value of the image data is quantized within a certain range, and the reference luminance difference is set to a substantially intermediate value of the range. 前記輪郭強調手段が、隣接画素との輝度差のうち前記基準輝度差との差が最も小さい輝度差に応じて輪郭強調を行うことを特徴とする請求項1に記載する画像輪郭強調装置。2. The image edge enhancement device according to claim 1, wherein the edge enhancement unit performs edge enhancement in accordance with a brightness difference having a smallest difference from the reference brightness difference among brightness differences from adjacent pixels. 3. 前記輪郭強調調整手段が、前記輝度差が前記基準輝度差よりも小さいと検出される前記領域においてのみ輪郭強調を行うことを特徴とする請求項1に記載する画像輪郭強調装置。2. The image edge enhancement device according to claim 1, wherein the edge enhancement adjustment unit performs edge enhancement only in the area where the luminance difference is detected to be smaller than the reference luminance difference. 前記輪郭強調調整手段が、前記輝度差が基準輝度差よりも大きいと検出される領域においてのみ輪郭強調を行うことを特徴とする請求項1に記載する画像輪郭強調装置。2. The image edge enhancement device according to claim 1, wherein the edge enhancement adjustment unit performs edge enhancement only in an area where the luminance difference is detected to be larger than a reference luminance difference. 前記画像データを得るための撮像装置が内視鏡であることを特徴とする請求項1に記載する画像輪郭強調装置。2. The image edge enhancement device according to claim 1, wherein the imaging device for obtaining the image data is an endoscope. 画像データに対して輪郭強調を行う輪郭強調手段と、隣接画素との輝度差が予め設定されている基準輝度差よりも小さいと検出される領域においてのみ輪郭強調を行う輪郭強調調整手段を備える画像輪郭強調装置。An image comprising: an outline emphasis unit that performs outline emphasis on image data; and an outline emphasis adjustment unit that performs outline emphasis only in an area where a luminance difference between adjacent pixels is detected to be smaller than a preset reference luminance difference. Contour enhancement device. 画像データに対して輪郭強調を行う輪郭強調手段と、隣接画素との輝度差が予め設定されている基準輝度差よりも大きいと検出される領域においてのみ前記輪郭強調を行う輪郭強調調整手段とを備える画像輪郭強調装置。Contour enhancement means for performing contour enhancement on image data, and contour enhancement adjustment means for performing the contour enhancement only in an area where a luminance difference between adjacent pixels is detected to be larger than a preset reference luminance difference. Image edge enhancement device provided. 画像データを構成する各画素に対して隣接画素との輝度差に応じた輪郭強調を行う輪郭強調ステップと、前記輝度差が予め設定されている基準輝度差となる領域において、前記輪郭強調における輪郭強調量を最大にする輪郭強調調整ステップとを備える画像輪郭強調方法。A contour emphasizing step of performing contour emphasis on each pixel constituting the image data in accordance with a luminance difference between adjacent pixels, and a contour in the contour emphasis in a region where the luminance difference is a preset reference luminance difference. An edge enhancement adjusting step of maximizing an enhancement amount.
JP2002199803A 2002-07-09 2002-07-09 Image contour enhancement device Expired - Fee Related JP4190221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199803A JP4190221B2 (en) 2002-07-09 2002-07-09 Image contour enhancement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199803A JP4190221B2 (en) 2002-07-09 2002-07-09 Image contour enhancement device

Publications (2)

Publication Number Publication Date
JP2004046329A true JP2004046329A (en) 2004-02-12
JP4190221B2 JP4190221B2 (en) 2008-12-03

Family

ID=31706848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199803A Expired - Fee Related JP4190221B2 (en) 2002-07-09 2002-07-09 Image contour enhancement device

Country Status (1)

