JP2004046267A - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
JP2004046267A
JP2004046267A JP2003373870A JP2003373870A JP2004046267A JP 2004046267 A JP2004046267 A JP 2004046267A JP 2003373870 A JP2003373870 A JP 2003373870A JP 2003373870 A JP2003373870 A JP 2003373870A JP 2004046267 A JP2004046267 A JP 2004046267A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
substrates
crystal display
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003373870A
Other languages
Japanese (ja)
Other versions
JP3811695B2 (en
Inventor
Katsumi Kondo
近藤 克己
Hiroshi Terao
寺尾  弘
Hidetoshi Abe
阿部 英俊
Masuyuki Ota
太田 益幸
Kenkichi Suzuki
鈴木 堅吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003373870A priority Critical patent/JP3811695B2/en
Publication of JP2004046267A publication Critical patent/JP2004046267A/en
Application granted granted Critical
Publication of JP3811695B2 publication Critical patent/JP3811695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stably provide a bright liquid crystal display device having a high image quality. <P>SOLUTION: The liquid crystal display device having a plurality of thin film transistors has a pair of substrates and a liquid crystal layer held between the pair of substrates, and at least one of the pair of substrates has an electrode structure formed to generate an electric field dominantly having components parallel with one of the pair of substrates, in the liquid crystal layer, a non-conductive layer formed so as to come into contact with the liquid crystal layer, and a color filter arranged on the non-conductive layer, and a surface coming into contact with the color filter, of the non-conductive layer makes the color filter flat, and a surface coming into contact with the liquid crystal layer controls orientation of liquid crystal of the liquid crystal layer. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、量産性が良好で低コストで視角特性が良好な薄膜トランジスタ型液晶表示装置に関する。 The present invention relates to a thin film transistor type liquid crystal display device having good mass productivity, low cost, and good viewing angle characteristics.

 従来の薄膜トランジスタ型液晶表示装置では、液晶層を駆動する電極としては2枚の基板界面上に形成し相対向させた透明電極を用いていた。これは、液晶に印加する電界の方向を基板界面にほぼ垂直な方向とすることで動作する、ツイステッドネマチック表示方式に代表される表示方式を採用していることによる。一方、液晶に印加する電界の方向を基板界面にほぼ平行な方向とする方式として、櫛歯電極対を用いた方式が、例えば下記特許文献1により提案されている。この場合、電極は透明である必要は無く導電性が高く不透明な金属電極を用いることが可能である。 (4) In a conventional thin film transistor type liquid crystal display device, a transparent electrode formed on the interface between two substrates and opposed to each other is used as an electrode for driving the liquid crystal layer. This is because a display method typified by a twisted nematic display method, which operates by setting the direction of an electric field applied to the liquid crystal to a direction substantially perpendicular to the substrate interface, is employed. On the other hand, as a method in which the direction of the electric field applied to the liquid crystal is made substantially parallel to the substrate interface, a method using a pair of comb-teeth electrodes has been proposed, for example, in Patent Document 1 below. In this case, the electrode does not need to be transparent, and an opaque metal electrode having high conductivity can be used.

特公昭63−21907号公報JP-B-63-21907

 前記の従来技術においては、ITOに代表される透明電極を形成する為にスパッタリング装置等の真空系製造設備を使用する必要があり、設備コストが巨額になっていた。また、真空系製造設備の使用には真空炉内の汚染を除去する作業を伴い、その為に多大な時間を要し、このことが製造コストを著しく引き上げている。また、一般に透明電極はその表面に数10nm程度の凹凸があり、薄膜トランジスタのような微細なアクティブ素子の加工を困難にしている。さらに、透明電極の凸部はしばしば離脱し電極等の他の部分に混入し、点状或いは線状の表示欠陥を引き起こし、歩留まりを著しく低下させていた。これらの為に、マーケットニーズに対応した低価格の液晶表示装置を安定的に提供することが出来ずにいた。また、前記の従来技術においては、画質面でも多くの課題を有していた。特に、視角方向を変化させた際の輝度変化が著しく、中間調表示を行った場合、強い各方向により階調レベルが反転してしまうなど、実用上問題であった。さらに、薄膜トランジスタ素子の凹凸構造の為にその周辺で配向不良ドメインが発生し、その対策の為に大きな面積の遮光膜を要し、光の利用効率も著しく低下させていた。 (4) In the above-mentioned conventional technology, it is necessary to use a vacuum-based manufacturing equipment such as a sputtering apparatus in order to form a transparent electrode typified by ITO, and the equipment cost is enormous. In addition, the use of a vacuum-based manufacturing facility involves an operation of removing contamination in a vacuum furnace, which requires a great deal of time, which significantly increases the manufacturing cost. In general, a transparent electrode has irregularities of about several tens of nm on its surface, which makes it difficult to process a fine active element such as a thin film transistor. Further, the convex portion of the transparent electrode often separates and mixes with other portions such as the electrode, causing a dot-like or linear display defect, and significantly reducing the yield. For these reasons, it has not been possible to stably provide a low-cost liquid crystal display device that meets market needs. Further, in the above-described conventional technology, there are many problems in terms of image quality. In particular, the luminance change when the viewing angle direction is changed is remarkable, and when halftone display is performed, there is a practical problem such that the grayscale level is inverted in each strong direction. Further, the uneven structure of the thin-film transistor element causes a poorly-aligned domain around the thin-film transistor element, and a light-shielding film having a large area is required for the countermeasure, and the light use efficiency is remarkably reduced.

 一方、特許文献1に示されている櫛歯電極を用いれば透明電極を使う必要はなくなり、上記の課題を解決できる可能性があるが、以下の理由により実用化はされていない。即ち、この公知技術に於いては相互に咬合する櫛歯電極対を用いているために、画素内のパターンが微細化かつ複雑化し、量産性が著しく低い。特に、表示情報量が多く、画素サイズの小さなディスプレイでは櫛歯構造の電極を1画素内に入れることはほとんど不可能であり、仮に入れたとしても開口率が著しく低く、ほとんど光が有効に利用できない暗いディスプレイしか実現できない。原理的には櫛歯電極の電極幅を1〜2μm程度まで縮小すれば開口率を実用レベルまで拡大出来るが、実際には大型基板全面にわたってそのような細線を均一にかつ断線がないように形成することは極めて困難である。即ち、上記の従来技術では、相互に咬合する櫛歯状の電極を用いたために画素開口率と製造歩留まりがトレードオフの関係となり、明るい画像を有する液晶表示装置を低コストで提供することは困難であった。 On the other hand, if the comb-shaped electrode disclosed in Patent Document 1 is used, it is not necessary to use a transparent electrode, and there is a possibility that the above problem can be solved. However, it has not been put to practical use for the following reasons. That is, in this known technique, since the interdigitated comb-teeth electrode pair is used, the pattern in the pixel becomes fine and complicated, and the mass productivity is extremely low. In particular, in a display having a large amount of display information and a small pixel size, it is almost impossible to put an electrode having a comb-teeth structure in one pixel, and even if it is inserted, the aperture ratio is extremely low and almost all light is effectively used. Only dark displays that can not be realized. In principle, the aperture ratio can be increased to a practical level if the electrode width of the comb electrode is reduced to about 1 to 2 μm, but in practice such fine wires are formed uniformly and without breakage over the entire large substrate. It is extremely difficult to do. That is, in the above-described conventional technology, since the interdigitating comb-shaped electrodes are used, the pixel aperture ratio and the manufacturing yield are in a trade-off relationship, and it is difficult to provide a liquid crystal display device having a bright image at low cost. Met.

 本発明はこれらの課題を同時に解決するもので、その目的とするところは、第一に、透明電極がなくとも高コントラストで、低価格の設備で高い歩留まりで量産可能な低コストの薄膜トランジスタ型液晶表示装置を提供することにある。第二に、低い電圧で駆動ができかつ視角特性が良好で多階調表示が容易である薄膜トランジスタ型液晶表示装置を提供することにある。第三に、使用可能な液晶組成物及び配向膜材料の選択の自由度を上げ、これにより液晶パネル作製等のプロセスの裕度を大きくし、高い開口率と画素劣化抑制を両立させ、光透過率を引上げた、より明るい薄膜トランジスタ型液晶表示装置を提供することにある。第四に、第一から第三の目的に加えてより構造が簡素であり、製造歩留まりが高い薄膜トランジスタ型液晶表示装置を提供することにある。 The present invention solves these problems at the same time. The purpose of the present invention is, firstly, a low-cost thin film transistor type liquid crystal which can be mass-produced with a high yield without using a transparent electrode, with high-contrast equipment and low-cost equipment. It is to provide a display device. Second, it is an object of the present invention to provide a thin film transistor type liquid crystal display device which can be driven at a low voltage, has good viewing angle characteristics, and can easily perform multi-tone display. Third, the degree of freedom in selecting usable liquid crystal compositions and alignment film materials is increased, thereby increasing the latitude of processes such as liquid crystal panel fabrication, achieving a high aperture ratio and suppressing pixel deterioration, and achieving light transmission. It is an object of the present invention to provide a brighter thin film transistor type liquid crystal display device with an increased rate. Fourth, in addition to the first to third objects, it is an object of the present invention to provide a thin film transistor type liquid crystal display device having a simpler structure and a high production yield.

 複数の薄膜トランジスタを有する液晶表示装置において、一対の基板と、この一対の基板に挾持された液晶層と、前記一対の基板の一方の基板に形成され、前記基板に対して支配的に平行な成分を持った電界を前記液晶層に発生させる電極構造と、前記液晶層に接する非導電層と、その非導電層の層上に配置されたカラーフィルタとを有し、前記非導電層の前記カラーフィルタに接する面はこのカラーフィルタを平坦化し、前記液晶層に接する面はこの液晶層の液晶の配向を制御する構造とする。 In a liquid crystal display device having a plurality of thin film transistors, a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and a component formed on one of the pair of substrates and being predominantly parallel to the substrates. An electrode structure for generating an electric field having an electric field in the liquid crystal layer, a non-conductive layer in contact with the liquid crystal layer, and a color filter disposed on the non-conductive layer, and the color of the non-conductive layer The surface in contact with the filter flattens the color filter, and the surface in contact with the liquid crystal layer has a structure for controlling the orientation of the liquid crystal in the liquid crystal layer.

 そのカラーフィルタは前記一対の基板の他方に形成してもよい。 カ ラ ー The color filter may be formed on the other of the pair of substrates.

 また、上記非導電層は少なくとも1層の有機ポリマ層を有することが望ましく、さらに、その有機ポリマ層がエポキシ樹脂か、若しくはポリイミド樹脂を含むことが望ましい。 The non-conductive layer desirably has at least one organic polymer layer, and the organic polymer layer desirably contains an epoxy resin or a polyimide resin.

 また、その非導電層は少なくとも1層の無機物層を有することが望ましい。 It is desirable that the non-conductive layer has at least one inorganic layer.

 このように形成することによって、カラーフィルタの凹凸を平坦化する有機ポリマと液晶分子を配向制御するための配向膜とが兼用でき、低コスト化に有効である。 形成 By forming in this manner, the organic polymer for flattening the unevenness of the color filter can also be used as the alignment film for controlling the alignment of the liquid crystal molecules, which is effective in reducing the cost.

 また、同様に配向膜と絶縁膜を兼用させる構造として、複数の薄膜トランジスタを有する液晶表示装置において、一対の基板と、この一対の基板に挾持された液晶層と、前記基板に対して支配的に平行な成分を持った電界を前記液晶層に発生させる電極構造と、前記電極構造及び前記複数の薄膜トランジスタ上に形成された絶縁膜とを有し、前記液晶層に接する前記絶縁膜の一方の面はこの液晶層の液晶分子の配向を制御するような構成とする。 In a liquid crystal display device having a plurality of thin film transistors, a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and An electrode structure for generating an electric field having a parallel component in the liquid crystal layer; and an insulating film formed on the electrode structure and the plurality of thin film transistors; and one surface of the insulating film in contact with the liquid crystal layer. Is configured to control the alignment of liquid crystal molecules in the liquid crystal layer.

 それらの薄膜トランジスタに接する前記絶縁膜の他方の面はこれらの薄膜トランジスタを平坦化することが望ましい。 他方 It is desirable that the other surface of the insulating film in contact with the thin film transistors be flattened.

 その絶縁膜は少なくとも1層の有機ポリマ層を有することが望ましく、さらに、その有機ポリマがエポキシ樹脂、若しくはポリイミド樹脂を含むことが望ましい。 絶 縁 The insulating film desirably has at least one organic polymer layer, and the organic polymer desirably includes an epoxy resin or a polyimide resin.

 また、その絶縁膜は少なくとも1層の無機物層を有することが望ましい。 It is desirable that the insulating film has at least one inorganic layer.

 このように、薄膜トランジスタ素子を覆った有機絶縁層をラビング処理することで有機絶縁層に、薄膜トランジスタ素子の保護膜と液晶分子配向制御膜の両方の機能を持たせることができる。 ラ Thus, by performing the rubbing treatment on the organic insulating layer covering the thin film transistor element, the organic insulating layer can have both functions of a protective film of the thin film transistor element and a liquid crystal molecule alignment control film.

 また、絶縁膜として有機ポリマを用い、それを直接ラビング等の表面配向処理を行うとき、基板界面に平行に電界を印加する本方式では、低傾き角の液晶分子などでよいので、配向はより均一化し、従来方式よりも表示むらが低く抑えられるので配向膜材料の選択の自由度が上がる。 In addition, when an organic polymer is used as an insulating film and the surface is subjected to a surface alignment treatment such as direct rubbing or the like, an electric field is applied in parallel to a substrate interface. In this method, liquid crystal molecules having a low tilt angle may be used. Since the uniformity is achieved and the display unevenness is suppressed lower than in the conventional method, the degree of freedom in selecting the alignment film material is increased.

 さらに、前述の配向膜との界面上での変動に対する裕度が上がり、界面起因の不良はほとんどなくなるので、検査やエージングといった工程を大幅に簡略化することができ、製造コストを低減できる。 Furthermore, the tolerance for the variation on the interface with the alignment film described above is increased, and defects due to the interface are almost eliminated, so that steps such as inspection and aging can be greatly simplified, and manufacturing costs can be reduced.

 また、本発明によって、従来CVD(Chemical Vapor Deposi−tion)法等の真空系で形成していた無機の絶縁膜が、より安価に製造できる有機絶縁層に交換でき、低コスト化に有効である。 Further, according to the present invention, an inorganic insulating film conventionally formed by a vacuum system such as a CVD (Chemical Vapor Deposition) method can be replaced with an organic insulating layer which can be manufactured at a lower cost, which is effective for cost reduction. .

 本発明によれば、第一に、透明電極がなくとも高コントラストで、低価格の設備で高い歩留まりで量産可能な低コストの薄膜トランジスタ型液晶表示装置を提供することができ、第二に、視角特性が良好で多階調表示が容易である薄膜トランジスタ型液晶表示装置を提供することができ、第三に、液晶配向に関するプロセス及び材料の裕度が大きく、そのため開口率が高くでき、光透過率を引上げた、より明るい薄膜トランジスタ型液晶表示装置を提供することができ、第四に、第一から第三の効果に加えてより構造が簡素である薄膜トランジスタ構造を提供し、開口率を高くし、光透過率を引上げた、より明るい薄膜トランジスタ型液晶表示装置を提供することができる。 According to the present invention, first, it is possible to provide a low-cost thin film transistor type liquid crystal display device which can be mass-produced with a high yield at a high yield with low cost equipment without a transparent electrode. It is possible to provide a thin film transistor type liquid crystal display device having good characteristics and easy multi-gradation display. Thirdly, the process and material for liquid crystal alignment have a large margin, so that the aperture ratio can be increased and the light transmittance can be increased. Fourth, it is possible to provide a brighter thin film transistor type liquid crystal display device, and fourthly, to provide a thin film transistor structure having a simpler structure in addition to the first to third effects, to increase the aperture ratio, A brighter thin film transistor type liquid crystal display device having an increased light transmittance can be provided.

 先ず初めに、電界方向に対する、偏光板の偏光透過軸のなす角φP ,界面近傍での液晶分子長軸(光学軸)方向のなす角φLC,一対の偏光板間に挿入した位相差板の進相軸のなす角φR の定義を示す(図6)。偏光板及び液晶界面はそれぞれ上下に一対あるので必要に応じてφP1,φP2,φLC1,φLC2と表記する。尚、図6は後述する図1の正面図に対応する。 First, the angle φ P formed by the polarization transmission axis of the polarizing plate with respect to the direction of the electric field, the angle φ LC formed by the direction of the long axis (optical axis) of the liquid crystal molecules near the interface, and the phase difference plate inserted between the pair of polarizing plates The definition of the angle φ R formed by the fast axis is shown in FIG. 6 (FIG. 6). Phi P1 optionally Since the polarizer and the liquid crystal interface is a pair up and down, respectively, φ P2, φ LC1, referred to as phi LC2. FIG. 6 corresponds to a front view of FIG. 1 described later.

 次に本発明の作用を図1を用いて説明する。 Next, the operation of the present invention will be described with reference to FIG.

 図1(a),(b)は本発明の液晶パネル内での液晶の動作を示す側断面を、図1(c),(d)はその正面図を表す。図1では薄膜トランジスタ素子を省略してある。また、本発明ではストライプ状の電極を構成して複数の画素を形成するが、ここでは1画素の部分を示した。電圧無印加時のセル側断面を図1(a)に、その時の正面図を図1(c)に示す。透明な一対の基板の内側に線状の電極1,2が形成され、その上に配向制御膜4が塗布及び配向処理されている。間には液晶組成物が挟持されている。棒状の液晶分子5は、電界無印加時には電極1,2の長手方向に対して若干の角度、即ち45度≦|φLC|<
90度、をもつように配向されている。上下界面上での液晶分子配向方向はここでは平行、即ちφLC1=φLC2を例に説明する。また、液晶組成物の誘電異方性は正を想定している。次に、電界7を印加すると図1(b),(d)に示したように電界方向に液晶分子がその向きを変える。偏光板6を偏光板偏光軸方向9に配置することで電界印加によって光透過率を変えることが可能となる。このように、本発明によれば透明電極がなくともコントラストを与える表示が可能となる。尚、図1(b)では基板表面と電界方向とのなす角が大きく、平行ではないように見えるが、これは厚み方向を拡大して表した結果で、実際には20度以下である。以後本発明では、20度以下のものを総称して横電界と表現する。また、図1では電極1,2を上下基板に分けて形成したが、一方の基板に備えてもなんら効果は変わるものではない。むしろ配線等のパターンが微細化する場合や熱,外力等による種々の変形等を鑑みると、一方の基板に備えたほうがより高精度なアライメントが可能となり、望ましい。また、液晶組成物の誘率異方性は正を想定したが、負であっても構わない。その場合には初期配向状態を電極1,2の長手方向に垂直な方向(電界方向7)から若干の角度|φLC|(即ち、0度<|φLC|≦45度)を持つように配向させる。
1A and 1B are side sectional views showing the operation of the liquid crystal in the liquid crystal panel of the present invention, and FIGS. 1C and 1D are front views thereof. In FIG. 1, the thin film transistor element is omitted. Further, in the present invention, a plurality of pixels are formed by forming a stripe-shaped electrode. Here, one pixel portion is shown. FIG. 1A shows a cross section of the cell side when no voltage is applied, and FIG. 1C shows a front view at that time. Linear electrodes 1 and 2 are formed inside a pair of transparent substrates, and an alignment control film 4 is applied and aligned thereon. A liquid crystal composition is sandwiched between the two. The rod-shaped liquid crystal molecules 5 have a slight angle with respect to the longitudinal direction of the electrodes 1 and 2 when no electric field is applied, that is, 45 degrees ≦ | φ LC | <
90 degrees. Here, the orientation of liquid crystal molecules on the upper and lower interfaces is parallel, that is, φ LC1 = φ LC2 . The dielectric anisotropy of the liquid crystal composition is assumed to be positive. Next, when an electric field 7 is applied, the liquid crystal molecules change their directions in the direction of the electric field as shown in FIGS. 1 (b) and 1 (d). By disposing the polarizing plate 6 in the polarizing axis direction 9 of the polarizing plate, the light transmittance can be changed by applying an electric field. As described above, according to the present invention, it is possible to provide a display that provides a contrast without a transparent electrode. In FIG. 1B, the angle between the substrate surface and the direction of the electric field is large and appears to be non-parallel. However, this is a result of enlarging the thickness direction and is actually 20 degrees or less. Hereinafter, in the present invention, those having an angle of 20 degrees or less are collectively referred to as a lateral electric field. In FIG. 1, the electrodes 1 and 2 are formed separately on the upper and lower substrates. However, the effect is not changed even if the electrodes 1 and 2 are provided on one of the substrates. Rather, in consideration of the case where the pattern of wiring or the like becomes finer or various deformations due to heat, external force, and the like, it is desirable to provide the one substrate with higher precision because alignment can be performed with higher accuracy. In addition, the dielectric anisotropy of the liquid crystal composition is assumed to be positive, but may be negative. In this case, the initial alignment state is set so as to have a slight angle | φ LC | (that is, 0 degree <| φ LC | ≦ 45 degrees) from a direction perpendicular to the longitudinal direction of the electrodes 1 and 2 (electric field direction 7). Orient.

 以下、本発明の3つの目的それぞれに応じて、その作用について説明する。 Hereinafter, the operation of each of the three objects of the present invention will be described.

(1)透明電極を備えない状態での高コントラスト化
 コントラストを付与する具体的構成としては、上下基板上の液晶分子配向がほぼ平行な状態を利用したモード(複屈折位相差による干渉色を利用するので、ここでは複屈折モードと呼ぶ)と、上下基板上の液晶分子配向方向が交差しセル内での分子配列がねじれた状態を利用したモード(液晶組成物層内で偏光面が回転する旋光性を利用するので、ここでは旋光性モードと呼ぶ)とがある。複屈折モードでは、電圧印加により分子長軸(光軸)方向が基板界面にほぼ平行なまま面内でその方位を変え、所定角度に設定された偏光板の軸とのなす角を変えて光透過率を変える。旋光性モードでも同様に電圧印加により分子長軸方向の方位のみを変えるが、こちらの場合はら線がほどけることによる旋光性の変化を利用する。
(1) High contrast without a transparent electrode As a specific configuration for imparting contrast, a mode using a state in which liquid crystal molecule orientations on upper and lower substrates are substantially parallel (using an interference color due to birefringence phase difference). Therefore, a mode utilizing the state in which the liquid crystal molecules on the upper and lower substrates intersect and the molecular arrangement in the cell is twisted (the polarization plane rotates in the liquid crystal composition layer) is referred to as a birefringence mode. Since optical rotation is used, it is referred to as an optical rotation mode here). In the birefringence mode, the voltage changes the azimuth of the molecular axis (optical axis) in a plane while the direction of the molecular axis (optical axis) is substantially parallel to the substrate interface, and changes the angle formed by the axis of the polarizing plate set at a predetermined angle. Change the transmittance. In the optical rotation mode, similarly, only the orientation in the molecular major axis direction is changed by applying a voltage, but in this case, the change in optical rotation due to unwinding of the helical line is used.

 次に表示を無彩色にしコントラスト比をあげる定量的構成および作用について、以下複屈折モードを用いる場合と旋光性モードを用いる場合の2つのケースに分けて述べる。 (4) Next, the quantitative structure and operation for increasing the contrast ratio by making the display achromatic will be described below in two cases, that is, the case where the birefringent mode is used and the case where the optical rotation mode is used.

I.複屈折モードで表示する場合
 一般に一軸性複屈折性媒体を直交配置した2枚の偏光板の間に挿入した時の光透過率T/Toは次式で表される。ここで、χeffは液晶組成物層の実効的な光軸方向(光軸と偏光透過軸とのなす角)、deff は複屈折性を有する実効的な液晶組成物層の厚み、Δnは屈折率異方性、λは光の波長を表す。ここで、液晶組成物層の光軸方向を実効的な値とした目的は、実際のセル内では界面上では液晶分子が固定されており、電界印加時にはセル内で全ての液晶分子が互いに平行かつ一様に配向しているのではなく、特に界面近傍では大きな変形が起こっていることを鑑み、それらの平均値として一様状態を想定した時の見かけの値で取り扱うことにある。
I. Display in Birefringence Mode Generally, the light transmittance T / To when a uniaxial birefringent medium is inserted between two polarizing plates arranged orthogonally is expressed by the following equation. Here, χeff is the effective optical axis direction (the angle between the optical axis and the polarization transmission axis) of the liquid crystal composition layer, deff is the effective thickness of the birefringent liquid crystal composition layer, and Δn is the refractive index Anisotropy and λ represent the wavelength of light. Here, the purpose of making the optical axis direction of the liquid crystal composition layer an effective value is that liquid crystal molecules are fixed on the interface in an actual cell, and all liquid crystal molecules are parallel to each other in the cell when an electric field is applied. In view of the fact that the orientation is not uniform and large deformation occurs particularly in the vicinity of the interface, the average value thereof is to be treated as an apparent value when a uniform state is assumed.

  T/To=sin2(2χeff)・sin2(πdeff・Δn/λ)         …(1)
 低電圧VL 印加時に暗、高電圧VH 印加時に明状態となるノーマリクローズ特性を得るには偏光板の配置としては一方の偏光板の透過軸(あるいは吸収軸)を液晶分子配向方向(ラビング軸)にほぼ平行、即ちφP1≒φLC1=φLC2とし、他方の偏光板の透過軸をそれに垂直、即ちφP2=φP1+90度とすればよい。電界無印加時には、(1)式における
χeff が0であるので光透過率T/To も0となる。一方電界印加時にはその強度に応じてχeff の値が増大し、45度の時に最大となる。この時、光の波長を0.555μm と想定すると無彩色でかつ透過率を最大とするには実効的なdeff・Δn を2分の1波長である0.28μm とすれば良い。現実には裕度があるために、0.21から0.36μmの間に入っていれば良いが、望ましくは0.24から0.33μmの間の値に設定すると良い。
T / To = sin 2 (2χeff) · sin 2 (πdeff · Δn / λ) (1)
In order to obtain a normally closed characteristic in which a dark state is applied when a low voltage VL is applied and a bright state is applied when a high voltage VH is applied, the polarizing plate is arranged such that the transmission axis (or absorption axis) of one of the polarizing plates is aligned with the liquid crystal molecule alignment direction ( Rubbing axis), that is, φ P1 ≒ φ LC1 = φ LC2, and the transmission axis of the other polarizing plate is perpendicular to it, ie, φ P2 = φ P1 +90 degrees. When no electric field is applied, χeff in equation (1) is 0, so that the light transmittance T / To is also 0. On the other hand, when an electric field is applied, the value of χeff increases according to the intensity, and reaches a maximum at 45 degrees. At this time, assuming that the wavelength of the light is 0.555 μm, the effective deff · Δn may be set to 0.28 μm, which is a half wavelength, in order to achieve achromatic color and maximize the transmittance. Actually, since there is a margin, it is sufficient that the distance is between 0.21 and 0.36 μm, but it is desirable to set a value between 0.24 and 0.33 μm.

 一方低電圧VL 印加時に明、高電圧VH 印加時に暗状態となるノーマリオープン特性を得るには電界無印加時あるいは低電界印加時に、(1)式におけるχeff がほぼ45度となるように偏光板配置を設定すれば良い。電界印加時にはノーマリクローズの場合とは逆にその強度に応じてχeff の値が減少する。しかしながら、χeff が最小(即ち0)になっても界面近傍で固定されている液晶分子の残留位相差のために、このままではかなりの光が漏れてしまう。d・Δnを0.27から0.37μmの間に設定し、3〜10Vの実効電圧を印加した本発明者等の実験によれば界面残留位相差の値は0.02から0.06μm程度であった。よって、0.02から0.06μm程度の複屈折位相差を有する位相差板
(この位相差をRfと表す)を界面残留位相差を補償するように挿入することで、暗状態が沈み込み、高コントラスト比が得られる。位相差板の進相軸の角度φR は、電圧印加時の液晶組成物層の実効的な光軸χeff に平行にする。より完全に暗状態の明るさを沈み込ませるには、暗状態を表示するための電圧を印加したときの残留位相差にきちっと合わせれば良い。以上より、暗状態の沈み込みと明状態の透過率,白色度を両立するには、次式の関係を満たせば良い。
On the other hand, in order to obtain a normally open characteristic in which a bright state is obtained when a low voltage V L is applied and a dark state is obtained when a high voltage V H is applied, Δeff in the equation (1) becomes approximately 45 degrees when no electric field is applied or when a low electric field is applied. What is necessary is just to set the arrangement of the polarizing plates. When an electric field is applied, the value of χeff decreases according to the strength, contrary to the case of normally closed. However, even when χeff becomes minimum (ie, 0), considerable light leaks as it is because of the residual phase difference of the liquid crystal molecules fixed near the interface. According to experiments conducted by the present inventors in which d · Δn was set between 0.27 and 0.37 μm and an effective voltage of 3 to 10 V was applied, the value of the interface residual phase difference was about 0.02 to 0.06 μm. Met. Therefore, by inserting a retardation plate having a birefringence retardation of about 0.02 to 0.06 μm (this retardation is represented as Rf) so as to compensate for the interface residual retardation, the dark state sinks, A high contrast ratio is obtained. The angle φ R of the fast axis of the retardation plate is made parallel to the effective optical axis χeff of the liquid crystal composition layer when a voltage is applied. In order to completely reduce the brightness of the dark state, it is necessary to exactly match the residual phase difference when a voltage for displaying the dark state is applied. As described above, to satisfy both the sunkenness in the dark state and the transmittance and whiteness in the light state, the following relationship may be satisfied.

  0.21μm<(d・Δn−Rf)<0.36μm            …(2)
 望ましくは、
  0.23μm<(d・Δn−Rf)<0.33μm             …(3)
0.21 μm <(d · Δn−Rf) <0.36 μm (2)
Preferably,
0.23 μm <(d · Δn−Rf) <0.33 μm (3)

II.旋光性モードで表示する場合
 従来方式であるツイステッドネマチック(Twisted Nematic:TN) 方式では一般に知られているようにd・Δnをファーストミニマム条件である0.50μm 近傍に設定した時に、高透過率,無彩色となる。その裕度を考慮するとTN方式では0.40から0.60
μmの間に設定すると良い。偏光板の配置としては一方の偏光板の透過軸(あるいは吸収軸)を界面上の液晶分子配向方向(ラビング軸)にほぼ平行、即ちφLC1≒φLC2とする。ノーマリクローズ型を実現するためには、他方の偏光板の透過軸をそれに平行とすれば良く、ノーマリオープン型とするには垂直とすればよい。
II. In the case of displaying in the optical rotation mode In the conventional twisted nematic (TN) method, as is generally known, when d · Δn is set near 0.50 μm, which is the first minimum condition, a high transmittance, It becomes achromatic. Taking the margin into account, the TN method uses 0.40 to 0.60.
It is good to set it between μm. The polarizing plate is arranged such that the transmission axis (or absorption axis) of one of the polarizing plates is substantially parallel to the liquid crystal molecule alignment direction (rubbing axis) on the interface, that is, φ LC1 ≒ φ LC2 . In order to realize a normally closed type, the transmission axis of the other polarizing plate may be set to be parallel to it, and to be a normally open type, it may be set to be perpendicular.

 尚、完全に旋光性を消失させるには、上下基板界面近傍での液晶配向方向をほぼ平行となるようにする必要があり、90度TNモードを想定すると、一方の基板側の液晶分子を90度近く回転させなくてはならない。複屈折モードで表示する場合には液晶分子回転角は45度程度で良く、ことしきい値電圧に関しては複屈折モードのほうが低くなる。 In order to completely eliminate the optical rotation, it is necessary to make the liquid crystal alignment directions near the interface between the upper and lower substrates almost parallel. I have to rotate it almost a degree. When displaying in the birefringence mode, the liquid crystal molecule rotation angle may be about 45 degrees, and the threshold voltage is lower in the birefringence mode.

(2)視角特性の改善
 本発明の表示モードでは液晶分子の長軸は基板と常にほぼ平行であり、立ち上がることがなく、従って視角方向を変えた時の明るさの変化が小さい。本表示モードは従来のように電圧印加で複屈折位相差をほぼ0にすることで暗状態を得るものではなく、液晶分子長軸と偏光板の軸(吸収あるいは透過軸)とのなす角を変えるもので、根本的に異なる。従来のTN型のように液晶分子長軸を基板界面に垂直に立ち上がらせる場合だと、複屈折位相差が0となる視角方向は正面即ち基板界面に垂直な方向のみであり、僅かでも傾斜すると複屈折位相差が現れ、ノーマリオープン型では光が漏れ、コントラストの低下や階調レベルの反転を引き起こす。
(2) Improvement of Viewing Angle Characteristics In the display mode of the present invention, the major axis of the liquid crystal molecules is always almost parallel to the substrate, and does not rise, so that the change in brightness when the viewing angle direction is changed is small. In this display mode, a dark state is not obtained by making the birefringence phase difference substantially zero by applying a voltage as in the prior art, and the angle between the long axis of the liquid crystal molecules and the axis (absorption or transmission axis) of the polarizing plate is formed. It's something that changes and is fundamentally different. In the case where the long axis of the liquid crystal molecules rises perpendicularly to the substrate interface as in a conventional TN type, the viewing angle direction in which the birefringence phase difference becomes 0 is only the front direction, that is, the direction perpendicular to the substrate interface. A birefringent phase difference appears, and in a normally open type, light leaks, causing a decrease in contrast and inversion of a gradation level.

(3)配向膜材料と液晶材料の選択の自由度改善及びそれによるプロセス裕度の拡大
 さらに、このように液晶分子が立ち上がらない為に、従来のような大きな傾き角(液晶分子長軸と界面とのなす角)を与える配向膜を必要としない。従来方式では、傾き角が不足すると傾く方向の異なる2状態及びそれらの境界部のドメインが生じ、表示不良となる可能性がある。本方式では、傾き角を付与する代わりに基板界面上での液晶分子長軸方向(ラビング方向)を電界方向に対して0度あるいは90度からずらした所定方向に設定すれば良い。例えば、液晶組成物の誘電率異方性が負の場合、電界方向と基板界面上での液晶分子長軸方向とがなす角φLCLC>0度と定義する)を0度以上(実質的には0.5度以上)、望ましくは2度以上にすれば良い。もし完全に0度とすると、方向の異なる2種の変形が生じ異なる2状態及びそれらの境界部のドメインが生じ、表示不良となる可能性がある。0.5 度以上であれば電界印加及びその強度の増大により見かけの液晶分子長軸方向(φLC(V)と定義する)が一様に増加して行き、逆方向への傾斜、即ちφLC(V)<0度になることはない。本方式ではこのように、界面と液晶分子とのなす角(傾き角)が小さくともドメインが生じずに動作することから、低めの傾き角に設定することが可能である。液晶分子配向の均一性は低めの傾き角に設定するほどラビング等のプロセス裕度が上がり、良好である。従って、界面に平行に電界を印加する本方式に、低傾き角を組み合わせれば液晶分子配向はより均一化し、同程度の製造プロセス変動があっても、従来方式よりも表示むらが低く抑えられる。一般に高い傾き角を付与する配向膜の種類は、低い傾き角を付与するものに比べて少なく、本方式を用いれば配向膜材料の選択の自由度も高くなる。例えばカラーフィルタ上の平坦化膜,薄膜トランジスタ上の保護膜に有機ポリマを用い、それを直接ラビング等の表面配向処理を行っても、傾き角が不要なので配向膜との兼用がより容易になり、更にプロセスの簡易化とそれに伴うコストの低減が可能となる。製造プロセス変動による表示むらを抑制するには傾き角を4度以下、望ましくは2度以下にすれば良い。
(3) Improvement of freedom of selection of alignment film material and liquid crystal material and expansion of process latitude. Further, since liquid crystal molecules do not rise, a large inclination angle (a long axis of liquid crystal molecules and interface Is not required. In the conventional method, if the inclination angle is insufficient, two states having different inclination directions and a domain at a boundary between the two states are generated, which may result in display failure. In this method, instead of giving an inclination angle, the long axis direction of the liquid crystal molecules (rubbing direction) on the substrate interface may be set to a predetermined direction shifted from 0 or 90 degrees with respect to the direction of the electric field. For example, when the dielectric anisotropy of the liquid crystal composition is negative, the angle φ LC (defined as φ LC > 0 degree) between the direction of the electric field and the direction of the long axis of the liquid crystal molecules on the substrate interface is 0 degree or more ( (Substantially 0.5 degrees or more), and preferably 2 degrees or more. If the angle is completely 0 degrees, two kinds of deformations in different directions occur, and two different states and domains at their boundaries occur, which may result in display failure. If it is 0.5 degrees or more, the apparent liquid crystal molecule major axis direction (defined as φ LC (V)) uniformly increases due to the application of the electric field and the increase in the intensity, and the tilt in the opposite direction, ie, φ LC (V) <0 degrees is never reached. As described above, in the present method, even when the angle (inclination angle) between the interface and the liquid crystal molecule is small, the operation is performed without generating a domain, and therefore, it is possible to set a lower inclination angle. The uniformity of the liquid crystal molecule alignment is better as the lower the inclination angle, the higher the process margin such as rubbing. Therefore, if a low tilt angle is combined with the present method in which an electric field is applied in parallel to the interface, the liquid crystal molecule alignment becomes more uniform, and the display unevenness can be suppressed to be lower than in the conventional method even if there is a similar manufacturing process variation. . In general, the types of alignment films that provide a high tilt angle are fewer than those that provide a low tilt angle, and the use of this method increases the degree of freedom in selecting alignment film materials. For example, even if an organic polymer is used for the flattening film on the color filter and the protective film on the thin film transistor, and it is directly subjected to a surface alignment treatment such as rubbing, an inclination angle is unnecessary, so that it can be shared with the alignment film more easily. Further, it is possible to simplify the process and reduce the cost associated therewith. In order to suppress display unevenness due to manufacturing process variation, the tilt angle may be set to 4 degrees or less, preferably 2 degrees or less.

 また、液晶材料についても下記の理由によりその選択の自由度が上がる。即ち、本発明では画素電極と共通電極は液晶組成物層に対して主として基板界面に平行な電界を印加する構造を有しており、電極間の距離は従来の縦電界方式のアクティブマトリクス型液晶表示装置における相対向させた透明電極間の距離に比べて大きくとることができる。また、等価的な電極の断面積は従来のものより小さく抑えることができる。したがって、本発明による対をなす画素電極間の電気抵抗は従来のアクティブマトリクス型液晶表示装置における相対向させた透明電極間の電気抵抗は桁違いに大きくすることができる。さらに、本発明による画素電極と共通電極間の静電容量は容量素子と並列接続になり、電気抵抗も十分高い容量素子を実現できる。これらにより、画素電極に蓄積された電荷を保持することが容易になり、従来開口率を犠牲にしていた容量素子の面積を小さくしても十分な保持特性が得られる。また、液晶組成物の方も従来は例えば1012Ωcmといった極めて高い比抵抗を有するものが必要であるのに対して、より低い比抵抗の液晶組成物であっても問題にならない。このことは、単に液晶材料の選択の自由度が上がるのみならず、プロセス裕度も引き上げる。即ち、プロセスの途中で液晶が汚染しても画質不良となりにくい。特に、前述の配向膜との界面上での変動に対する裕度が上がり、界面起因の不良はほとんどなくなる。よって、検査やエージングといった工程を大幅に簡略化することができ、薄膜トランジスタ型液晶表示装置の低コスト化に大きく寄与する。また、本発明による画素電極は櫛歯状電極対に比べて単純な形状であるため、光の利用効率を向上させる。従来方式のように十分な量の電荷を蓄積できる容量素子を得るために開口部を犠牲にする必要がない。さらに、薄膜トランジスタを保護する絶縁膜を有機物にすれば、無機物に比べて誘電率が低くできるため、画素電極近傍において発生する基板界面に垂直な方向の電界成分を横電界成分に比べて小さく抑えることが可能になり、より広い領域で液晶が動作する。このことも明るさ向上に寄与する。また、共通電極を、隣接する画素の共通電極と共用した場合には、従来のアクティブマトリクス型液晶表示装置における共通電極とほぼ同等の作用をし、かつより構造を更に簡単化することができ更に開口率を上げることが可能である。 In addition, the degree of freedom in selecting a liquid crystal material is increased for the following reasons. That is, in the present invention, the pixel electrode and the common electrode have a structure in which an electric field is applied to the liquid crystal composition layer mainly in parallel to the substrate interface, and the distance between the electrodes is the conventional vertical electric field type active matrix type liquid crystal. The distance can be larger than the distance between the opposed transparent electrodes in the display device. Also, the equivalent electrode cross-sectional area can be kept smaller than the conventional one. Therefore, the electric resistance between the paired pixel electrodes according to the present invention can be increased by an order of magnitude between the opposed transparent electrodes in the conventional active matrix type liquid crystal display device. Furthermore, the capacitance between the pixel electrode and the common electrode according to the present invention is connected in parallel with the capacitance element, and a capacitance element with sufficiently high electric resistance can be realized. Accordingly, it is easy to hold the charge accumulated in the pixel electrode, and sufficient holding characteristics can be obtained even if the area of the capacitor which has conventionally sacrificed the aperture ratio is reduced. In addition, although a liquid crystal composition having a very high specific resistance of, for example, 10 12 Ωcm is conventionally required, a liquid crystal composition having a lower specific resistance does not pose a problem. This not only increases the degree of freedom in selecting the liquid crystal material, but also increases the process latitude. That is, even if the liquid crystal is contaminated during the process, the image quality is not likely to be poor. In particular, the tolerance for the variation on the interface with the alignment film is increased, and the failure caused by the interface is almost eliminated. Accordingly, steps such as inspection and aging can be greatly simplified, which greatly contributes to the cost reduction of the thin film transistor type liquid crystal display device. Further, the pixel electrode according to the present invention has a simpler shape than the comb-teeth-shaped electrode pair, so that the light use efficiency is improved. There is no need to sacrifice the opening to obtain a capacitor capable of storing a sufficient amount of charges as in the conventional method. Furthermore, if the insulating film that protects the thin film transistor is made of an organic material, the dielectric constant can be made lower than that of an inorganic material. Therefore, the electric field component generated in the vicinity of the pixel electrode in the direction perpendicular to the substrate interface is suppressed to be smaller than the horizontal electric field component. And the liquid crystal operates in a wider area. This also contributes to brightness improvement. Further, when the common electrode is shared with the common electrode of an adjacent pixel, the same operation as the common electrode in the conventional active matrix type liquid crystal display device can be performed, and the structure can be further simplified. It is possible to increase the aperture ratio.

(4)簡素で開口率の高い薄膜トランジスタ構造の実現及びそれによる明るさの向上
 薄膜トランジスタを含む画素内の構造に関して、公知例(特公昭63−21907号公報)に示されている櫛歯電極を用いる場合は開口率が著しく低下し、それにより明るさが低下してしまうという問題が生じる。量産性を考慮すると櫛歯電極1本の幅は8μm程度、最小でも4μm以上必要であり、特公昭63−21907 号公報に示されている例えば図7のような櫛歯が合計17本もあるような構造で対角9.4インチカラーVGAクラスの0.3×0.1
mm2 の画素を構成することは不可能である。
(4) Realization of a simple and high-aperture-ratio thin-film transistor structure and improvement of brightness by using a comb-shaped electrode disclosed in a known example (JP-B-63-21907) for a structure in a pixel including a thin-film transistor In such a case, there is a problem that the aperture ratio is remarkably reduced, whereby the brightness is reduced. In consideration of mass productivity, the width of one comb tooth electrode is required to be about 8 μm, and at least 4 μm or more. For example, there are a total of 17 comb teeth as shown in FIG. 7 shown in JP-B-63-21907. With the same structure, diagonal 9.4 inch color VGA class 0.3 × 0.1
It is impossible to construct a pixel of mm 2 .

 本発明は上記(1),(2)の利点を保ちつつも開口率を十分に保持するための手段を考案したものである。櫛歯のように開口率を下げざるを得ない構造に替わって、より単純な電極構造により、実用性のある高い開口率が実現できている。 (4) The present invention has been made by devising means for maintaining the aperture ratio sufficiently while maintaining the advantages of (1) and (2). Instead of a structure in which the aperture ratio has to be reduced like a comb tooth, a practically high aperture ratio can be realized by a simpler electrode structure.

 本発明は、共通電極を対向基板上或いは、画素電極を同層上に形成した場合の構造を有する。前記公知例(特公昭63−21907 号公報)では櫛歯電極を形成するために、信号配線と共通電極それぞれの引き出し方向を直交させている。即ち、信号配線を第1の方向(Y方向)に、共通電極をそれに直交する方向(X方向)に引き伸ばしている。それに対し、本発明のように信号配線,画素電極,共通電極のいずれをも第1の方向に伸ばすことで、櫛歯のような複雑な構造を回避している。尚、液晶のしきい値電圧を下げ、応答時間を短縮するには画素電極と共通電極の間隔を詰めればよいが、櫛歯のような複雑な構造とする必要はない。 The present invention has a structure in which a common electrode is formed on a counter substrate or a pixel electrode is formed on the same layer. In the above-mentioned known example (Japanese Patent Publication No. 63-21907), in order to form a comb-tooth electrode, the drawing directions of the signal wiring and the common electrode are made orthogonal. That is, the signal wiring is extended in the first direction (Y direction), and the common electrode is extended in the direction perpendicular to it (X direction). On the other hand, a complicated structure such as a comb tooth is avoided by extending all of the signal wiring, the pixel electrode, and the common electrode in the first direction as in the present invention. To reduce the threshold voltage of the liquid crystal and shorten the response time, the distance between the pixel electrode and the common electrode may be reduced, but it is not necessary to use a complicated structure such as a comb.

 本発明を実施例により具体的に説明する。 The present invention will be specifically described with reference to examples.

〔実施例1〕
 基板としては厚みが1.1mm で表面を研磨した透明なガラス基板を2枚用いる。これらの基板間に誘電率異方性Δεが正でその値が4.5であり、屈折率異方性Δnが0.072(589nm,20℃)のネマチック液晶組成物を挟む。基板表面に塗布したポリイミド系配向制御膜をラビング処理して、3.5 度のプレチルト角とする。上下界面上のラビング方向は互いにほぼ平行で、かつ印加電界方向とのなす角度を85度(φLC1=φLC2
85°)とした。ギャップdは球形のポリマビーズを基板間に分散して挾持し、液晶封入状態で4.5μm とした。よってΔn・dは0.324μm である。2枚の偏光板〔日東電工社製 G1220DU〕でパネルを挾み、一方の偏光板の偏光透過軸をラビング方向にほぼ平行、即ちφP1=85°とし、他方をそれに直交、即ちφP2=−5°とした。これにより、ノーマリクローズ特性を得た。
[Example 1]
As the substrates, two transparent glass substrates having a thickness of 1.1 mm and a polished surface are used. A nematic liquid crystal composition having a positive dielectric anisotropy Δε of 4.5 and a refractive index anisotropy Δn of 0.072 (589 nm, 20 ° C.) is sandwiched between these substrates. The polyimide-based orientation control film applied to the substrate surface is rubbed to have a pretilt angle of 3.5 degrees. The rubbing directions on the upper and lower interfaces are almost parallel to each other, and the angle between the rubbing directions and the direction of the applied electric field is 85 degrees (φ LC1 = φ LC2 =
85 °). The gap d was 4.5 μm in a state in which liquid crystal was sealed while spherical polymer beads were dispersed and sandwiched between substrates. Therefore, Δn · d is 0.324 μm. The panel is sandwiched between two polarizing plates (G1220DU manufactured by Nitto Denko Corporation), and the polarization transmission axis of one of the polarizing plates is substantially parallel to the rubbing direction, that is, φ P1 = 85 °, and the other is perpendicular to it, ie, φ P2 = −5 °. As a result, normally closed characteristics were obtained.

 薄膜トランジスタ及び各種電極の構造は図2(a)(正面図)及び図2(b)(側断面)に示すように、薄膜トランジスタ素子(図2の斜線部)が画素電極(ソース電極)1と信号電極(ドレイン電極)12、及び走査電極(ゲート電極)10を有し、画素電極1が第1の方向(図2では紙面内で上下の方向を意味する)に伸びており、信号電極12及び共通電極2が複数の画素間(図2では紙面内で上下の方向に並んだ画素を意味する)に渡って第1の方向伸び、薄膜トランジスタ素子が共通電極の間に配置されている。 As shown in FIG. 2A (front view) and FIG. 2B (side sectional view), the structure of the thin film transistor and various electrodes is such that the thin film transistor element (shaded portion in FIG. 2) is a pixel electrode (source electrode) 1 and a signal. The pixel electrode 1 has an electrode (drain electrode) 12 and a scanning electrode (gate electrode) 10, and the pixel electrode 1 extends in a first direction (in FIG. 2, means a vertical direction in the drawing). The common electrode 2 extends in a first direction across a plurality of pixels (in FIG. 2, pixels arranged in a vertical direction in the paper plane), and a thin film transistor element is arranged between the common electrodes.

 信号電極12には情報を有する信号波形が印加され、走査電極10には走査波形が信号波形と同期をとって印加される。アモルファスシリコン(a−Si)16からなるチャンネル層及び窒化シリコン(SiN)の保護絶縁膜15からなる薄膜トランジスタは隣接する共通電極の間に配置されている。信号電極12から薄膜トランジスタを介して画素電極1に情報信号が伝達され、共通電極2との間で液晶部分に電圧が印加される。本実施例では共通電極を対向基板側に配置し、図2(b)では厚み方向を拡大して表した為、電界方向7が傾斜しているように見えるが、実際には幅が48μmに対して液晶層の厚みが6μm程度であり、傾斜はほとんどなく、印加電界方向は基板面にほぼ平行である。 信号 A signal waveform having information is applied to the signal electrode 12, and a scanning waveform is applied to the scanning electrode 10 in synchronization with the signal waveform. A thin film transistor including a channel layer made of amorphous silicon (a-Si) 16 and a protective insulating film 15 made of silicon nitride (SiN) is arranged between adjacent common electrodes. An information signal is transmitted from the signal electrode 12 to the pixel electrode 1 via the thin film transistor, and a voltage is applied between the common electrode 2 and the liquid crystal portion. In the present embodiment, the common electrode is arranged on the counter substrate side, and the thickness direction is enlarged in FIG. 2B, so that the electric field direction 7 appears to be inclined, but the width is actually reduced to 48 μm. On the other hand, the thickness of the liquid crystal layer is about 6 μm, there is almost no inclination, and the direction of the applied electric field is almost parallel to the substrate surface.

 付加容量素子11は、図2(a)に示すように、画素電極1を突起部を形成した走査配線10の上にゲート絶縁膜13を挟む構造として形成した。この付加容量素子11の静電容量は約21fFになった。各走査配線10および各信号電極駆動回路21にはそれぞれ走査配線駆動用LSIおよび信号配線駆動用LSIを接続した。 2) As shown in FIG. 2A, the additional capacitance element 11 was formed such that the pixel electrode 1 had a structure in which the gate insulating film 13 was interposed on the scanning wiring 10 on which the projection was formed. The capacitance of the additional capacitance element 11 became about 21 fF. A scanning wiring driving LSI and a signal wiring driving LSI were connected to each scanning wiring 10 and each signal electrode driving circuit 21, respectively.

 画素電極1に蓄積された電荷は、画素電極1と共通電極2の間の静電容量と付加容量素子11を並列接続した容量である約24fFに蓄積されることになり、液晶組成物50の比抵抗が5×1010Ωcmであっても画素電極1の電圧変動を抑制することができる。このため、画質劣化を防止することができた。 The electric charge accumulated in the pixel electrode 1 is accumulated in the capacitance between the pixel electrode 1 and the common electrode 2 and about 24 fF which is a capacitance in which the additional capacitance element 11 is connected in parallel. Even if the specific resistance is 5 × 10 10 Ωcm, the voltage fluctuation of the pixel electrode 1 can be suppressed. For this reason, it was possible to prevent image quality deterioration.

 画素数は40(×3)×30で、画素ピッチは横方向(即ち共通電極間)は80μm、縦方向(即ち走査電極間)は240μmである。走査電極の幅は12μmで隣接する走査電極の間隙を68μmとし、50%という高い開口率を確保した。また薄膜トランジスタを有する基板に相対向する基板上にストライプ状のR,G,B3色のカラーフィルタを備えた。カラーフィルタの上には表面を平坦化する透明樹脂を積層した。透明樹脂の材料としてはエポキシ樹脂を用いた。更に、この透明樹脂上ポリイミド系の配向制御膜を塗布した。パネルには駆動回路が接続されている。本実施例の駆動回路システムの構成を図8に示す。信号電極23及び共通電極2は表示部端部にまで伸びている。図9及び図10は光学システムの構成を表し、図9が透過型、図10が反射型を表す。 数 The number of pixels is 40 (× 3) × 30, and the pixel pitch is 80 μm in the horizontal direction (that is, between the common electrodes) and 240 μm in the vertical direction (that is, between the scanning electrodes). The width of the scanning electrode was 12 μm, the gap between adjacent scanning electrodes was 68 μm, and a high aperture ratio of 50% was secured. A stripe-shaped color filter of R, G, and B colors was provided on a substrate facing the substrate having the thin film transistors. A transparent resin for flattening the surface was laminated on the color filter. Epoxy resin was used as the material of the transparent resin. Further, a polyimide-based orientation control film was applied on the transparent resin. A drive circuit is connected to the panel. FIG. 8 shows the configuration of the drive circuit system of this embodiment. The signal electrode 23 and the common electrode 2 extend to the end of the display unit. 9 and 10 show the configuration of the optical system. FIG. 9 shows a transmission type, and FIG. 10 shows a reflection type.

 本実施例では透明電極を必要としないため、製造プロセスが簡単化できかつ歩留まりも向上し、著しくコストが低減できる。特に、透明電極を形成するための真空炉を有する極めて高価な設備が不要になり、製造設備投資額の大幅低減とそれによる低コスト化が可能となる。本実施例における画素への印加電圧実効値と明るさの関係を示す電気光学特性を図3(a)に示す。コントラスト比は7V駆動時に150以上となり、視角を左右,上下に変えた場合のカーブの差は従来方式(比較例1に示す)に比べて極めて小さく、視角を変化させても表示特性はほとんど変化しなかった。また、液晶配向性も良好で、配向不良ドメインは発生しなかった。また、開口率は薄膜トランジスタ及び電極構造の簡単化により50%と十分に高い値を確保し、明るいディスプレイを実現した。パネル全体の平均透過率は8.4% となった。尚、ここで明るさとは2枚の偏光板を平行に配置したときの輝度透過率で定義した。 で は Since the present embodiment does not require a transparent electrode, the manufacturing process can be simplified, the yield can be improved, and the cost can be significantly reduced. In particular, extremely expensive equipment having a vacuum furnace for forming the transparent electrode is not required, so that the investment in manufacturing equipment can be significantly reduced and the cost can be reduced. FIG. 3A shows electro-optical characteristics showing the relationship between the effective value of the voltage applied to the pixel and the brightness in this embodiment. The contrast ratio becomes 150 or more at the time of 7V driving, and the difference in the curve when the viewing angle is changed left and right and up and down is extremely small as compared with the conventional method (shown in Comparative Example 1), and the display characteristics change substantially even when the viewing angle is changed. Did not. In addition, the liquid crystal alignment was good, and no alignment failure domain was generated. The aperture ratio was sufficiently high at 50% by simplification of the thin film transistor and electrode structure, and a bright display was realized. The average transmittance of the entire panel was 8.4%. Here, the brightness was defined as a luminance transmittance when two polarizing plates were arranged in parallel.

〔実施例2〕
 本実施例では実施例1で対向基板側に配置した共通電極を、走査電極を配置した基板と同じ基板側に配置した。他の構成は実施例1と同一である。薄膜トランジスタ及び電極の断面構造を図4に示す。画素電極1,信号電極12,走査電極10はいずれもアルミニウムで、同時に成膜及びエッチングをして形成した。対向基板上には一切導電性の物質は存在しない。従って、本実施例の構成においては仮に製造工程中に導電性の異物が混入したとしても、上下電極間タッチの可能性がなく、上下電極間タッチの不良率がゼロに抑制される。なお、電極用の材料としては電気抵抗の低い金属性のものであれば特に材料の制約はなく、クロム,銅等でもよい。
[Example 2]
In this embodiment, the common electrode arranged on the counter substrate side in the first embodiment is arranged on the same substrate side as the substrate on which the scanning electrodes are arranged. Other configurations are the same as those of the first embodiment. FIG. 4 shows a cross-sectional structure of the thin film transistor and the electrode. The pixel electrode 1, the signal electrode 12, and the scanning electrode 10 are all made of aluminum, and are formed by simultaneous film formation and etching. No conductive substance exists on the counter substrate. Therefore, in the configuration of the present embodiment, even if conductive foreign matter is mixed during the manufacturing process, there is no possibility of touch between the upper and lower electrodes, and the defect rate of touch between the upper and lower electrodes is suppressed to zero. The material for the electrode is not particularly limited as long as it is a metallic material having low electric resistance, and may be chromium, copper, or the like.

 一般にフォトマスクのアライメント精度は対向する2枚のガラス基板間の組み合わせのアライメント精度に比べて著しく高い。従って、本実施例のように4種の電極群のいずれをも一方の基板上に形成した方が、各電極の形成時のアライメントがフォトマスクのみで行われるため、電極間のアライメントずれが小さく抑制される。従って、本実施例は走査電極を対向基板上に形成する場合に比べて、より高精細なパターンを形成するのに有効である。 Generally, the alignment accuracy of a photomask is significantly higher than the alignment accuracy of a combination between two opposing glass substrates. Therefore, when all of the four types of electrode groups are formed on one substrate as in the present embodiment, alignment at the time of forming each electrode is performed only by the photomask, so that the misalignment between the electrodes is small. Be suppressed. Therefore, the present embodiment is effective for forming a higher definition pattern as compared with the case where the scanning electrodes are formed on the counter substrate.

 実施例1と同様に広い視角特性を有する明るい表示を得た。 (4) A bright display having a wide viewing angle characteristic was obtained in the same manner as in Example 1.

〔実施例3〕
 本実施例の構成は下記の要件を除けば、実施例1と同一である。
[Example 3]
The configuration of this embodiment is the same as that of the first embodiment except for the following requirements.

 薄膜トランジスタ及び各種電極の構造を図5に示すように、対をなす画素電極1の間に信号電極12を配置し、さらに対をなす共通電極2をこれらの電極の外側に配置した。信号電極12には情報を有する信号波形が印加され、走査電極10には走査波形が信号波形と同期をとって印加される。アモルファスシリコン(a−Si)16及び窒化シリコン
(SiN)の保護絶縁膜15からなる薄膜トランジスタは対をなす共通電極のほぼ中央部に配置されている。信号電極12から2個の薄膜トランジスタを介して2個の第1の電極1に同じ情報信号が伝達され、電位を同じくした両側の共通電極との間で液晶部分に同じ電圧信号が印加される。このようにすることで薄膜トランジスタ及び電極構造を複雑化せずに電極間隔を半分程度にでき、同一電圧でより高い電界を印加することができるようになり、駆動電圧の低減及び高速応答化が実現される。
As shown in FIG. 5, the structure of the thin film transistor and various electrodes was such that a signal electrode 12 was disposed between a pair of pixel electrodes 1 and a common electrode 2 was disposed outside these electrodes. A signal waveform having information is applied to the signal electrode 12, and a scanning waveform is applied to the scanning electrode 10 in synchronization with the signal waveform. The thin film transistor including the amorphous silicon (a-Si) 16 and the silicon nitride (SiN) protective insulating film 15 is disposed at substantially the center of a pair of common electrodes. The same information signal is transmitted from the signal electrode 12 to the two first electrodes 1 via the two thin film transistors, and the same voltage signal is applied to the liquid crystal portion between the common electrodes on both sides having the same potential. By doing so, the electrode spacing can be reduced to about half without complicating the structure of the thin film transistor and the electrode, and a higher electric field can be applied at the same voltage, thereby reducing the driving voltage and achieving a high-speed response. Is done.

 実施例1の広い視角特性と明るさは本実施例でも実現される。 広 い The wide viewing angle characteristics and brightness of the first embodiment are also realized in this embodiment.

〔実施例4〕
 本実施例の構成は下記の要件を除けば、実施例1と同一である。
[Example 4]
The configuration of this embodiment is the same as that of the first embodiment except for the following requirements.

 カラーフィルタ上に有機絶縁層として透明ポリマからなる平坦化膜14(図2(b))を積層し、その上に配向制御膜としての別の膜を形成せずに表面を直接ラビングした。透明ポリマの材料としてはエポキシ樹脂を用いた。このエポキシ樹脂は平坦化と液晶分子の配向制御の両方の機能を兼ね備えている。液晶組成物層はエポキシ樹脂に直接接し、界面での傾き角は0.5 度であった。これにより、配向膜を塗布する工程がなくなり、製造がより容易かつ短くなった。一般に従来方式であるTN型では、配向制御膜に要求される特性が多岐にわたり、それら全てを満足する必要があり、そのためポリイミド等の一部の材料に限られていた。特に重要な特性は、傾き角である。しかし、前述したように、本発明では大きな傾き角を必要とせず、従って、材料の選択幅が著しく改善される。 (2) A flattening film 14 (FIG. 2B) made of a transparent polymer was laminated as an organic insulating layer on the color filter, and the surface was directly rubbed without forming another film as an orientation control film thereon. Epoxy resin was used as the material of the transparent polymer. This epoxy resin has both functions of flattening and controlling the alignment of liquid crystal molecules. The liquid crystal composition layer was in direct contact with the epoxy resin, and the tilt angle at the interface was 0.5 degrees. Thereby, the step of applying the alignment film was eliminated, and the production was easier and shorter. Generally, in the conventional TN type, the characteristics required for the orientation control film are diversified, and it is necessary to satisfy all of them. Therefore, the materials are limited to some materials such as polyimide. A particularly important characteristic is the tilt angle. However, as described above, the present invention does not require a large tilt angle, and therefore, the material selection range is significantly improved.

 本実施例における電気光学特性を測定したところ、実施例1と同様に視角を左右,上下に変えた場合のカーブの差が極めて小さく、表示特性はほとんど変化しないという結果を得た。また、傾き角が0.5 度と小さいにもかかわらず液晶配向性も良好で、配向不良ドメインは発生しなかった。 (4) When the electro-optical characteristics in the present example were measured, the difference between the curves when the viewing angle was changed left and right and up and down was very small, and the result was that the display characteristics hardly changed, as in Example 1. In addition, although the tilt angle was as small as 0.5 degree, the liquid crystal alignment was good, and no alignment defect domain was generated.

〔実施例5〕
 実施例4の平坦化する為の透明ポリマをエポキシ樹脂からポリイミド樹脂に変えた。同様にポリイミド樹脂の表面を直接ラビングし、平坦化と液晶分子の配向制御の両方の機能を兼ね備えた。界面での傾き角は2度であった。他の実施例と比較して、表示特性はほとんど変化しないという結果を得た。また、液晶配向性も良好で、配向不良ドメインは発生しなかった。
[Example 5]
The transparent polymer for flattening in Example 4 was changed from an epoxy resin to a polyimide resin. Similarly, the surface of the polyimide resin was directly rubbed to have both functions of flattening and controlling the alignment of liquid crystal molecules. The tilt angle at the interface was 2 degrees. As a result, the display characteristics were hardly changed as compared with the other examples. In addition, the liquid crystal alignment was good, and no alignment failure domain was generated.

〔実施例6〕
 本実施例の構成は下記の要件を除けば、実施例1と同一である。
[Example 6]
The configuration of this embodiment is the same as that of the first embodiment except for the following requirements.

 薄膜トランジスタを保護する保護絶縁膜15(図2(b))を窒化シリコンからエポキシ樹脂からなる有機絶縁層に交換し、その上を直接ラビング処理し、有機絶縁層に保護膜と液晶分子配向制御膜の両方の機能を持たせた。傾き角は0.5度である。 The protective insulating film 15 (FIG. 2 (b)) for protecting the thin film transistor is changed from silicon nitride to an organic insulating layer made of an epoxy resin, and the rubbing treatment is directly performed on the organic insulating layer. With both functions. The tilt angle is 0.5 degrees.

 本実施例における電気光学特性を測定したところ、実施例1と比較して、ほとんど変わらない表示特性を得た。また、実施例4と同様に、傾き角が0.5 度と小さいにもかかわらず液晶配向性も良好で、配向不良ドメインは発生しなかった。 (4) When the electro-optical characteristics in this example were measured, display characteristics that were almost the same as those in Example 1 were obtained. Further, as in Example 4, the liquid crystal alignment was good even though the tilt angle was as small as 0.5 degree, and no alignment defect domain was generated.

〔実施例7〕
 実施例6で保護膜に用いたエポキシ樹脂を同様に有機絶縁層となるポリイミドに変えた。
[Example 7]
The epoxy resin used for the protective film in Example 6 was similarly changed to polyimide which would be an organic insulating layer.

 本実施例における電気光学特性を測定したところ、実施例1と比較して、ほとんど変わらない表示特性を得た。また、実施例6に比べ、傾き角は2.0 度と若干上昇した。液晶配向性は良好で、配向不良ドメインは発生しなかった。 (4) When the electro-optical characteristics in this example were measured, display characteristics that were almost the same as those in Example 1 were obtained. In addition, the tilt angle slightly increased to 2.0 degrees as compared with Example 6. The liquid crystal alignment was good, and no alignment failure domain was generated.

〔実施例8〜12〕
 これらの実施例の構成は下記の要件を除けば、実施例7と同一である。
[Examples 8 to 12]
The configuration of these embodiments is the same as that of the seventh embodiment except for the following requirements.

 実施例8では上下界面上の液晶分子長軸方向(ラビング方向)は互いにほぼ平行で、かつ印加電界方向とのなす角度を89.5度(φLC1=φLC2=89.5°)、一方の偏光板の偏光透過軸をラビング方向にほぼ平行(φP1=89.5°)とし、他方をそれに直交(φP2=−0.5°)とした。 In Example 8, the major axis directions (rubbing directions) of the liquid crystal molecules on the upper and lower interfaces are substantially parallel to each other, and the angle formed with the direction of the applied electric field is 89.5 degrees (φ LC1 = φ LC2 = 89.5 °). The polarization transmission axis of the polarizing plate was substantially parallel to the rubbing direction (φ P1 = 89.5 °), and the other was perpendicular to it (φ P2 = −0.5 °).

 同様に実施例9ではφLC1=φLC2=φP1=88°,φP2=−2.0° とした。 Similarly, in Example 9, φ LC1 = φ LC2 = φ P1 = 88 ° and φ P2 = −2.0 °.

 同様に実施例10ではφLC1=φLC2=φP1=75°,φP2=−25°とした。 Similarly, in Example 10, φ LC1 = φ LC2 = φ P1 = 75 ° and φ P2 = −25 °.

 同様に実施例11ではφLC1=φLC2=φP1=45°,φP2=−45°とした。 Similarly, in Example 11, φ LC1 = φ LC2 = φ P1 = 45 ° and φ P2 = −45 °.

 同様に実施例12ではφLC1=φLC2=φP1=30°,φP2=−60°とした。 Similarly, in Example 12, φ LC1 = φ LC2 = φ P1 = 30 ° and φ P2 = −60 °.

 これらの実施例における電気光学特性の測定結果を図7にまとめて表す。尚ここでは明るさを印加電圧が0ボルトから10ボルト(実効値Vrms )の範囲で最大となるときを
100%、最小となるときを0%とした規格化した値で表した。角度φLCを大きくすることで、しきい値特性のカーブがより急峻になる傾向を示した。中間調表示を大きな電圧裕度を持って行うには、φLCを小さくすれば良いが、45度以下になると明るさが低下する傾向を示した。角度φLCの最適な値は、表示する中間調レベルの数,明るさに対する要求値,駆動する電圧,コモン電極に電圧を印加するか否かによって代わる。設計者は、φLCの選択により大きな範囲でしきい値特性が制御できる。明るさを考慮すると、望ましくはφLCを45度以上とすると良い。また更により望ましくは60度から89.5 度の間とすると良い。
FIG. 7 shows the measurement results of the electro-optical characteristics in these examples. In this case, the brightness is expressed as a normalized value in which the maximum is 100% and the minimum is 0% when the applied voltage is in the range of 0 to 10 volts (effective value Vrms). By increasing the angle φ LC , the threshold characteristic curve tended to be steeper. To perform the halftone display with a large voltage margin, it is sufficient to reduce φ LC , but the brightness tends to decrease when the angle is 45 degrees or less. The optimum value of the angle φ LC depends on the number of halftone levels to be displayed, the required value for brightness, the driving voltage, and whether or not a voltage is applied to the common electrode. The designer can control the threshold characteristics over a large range by selecting φ LC . In consideration of brightness, it is desirable to set φ LC to 45 degrees or more. It is even more desirable that the angle be between 60 degrees and 89.5 degrees.

 視角特性を測定したところ、いずれの場合も実施例1と同様に視角を左右,上下に変えた場合のカーブの差が極めて小さく、表示特性はほとんど変化しないという結果を得た。また、液晶配向性も良好で、配向不良ドメインは発生しなかった。 When the viewing angle characteristics were measured, the difference between the curves when the viewing angle was changed left and right and up and down was very small, and the display characteristics were hardly changed, as in Example 1. In addition, the liquid crystal alignment was good, and no alignment failure domain was generated.

〔実施例13〜16〕
 以上の実施例と本実施例の最大の相違点は、液晶組成物層の誘電率異方性の値を負にし、それに合わせてラビング方向を変えた点である。Δεが−4.8 ,Δnが0.0437
(589nm,20℃)のネマチック液晶組成物(メルク社製,ZLI−2806)を用いた。実施例13〜16の実施例に於いては、いずれも上下界面上の液晶分子長軸方向
(ラビング方向φLC1,φLC2)を互いにほぼ平行(φLC1=φLC2)とし、印加電界方向とのなす角度φLC1 を0度を超え45度未満である範囲とした。また一方の偏光板の偏光透過軸(φP1)はラビング方向にほぼ平行とし、他方(φP2)をそれに直交とした。
[Examples 13 to 16]
The greatest difference between the above embodiment and this embodiment is that the value of the dielectric anisotropy of the liquid crystal composition layer was made negative and the rubbing direction was changed accordingly. Δε is -4.8, Δn is 0.0437
(589 nm, 20 ° C.) nematic liquid crystal composition (ZLI-2806, manufactured by Merck) was used. In each of Examples 13 to 16, the major axis directions of the liquid crystal molecules (rubbing directions φ LC1 and φ LC2 ) on the upper and lower interfaces are almost parallel to each other (φ LC1 = φ LC2 ), and the directions of the applied electric field and The angle φ LC1 formed was in a range of more than 0 degree and less than 45 degrees. The polarization transmission axis (φ P1 ) of one of the polarizing plates was substantially parallel to the rubbing direction, and the other (φ P2 ) was orthogonal to the rubbing direction.

 即ち、実施例13ではφLC1=φLC2=φP1=1.5°,φP2=−88.5°とした。 That is, in Example 13, φ LC1 = φ LC2 = φ P1 = 1.5 ° and φ P2 = −88.5 °.

 実施例14ではφLC1=φLC2=φP1=15°,φP2=−75°とした。 In Example 14, φ LC1 = φ LC2 = φ P1 = 15 ° and φ P2 = −75 °.

 実施例15ではφLC1=φLC2=φP1=30°,φP2=−60°とした。 In Example 15, φ LC1 = φ LC2 = φ P1 = 30 ° and φ P2 = −60 °.

 実施例16ではφLC1=φLC2=φP1=45°,φP2=−45°とした。 In Example 16, φ LC1 = φ LC2 = φ P1 = 45 ° and φ P2 = −45 °.

 ギャップdは液晶封入状態で6.3μmとし、Δn・dを0.275μmとした。薄膜トランジスタ,電極の構造等の以外の条件は実施例3と同じである。 The gap d was 6.3 μm when the liquid crystal was sealed, and Δn · d was 0.275 μm. The conditions other than the structure of the thin film transistor and the electrode are the same as those of the third embodiment.

 これらの実施例における電気光学特性の測定結果を図11にまとめて表す。誘電率異方性が正の場合とは逆に、角度φLCを小さくするに従い、しきい値特性のカーブがより急峻になる傾向を示した。中間調表示を大きな電圧裕度を持って行うには、φLCを大きくすれば良いが、45度以上になると明るさが低下する傾向を示した。誘電率異方性が正の場合と同様に、角度φLCの最適な値は、表示する中間調レベルの数,明るさに対する要求値,駆動する電圧,共通電極に電圧を印加するか否かによって代わる。設計者は、φLCの選択により大きな範囲でしきい値特性が制御できる。明るさを考慮すると、より望ましくは
φLCを45度以下とすると良い。
FIG. 11 summarizes the measurement results of the electro-optical characteristics in these examples. Contrary to the case where the dielectric anisotropy is positive, the curve of the threshold characteristic tends to be steeper as the angle φ LC is reduced. To perform the halftone display with a large voltage margin, it is sufficient to increase φ LC , but when the angle exceeds 45 degrees, the brightness tends to decrease. As in the case where the dielectric anisotropy is positive, the optimal value of the angle φ LC depends on the number of halftone levels to be displayed, the required value for brightness, the driving voltage, and whether to apply a voltage to the common electrode. Be replaced by The designer can control the threshold characteristics over a large range by selecting φ LC . In consideration of brightness, it is more preferable to set φ LC to 45 degrees or less.

 尚、視角特性を測定したところ、いずれの場合も実施例1と同様に視角を左右,上下に変えた場合のカーブの差が極めて小さく、表示特性はほとんど変化しないという結果を得た。特に中間調表示(8階調)したときのレベルの反転が上下,左右ともに±50度の範囲内ではまったく見られなかった。また、液晶配向性も良好で、配向不良ドメインは発生しなかった。 When the viewing angle characteristics were measured, the difference between the curves when the viewing angle was changed to the left, right, up and down was very small, and the result was that the display characteristics hardly changed in any case, as in Example 1. In particular, no reversal of the level in the case of halftone display (8 gradations) was observed at all in the range of ± 50 degrees both up and down and left and right. In addition, the liquid crystal alignment was good, and no alignment failure domain was generated.

〔実施例17〜19〕
 本実施例では、実施例13〜16に於いて最も特性が良好であった実施例14(φLC1=φLC2 =φP1=15°,φP2=−75°)と液晶分子長軸方向,偏光板配置を同一とし、液晶組成物層の厚みdと屈折率異方性Δnの積d・Δnを変えた。実施例17,18,19それぞれの液晶組成物層の厚みdを4.0,4.9,7.2μm、即ちd・Δnをそれぞれ0.1748,0.2141,0.3146μmとした。尚、ここでは屈折率異方性
Δnを一定とし、液晶組成物層の厚みdのみを変えたが、他の液晶表示方式(例えば、
90度ツイステッドネマチック方式)と同様に、屈折率異方性Δnを変えても明るさの最適値については同様の結果が得られる。また、液晶組成物層の誘電率異方性の値を正にしても同様の結果が得られる。結果を実施例14の結果も含めて、図12にまとめて示す。図12(a)は横軸を印加電圧とし、図12(b)は図12(a)に於いて印加電圧を7ボルトに固定して横軸をd・Δnにして表したものである。図12(b)から明らかなように、明るさはd・Δn強く依存し、かつ最適な値が存在する。明るさを実用性のある
30%以上とするにはd・Δnを0.21から0.36μmの間にすれば良く、さらに明るさを50%以上に引き上げるには0.23から0.33μmの間にすれば良い。また、液晶の封入時間や液晶組成物層の厚みの制御等、量産性を考慮するとdの値を5.0μm 以上とし、Δnを本実施例のように0.08 以下とすることが望ましい。
[Examples 17 to 19]
In the present embodiment, Example 14 (φ LC1 = φ LC2 = φ P1 = 15 °, φ P2 = −75 °) having the best characteristics in Examples 13 to 16 was compared with the liquid crystal molecule long axis direction. The polarizing plate arrangement was the same, and the product d · Δn of the thickness d of the liquid crystal composition layer and the refractive index anisotropy Δn was changed. The thickness d of each of the liquid crystal composition layers in Examples 17, 18, and 19 was 4.0, 4.9, and 7.2 μm, that is, d · Δn was 0.1748, 0.2141, and 0.3146 μm, respectively. Here, while the refractive index anisotropy Δn was fixed and only the thickness d of the liquid crystal composition layer was changed, other liquid crystal display methods (for example,
As in the case of the 90-degree twisted nematic method, the same result is obtained for the optimum value of the brightness even when the refractive index anisotropy Δn is changed. Similar results are obtained even when the value of the dielectric anisotropy of the liquid crystal composition layer is made positive. The results, including the results of Example 14, are collectively shown in FIG. 12 (a) shows the applied voltage on the horizontal axis, and FIG. 12 (b) shows the applied voltage fixed at 7 volts in FIG. 12 (a) and the horizontal axis shows d · Δn. As is clear from FIG. 12B, the brightness strongly depends on d · Δn, and there is an optimum value. In order to increase the brightness to 30% or more, which is practical, it is sufficient to set d · Δn between 0.21 and 0.36 μm, and to further increase the brightness to 50% or more, 0.23 to 0.33 μm. It should be between. Further, in consideration of mass productivity such as control of the liquid crystal encapsulation time and the thickness of the liquid crystal composition layer, it is desirable that the value of d be 5.0 μm or more and Δn be 0.08 or less as in this embodiment.

〔実施例20〜22〕
 実施例17〜19の結果から明らかなように、d・Δnの最適値は0.21から0.36μmの間、望ましくは0.23から0.33μmの間にある。量産性のある液晶組成物層の厚みが5.0μm以上であることを鑑みると、屈折率異方性Δnの値は0.072以下、望ましくは0.066 以下でなくてはならない。ところが、このように極めてΔnの低い液晶化合物の種類は非常に少なく、十分に他の実用上の要求特性と両立することが困難である。そこで液晶組成物層のd・Δnをやや高めに設定しておき、最適値よりも超過した分をこの液晶組成物層のd・Δnよりも低い位相差Rfを有する光学的異方性媒質を液晶組成物層により生じた位相差を補償するように挿入し、その結果液晶組成物層と光学的異方性媒質とで合わせた実効的な位相差が最適値である0.21から0.36μmの間に入るようにする方法を考案した。
[Examples 20 to 22]
As is clear from the results of Examples 17 to 19, the optimum value of d · Δn is between 0.21 and 0.36 μm, preferably between 0.23 and 0.33 μm. In view of the fact that the thickness of the mass-producible liquid crystal composition layer is 5.0 μm or more, the value of the refractive index anisotropy Δn must be 0.072 or less, preferably 0.066 or less. However, there are very few types of liquid crystal compounds having such a very low Δn, and it is difficult to sufficiently achieve compatibility with other practically required characteristics. Therefore, d · Δn of the liquid crystal composition layer is set to be slightly higher, and an optical anisotropic medium having a phase difference Rf lower than d · Δn of the liquid crystal composition layer is determined to exceed the optimum value. The liquid crystal composition layer is inserted so as to compensate for the phase difference, and as a result, the effective phase difference between the liquid crystal composition layer and the optically anisotropic medium is an optimum value from 0.21 to 0.2. A method was devised so as to be within 36 μm.

 実施例20〜22では下記に示す条件以外は実施例3と同じ構成とした。液晶組成物層の厚みをそれぞれ5.0,5.2,5.5μmとした。屈折率異方性Δnが0.072(589
nm,20℃)のネマチック液晶組成物を用いている為、d・Δnの値は0.360,
0.3744,0.396μm である。このままでは、明るさ及び色調が良好な0.21から0.36μm の範囲よりも高い値となっている為、オレンジ色に着色している。この液晶セルにポリビニルアルコール製一軸延伸フィルムの光学的異方性媒質を、低電圧駆動時(ここでは0ボルト)に液晶の複屈折位相差を補償するように積層した。即ち、φR
φLC1(=φLC2)と同じ85度とした。位相差Rfはそれぞれ0.07,0.08,0.10μmとし、(d・Δn−Rf)の値を0.29,0.3044,0.296μm と明るさ及び色調が良好な0.21から0.36μmの範囲に入るようにした。
In Examples 20 to 22, the configuration was the same as Example 3 except for the following conditions. The thicknesses of the liquid crystal composition layers were 5.0, 5.2, and 5.5 μm, respectively. The refractive index anisotropy Δn is 0.072 (589
nm, 20 ° C.), the value of d · Δn is 0.360,
0.3744, 0.396 μm. In this state, since the brightness and the color tone are higher than the good range of 0.21 to 0.36 μm, the color is orange. An optically anisotropic medium of a uniaxially stretched film made of polyvinyl alcohol was laminated on the liquid crystal cell so as to compensate for the birefringence phase difference of the liquid crystal during low voltage driving (here, 0 volt). That is, φ R is set to 85 degrees, which is the same as φ LC1 (= φ LC2 ). The phase difference Rf is 0.07, 0.08, 0.10 μm, respectively, and the value of (d · Δn−Rf) is 0.29, 0.304, 0.296 μm, which is 0.21 with good brightness and color tone. From 0.36 μm.

 その結果、着色がなく明るさが50%以上の明るい表示が得られた。 As a result, a bright display with no coloration and a brightness of 50% or more was obtained.

〔実施例23〕
 実施例20の液晶組成物層を誘電率異方性Δεが負で、その値が−2.5 であり、Δnが0.0712(589nm,20℃)のネマチック液晶組成物(メルク社製,ZLI−
4518)に変えた。他の構成は下記を除けば実施例14と同じである。液晶組成物層の厚みは5.5μm、即ちd・Δnは0.3916μmである。この液晶セルに位相差Rfが0.11μm であるポリビニルアルコール製一軸延伸フィルムの光学的異方性媒質を積層し、(d・Δn−Rf)の値を0.2816μmと明るさ及び色調が良好な0.21から
0.36μmの範囲に入るようにした。
[Example 23]
A nematic liquid crystal composition having a negative dielectric anisotropy Δε, a value of −2.5, and a Δn of 0.0712 (589 nm, 20 ° C.) (manufactured by Merck Ltd., ZLI-
4518). Other configurations are the same as those of the fourteenth embodiment except for the following. The thickness of the liquid crystal composition layer is 5.5 μm, that is, d · Δn is 0.3916 μm. An optically anisotropic medium of a uniaxially stretched film made of polyvinyl alcohol having a phase difference Rf of 0.11 μm is laminated on the liquid crystal cell, and the value of (d · Δn−Rf) is 0.2816 μm, and the brightness and color tone are good. It was set to fall within a range of 0.21 to 0.36 μm.

 その結果、着色がなく明るさが50%以上の明るい表示が得られた。 As a result, a bright display with no coloration and a brightness of 50% or more was obtained.

〔実施例24〕
 本実施例の構成は下記の要件を除けば、実施例8と同一である。
[Example 24]
The configuration of the present embodiment is the same as Embodiment 8 except for the following requirements.

 液晶組成物層のΔnは0.072でギャップdは7.0μmとした。よってΔn・dは
0.504μm である。φLC1 を89.5 度とし、上下基板上の液晶分子配向方向を互いに交差させ、|φLC1−φLC2|=90度とした。偏光板の配置は互いに直交(|φP2
φP1|=90°)させかつ液晶分子配向方向との関係を旋光モードとなるようにφLC1 =φP1とした。この結果、ノーマリオープン型が得られた。
The Δn of the liquid crystal composition layer was 0.072 and the gap d was 7.0 μm. Therefore, Δn · d is 0.504 μm. φ LC1 was 89.5 degrees, and the liquid crystal molecule alignment directions on the upper and lower substrates were intersected with each other, and | φ LC1 −φ LC2 | = 90 degrees. The polarizers are arranged orthogonally (| φ P2
φ P1 | = 90 °), and φ LC1 = φ P1 so that the relationship with the liquid crystal molecule alignment direction becomes an optical rotation mode. As a result, a normally open type was obtained.

 本実施例における電気光学特性を測定したところ、複屈折モードである他の実施例に比べてしきい値電圧V10,V90が約2倍になった点を除けば、同じく明るさも50%以上で、視角を左右,上下に変えた場合のカーブの差も極めて小さく、表示特性はほとんど変化しないという結果を得た。また、液晶配向性も良好で、配向不良ドメインは発生しなかった。 When the electro-optical characteristics in this embodiment were measured, the brightness was also 50% except that the threshold voltages V 10 and V 90 were approximately doubled as compared with the other embodiments in the birefringence mode. As described above, the difference between the curves when the viewing angle is changed left and right and up and down is extremely small, and the result is that the display characteristics hardly change. In addition, the liquid crystal alignment was good, and no alignment failure domain was generated.

〔実施例25,26〕
 本実施例の構成は下記の要件を除けば、実施例1と同一である。
[Examples 25 and 26]
The configuration of this embodiment is the same as that of the first embodiment except for the following requirements.

 偏光板の配置を、電界が0ではなくやや印加された状態で暗状態が得られるように、設定した。即ち、|φLC1−φP1|を実施例25,26でそれぞれ5度,15度とし、|φP2−φP1|=90度とした。 The arrangement of the polarizing plates was set so that a dark state was obtained when the electric field was slightly applied instead of 0. That is, | φ LC1 −φ P1 | was set to 5 degrees and 15 degrees in Examples 25 and 26, respectively, and | φ P2 −φ P1 | = 90 degrees.

 他の実施例と同じく、明るさ,視角両面で良好な表示特性が得られた。また、液晶配向性も良好で、配向不良ドメインは発生しなかった。 同 じ く As in the other examples, good display characteristics were obtained in both the brightness and the viewing angle. In addition, the liquid crystal alignment was good, and no alignment failure domain was generated.

〔実施例27,28〕
 本実施例の構成は下記の要件を除けば、実施例14と同一である。
[Examples 27 and 28]
The configuration of this embodiment is the same as that of the fourteenth embodiment except for the following requirements.

 偏光板の配置を、電界が0ではなくやや印加された状態で暗状態が得られるように、設定した。即ち、|φP1−φLC1|を実施例27,28でそれぞれ5度,7度とし、|φP2−φP1|=90度とした。また、液晶組成物層の厚みdは6.3μm とした。よって、Δn・dは0.275μmである。 The arrangement of the polarizing plates was set so that a dark state was obtained when the electric field was slightly applied instead of 0. That is, | φ P1 −φ LC1 | was set to 5 degrees and 7 degrees in Examples 27 and 28, respectively, and | φ P2 −φ P1 | = 90 degrees. The thickness d of the liquid crystal composition layer was 6.3 μm. Therefore, Δn · d is 0.275 μm.

 本実施例における電気光学特性の測定結果を図13に示す。実施例27の場合、暗状態となる電圧VOFFは3.0ボルト、最も明るくなる電圧VONは9.2 ボルトであった。駆動をVOFF とVONの間で行えば、十分に高いコントラストが得られる。同様に、実施例28の場合はVOFF は5.0ボルト、VONは9.0ボルトであった。 FIG. 13 shows the measurement results of the electro-optical characteristics in this example. In the case of Example 27, the voltage V OFF at which the state becomes dark was 3.0 volts, and the voltage V ON at which the state became brightest was 9.2 volts. If the driving is performed between V OFF and V ON , a sufficiently high contrast can be obtained. Similarly, in the case of Example 28, V OFF was 5.0 volts and V ON was 9.0 volts.

 VOFF とVONの間で駆動した場合、他の実施例と同じく、明るさ,視角両面で良好な表示特性が得られた。また、液晶配向性も良好で、配向不良ドメインは発生しなかった。 When driven between V OFF and V ON , as in the other examples, good display characteristics were obtained in both brightness and viewing angle. In addition, the liquid crystal alignment was good, and no alignment failure domain was generated.

〔実施例29〕
 本実施例の構成は下記の要件を除けば、実施例27と同一である。
[Example 29]
The configuration of this embodiment is the same as that of the twenty-seventh embodiment except for the following requirements.

 信号電極に画像信号を印加すると共に、共通電極に3.0V の交流波形を印加した。その結果、信号電極に供給する電圧の低電圧化(8.3V⇒6.2V)が実現した。 画像 An image signal was applied to the signal electrode, and an AC waveform of 3.0 V was applied to the common electrode. As a result, the voltage supplied to the signal electrode has been reduced (from 8.3 V to 6.2 V).

 このようにしてVOFF とVONの間で駆動を行い、他の実施例と同じく、明るさ,視角両面で良好な表示特性を得た。また、液晶配向性も良好で、配向不良ドメインは発生しなかった。 Driving was performed between V OFF and V ON in this manner, and good display characteristics were obtained in both the brightness and the viewing angle as in the other examples. In addition, the liquid crystal alignment was good, and no alignment failure domain was generated.

〔実施例30〕
 本実施例の構成は下記の要件を除けば、実施例1と同一である。
[Example 30]
The configuration of this embodiment is the same as that of the first embodiment except for the following requirements.

 偏光板の配置を、電界が0ではなく印加された状態で暗状態が得られるように、設定した。即ち、|φLC1−φP1|を45度、|φP2−φP1|を90度とした。これにより、低電圧印加時に明状態、高電圧印加時に暗状態となった。この時の明るさの電圧依存性の測定結果を図14で実線で示した。 The arrangement of the polarizing plates was set so that a dark state was obtained when an electric field was applied instead of 0. That is, | φ LC1 −φ P1 | was set to 45 degrees, and | φ P2 −φ P1 | was set to 90 degrees. This resulted in a bright state when a low voltage was applied and a dark state when a high voltage was applied. The measurement result of the voltage dependency of the brightness at this time is shown by a solid line in FIG.

 他の実施例と同じく、明るさ,視角両面で良好な表示特性が得られた。コントラスト比は35となった。また、液晶配向性も良好で、配向不良ドメインは発生しなかった。 同 じ く As in the other examples, good display characteristics were obtained in both brightness and viewing angle. The contrast ratio was 35. In addition, the liquid crystal alignment was good, and no alignment failure domain was generated.

〔実施例31〕
 実施例30の構成に於いて、2枚の偏光板の間に界面残留位相差を補償する複屈折媒体(一軸延伸したポリビニルアルコールフィルム)を挿入した。このフィルムの延伸方向
φR は−45度とし、偏光板透過軸に直交させた。また、位相差Rfは15nmである。
[Example 31]
In the structure of Example 30, a birefringent medium (uniaxially stretched polyvinyl alcohol film) for compensating for an interface residual retardation was inserted between two polarizing plates. The stretching direction phi R of the film was set to -45 °, it was perpendicular to the polarizer transmission axis. The phase difference Rf is 15 nm.

 図14の点線で示したように、実施例30に比べて高電圧印加時の光漏れが抑制され、コントラスト比は150に更に改善された。 光 As shown by the dotted line in FIG. 14, light leakage when a high voltage was applied was suppressed, and the contrast ratio was further improved to 150, as compared with Example 30.

本発明の液晶表示装置における液晶の動作を示す図。FIG. 4 is a diagram illustrating an operation of a liquid crystal in the liquid crystal display device of the present invention. 本発明の薄膜トランジスタの一例を示す図。FIG. 4 illustrates an example of a thin film transistor of the present invention. 本発明(a)及び比較例(b)の電気光学特性(視角方向依存性)を示す図。FIG. 6 is a diagram showing electro-optical characteristics (viewing angle direction dependence) of the present invention (a) and comparative example (b). 薄膜トランジスタにおいて画素電極(ソース電極),共通電極,走査電極,信号電極(ドレイン電極)をいずれも一方の基板上に配置した本発明の一実施例を示す図。FIG. 3 is a diagram showing an embodiment of the present invention in which a pixel electrode (source electrode), a common electrode, a scanning electrode, and a signal electrode (drain electrode) are all arranged on one substrate in a thin film transistor. 画素電極(ソース電極),信号電極(ドレイン電極)を画素の中央に配置し、1画素を2分割した本発明の一実施例を示す図。FIG. 4 is a diagram showing an embodiment of the present invention in which a pixel electrode (source electrode) and a signal electrode (drain electrode) are arranged at the center of a pixel, and one pixel is divided into two. 電界方向に対する、界面上の分子長軸配向方向φLC,偏光板偏光軸φP ,位相板進相軸φR のなす角を示す図。Shows with respect to the electric field direction, the long molecular axis orientation direction phi LC on the interface, a polarizing plate polarizing axis phi P, the angle of the phase plate fast axis phi R. 界面上の分子長軸配向方向φLCを変えた種々の実施例における電気光学特性を示す図。誘電率異方性が正の場合。FIG. 9 is a view showing electro-optical characteristics in various examples in which the molecular long axis alignment direction φ LC on the interface is changed. When the dielectric anisotropy is positive. 本発明の液晶表示駆動回路システムを表す図。FIG. 1 is a diagram illustrating a liquid crystal display drive circuit system of the present invention. 本発明の液晶表示透過型光学システムを表す図。FIG. 1 is a diagram illustrating a liquid crystal display transmission type optical system according to the present invention. 本発明の液晶表示反射型光学システムを表す図。FIG. 1 is a diagram illustrating a liquid crystal display reflective optical system of the present invention. 界面上の分子長軸配向方向φLCを変えた種々の実施例における電気光学特性を示す図。誘電率異方性が負の場合。FIG. 9 is a view showing electro-optical characteristics in various examples in which the molecular long axis alignment direction φ LC on the interface is changed. When the dielectric anisotropy is negative. 液晶組成物層の厚みdを変えた種々の実施例における電気光学特性を示す図。誘電率異方性が負の場合。The figure which shows the electro-optic property in the various examples which changed thickness d of the liquid crystal composition layer. When the dielectric anisotropy is negative. 偏光板の配置を、電界が0ではなくやや印加された状態で暗状態が得られるように設定した時の電気光学特性を示す図。The figure which shows the electro-optic characteristic when the arrangement | positioning of a polarizing plate is set so that a dark state may be obtained in the state where the electric field was slightly applied rather than 0. ノーマリオープン型の特性及び界面残留位相差を補償した時の特性を表す図。FIG. 9 is a diagram illustrating characteristics of a normally open type and characteristics when an interface residual phase difference is compensated.

符号の説明Explanation of reference numerals

 1…画素電極(ソース電極)、2…共通電極(コモン電極)、3…基板、4…配向制御膜、5…液晶組成物層中の液晶分子、6…偏光板、7…電界方向、8…界面上の分子長軸配向方向(ラビング方向)、9…偏光板偏光軸方向、10…ゲート電極(走査電極)、
11…付加容量素子、12…信号電極(ドレイン電極)、13…ゲート絶縁膜、14…平坦化膜、15…保護絶縁膜、16…アモルファスシリコン、17…カラーフィルタ、18…遮光層、19…偏光板偏光透過軸、20…位相差板進相軸、21…信号電極駆動回路、22…走査電極駆動回路、23…信号電極、24…走査電極、25…下側基板、26…上側基板、27…コントロール回路、28…位相差板、29…バックライト、30…反射板、31…液晶組成物層。


DESCRIPTION OF SYMBOLS 1 ... Pixel electrode (source electrode), 2 ... Common electrode (common electrode), 3 ... Substrate, 4 ... Alignment control film, 5 ... Liquid crystal molecules in a liquid crystal composition layer, 6 ... Polarizing plate, 7 ... Electric field direction, 8 ... direction of molecular long axis orientation (rubbing direction) on interface, 9 ... direction of polarization axis of polarizing plate, 10 ... gate electrode (scanning electrode),
DESCRIPTION OF SYMBOLS 11 ... Additional capacitance element, 12 ... Signal electrode (drain electrode), 13 ... Gate insulating film, 14 ... Flattening film, 15 ... Protective insulating film, 16 ... Amorphous silicon, 17 ... Color filter, 18 ... Light shielding layer, 19 ... Polarizing plate polarized light transmission axis, 20: phase difference plate fast axis, 21: signal electrode driving circuit, 22: scanning electrode driving circuit, 23: signal electrode, 24: scanning electrode, 25: lower substrate, 26: upper substrate, 27: control circuit, 28: retardation plate, 29: backlight, 30: reflector, 31: liquid crystal composition layer.


Claims (18)

 複数の薄膜トランジスタを有する液晶表示装置において、
 一対の基板と、この一対の基板に挾持された液晶層と、前記一対の基板の少なくとも一方には、前記一対の基板の一方に対して支配的に平行な成分を持った電界を前記液晶層に発生させるために形成された電極構造と、前記液晶層に接するように形成された非導電層と、この非導電層の層上に配置されたカラーフィルタとを有し、
 前記非導電層の前記カラーフィルタに接する面はこのカラーフィルタを平坦化し、前記液晶層に接する面はこの液晶層の液晶の配向を制御することを特徴とする液晶表示装置。
In a liquid crystal display device having a plurality of thin film transistors,
A pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and at least one of the pair of substrates is provided with an electric field having a component predominantly parallel to one of the pair of substrates. Having an electrode structure formed to generate a non-conductive layer formed in contact with the liquid crystal layer, and a color filter disposed on the layer of the non-conductive layer,
A liquid crystal display device characterized in that a surface of the non-conductive layer in contact with the color filter planarizes the color filter, and a surface in contact with the liquid crystal layer controls alignment of liquid crystal in the liquid crystal layer.
 請求項1において、
 前記カラーフィルタは前記電極構造が形成された基板とは対向する基板に形成されることを特徴とする液晶表示装置。
In claim 1,
The liquid crystal display device, wherein the color filter is formed on a substrate facing a substrate on which the electrode structure is formed.
 一対の基板と、この一対の基板に挾持された液晶層と、複数の薄膜トランジスタとを有する液晶表示装置において、
 前記一対の基板の一方には、複数の共通電極と、これら共通電極のそれぞれの間に少なくとも1本の画素電極とが形成され、それらの画素電極と前記複数の共通電極の間には前記一対の基板の一方に対して支配的に平行な電界が生じるように電圧が印加され、
 前記一対の基板の他方にはカラーフィルタが形成され、このカラーフィルタ上に絶縁膜が形成され、
 前記絶縁膜の前記カラーフィルタと接する面は前記カラーフィルタを平坦化し、前記液晶層に接する面は前記液晶層の液晶分子を所定方向に配向制御することを特徴とする液晶表示装置。
In a liquid crystal display device including a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and a plurality of thin film transistors,
A plurality of common electrodes and at least one pixel electrode are formed between each of the common electrodes on one of the pair of substrates, and the pair of substrates is provided between the pixel electrodes and the plurality of common electrodes. Voltage is applied such that an electric field predominantly parallel to one of the substrates is generated,
A color filter is formed on the other of the pair of substrates, an insulating film is formed on the color filter,
A liquid crystal display device, wherein a surface of the insulating film in contact with the color filter planarizes the color filter, and a surface of the insulating film in contact with the liquid crystal layer controls alignment of liquid crystal molecules in the liquid crystal layer in a predetermined direction.
 請求項1乃至3の少なくとも一つにおいて、前記非導電層は少なくとも1層の有機ポリマ層を有することを特徴とする液晶表示装置。 液晶 A liquid crystal display device according to at least one of claims 1 to 3, wherein the non-conductive layer has at least one organic polymer layer.  請求項4において、前記有機ポリマ層がエポキシ樹脂を含むことを特徴とする液晶表示装置。 The liquid crystal display device according to claim 4, wherein the organic polymer layer contains an epoxy resin.  請求項4において、前記有機ポリマ層がポリイミド樹脂を含むことを特徴とする液晶表示装置。 The liquid crystal display device according to claim 4, wherein the organic polymer layer contains a polyimide resin.  請求項1乃至3の少なくとも一つにおいて、前記非導電層は少なくとも1層の無機物層を有することを特徴とする液晶表示装置。 液晶 The liquid crystal display device according to at least one of claims 1 to 3, wherein the non-conductive layer has at least one inorganic layer.  請求項1乃至3の少なくとも一つにおいて、前記液晶層の前記非導電層との界面の液晶分子の前記一対の基板に対する傾き角は、4度以下であることを特徴とする液晶表示装置。 The liquid crystal display device according to claim 1, wherein an inclination angle of liquid crystal molecules at an interface between the liquid crystal layer and the non-conductive layer with respect to the pair of substrates is 4 degrees or less.  請求項8において、前記液晶層の前記非導電層との界面の液晶分子の前記一対の基板に対する傾き角は、2度以下であることを特徴とする液晶表示装置。 The liquid crystal display device according to claim 8, wherein an inclination angle of liquid crystal molecules at an interface between the liquid crystal layer and the non-conductive layer with respect to the pair of substrates is 2 degrees or less.  複数の薄膜トランジスタを有する液晶表示装置において、
 一対の基板と、この一対の基板に挾持された液晶層と、前記基板に対して支配的に平行な成分を持った電界を前記液晶層に発生させる電極構造と、前記電極構造及び前記複数の薄膜トランジスタ上に形成された絶縁膜とを有し、
 前記液晶層に接する前記絶縁膜の一方の面はこの液晶層の液晶分子の配向を制御することを特徴とする液晶表示装置。
In a liquid crystal display device having a plurality of thin film transistors,
A pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, an electrode structure for generating an electric field having a component predominantly parallel to the substrate in the liquid crystal layer, the electrode structure and the plurality of electrodes. Having an insulating film formed on the thin film transistor,
A liquid crystal display device, wherein one surface of the insulating film in contact with the liquid crystal layer controls alignment of liquid crystal molecules in the liquid crystal layer.
 請求項10において、前記複数の薄膜トランジスタに接する前記絶縁膜の他方の面はこれらの薄膜トランジスタを平坦化することを特徴とする液晶表示装置。 The liquid crystal display device according to claim 10, wherein the other surface of the insulating film in contact with the plurality of thin film transistors flattens the thin film transistors.  一対の基板と、この一対の基板に挾持された液晶層とを有する液晶表示装置において、
 前記一対の基板の一方には、複数の走査配線電極と、前記複数の走査配線電極とマトリクス状に交差するように形成された複数の信号配線電極と、それらの信号配線電極と前記複数の走査配線電極との交点に対応して形成された複数の薄膜トランジスタと、それらの薄膜トランジスタに接続された複数の画素電極と、前記複数の信号配線電極に平行に形成された共通電極と、前記液晶層及び前記薄膜トランジスタに接する絶縁膜を有し、
 これら共通電極と前記画素電極との間には前記一対の基板の一方に対して支配的に平行な電界が生じるように電圧が印加され、
 前記絶縁膜の前記複数の薄膜トランジスタと接する面は前記カラーフィルタを平坦化し、前記液晶層に接する表面は前記液晶層の液晶分子を所定方向に配向制御することを特徴とする液晶表示装置。
In a liquid crystal display device having a pair of substrates and a liquid crystal layer sandwiched between the pair of substrates,
One of the pair of substrates has a plurality of scanning wiring electrodes, a plurality of signal wiring electrodes formed so as to intersect the plurality of scanning wiring electrodes in a matrix, and a plurality of scanning wiring electrodes and the plurality of scanning wiring electrodes. A plurality of thin film transistors formed corresponding to intersections with wiring electrodes, a plurality of pixel electrodes connected to the thin film transistors, a common electrode formed in parallel with the plurality of signal wiring electrodes, the liquid crystal layer, Having an insulating film in contact with the thin film transistor,
A voltage is applied between the common electrode and the pixel electrode so that an electric field predominantly parallel to one of the pair of substrates is generated,
A liquid crystal display device, wherein a surface of the insulating film in contact with the plurality of thin film transistors planarizes the color filter, and a surface in contact with the liquid crystal layer controls alignment of liquid crystal molecules of the liquid crystal layer in a predetermined direction.
 請求項10乃至12の少なくとも一つにおいて、前記絶縁膜は少なくとも1層の有機ポリマ層を有することを特徴とする液晶表示装置。 A liquid crystal display device according to at least one of claims 10 to 12, wherein the insulating film has at least one organic polymer layer.  請求項13において、前記有機ポリマがエポキシ樹脂を含むことを特徴とする液晶表示装置。 14. The liquid crystal display device according to claim 13, wherein the organic polymer contains an epoxy resin.  請求項13において、前記有機ポリマがポリイミド樹脂を含むことを特徴とする液晶表示装置。 14. The liquid crystal display device according to claim 13, wherein the organic polymer includes a polyimide resin.  請求項10乃至12の少なくとも一つにおいて、前記絶縁膜は少なくとも1層の無機物層を有することを特徴とする液晶表示装置。 The liquid crystal display device according to at least one of claims 10 to 12, wherein the insulating film has at least one inorganic layer.  請求項10乃至12の少なくとも一つにおいて、前記液晶層の前記絶縁膜との界面の液晶分子の前記一対の基板に対する傾き角は4度以下であることを特徴とする液晶表示装置。 13. The liquid crystal display device according to claim 10, wherein an inclination angle of liquid crystal molecules at an interface between the liquid crystal layer and the insulating film with respect to the pair of substrates is 4 degrees or less.  請求項17において、前記液晶層の前記非導電層との界面の液晶分子の前記一対の基板に対する傾き角は、2度以下であることを特徴とする液晶表示装置。
18. The liquid crystal display device according to claim 17, wherein an inclination angle of liquid crystal molecules at an interface between the liquid crystal layer and the non-conductive layer with respect to the pair of substrates is 2 degrees or less.
JP2003373870A 1992-09-18 2003-11-04 Liquid crystal display Expired - Lifetime JP3811695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003373870A JP3811695B2 (en) 1992-09-18 2003-11-04 Liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24993892 1992-09-18
JP2003373870A JP3811695B2 (en) 1992-09-18 2003-11-04 Liquid crystal display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003128546A Division JP2003287741A (en) 1992-09-18 2003-05-07 Liquid crystal display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004231778A Division JP2004310141A (en) 1992-09-18 2004-08-09 Liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2004046267A true JP2004046267A (en) 2004-02-12
JP3811695B2 JP3811695B2 (en) 2006-08-23

Family

ID=31719129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373870A Expired - Lifetime JP3811695B2 (en) 1992-09-18 2003-11-04 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP3811695B2 (en)

Also Published As

Publication number Publication date
JP3811695B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
JP2940354B2 (en) Liquid crystal display
KR100327613B1 (en) Liquid crystal display device
KR100225910B1 (en) Lcd device
KR100209531B1 (en) Liquid crystal display device
JP4171145B2 (en) Multi-domain liquid crystal display device
KR100282934B1 (en) Transverse electric field type liquid crystal display device composed of liquid crystal molecules having two or more kinds of reorientation directions and manufacturing method thereof
US6583836B2 (en) Multi-domain liquid crystal display device having a dielectric structure controlling alignment of the liquid crystal molecules
US8149369B2 (en) In-plane switching mode LCD device
JP3066255B2 (en) Liquid crystal display
JPH10325961A (en) Active matrix type liquid crystal display device
US6657694B2 (en) In-plane switching LCD device having slanted corner portions
US7880822B2 (en) Liquid crystal display panel and liquid crystal display device
JPH11109391A (en) Liquid crystal display device
US7599036B2 (en) In-plane switching active matrix liquid crystal display apparatus
JP3819561B2 (en) Liquid crystal display
JP2002214613A (en) Liquid crystal display
US20010019389A1 (en) Multi-domain liquid crystal display device
JPH09230364A (en) Liquid crystal display device
JP3441999B2 (en) Liquid crystal display
JP3811695B2 (en) Liquid crystal display
US20020033914A1 (en) Liquid crystal display device and method of fabricating the same
JPH0980383A (en) Liquid crystal display device
JP2004310141A (en) Liquid crystal display device
JP2002082350A (en) Liquid crystal display
JP2003287741A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040930

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7