Country Link
JP (1) JP4190221B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006074584A1 (en) * 2005-01-17 2006-07-20 Shenzhen Chuangwei-Rgb Electronics Co., Ltd. A method for improving the display effect of display device
JP2007117154A (en) * 2005-10-25 2007-05-17 Pentax Corp Electronic endoscope system
CN100362850C (en) * 2005-01-17 2008-01-16 深圳创维-Rgb电子有限公司 Method for strengthening edge of TV image
CN100362849C (en) * 2005-01-17 2008-01-16 深圳创维-Rgb电子有限公司 Dynamic depth lifting method for TV image
DE102008032989A1 (en) 2007-07-13 2009-01-15 Hoya Corporation Device and method for edge stressing
US7860329B2 (en) 2005-08-17 2010-12-28 Hoya Corporation Edge enhancement processing unit, endoscope processor, and computer program product
US20220301111A1 (en) * 2021-03-19 2022-09-22 Acer Medical Inc. Image pre-processing method and image processing apparatus for fundoscopic image

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006074584A1 (en) * 2005-01-17 2006-07-20 Shenzhen Chuangwei-Rgb Electronics Co., Ltd. A method for improving the display effect of display device
CN100362850C (en) * 2005-01-17 2008-01-16 深圳创维-Rgb电子有限公司 Method for strengthening edge of TV image
CN100362849C (en) * 2005-01-17 2008-01-16 深圳创维-Rgb电子有限公司 Dynamic depth lifting method for TV image
US7860329B2 (en) 2005-08-17 2010-12-28 Hoya Corporation Edge enhancement processing unit, endoscope processor, and computer program product
JP2007117154A (en) * 2005-10-25 2007-05-17 Pentax Corp Electronic endoscope system
DE102008032989A1 (en) 2007-07-13 2009-01-15 Hoya Corporation Device and method for edge stressing
US8170362B2 (en) 2007-07-13 2012-05-01 Hoya Corporation Edge-enhancement device and edge-enhancement method
US20220301111A1 (en) * 2021-03-19 2022-09-22 Acer Medical Inc. Image pre-processing method and image processing apparatus for fundoscopic image
CN115115528A (en) * 2021-03-19 2022-09-27 宏碁智医股份有限公司 Image preprocessing method and image processing device for fundus image
JP2022145411A (en) * 2021-03-19 2022-10-04 宏碁智醫股▲ふん▼有限公司 Image pre-processing method and image processing apparatus for fundoscopic image
JP7337124B2 (en) 2021-03-19 2023-09-01 宏碁智醫股▲ふん▼有限公司 Image preprocessing method and image processing apparatus for fundus examination images
US11954824B2 (en) 2021-03-19 2024-04-09 Acer Medical Inc. Image pre-processing method and image processing apparatus for fundoscopic image

Also Published As

Publication number Publication date
JP4190221B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
JP5157753B2 (en) Image processing apparatus, image processing method, and image processing program
JP2009021905A (en) Contour enhancement apparatus
JP2009176325A (en) Image processor, image processing method, and image processing program
JP4479527B2 (en) Image processing method, image processing apparatus, image processing program, and electronic camera
TW201108719A (en) Image processing apparatus and computer-readable medium
JP2011003048A (en) Image processing apparatus and image processing program
JP3184309B2 (en) Gradation correction circuit and imaging device
JP2008103785A (en) Outline emphasizing circuit, outline emphasizing method, imaging device, and view finder
JP2011228807A (en) Image processing program, image processing apparatus, and image processing method
JP2004363853A (en) Method and device for reducing noise of image signal
JP2009171062A (en) Image processor, imaging apparatus, method, and program
JP2003281531A (en) Image processing method, processor and program
JP2004297701A (en) Video processing apparatus and image pickup system
JP2004046329A (en) Image contour enhancement device
JP2007336258A (en) Video signal processor and video signal processing method
JP2008219289A (en) Video correction device, video display device, imaging apparatus and video correction program
JP5365881B2 (en) Image processing apparatus and image processing method
JP2010098553A (en) Gradation correction device, gradation correction method, program, image capturing apparatus and image processing apparatus
JP5146500B2 (en) Image composition apparatus, image composition method, and program
JP2003223636A (en) Image processor
JP3291694B2 (en) Noise removal circuit in negative imaging device
JP2008141414A (en) Color image correction device, color image correction method, and program
JP2002077619A (en) Image processing apparatus
JP2006332732A (en) Apparatus for suppressing color shift noise
JPH11164309A (en) Image signal processing method and electronic camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees