JP2004045606A - Device and method for evaluating electrophotographic photoreceptor, device and method for manufacturing electrophotographic photoreceptor - Google Patents

Device and method for evaluating electrophotographic photoreceptor, device and method for manufacturing electrophotographic photoreceptor Download PDF

Info

Publication number
JP2004045606A
JP2004045606A JP2002201121A JP2002201121A JP2004045606A JP 2004045606 A JP2004045606 A JP 2004045606A JP 2002201121 A JP2002201121 A JP 2002201121A JP 2002201121 A JP2002201121 A JP 2002201121A JP 2004045606 A JP2004045606 A JP 2004045606A
Authority
JP
Japan
Prior art keywords
light
photosensitive member
electrophotographic photosensitive
layer
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002201121A
Other languages
Japanese (ja)
Inventor
Takanao Suzuki
鈴木 孝尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2002201121A priority Critical patent/JP2004045606A/en
Publication of JP2004045606A publication Critical patent/JP2004045606A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the evaluating device and the evaluating method of an electrophotographic photoreceptor for accurately evaluating the characteristic value of film thickness or the like in the manufacturing process of the electrophotographic photoreceptor. <P>SOLUTION: The surface of a detection area 28a on the electrophotographic photoreceptor 28 is irradiated with light from a light source 12 through an optical fiber 14 and a measuring probe 16. The measuring probe 16 is arranged at a position deviated from a regularreflection optical path, and light reflected by a conductive base body surface is prevented from reaching the measuring probe 16 by successively passing through each layer again, so that the measuring probe 16 receives scattered light. Then, light made incident on the measuring probe 16 is collected by a spectrophotometer 18 through the optical fiber 16, and a spectral absorption ratio is calculated from spectrum obtained by the spectrophotometer 18 by a spectral absorption ratio arithmetic part 22, so that the film thickness or the characteristic value depending on the film thickness is obtained by a film thickness converting part 24. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真感光体の評価装置および評価方法、電子写真感光体の製造装置および製造方法にかかり、特に、導電性基板上に複写機やプリンタ等の電子写真装置に使用される電子写真感光体の膜厚等を評価する電子写真感光体の評価装置および評価方法、さらにはその電子写真感光体の製造装置および製造方法に関する。
【0002】
【従来の技術】
従来より、複写機やプリンタ等の電子写真装置に使用される電子写真感光体として、導電性基体上に下引層と電荷発生層と電荷輸送層とを順次積層されたものが知られている。これらの感光層は、各層を構成するための有機系光導電性材料を結着剤樹脂とともに有機溶剤に溶解または分散させて感光体塗布液として作成し、この感光体塗布液を導電性基体の上に順次塗布、乾燥させることにより電子写真感光体が製造されている。
【0003】
このような電子写真感光体の製造過程における感光体塗布液の塗布方法として、多くの工法が知られている。特に浸漬塗布法は、前述の感光体塗布液を満たした塗布層に導電性基体を浸漬した後に、所定の速度で引き上げることにより、感光層を形成する方法である。この浸漬塗布法は、その生産性の高さから電子写真感光体の製造において広く利用されている。
【0004】
しかし、この浸漬塗布法は、垂直方向にだれが生じやすいという欠点を有している。そのため、基体上に形成される感光層に塗布むらや、筋が発生したり、膜厚の上下差が大きくなり、画像の濃淡ムラ等の画質欠陥の原因となることがある。また、塗布液には、塗膜形成のための蒸発しやすい有機溶剤を使用していることが多い。そのため、塗布槽内の塗布液から溶剤が蒸発して、塗布液の粘度や濃度が変化し、その製造工程において一定の条件で塗布することが難しい。
【0005】
このため、上記のような電子写真感光体の製造工程においては、各層の膜厚の測定及び評価を行ない、それを管理することにより塗布工程の変動を検出し、塗布量の調整を行なっている。このような各層の膜厚の測定のために、例えば、段差計、過電流式膜厚計等の接触式膜厚測定方法や、色彩色差法、干渉法、光吸収法等を用いた非接触式膜厚測定法が考案されている。
【0006】
特に、干渉法を用いた膜厚評価は、光の多重反射による干渉効果を利用したものであり、比較的平易かつ短時間での評価が可能なことから、電子写真感光体の下引層や電荷輸送層のような透明膜の膜厚を測定する場合によく用いられている。例えば、特開平4−336540号公報には、このような方式で電子写真感光体の下引層および電荷輸送層の膜厚を評価して、各塗布工程の塗布速度を制御する方法が開示されている。
【0007】
また、光吸収法を用いた膜厚評価は、膜による光の吸収がその膜厚により変動することを利用したものであり、比較的平易かつ短時間での評価が可能なことから、電子写真感光体の膜厚を測定する場合によく用いられている。その際に使用する光の種類としては、例えば、電子写真感光体の下引層や電荷輸送層のような透明な膜の膜厚を測定する場合には、赤外波長領域の光の吸収を利用した方法が多く用いられる。また、電子写真感光体の電荷発生層等のような顔料が分散されている膜の膜厚を測定する場合には、可視領域の光の吸収を利用した方法が多く用いられる。
【0008】
光吸収法によって得られる特性値として実用的なものとしては、吸収率、反射率等が挙げられ、いずれも塗膜形成前の反射光量と塗膜形成後の反射光量との比、もしくは塗膜への入射光量と反射光量との比を表わすものである。これらの特性値は、測定対象の膜の膜厚との相関があることが多く、このような場合、あらかじめ求めた換算式を用いて、これらの特性値から膜厚に換算することが可能である。例えば、特開平6−130683号公報では、電子写真感光体の画像形成領域外の部分の基体表面に下引層を形成しない部分を設け、その部分に電荷発生層の膜を形成して、分光光度計により得られた当該位置の分光吸収スペクトルから、特定単一波長の、すなわち吸収率を求め、膜厚換算する方法が開示されている。また、特開平9−106218号公報では、分光光度計により得られた当該位置の分光吸収スペクトルから、複数波長の光量比すなわち分光吸収比を求め、膜厚換算する方法が開示されている。
【0009】
【発明が解決しようとする課題】
しかしながら、一般的に分光光度計などを用いて、塗膜への入射光量と反射光量との比から吸収率や分光吸収比を求めようとする場合、測定対象の膜自身やそれ以外の膜での光干渉が発生する系においては、測定が不可能である場合がある。すなわち、このような系では反射してきた光量が光干渉の影響を受けて吸収と交絡することにより変動してしまっているために、本来、測定すべき測定対象膜の吸収と関係のない反射光量の変化が発生し、測定値のバラツキが大きくなり、測定精度の低下を招く、という問題がある。
【0010】
また、電子写真感光体の各層の膜厚等の反射率や吸収率を代用特性として評価する場合には、その特性値のばらつきも同時に大きくなってしまう、という問題がある。さらには、これらの特性値により塗布工程を管理する場合には、真値から大きく外れた評価を工程にフィードバックしてしまうおそれがある、という問題がある。
【0011】
本発明は、上記事実を考慮してなされたもので、電子写真感光体の製造工程において、精度よく膜厚等の特性値を評価する電子写真感光体の評価装置および評価方法を提供すると共に、その評価結果を製造工程に反映させた電子写真感光体の製造装置および製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために請求項1に記載の発明は、導電性基体上に層が形成された電子写真感光体の評価を行う電子写真感光体の評価装置であって、前記電子写真感光体に光を照射する投光手段と、前記電子写真感光体における前記投光手段による照射光について、正反射方向と異なる方向で受光する散乱光受光手段と、前記散乱光受光手段によって受光した散乱光の分光特性を検出する分光特性検出手段と、該分光特性検出手段によって検出された前記分光特性から求めた分光吸収比に基づいて、前記層の層厚または層厚に関する特徴量を得る演算手段と、を備えることを特徴としている。
【0013】
請求項1に記載の発明によれば、投光手段より電子写真感光体の表面に照射される光について、正反射方向と異なる方向で散乱光受光手段によって受光される。すなわち、散乱光受光手段では、電子写真感光体によって散乱される散乱光が受光される。
【0014】
分光特性検出手段では、受光した散乱光の分光特性が検出される。すなわち、反射光ではなく散乱光の分光特性を検出するので、反射光と光路が異なるため、被評価対象の層やその他の層の反射光によって光干渉するがなく、被評価対象の層の散乱光の分光特性を正確に検出することができる。
【0015】
そして、演算手段では、分光特性から求めた分光吸収比に基づいて、層厚または層厚に関する特徴量が得られる。例えば、予め求めた分光吸収比と層厚や層厚に関する特徴量の関係から層厚や層厚に関する特徴量を得ることができる。
【0016】
すなわち、正確に検出された被測定対象の層の散乱光の分光特性を用いて、層厚や層厚に関する特徴量が得られるので、電子写真感光体の製造工程において、精度よく膜厚等の特性値を評価することができる。
【0017】
請求項2に記載の発明は、請求項1に記載の発明において、前記散乱光受光手段は、前記投光手段より照射される光が前記層によって反射される正反射光路に対して、ずれた位置に配置することを特徴としている。
【0018】
請求項2に記載の発明によれば、請求項1に記載の発明において、散乱光受光手段を、投光手段より照射される光が電子写真感光体の層によって反射される正反射光路に対してずれた位置に配置することによって、正反射方向と異なる方向で光を受光することができ、反射光は受光せずに散乱光のみを受光することが可能となる。
【0019】
このとき、請求項3に記載の発明のように、散乱光受光手段による受光角の1/2より大きい角度分、前記正反射光路に対してずれた位置に散乱光受光手段を配置することにより、確実に散乱光のみを受光することが可能となる。
【0020】
また、投光手段及び散乱光受光手段は、請求項4に記載の発明のように、それぞれ光ファイバを含む測定プローブとすることができる。そして、該測定プローブは、請求項5に記載の発明のように、投受光一体の測定プローブとすることができる。
【0021】
投受光一体型の測定プローブとした場合には、請求項6に記載の発明のように、測定プローブの光軸を電子写真感光体の法線に対して傾斜させて配置することによって、散乱光を受光することができる。また、このとき、請求項7に記載の発明のように、電子写真感光体の法線に対する傾斜角を、受光手段の受光角の1/2より大きい角度で90°より小さい角度となるように傾斜させることによって、散乱光のみを確実に受光することができる。
【0022】
なお、電子写真感光体の法線に対する傾斜角としては、15°〜45°が好ましい。
【0023】
また、被評価対象の層としては、請求項8に記載の発明のように、電荷発生層を評価対象とすることができる。この場合、層厚に関する特徴量として、電荷発生層の膜厚に依存する電気特性等の特性値、具体的には光を照射した際の降下電位を示す光感度電位などを得ることが可能である。
【0024】
請求項9に記載の発明は、導電性基体上に層が形成された電子写真感光体の評価を行う電子写真感光体の評価方法であって、前記電子写真感光体に光を照射して、該照射光について正反射方向と異なる方向で受光する散乱光の分光特性を検出し、検出した分光特性から求めた分光吸収比を用いて前記層の層厚または層厚に関する特徴量を得ることを特徴としている。
【0025】
請求項9に記載の発明によれば、層が形成された電子写真感光体に光を照射して、該照射光について正反射方向と異なる方向で受光する散乱光の分光特性を検出する。すなわち、反射光ではなく散乱光の分光特性を検出するので、反射光と光路の異なるため、被評価対象の層やその他の層の反射光によって光干渉することなく、被評価対象の層の散乱光の分光特性を正確に検出することができる。
【0026】
そして、検出した散乱光の分光特性から求めた分光吸収比を用いて被評価対象の層厚または層厚に関する特徴量を得る。例えば、予め求めた分光吸収比と層厚や層厚に関する特徴量の関係から層厚や層厚に関する特徴量を得ることができる。
【0027】
すなわち、正確に検出された被測定対象の層の散乱光の分光特性を用いて、層厚や層厚に関する特徴量が得られるので、電子写真感光体の製造工程において、精度よく膜厚等の特性値を評価することができる。
【0028】
請求項10に記載の発明は、請求項9に記載の発明において、前記散乱光の分光特性の検出は、前記電子写真感光体に照射された光の正反射光路からずれた位置の光を受光し、受光した光の分光特性を検出することを特徴としている。
【0029】
請求項10に記載の発明によれば、請求項9に記載の発明において、散乱光の分光特性の検出を、電子写真感光体に照射された光の正反射光路からずれた位置の光を受光して、受光した光の分光特性を検出することによって、反射光は受光せずに散乱光のみを受光することが可能となる。
【0030】
このとき、請求項11に記載の発明のように、光を受光する散乱光受光手段による受光角の1/2より大きい角度分、正反射光路に対してずれた位置の光を受光して、分光特性を検出することにより、確実に散乱光のみを受光することが可能となる。
【0031】
また、散乱光の分光特性は、請求項12に記載の発明のように、光ファイバを含む測定プローブを用いて検出することが可能であり、該測定プローブとしては、請求項13に記載の発明のように、投受光一体型の測定プローブを用いるようにしてもよい。
【0032】
投受光一体型の測定プローブを用いる場合には、請求項14に記載の発明のように、測定プローブの光軸を電子写真感光体の法線に対して傾斜させて検出することによって、散乱光の分光特性を検出することができる。また、このとき、請求項15に記載の発明のように、光を受光する散乱光受光手段による受光角の1/2より大きい角度で90°より小さい角度となるように傾斜させて検出することによって、散乱光のみの分光特性を確実に検出することができる。
【0033】
なお、電子写真感光体の法線に対する傾斜角としては、15°〜45°が好ましい。
【0034】
また、被評価対象の層としては、請求項16に記載の発明のように、電荷発生層を評価対象とすることができる。この場合、層厚に関する特徴量として、電荷発生層の膜厚に依存する電気特性等の特性値、具体的には光を照射した際の降下電位を示す光感度電位などを得ることが可能である。
【0035】
請求項1乃至請求項8の何れか1項に記載の電子写真感光体の評価装置を、請求項17に記載の発明のように、電子写真感光体の製造装置に適用することによって、上述の電子写真感光体の評価装置により、正確に、しかも膜による光干渉などに影響されずに安定した測定結果を得ることができるので、電子写真感光体の膜厚を製造工程途中の中間製品の状態で正確に評価することができる。
【0036】
また、同様に、請求項9乃至請求項16の何れか1項に記載の電子写真感光体の評価方法を、請求項18に記載の発明のように、電子写真感光体の製造方法に適用することによって、上述の電子写真感光体の評価方法により、正確に、しかも膜による光干渉などに影響されずに安定した測定結果を得ることができるので、電子写真感光体の膜厚を製造工程途中の中間製品の状態で正確に評価することができる。
【0037】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態の一例を詳細に説明する。
【0038】
図1には、本発明の実施の形態に係わる電子写真感光体の評価装置の概略構成を示す。
【0039】
図1に示すように、電子写真感光体の評価装置10は、光源12、光ファイバ14、測定プローブ16、分光光度計18、及び膜厚算出部20を備えており、光源12及び分光光度計18は、光ファイバ14を介して測定プローブ16に接続され、分光光度計18は膜厚算出部20に接続されている。
【0040】
膜厚算出部20は、分光吸収比演算部22、膜厚換算部24、及び換算式記憶部26を含んで構成されている。
【0041】
被測定対象である電子写真感光体28は、導電性基体上に下引層、電荷発生層、電荷輸送層等の各層が順次積層される。電子写真感光体28は、導電性基体上に少なくとも評価対象となる層が積層された後の状態の電子写真感光体であり、ここでは、電子写真感光体28は、予め導電性基体の表面に下引層と電荷発生層と電荷輸送層を順次形成したものとする。
【0042】
光源12は、例えばハロゲン、ニクロム等の一般的に用いられる光源を、測定対象となる層の吸収波長域に合わせて用いたものである。例えば、電荷発生層のように顔料が分散されており、膜による光の吸収が可視光領域で顕著に現れるようなものの場合には、可視光の光源としてよく利用されるハロゲン光源等を用いればよい。また、電荷輸送層や下引層のような透明な層の場合には、赤外線の光源としてよく利用されるニクロム光源等を用いればよい。もちろん、他の光源を用いることも可能であり、測定対象となる層の吸収波長域に合わせて用いればよい。
【0043】
光源12から出射された光は、光ファイバ14を介して、測定プローブ16から電子写真感光体28の検出エリア28aに照射される。
【0044】
ここで、本実施の形態の測定プローブ16は、正反射光の受光を回避し、散乱光のみを受光するため、正反射光路からずれた位置に測定プローブ16を配置する。本実施の形態では、図1及び図2に示すように、投受光一体型の測定プローブ16を電子写真感光体の法線に対して傾斜させて配置する。この際、測定プローブ16の傾斜角θは、電子写真感光体28の法線に対して、測定プローブ16の受光角の1/2より大きい角度で90°よりも小さい角度とすることにより、散乱光を受光することができる。
【0045】
なお、測定プローブ16の受光角が一般的に20°のものが多いので、測定プローブ16の傾斜角θは、電子写真感光体28の法線方向に対して10°より大きい角度で90°より小さい角度とするのが好ましい。また、傾斜角θは15°〜45°とするのがさらに好ましい。
【0046】
また、投受光分離型の測定プローブを用いる場合でも、図3に示すように、受光側のプローブを正反射光路からずらして配置することにより同等の機能が得られる。この場合には、正反射光路に対して測定プローブ16の受光角の1/2より大きい角度分、ずれた位置に測定プローブ16の受光側を配置するのが好ましい。
【0047】
このようにして、検出エリア28aに照射された光は、電子写真感光体28の導電性基体上に形成された各層を順次通過して反射する系と、測定対象となる層内で散乱する系とに別れる。導電性基体表面で反射された光は、再び各層を順次通過するが、測定プローブ16には到達しない。一方散乱された光は測定プローブ16に到達する。測定プローブ16に入射した光は、光ファイバ14を経由して、分光光度計18の分光器に結像する。
【0048】
分光光度計18は、検出エリア28aの散乱光のスペクトルを採取し、膜厚算出部20は、分光光度計18で得られたスペクトルから、測定対象の層の膜厚や膜厚に依存する特性値を算出する。
【0049】
膜厚算出部20は、上述したように、分光吸収比演算部22、膜厚換算部24、及び換算式記憶部26を含んで構成され、分光光度計18で得られたスペクトルから、測定対象の層の膜厚や膜厚に依存する特性値を算出する。膜厚算出部20は、例えば、パソコン等のデータ処理装置により構成することができる。
【0050】
分光吸収比演算部22は、分光光度計18で得られたスペクトルから、任意の波長の光量と、最も光量の多いピーク波長の光量あるいは最も光量の少ないボトム波長の光量との比を求める。これを分光吸収比と呼ぶ。図4は、分光特性の一例および分光吸収比の説明図である。測定対象層で散乱した光のスペクトルの一例を図4に示している。このようなスペクトルが分光光度計18で得られる。このようなスペクトルを採取した場合、膜による光の吸収が発生し、波長によりその反射光量、すなわち吸収の度合いが異なってくることが知られている。この特性を利用して、最も吸収の少ない波長をピーク波長、最も吸収の大きい波長をボトム波長とし、任意の波長の光量とピーク波長またはボトム波長の光量との比を分光吸収比演算部22で算出する。ここで、ピーク波長は最も膜厚に影響されない波長であり、ボトム波長は最も膜厚に影響される波長である。また、波長の比をとるのは、光学系の状態の変動、例えば光源光量の変動や光路長の変動等の影響によるばらつき要因を最小化するためである。ここでは、吸収の最も少ないピーク波長での光量と、吸収の比較的多い任意波長での光量とから分光吸収比を算出する。例えば、図4における波長Aとピーク波長との分光吸収比は、波長Aの光量をL、ピーク波長の光量をLとすれば、L/Lとなる。分光吸収比演算部8では、例えば、図4に示す例では、ピーク波長と、波長A、波長B、波長C、ボトム波長との分光吸収比を求める。
【0051】
例として、次に示す光の吸収光量を表わす一般式から、分光吸収比を求めてみる。
Lo=Li×exp(−μd)×Lb
ここで、Loは反射光量、Liは入射光量、μは吸収係数、dは膜厚、Lbは基体表面の反射率である。この式を用い、吸収係数の異なる2波長の光の反射光量の比を考える。2つの波長を波長X、波長Yとし、Loを波長Xの反射光量、Loを波長Yの反射光量、Liを入射光量、μを波長Xの吸収係数、μを波長Yの吸収係数、dを膜厚、Lbを基体表面の反射率とすると、

Figure 2004045606
となる。この関係式は、入射光量Liや基体表面の反射率Lbを含んでいない。そのため、分光吸収比によって、光源光量の変動や光路長の変動などによる入射光量の変動、および、基体表面の反射率変動等の影響を受けずに光の吸収量を表わすことができる。
【0052】
膜厚換算部24は、分光吸収比演算部22から得られるいくつかの分光吸収比を説明変数とし、予め求めて換算式記憶部26に記憶された換算式によって、測定対象の層の膜厚や、膜厚に依存する各種の特性値を求める。例えば、目的変数が電荷発生層の膜厚である場合、説明変数である分光吸収比を得た同じ電子写真感光体28について、例えば、切断面の拡大写真を透過型電子顕微鏡により撮影し、目的変数である実際の電荷発生層の膜厚を求める。この測定結果を用い、膜厚を目的変数、任意の分光吸収比を説明変数とした単回帰式を換算式として求め、換算式記憶部26に記憶する。評価の際には、分光吸収比を説明変数として計算することにより、目的変数である電荷発生層の膜厚を求めることができる。なお、換算式の目的変数は、電子写真感光体の各層の膜厚に依存する特性値、例えば、を選択してもよい。
【0053】
続いて、上述のように構成された電子写真感光体の評価装置10の動作の一例を説明する。
【0054】
光源12からの光を光ファイバ14及び測定プローブ16を介して電子写真感光体28上の検出エリア28aの表面に照射する。検出エリア28aに照射された光は、電子写真感光体28の導電性基体上に形成された各層を順次通過して反射する系と、測定対象となる層内で散乱する系とに分かれる。導電性基体表面で反射された光は、再び各層を順次通過するが、測定プローブ16が正反射光路からずれた位置にもうけられているため測定プローブ16には到達しない。一方、散乱された光は、測定プローブ16が散乱光を受光する位置(正反射光路からずれた位置)に設けられているため測定プローブ16に到達する。換言すれば、測定プローブ16には、散乱光のみが到達し、測定対象の膜自身やそれ以外の膜での光干渉がないので、測定プローブ16に到達する光は、光干渉等による光量変動がなく、測定バラツキを防止することができる。。
【0055】
測定プローブ16に入射した光は、光ファイバ14を介して、分光光度計18の分光器に結像する。これにより、例えば、図4に示したような反射光のスペクトルを分光光度計18で採取することができる。
【0056】
得られたスペクトルは膜厚算出部20の分光吸収比演算部22に送られ、分光吸収比演算部22において分光吸収比が計算され計算結果が膜厚換算部24に入力される。膜厚換算部24は、分光吸収比演算部22で計算された分光吸収比を、換算式記憶部26に予め記憶された換算式へ代入することによって、膜厚または膜厚に依存する特定値を精度良く求めることができる。
【0057】
上述の動作は、電子写真感光体28の1カ所の測定に限らず、例えば、電子写真感光体28を回転させ、また電子写真感光体28と測定プローブ16とを図1中上下に相対移動させて、複数の検出エリアあるいは電子写真感光体28の全面について、測定を行うことができる。
【0058】
上述のようにして求められた膜厚または膜厚に依存する特定値は、そのままディスプレイやプリンタ等に出力したり、例えば、ある閾値と比較して良/不良の信号として出力することができる。
【0059】
さらに、これらの出力を測定対象の層を形成する工程にフィードバックし、その工程の制御に用いることができる。これによって膜厚の管理を行い、工程の安定化、膜厚不良品の後工程への大量流出を防ぐことが可能な電子写真感光体の製造装置及び製造方法を得ることができる。
【0060】
なお、本実施の形態では、換算式記憶部26に記憶する換算式として、単回帰式を記憶し、単回帰分析の手法を用いたが、この他の統計手法を用いるようしてもよい。例えば、重回帰分析の手法を用いて換算式記憶部26に重回帰式を記憶する場合には、膜厚換算部24は、分光吸収比演算部22から得られるいくつかの分光吸収比を説明変数とし、換算式記憶部26に記憶されている重回帰式から、測定対象の層の膜厚や、膜厚に依存する各種の特性値を求める。
【0061】
重回帰式とは、複数の変数を用いた一次式のことであり、一般的にy=a1+x1+a2x2+・・・+apxp+a0で表すことができる。ここで、x1、x2・・・xpは説明変数と呼ばれるものであり、スペクトルから導出した分光吸収比とすることができる。また、yは目的変数と呼ばれるものであり、例えば、想定対象の層の膜厚や膜厚に依存する特性値とすることができる。a0は定数項、a1、a2、・・・apは回帰係数と呼ばれ、予め目的変数に応じて設定しておく
例えば、目的変数が電荷発生層の膜厚である場合、説明変数である分光吸収比を得た電子写真感光体について、例えば、切断面の拡大写真を透過型電子顕微鏡により撮影し、目的変数である実際の電荷発生層の膜厚を求める。この測定結果を用い、膜厚を目的変数、任意の分光吸収比を説明変数とした多変量解析を行い、電荷発生層の膜厚との重相関係数の高くなる組み合わせの分光吸収比を選択して、重回帰式を求めることができる。これにより、電荷発生層の膜厚を目的変数とする重回帰式が求められる。求められた重回帰式は、換算式記憶部26に記憶させておく。評価の際には、分光吸収比を説明変数として計算することにより、目的変数である電荷発生層の膜厚を求めることができる。他の電荷輸送層や下引層などの膜厚を目的変数とした重回帰式も同様にして求めることができる。
【0062】
重回帰式を用いる理由としては、波長により電荷発生層の膜厚との相関や導電性基体の表面粗度による外乱の影響の大きさ等の特性が異なっているため、複数の波長を用いて、電荷発生層の膜厚への換算及び外乱の修正を重回帰式で同時に行えるためである。導電性基体の表面の粗さを表す指標、例えば、表面粗度が既知の場合、説明変数にこれを加えてもよい。また、重回帰式の目的変数は、電子写真感光体の各層の膜厚に依存する特性値、例えば、電荷発生層の膜厚に依存する電気特性等の特性値、具体的には光を照射した際の降下電位を示す光電度電位などを選択してもよい。
【0063】
【実施例】
次に、上述の発明の実施の形態に対応する実施例を説明する。
【0064】
電子写真感光体の電荷発生層の膜厚を求めるため、電荷発生層の膜厚をdμm〜dμmの3水準、よりなる電子写真感光体28を作成した。更に、下地の反射による干渉の発生を促すための層として、顔料分散型の下引層を電荷発生層の下に形成した。図1に示した評価装置10を使用し、上記の電子写真感光体28の検出エリア28aに光源12より光ファイバ14及び測定プローブ16経由で光を照射し、検出エリア28aの電荷発生層からの散乱光を測定プローブ16及び光ファイバ14経由で分光光度計18の分光器に結像させ、スペクトルを得た。膜厚dμm〜dμmに対応したスペクトルの波形を図5に示す。膜厚の変化に追従したスペクトルの変化が観察できる。なお、図5は、ピーク値を100%に規格化した図を示す。
【0065】
さらに、得られたスペクトルより膜厚算出部20の分光吸収比演算部22を用いて、分光吸収比を求めた。光源12はハロゲン光源を用い、使用する波長幅は400nm〜800nmの可視光領域とし、波長を10nmおきに分解して各波長の光量データを求め、分光吸収比を、各々ピーク波長の光量との比により算出した。さらに、上記の電子写真感光体28における分光吸収スペクトル採取位置の切断面の拡大写真を透過型電子顕微鏡にて撮影して計測することにより、実際の電荷発生層の膜厚を求めた。各々求めた分光吸収比のうち、該電荷発生層の膜厚との相関の最も高い波長を選択し、相関を求めたところ、相関係数0.98となり良好な結果が得られた。この相関から選られた一次回帰を、分光吸収比から実膜厚に換算するための換算式として、これを換算式記憶部26に記憶させた。
【0066】
以上により、下引層および電荷発生層を順次形成した電子写真感光体の電子写真感光体を分光光度計で測定することにより、光干渉によるの変動の影響を受けることがなく、電子写真感光体の電荷発生層の膜厚を正確に予測および評価することができた。また、電子写真感光体の1本のうちの複数の位置において膜厚の測定を行なうことにより、膜厚ムラ、ダレ等の不均一性の評価を行なうことも可能となった。
【0067】
すなわち、本発明の実施の形態に係わる電子写真感光体の評価装置10及びその評価方法では、電子写真感光体からの散乱光の分光特性から求めた分光吸収比に基づいて、被評価対象となる層の層厚または層厚に関する特徴量を得るので、正確に、しかも膜による光干渉などに影響されずに安定した測定結果を得ることができる。これによって、電子写真感光体の膜厚を製造工程途中の中間製品の状態で正確に評価することができる。
【0068】
また、電子写真感光体の製造工程に本発明の実施の形態に係わる電子写真感光体の評価装置10を適用して、測定結果を被測定対象の層を形成する工程にフィードバックすることによって、その工程の変動を早急に検知することができ、工程の安定化、膜厚不良品の後工程への大量流出を防止することができる。
【0069】
次に比較例を説明する。前述の電子写真感光体28を、図6に示すような、特開平9−106218に例示された装置を使用し、上記の電子写真感光体28の検出エリア28aに光源6より光ファイバ4及び測定プローブ3経由で光を照射し、検出エリア28aの電荷発と層からの反射光を測定プローブ3及び光ファイバ4経由で分光光度計5の分光器に結像させ、スペクトルを得た。膜厚dμm〜dμmに対応したスペクトルの波形を図7に示す。スペクトルの形状が膜厚の変化に追従しておらず、光干渉の影響も随所に見られる。
【0070】
さらに、得られたスペクトルより膜厚算出部7の分光吸収比演算部8を用いて、分光吸収比を求めた。光源6は上記と同様にハロゲン光源を用い、使用する波長幅は400nm〜800nmの可視光領域とし、波長を10nmおきに分解して各波長の光量データを求め、分光吸収比を、各々ピーク波長の光量との比により算出した。さらに、上記の電子写真感光体28の分光吸収スペクトル採取位置の切断面の拡大写真を透過型電子顕微鏡にて撮影して計測することにより、実際の電荷発生層の膜厚を求めた。各々求めた分光吸収比のうち、該電荷発生層の膜厚との相関の最も高い波長を選択し、相関を求めたところ、相関係数0.71となり、膜厚の評価方法としては使用できるレベルではないことがわかった。
【0071】
【発明の効果】
以上説明したように本発明の電子写真感光体の評価装置及び評価方法によれば、電子写真感光体からの散乱光の分光特性から求めた分光吸収比に基づいて、被評価対象となる層の層厚または層厚に関する特徴量を得ているので、電子写真感光体の製造工程において、精度よく膜厚等の特性値を評価することができる、という効果がある。
【0072】
また、本発明の電子写真感光体の製造装置及び製造方法によれば、上記電子写真感光体の評価装置及び評価方法を電子写真感光体の製造工程及び製造方法に適用するので、評価結果を製造工程に反映させることができる、という効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態に係わる電子写真感光体の評価装置の概略構成を示す図である。
【図2】投受光一体型の測定プローブを示す図である。
【図3】投受光分離型の測定プローブを示す図である。
【図4】分光特性の一例を示すグラフである。
【図5】本発明の実施の形態に係わる電子写真感光体の評価装置により得られる電子写真感光体の散乱光スペクトルの一例を示すグラフである。
【図6】比較例としての特開平9−106218号公報における電子写真感光体の評価装置の概略構成を示す図である。
【図7】比較例としての特開平9−106218号公報における電子写真感光体の評価装置により得られる電子写真感光体の反射スペクトルの一例を示すグラフである。
【符号の説明】
10  電子写真感光体の評価装置
12  光源
14  光ファイバ
16  測定プローブ
18  分光光度計
20  膜厚算出部
22  分光吸収比演算部
24  膜厚換算部
26  換算式記憶部
28  電子写真感光体
28a 検出エリア[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus and a method for evaluating an electrophotographic photoreceptor, an apparatus and a method for manufacturing an electrophotographic photoreceptor, and in particular, an electrophotographic apparatus used for an electrophotographic apparatus such as a copying machine or a printer on a conductive substrate. The present invention relates to an electrophotographic photoreceptor evaluation apparatus and method for evaluating a film thickness of a photoreceptor and the like, and further relates to an electrophotographic photoreceptor manufacturing apparatus and method.
[0002]
[Prior art]
2. Description of the Related Art Heretofore, as an electrophotographic photosensitive member used in an electrophotographic apparatus such as a copying machine or a printer, an electrophotographic photosensitive member in which an undercoat layer, a charge generation layer, and a charge transport layer are sequentially laminated on a conductive substrate is known. . These photosensitive layers are prepared by dissolving or dispersing an organic photoconductive material for constituting each layer together with a binder resin in an organic solvent to form a photoconductor coating solution, and applying the photoconductor coating solution to the conductive substrate. An electrophotographic photoreceptor is manufactured by sequentially applying and drying the above.
[0003]
Many methods are known as a method of applying a photoconductor coating liquid in the process of manufacturing such an electrophotographic photoconductor. In particular, the dip coating method is a method in which a photosensitive layer is formed by immersing a conductive substrate in a coating layer filled with the above-described photoreceptor coating solution and then pulling the conductive substrate at a predetermined speed. This dip coating method is widely used in the production of electrophotographic photosensitive members because of its high productivity.
[0004]
However, this dip coating method has a drawback in that dripping tends to occur in the vertical direction. As a result, unevenness in coating, streaks may occur on the photosensitive layer formed on the substrate, or the vertical difference in film thickness may increase, which may cause image quality defects such as uneven density of images. In addition, an organic solvent that easily evaporates to form a coating film is often used for the coating solution. Therefore, the solvent evaporates from the coating liquid in the coating tank, and the viscosity and concentration of the coating liquid change, and it is difficult to apply the coating liquid under a certain condition in the manufacturing process.
[0005]
For this reason, in the above-described electrophotographic photoreceptor manufacturing process, the thickness of each layer is measured and evaluated, and by controlling the thickness, a variation in the coating process is detected and the coating amount is adjusted. . For the measurement of the film thickness of each such layer, for example, a non-contact method using a contact type film thickness measuring method such as a step gauge, an overcurrent type film thickness meter, a color difference method, an interference method, a light absorption method, or the like. A formula thickness measurement method has been devised.
[0006]
In particular, the evaluation of the film thickness using the interferometry utilizes the interference effect due to multiple reflection of light, and can be evaluated relatively easily and in a short time. It is often used when measuring the thickness of a transparent film such as a charge transport layer. For example, Japanese Patent Application Laid-Open No. 4-336540 discloses a method in which the film thickness of an undercoat layer and a charge transport layer of an electrophotographic photoreceptor are evaluated by such a method to control the coating speed in each coating step. ing.
[0007]
The film thickness evaluation using the light absorption method is based on the fact that the absorption of light by the film varies depending on the film thickness, and the evaluation can be performed relatively easily and in a short time. It is often used to measure the thickness of a photoconductor. As the type of light used at that time, for example, when measuring the thickness of a transparent film such as an undercoat layer or a charge transport layer of an electrophotographic photoreceptor, absorption of light in an infrared wavelength region is considered. The method used is often used. When measuring the thickness of a film in which a pigment is dispersed, such as a charge generation layer of an electrophotographic photosensitive member, a method utilizing absorption of light in a visible region is often used.
[0008]
Practical values of the characteristic values obtained by the light absorption method include an absorptance, a reflectivity, and the like. It represents the ratio between the amount of light incident on the device and the amount of reflected light. These characteristic values often have a correlation with the film thickness of the film to be measured. In such a case, it is possible to convert the film thickness from these characteristic values using a conversion formula obtained in advance. is there. For example, in JP-A-6-130683, a portion where an undercoat layer is not formed is provided on the surface of the substrate outside the image forming region of the electrophotographic photoreceptor, and a film of a charge generation layer is formed on the portion, and the spectral A method is disclosed in which a specific single wavelength, that is, an absorptance is obtained from a spectral absorption spectrum at the position obtained by a photometer, and the film thickness is converted. Also, Japanese Patent Application Laid-Open No. 9-106218 discloses a method of obtaining a light amount ratio of a plurality of wavelengths, that is, a spectral absorption ratio, from a spectral absorption spectrum at the position obtained by a spectrophotometer and converting the film thickness into a film thickness.
[0009]
[Problems to be solved by the invention]
However, in general, when using a spectrophotometer or the like to obtain the absorption rate or the spectral absorption ratio from the ratio of the amount of incident light to the coating film and the amount of reflected light, the film to be measured itself or another film may be used. In a system where optical interference occurs, measurement may not be possible. In other words, in such a system, the amount of reflected light fluctuates due to the influence of light interference and confounding with absorption, so that the amount of reflected light that is not related to the absorption of the target film to be measured This causes a problem that the variation of the measured value is increased and the measurement accuracy is reduced.
[0010]
In addition, when the reflectance or the absorptance such as the film thickness of each layer of the electrophotographic photosensitive member is evaluated as a substitute characteristic, there is a problem that the variation in the characteristic value increases at the same time. Furthermore, when the coating process is managed based on these characteristic values, there is a problem that an evaluation that deviates significantly from the true value may be fed back to the process.
[0011]
The present invention has been made in view of the above facts, and in an electrophotographic photoreceptor manufacturing process, while providing an electrophotographic photoreceptor evaluation apparatus and an evaluation method for accurately evaluating characteristic values such as film thickness, An object of the present invention is to provide a manufacturing apparatus and a manufacturing method of an electrophotographic photosensitive member in which the evaluation result is reflected in a manufacturing process.
[0012]
[Means for Solving the Problems]
According to an aspect of the present invention, there is provided an electrophotographic photoreceptor evaluation apparatus for evaluating an electrophotographic photoreceptor having a layer formed on a conductive substrate, wherein the electrophotographic photoreceptor is provided. A scattered light receiving means for receiving light emitted by the light emitting means in the electrophotographic photosensitive member in a direction different from a regular reflection direction; and a scattered light received by the scattered light receiving means. A spectral characteristic detecting means for detecting the spectral characteristic of, and a calculating means for obtaining a layer thickness of the layer or a feature amount relating to the layer thickness based on a spectral absorption ratio obtained from the spectral characteristic detected by the spectral characteristic detecting means. , Is provided.
[0013]
According to the first aspect of the invention, the light emitted from the light projecting means to the surface of the electrophotographic photosensitive member is received by the scattered light receiving means in a direction different from the regular reflection direction. That is, the scattered light receiving means receives scattered light scattered by the electrophotographic photosensitive member.
[0014]
The spectral characteristic detecting means detects the spectral characteristic of the received scattered light. In other words, since the spectral characteristic of scattered light, not reflected light, is detected, the reflected light and the optical path are different, so that there is no light interference due to the reflected light of the layer to be evaluated and other layers, and the scattering of the layer to be evaluated The spectral characteristics of light can be accurately detected.
[0015]
Then, the calculating means obtains the layer thickness or a feature quantity relating to the layer thickness based on the spectral absorption ratio obtained from the spectral characteristics. For example, it is possible to obtain the layer thickness and the characteristic amount relating to the layer thickness from the relationship between the spectral absorption ratio obtained in advance and the layer thickness and the characteristic amount relating to the layer thickness.
[0016]
That is, since the layer thickness and the characteristic amount relating to the layer thickness can be obtained by using the spectral characteristics of the scattered light of the layer of the object to be measured which are accurately detected, in the manufacturing process of the electrophotographic photosensitive member, the film thickness and the like can be accurately determined. Characteristic values can be evaluated.
[0017]
According to a second aspect of the present invention, in the first aspect of the present invention, the scattered light receiving unit is shifted with respect to a regular reflection optical path where light emitted from the light projecting unit is reflected by the layer. It is characterized by being arranged at a position.
[0018]
According to the second aspect of the present invention, in the first aspect of the present invention, the scattered light receiving means is provided with respect to a regular reflection optical path in which light emitted from the light projecting means is reflected by a layer of the electrophotographic photosensitive member. By arranging them at shifted positions, light can be received in a direction different from the regular reflection direction, and only scattered light can be received without receiving reflected light.
[0019]
At this time, by disposing the scattered light receiving means at a position shifted from the regular reflection optical path by an angle larger than の of the light receiving angle by the scattered light receiving means, as in the invention according to claim 3. Thus, it is possible to reliably receive only the scattered light.
[0020]
Further, the light projecting means and the scattered light receiving means can be measurement probes each including an optical fiber as in the invention according to claim 4. The measurement probe may be a measurement probe integrated with light emission and light reception.
[0021]
In a case where the measuring probe is a light emitting and receiving integrated type, the scattered light is provided by arranging the optical axis of the measuring probe so as to be inclined with respect to the normal line of the electrophotographic photosensitive member. Can be received. Further, at this time, the inclination angle of the electrophotographic photosensitive member with respect to the normal line is set to an angle larger than 1/2 of the light receiving angle of the light receiving means and smaller than 90 °. By tilting, only scattered light can be reliably received.
[0022]
The inclination angle of the electrophotographic photosensitive member with respect to the normal is preferably 15 ° to 45 °.
[0023]
Further, as the layer to be evaluated, the charge generation layer can be evaluated as in the invention described in claim 8. In this case, it is possible to obtain characteristic values such as electric characteristics depending on the thickness of the charge generation layer, specifically, a photosensitivity potential indicating a drop potential when irradiated with light, as the feature amount relating to the layer thickness. is there.
[0024]
The invention according to claim 9 is an electrophotographic photosensitive member evaluation method for evaluating an electrophotographic photosensitive member in which a layer is formed on a conductive substrate, and irradiating the electrophotographic photosensitive member with light, Detecting the spectral characteristics of scattered light received in a direction different from the specular reflection direction with respect to the irradiation light, and obtaining a layer thickness or a feature amount related to the layer thickness of the layer using a spectral absorption ratio obtained from the detected spectral characteristics. Features.
[0025]
According to the ninth aspect of the present invention, the electrophotographic photosensitive member on which the layer is formed is irradiated with light, and the spectral characteristics of scattered light received in a direction different from the regular reflection direction of the irradiated light are detected. In other words, since the spectral characteristic of scattered light is detected instead of reflected light, the reflected light and the optical path are different, so that the light reflected by the layer to be evaluated and other layers do not interfere with the light of the layer to be evaluated. The spectral characteristics of light can be accurately detected.
[0026]
Then, a layer thickness or a feature amount relating to the layer thickness of the evaluation target is obtained using the spectral absorption ratio obtained from the spectral characteristics of the detected scattered light. For example, it is possible to obtain the layer thickness and the characteristic amount relating to the layer thickness from the relationship between the spectral absorption ratio obtained in advance and the layer thickness and the characteristic amount relating to the layer thickness.
[0027]
That is, since the layer thickness and the characteristic amount relating to the layer thickness can be obtained by using the spectral characteristics of the scattered light of the layer of the object to be measured which are accurately detected, in the manufacturing process of the electrophotographic photosensitive member, the film thickness and the like can be accurately determined. Characteristic values can be evaluated.
[0028]
According to a tenth aspect of the present invention, in the ninth aspect of the present invention, the detection of the spectral characteristics of the scattered light includes receiving light at a position deviated from a regular reflection optical path of light applied to the electrophotographic photosensitive member. And detecting the spectral characteristics of the received light.
[0029]
According to a tenth aspect of the present invention, in the ninth aspect of the present invention, the detection of the spectral characteristic of the scattered light is performed by receiving light at a position shifted from a regular reflection optical path of light applied to the electrophotographic photosensitive member. Then, by detecting the spectral characteristics of the received light, it is possible to receive only the scattered light without receiving the reflected light.
[0030]
At this time, as in the invention according to claim 11, light at a position shifted from the regular reflection optical path by an angle larger than 1/2 of the light receiving angle by the scattered light receiving means for receiving light is received, By detecting the spectral characteristics, it is possible to reliably receive only the scattered light.
[0031]
Further, the spectral characteristics of the scattered light can be detected using a measuring probe including an optical fiber as in the invention according to claim 12, and the measuring probe includes the invention according to claim 13. As described above, a measurement probe integrated with light emission / reception may be used.
[0032]
In the case of using an integrated light emitting and receiving measuring probe, the scattered light is detected by detecting the optical axis of the measuring probe by tilting the optical axis with respect to the normal line of the electrophotographic photosensitive member. Can be detected. Further, at this time, as in the invention according to claim 15, detection is performed by inclining at an angle larger than 1/2 of the light receiving angle by the scattered light receiving means for receiving light and smaller than 90 °. Thereby, the spectral characteristic of only the scattered light can be reliably detected.
[0033]
The inclination angle of the electrophotographic photosensitive member with respect to the normal is preferably 15 ° to 45 °.
[0034]
As a layer to be evaluated, a charge generation layer can be an object to be evaluated as in the invention according to claim 16. In this case, it is possible to obtain characteristic values such as electric characteristics depending on the thickness of the charge generation layer, specifically, a photosensitivity potential indicating a drop potential when irradiated with light, as the feature amount relating to the layer thickness. is there.
[0035]
By applying the electrophotographic photoreceptor evaluation apparatus according to any one of claims 1 to 8 to an electrophotographic photoreceptor manufacturing apparatus as in the invention according to claim 17, The electrophotographic photoreceptor evaluation device can obtain stable measurement results accurately and without being affected by light interference due to the film. Can be accurately evaluated.
[0036]
Similarly, the method for evaluating an electrophotographic photosensitive member according to any one of claims 9 to 16 is applied to a method for manufacturing an electrophotographic photosensitive member as in the invention according to claim 18. In this way, the above-described method for evaluating an electrophotographic photoreceptor can obtain a stable measurement result accurately and without being affected by light interference or the like caused by the film. Can be accurately evaluated in the state of the intermediate product.
[0037]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.
[0038]
FIG. 1 shows a schematic configuration of an apparatus for evaluating an electrophotographic photosensitive member according to an embodiment of the present invention.
[0039]
As shown in FIG. 1, an electrophotographic photoreceptor evaluation device 10 includes a light source 12, an optical fiber 14, a measurement probe 16, a spectrophotometer 18, and a film thickness calculator 20, and the light source 12 and the spectrophotometer Reference numeral 18 is connected to the measurement probe 16 via the optical fiber 14, and the spectrophotometer 18 is connected to the film thickness calculating unit 20.
[0040]
The film thickness calculation unit 20 includes a spectral absorption ratio calculation unit 22, a film thickness conversion unit 24, and a conversion formula storage unit 26.
[0041]
In the electrophotographic photoreceptor 28 to be measured, layers such as an undercoat layer, a charge generation layer, and a charge transport layer are sequentially laminated on a conductive substrate. The electrophotographic photoreceptor 28 is an electrophotographic photoreceptor in a state after at least a layer to be evaluated has been laminated on a conductive substrate. In this case, the electrophotographic photoreceptor 28 is formed on the surface of the conductive substrate in advance. It is assumed that an undercoat layer, a charge generation layer, and a charge transport layer are sequentially formed.
[0042]
The light source 12 uses a commonly used light source, such as halogen or nichrome, according to the absorption wavelength range of the layer to be measured. For example, in the case where the pigment is dispersed as in the charge generation layer and the absorption of light by the film appears remarkably in the visible light region, a halogen light source often used as a visible light source may be used. Good. In the case of a transparent layer such as a charge transport layer or an undercoat layer, a nichrome light source often used as an infrared light source may be used. Of course, other light sources can be used, and may be used according to the absorption wavelength range of the layer to be measured.
[0043]
The light emitted from the light source 12 is emitted from the measurement probe 16 to the detection area 28a of the electrophotographic photosensitive member 28 via the optical fiber 14.
[0044]
Here, the measurement probe 16 of the present embodiment arranges the measurement probe 16 at a position shifted from the regular reflection optical path in order to avoid receiving the regular reflection light and receive only the scattered light. In the present embodiment, as shown in FIG. 1 and FIG. 2, the measurement probe 16 of the integrated light emitting and receiving type is arranged to be inclined with respect to the normal line of the electrophotographic photosensitive member. At this time, the inclination angle θ of the measurement probe 16 is set to an angle larger than よ り 大 き い of the light reception angle of the measurement probe 16 and smaller than 90 ° with respect to the normal line of the electrophotographic photosensitive member 28, thereby providing scattering. Light can be received.
[0045]
Since the light receiving angle of the measurement probe 16 is generally 20 °, the inclination angle θ of the measurement probe 16 is larger than 10 ° with respect to the normal direction of the electrophotographic photoreceptor 28 and is larger than 90 °. Preferably, the angle is small. Further, the inclination angle θ is more preferably 15 ° to 45 °.
[0046]
In addition, even when a measurement probe of a separate light emitting and receiving type is used, an equivalent function can be obtained by disposing the light receiving side probe away from the regular reflection optical path as shown in FIG. In this case, it is preferable to dispose the light receiving side of the measurement probe 16 at a position deviated by an angle larger than 受 光 of the light reception angle of the measurement probe 16 with respect to the regular reflection optical path.
[0047]
In this manner, the light radiated to the detection area 28a sequentially passes through each layer formed on the conductive substrate of the electrophotographic photoreceptor 28 and reflects, and a system that scatters in the layer to be measured. And break up. The light reflected on the surface of the conductive substrate passes through each layer again, but does not reach the measurement probe 16. On the other hand, the scattered light reaches the measurement probe 16. The light incident on the measurement probe 16 forms an image on the spectrometer of the spectrophotometer 18 via the optical fiber 14.
[0048]
The spectrophotometer 18 collects the spectrum of the scattered light in the detection area 28a, and the film thickness calculation unit 20 calculates the characteristic depending on the film thickness and the film thickness of the layer to be measured from the spectrum obtained by the spectrophotometer 18. Calculate the value.
[0049]
As described above, the film thickness calculation unit 20 includes the spectral absorption ratio calculation unit 22, the film thickness conversion unit 24, and the conversion formula storage unit 26, and calculates the measurement target from the spectrum obtained by the spectrophotometer 18. The thickness of the layer and the characteristic value depending on the thickness are calculated. The film thickness calculation unit 20 can be configured by, for example, a data processing device such as a personal computer.
[0050]
The spectral absorption ratio calculation unit 22 calculates the ratio of the light quantity of an arbitrary wavelength to the light quantity of the peak wavelength with the largest light quantity or the light quantity of the bottom wavelength with the smallest light quantity from the spectrum obtained by the spectrophotometer 18. This is called a spectral absorption ratio. FIG. 4 is an explanatory diagram of an example of spectral characteristics and a spectral absorption ratio. FIG. 4 shows an example of the spectrum of light scattered by the measurement target layer. Such a spectrum is obtained by the spectrophotometer 18. It is known that when such a spectrum is collected, light is absorbed by the film, and the amount of reflected light, that is, the degree of absorption varies depending on the wavelength. Utilizing this characteristic, the wavelength with the least absorption is set as the peak wavelength, the wavelength with the largest absorption is set as the bottom wavelength, and the ratio between the light amount at an arbitrary wavelength and the light amount at the peak wavelength or the bottom wavelength is calculated by the spectral absorption ratio calculation unit 22. calculate. Here, the peak wavelength is the wavelength that is least affected by the film thickness, and the bottom wavelength is the wavelength that is most affected by the film thickness. The reason for taking the ratio of wavelengths is to minimize a variation factor due to a change in the state of the optical system, for example, a change in the light source light amount or a change in the optical path length. Here, the spectral absorption ratio is calculated from the light amount at the peak wavelength with the least absorption and the light amount at an arbitrary wavelength with relatively high absorption. For example, the spectral absorption ratio between the wavelength A and the peak wavelength in FIG. A , The light amount at the peak wavelength is L P Then L A / L P It becomes. For example, in the example shown in FIG. 4, the spectral absorption ratio calculation unit 8 calculates the spectral absorption ratio of the peak wavelength and the wavelengths A, B, C, and the bottom wavelength.
[0051]
As an example, the spectral absorption ratio will be obtained from the following general formula representing the amount of absorbed light.
Lo = Li × exp (−μd) × Lb
Here, Lo is the amount of reflected light, Li is the amount of incident light, μ is the absorption coefficient, d is the film thickness, and Lb is the reflectance of the substrate surface. Using this equation, the ratio of the reflected light amounts of the two wavelengths of light having different absorption coefficients is considered. Let the two wavelengths be wavelength X and wavelength Y, Lo X Is the amount of reflected light at wavelength X, Lo Y Is the amount of reflected light at wavelength Y, Li is the amount of incident light, μ X Is the absorption coefficient of wavelength X, μ Y Is the absorption coefficient of the wavelength Y, d is the film thickness, and Lb is the reflectance of the substrate surface.
Figure 2004045606
It becomes. This relational expression does not include the incident light amount Li and the reflectance Lb of the substrate surface. Therefore, the light absorption amount can be represented by the spectral absorption ratio without being affected by the fluctuation of the incident light amount due to the fluctuation of the light source light amount or the fluctuation of the optical path length and the fluctuation of the reflectance of the substrate surface.
[0052]
The film thickness conversion unit 24 uses some of the spectral absorption ratios obtained from the spectral absorption ratio calculation unit 22 as explanatory variables, and calculates the film thickness of the layer to be measured by a conversion formula obtained in advance and stored in a conversion formula storage unit 26. Also, various characteristic values depending on the film thickness are obtained. For example, when the target variable is the thickness of the charge generation layer, for the same electrophotographic photosensitive member 28 that has obtained the spectral absorption ratio as an explanatory variable, for example, an enlarged photograph of a cut surface is taken by a transmission electron microscope, The actual thickness of the charge generation layer, which is a variable, is determined. Using this measurement result, a simple regression equation using the film thickness as an objective variable and an arbitrary spectral absorption ratio as an explanatory variable is obtained as a conversion equation, and stored in the conversion equation storage unit 26. At the time of evaluation, the thickness of the charge generation layer, which is the target variable, can be obtained by calculating the spectral absorption ratio as an explanatory variable. In addition, as the objective variable of the conversion formula, a characteristic value depending on the thickness of each layer of the electrophotographic photosensitive member, for example, may be selected.
[0053]
Next, an example of the operation of the electrophotographic photoreceptor evaluation apparatus 10 configured as described above will be described.
[0054]
Light from the light source 12 is applied to the surface of the detection area 28 a on the electrophotographic photosensitive member 28 via the optical fiber 14 and the measurement probe 16. The light applied to the detection area 28a is divided into a system that sequentially passes and reflects each layer formed on the conductive substrate of the electrophotographic photosensitive member 28 and a system that scatters in the layer to be measured. The light reflected on the surface of the conductive substrate again passes through each layer again, but does not reach the measurement probe 16 because the measurement probe 16 is provided at a position shifted from the regular reflection optical path. On the other hand, the scattered light reaches the measurement probe 16 because it is provided at a position where the measurement probe 16 receives the scattered light (a position shifted from the regular reflection optical path). In other words, only the scattered light reaches the measurement probe 16 and there is no light interference on the film itself to be measured or other films. Therefore, measurement variations can be prevented. .
[0055]
The light incident on the measurement probe 16 forms an image on the spectrometer 18 of the spectrophotometer 18 via the optical fiber 14. Thereby, for example, the spectrum of the reflected light as shown in FIG. 4 can be collected by the spectrophotometer 18.
[0056]
The obtained spectrum is sent to the spectral absorption ratio calculating section 22 of the film thickness calculating section 20, where the spectral absorption ratio is calculated, and the calculation result is input to the film thickness converting section 24. The film thickness conversion unit 24 substitutes the spectral absorption ratio calculated by the spectral absorption ratio calculation unit 22 into a conversion formula stored in the conversion formula storage unit 26 in advance, thereby obtaining a film thickness or a specific value dependent on the film thickness. Can be obtained with high accuracy.
[0057]
The above-described operation is not limited to the measurement at one place of the electrophotographic photosensitive member 28. For example, the electrophotographic photosensitive member 28 is rotated, and the electrophotographic photosensitive member 28 and the measurement probe 16 are relatively moved up and down in FIG. Thus, the measurement can be performed for a plurality of detection areas or the entire surface of the electrophotographic photosensitive member 28.
[0058]
The film thickness or the specific value depending on the film thickness obtained as described above can be output as it is to a display, a printer, or the like, or can be output as a good / defective signal, for example, by comparing with a certain threshold value.
[0059]
Further, these outputs can be fed back to the step of forming the layer to be measured and used for controlling the step. This makes it possible to obtain an electrophotographic photoreceptor manufacturing apparatus and a manufacturing method capable of controlling the film thickness, stabilizing the process, and preventing a large film with a defective film thickness from flowing out to a subsequent process.
[0060]
In the present embodiment, a simple regression equation is stored as the conversion equation stored in the conversion equation storage unit 26, and a simple regression analysis technique is used. However, other statistical techniques may be used. For example, when a multiple regression equation is stored in the conversion equation storage unit 26 using the method of multiple regression analysis, the film thickness conversion unit 24 describes several spectral absorption ratios obtained from the spectral absorption ratio calculation unit 22. From the multiple regression equation stored in the conversion equation storage unit 26 as a variable, the thickness of the layer to be measured and various characteristic values depending on the thickness are obtained.
[0061]
The multiple regression equation is a linear equation using a plurality of variables, and can be generally represented by y = a1 + x1 + a2x2 +... + Apxp + a0. Here, x1, x2... Xp are called explanatory variables, and can be spectral absorption ratios derived from spectra. In addition, y is called an objective variable, and can be, for example, a film thickness of a layer to be assumed or a characteristic value depending on the film thickness. a0 is a constant term, a1, a2,..., ap are called regression coefficients, and are set in advance according to the objective variable.
For example, when the objective variable is the thickness of the charge generation layer, for an electrophotographic photosensitive member having a spectral absorption ratio that is an explanatory variable, for example, an enlarged photograph of a cut surface is taken with a transmission electron microscope, and the objective variable is used as the objective variable. The actual thickness of the charge generation layer is determined. Using this measurement result, a multivariate analysis is performed using the film thickness as the target variable and an arbitrary spectral absorption ratio as an explanatory variable, and the spectral absorption ratio of the combination that increases the multiple correlation coefficient with the film thickness of the charge generation layer is selected. Then, a multiple regression equation can be obtained. Thus, a multiple regression equation using the thickness of the charge generation layer as an objective variable is obtained. The obtained multiple regression equation is stored in the conversion equation storage unit 26. At the time of evaluation, the thickness of the charge generation layer, which is the target variable, can be obtained by calculating the spectral absorption ratio as an explanatory variable. A multiple regression equation using the thickness of another charge transport layer, undercoat layer, or the like as an objective variable can be similarly obtained.
[0062]
The reason for using the multiple regression equation is that characteristics such as the correlation with the film thickness of the charge generation layer and the magnitude of the influence of disturbance due to the surface roughness of the conductive substrate differ depending on the wavelength. This is because the conversion into the film thickness of the charge generation layer and the correction of disturbance can be simultaneously performed by the multiple regression equation. If the index representing the surface roughness of the conductive substrate, for example, the surface roughness is known, this may be added to the explanatory variable. The objective variable of the multiple regression equation is a characteristic value that depends on the thickness of each layer of the electrophotographic photosensitive member, for example, a characteristic value such as an electrical characteristic that depends on the thickness of the charge generation layer, specifically, light irradiation. Alternatively, a photoelectric potential or the like indicating a drop potential at the time may be selected.
[0063]
【Example】
Next, an example corresponding to the above-described embodiment of the present invention will be described.
[0064]
To determine the thickness of the charge generation layer of the electrophotographic photoreceptor, 1 μm to d 3 An electrophotographic photosensitive member 28 having three levels of μm was prepared. Further, a pigment-dispersed undercoat layer was formed below the charge generation layer as a layer for promoting the occurrence of interference due to the reflection of the base. Using the evaluation device 10 shown in FIG. 1, the detection area 28a of the electrophotographic photosensitive member 28 is irradiated with light from the light source 12 via the optical fiber 14 and the measurement probe 16, and the light is emitted from the charge generation layer in the detection area 28a. The scattered light was imaged on the spectrophotometer 18 via the measuring probe 16 and the optical fiber 14 to obtain a spectrum. Film thickness d 1 μm to d 3 FIG. 5 shows a waveform of a spectrum corresponding to μm. A change in the spectrum following the change in the film thickness can be observed. FIG. 5 shows a diagram in which the peak value is normalized to 100%.
[0065]
Further, the spectral absorption ratio was obtained from the obtained spectrum using the spectral absorption ratio calculation unit 22 of the film thickness calculation unit 20. The light source 12 uses a halogen light source, the wavelength width to be used is a visible light region of 400 nm to 800 nm, the wavelength is decomposed every 10 nm, light amount data of each wavelength is obtained, and the spectral absorption ratio is calculated with the light amount of each peak wavelength. The ratio was calculated. Further, the actual thickness of the charge generation layer was determined by taking an enlarged photograph of the cut surface of the electrophotographic photosensitive member 28 at the position where the spectral absorption spectrum was collected with a transmission electron microscope and measuring the photograph. The wavelength having the highest correlation with the thickness of the charge generation layer was selected from the obtained spectral absorption ratios, and the correlation was obtained. The correlation coefficient was 0.98, and a good result was obtained. The primary regression selected from this correlation was stored in the conversion formula storage unit 26 as a conversion formula for converting the spectral absorption ratio into the actual film thickness.
[0066]
As described above, by measuring the electrophotographic photosensitive member of the electrophotographic photosensitive member in which the undercoat layer and the charge generation layer are sequentially formed with a spectrophotometer, the electrophotographic photosensitive member is not affected by the fluctuation due to the light interference. Was able to accurately predict and evaluate the thickness of the charge generation layer. Further, by measuring the film thickness at a plurality of positions of one of the electrophotographic photoreceptors, it is possible to evaluate non-uniformity such as film thickness unevenness and sagging.
[0067]
That is, in the electrophotographic photosensitive member evaluation apparatus 10 and the evaluation method according to the embodiment of the present invention, the evaluation target is based on the spectral absorption ratio obtained from the spectral characteristics of the scattered light from the electrophotographic photosensitive member. Since the layer thickness of the layer or a feature amount relating to the layer thickness is obtained, a stable measurement result can be obtained accurately and without being affected by light interference or the like by the film. This makes it possible to accurately evaluate the film thickness of the electrophotographic photosensitive member in the state of an intermediate product in the course of the manufacturing process.
[0068]
In addition, by applying the electrophotographic photoreceptor evaluation apparatus 10 according to the embodiment of the present invention to the electrophotographic photoreceptor manufacturing process and feeding back the measurement results to the step of forming the layer to be measured, Variations in the process can be detected promptly, stabilizing the process, and preventing a large-diameter product having a poor film thickness from flowing out to a subsequent process.
[0069]
Next, a comparative example will be described. As shown in FIG. 6, the electrophotographic photoreceptor 28 described above is used in an apparatus exemplified in JP-A-9-106218. Light was radiated through the probe 3 and the emission of charges in the detection area 28a and the reflected light from the layer were imaged on the spectrometer of the spectrophotometer 5 via the measurement probe 3 and the optical fiber 4 to obtain a spectrum. Film thickness d 1 μm to d 3 FIG. 7 shows a waveform of a spectrum corresponding to μm. The shape of the spectrum does not follow the change in the film thickness, and the influence of light interference can be seen everywhere.
[0070]
Further, the spectral absorption ratio was obtained from the obtained spectrum using the spectral absorption ratio calculation unit 8 of the film thickness calculation unit 7. The light source 6 uses a halogen light source in the same manner as described above, the wavelength width to be used is a visible light region of 400 nm to 800 nm, and the wavelength is decomposed every 10 nm to obtain light amount data of each wavelength. Calculated from the ratio to the light amount of Further, the actual thickness of the charge generation layer was determined by taking a photograph of an enlarged photograph of the cut surface of the electrophotographic photosensitive member 28 at the position where the spectral absorption spectrum was collected with a transmission electron microscope and measuring the photograph. When the wavelength having the highest correlation with the film thickness of the charge generation layer was selected from the obtained spectral absorption ratios, and the correlation was calculated, the correlation coefficient was 0.71, which can be used as a method for evaluating the film thickness. Turned out not a level.
[0071]
【The invention's effect】
As described above, according to the apparatus and method for evaluating an electrophotographic photosensitive member of the present invention, based on the spectral absorption ratio obtained from the spectral characteristics of scattered light from the electrophotographic photosensitive member, Since the layer thickness or the characteristic amount related to the layer thickness is obtained, there is an effect that characteristic values such as the film thickness can be accurately evaluated in the manufacturing process of the electrophotographic photosensitive member.
[0072]
According to the apparatus and method for manufacturing an electrophotographic photosensitive member of the present invention, since the above-described apparatus and method for evaluating an electrophotographic photosensitive member are applied to a manufacturing process and a method for manufacturing an electrophotographic photosensitive member, the evaluation result is manufactured. There is an effect that it can be reflected in the process.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an evaluation apparatus for an electrophotographic photosensitive member according to an embodiment of the present invention.
FIG. 2 is a diagram showing an integrated light emitting and receiving measuring probe.
FIG. 3 is a diagram showing a measurement probe of a separated light emission / reception type.
FIG. 4 is a graph showing an example of spectral characteristics.
FIG. 5 is a graph showing an example of a scattered light spectrum of the electrophotographic photosensitive member obtained by the electrophotographic photosensitive member evaluation apparatus according to the embodiment of the present invention.
FIG. 6 is a diagram illustrating a schematic configuration of an evaluation apparatus for an electrophotographic photosensitive member disclosed in JP-A-9-106218 as a comparative example.
FIG. 7 is a graph showing an example of a reflection spectrum of an electrophotographic photosensitive member obtained by an electrophotographic photosensitive member evaluation apparatus in JP-A-9-106218 as a comparative example.
[Explanation of symbols]
10 Evaluation device for electrophotographic photoreceptor
12 light source
14 Optical fiber
16 measuring probe
18 Spectrophotometer
20 Film thickness calculator
22 Spectral absorption ratio calculation unit
24 Film thickness conversion unit
26 Conversion formula storage
28 Electrophotographic photoreceptor
28a Detection area

Claims (18)

導電性基体上に層が形成された電子写真感光体の評価を行う電子写真感光体の評価装置であって、
前記電子写真感光体に光を照射する投光手段と、
前記電子写真感光体における前記投光手段による照射光について、正反射方向と異なる方向で受光する散乱光受光手段と、
前記散乱光受光手段によって受光した散乱光の分光特性を検出する分光特性検出手段と、
該分光特性検出手段によって検出された前記分光特性から求めた分光吸収比に基づいて、前記層の層厚または層厚に関する特徴量を得る演算手段と、
を備えた電子写真感光体の評価装置。
An electrophotographic photosensitive member evaluation apparatus for evaluating an electrophotographic photosensitive member having a layer formed on a conductive substrate,
Light projection means for irradiating the electrophotographic photosensitive member with light,
For the irradiation light by the light projecting means in the electrophotographic photoreceptor, scattered light receiving means for receiving light in a direction different from the regular reflection direction,
Spectral characteristic detecting means for detecting spectral characteristics of the scattered light received by the scattered light receiving means,
Calculating means for obtaining a layer thickness of the layer or a feature quantity relating to the layer thickness, based on a spectral absorption ratio determined from the spectral characteristics detected by the spectral characteristic detecting means;
An electrophotographic photoreceptor evaluation device comprising:
前記散乱光受光手段は、前記投光手段より照射される光が前記層によって反射される正反射光路に対して、ずれた位置に配置することを特徴とする請求項1に記載の電子写真感光体の評価装置。2. The electrophotographic photosensitive apparatus according to claim 1, wherein the scattered light receiving unit is disposed at a position shifted from a regular reflection optical path where light emitted from the light projecting unit is reflected by the layer. Body evaluation device. 前記散乱光受光手段は、前記正反射光路に対して、前記散乱光受光手段による受光角の1/2より大きい角度分、ずれた位置に配置することを特徴とする請求項2に記載の電子写真感光体の評価装置。3. The electron according to claim 2, wherein the scattered light receiving unit is arranged at a position shifted from the regular reflection optical path by an angle larger than 1/2 of a light receiving angle of the scattered light receiving unit. Evaluation device for photoreceptors. 前記投光手段及び前記散乱光受光手段は、それぞれ光ファイバを含む測定プローブからなることを特徴とする請求項1乃至請求項3の何れか1項に記載の電子写真感光体の評価装置。4. The apparatus according to claim 1, wherein each of the light projecting unit and the scattered light receiving unit includes a measurement probe including an optical fiber. 5. 前記投光手段及び前記散乱光受光手段は、投受光一体型の測定プローブからなることを特徴とする請求項4に記載の電子写真感光体の評価装置。The apparatus according to claim 4, wherein the light projecting means and the scattered light receiving means comprise a measuring probe integrated with light projecting and receiving. 前記測定プローブは、該測定プローブの光軸を電子写真感光体の法線に対して傾斜させて配置することを特徴とする請求項5に記載の6. The measurement probe according to claim 5, wherein the measurement probe is arranged so that an optical axis of the measurement probe is inclined with respect to a normal line of the electrophotographic photosensitive member. 前記測定プローブは、前記法線に対しての傾斜角が前記散乱光受光手段の受光角の1/2より大きい角度で90°よりも小さい角度となるように傾斜させて配置することを特徴とする請求項6に記載の電子写真感光体の評価装置。The measurement probe is arranged so as to be inclined such that an inclination angle with respect to the normal line is an angle larger than 1 / of a light reception angle of the scattered light receiving means and smaller than 90 °. The evaluation device for an electrophotographic photosensitive member according to claim 6. 前記層は、電荷発生層であることを特徴とする請求項1乃至請求項7の何れか1項に記載の電子写真感光体の評価装置。The apparatus according to any one of claims 1 to 7, wherein the layer is a charge generation layer. 導電性基体上に層が形成された電子写真感光体の評価を行う電子写真感光体の評価方法であって、
前記電子写真感光体に光を照射して、該照射光について正反射方向と異なる方向で受光する散乱光の分光特性を検出し、検出した分光特性から求めた分光吸収比を用いて前記層の層厚または層厚に関する特徴量を得ることを特徴とする電子写真感光体の評価方法。
An electrophotographic photosensitive member evaluation method for evaluating an electrophotographic photosensitive member having a layer formed on a conductive substrate,
Irradiating the electrophotographic photoreceptor with light, detecting the spectral characteristics of the scattered light received in a direction different from the regular reflection direction for the irradiated light, and using the spectral absorption ratio determined from the detected spectral characteristics, A method for evaluating an electrophotographic photosensitive member, comprising obtaining a layer thickness or a feature amount relating to the layer thickness.
前記散乱光の分光特性の検出は、前記電子写真感光体に照射された光の正反射光路からずれた位置の光を受光し、受光した光の分光特性を検出することを特徴とする請求項9記載の電子写真感光体の評価方法。The detection of the spectral characteristic of the scattered light includes receiving light at a position deviated from a regular reflection optical path of light applied to the electrophotographic photosensitive member, and detecting a spectral characteristic of the received light. 9. The method for evaluating an electrophotographic photosensitive member according to item 9. 前記正反射路からずれた位置は、光を受光する散乱光受光手段による受光角の1/2より大きい角度分、前記正反射路に対してずれた位置であることを特徴とする請求項10に記載の電子写真感光体の評価方法。The position deviated from the regular reflection path is a position deviated from the regular reflection path by an angle larger than 1/2 of a light receiving angle by a scattered light receiving unit that receives light. 3. The method for evaluating an electrophotographic photoreceptor described in 1. above. 前記散乱光の分光特性は、光ファイバを含む測定プローブを用いて検出することを特徴とする請求項9乃至請求項11の何れか1項に記載の電子写真感光体の評価方法。The method according to any one of claims 9 to 11, wherein the spectral characteristics of the scattered light are detected by using a measurement probe including an optical fiber. 前記散乱光の分光特性は、投受光一体型の測定プローブを用いて検出することを特徴とする請求項12に記載の電子写真感光体の評価方法。13. The method according to claim 12, wherein the spectral characteristics of the scattered light are detected by using a light emitting / receiving integrated measurement probe. 前記散乱光の分光特性は、前記測定プローブの光軸を電子写真感光体の法線方向に対して傾斜させて検出することを特徴とする請求項13に記載の電子写真感光体の評価方法。14. The method according to claim 13, wherein the spectral characteristic of the scattered light is detected by tilting an optical axis of the measurement probe with respect to a normal direction of the electrophotographic photosensitive member. 前記法線方向に対して傾斜させる傾斜角度は、光を受光する散乱光受光手段による受光角の1/2より大きい角度で90°よりも小さい角度であることを特徴とする請求項14に記載の電子写真感光体の評価方法。The tilt angle to be tilted with respect to the normal direction is an angle larger than よ り 大 き い of a light receiving angle by a scattered light receiving unit that receives light and smaller than 90 °. Evaluation method of electrophotographic photoreceptor. 前記層は、電荷発生層であることを特徴とする請求項9乃至請求項15の何れか1項に記載の電子写真感光体の評価方法。The method according to any one of claims 9 to 15, wherein the layer is a charge generation layer. 導電性基体上に層を形成して電子写真感光体を製造する電子写真感光体の製造装置であって、
請求項1乃至請求項8の何れか1項に記載の電子写真感光体の評価装置を有し、該電子写真感光体の評価装置による評価結果を被評価対象となる層の形成工程にフィードバックすることを特徴とする電子写真感光体の製造装置。
An electrophotographic photosensitive member manufacturing apparatus for manufacturing an electrophotographic photosensitive member by forming a layer on a conductive substrate,
An electrophotographic photosensitive member evaluation device according to any one of claims 1 to 8, wherein the evaluation result of the electrophotographic photosensitive member evaluation device is fed back to a layer forming step to be evaluated. An apparatus for manufacturing an electrophotographic photoreceptor, comprising:
導電性基体上に層を形成して電子写真感光体を製造する電子写真感光体の製造方法であって、
請求項9乃至請求項16の何れか1項に記載の電子写真感光体の評価方法による評価を行い、評価結果を被評価対象となる層の形成工程にフィードバックすることを特徴とする電子写真感光体の製造方法。
A method for producing an electrophotographic photosensitive member, wherein a layer is formed on a conductive substrate to produce an electrophotographic photosensitive member,
17. An electrophotographic photosensitive member, wherein the evaluation is performed by the method for evaluating an electrophotographic photosensitive member according to any one of claims 9 to 16, and the evaluation result is fed back to a process of forming a layer to be evaluated. How to make the body.
JP2002201121A 2002-07-10 2002-07-10 Device and method for evaluating electrophotographic photoreceptor, device and method for manufacturing electrophotographic photoreceptor Pending JP2004045606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201121A JP2004045606A (en) 2002-07-10 2002-07-10 Device and method for evaluating electrophotographic photoreceptor, device and method for manufacturing electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201121A JP2004045606A (en) 2002-07-10 2002-07-10 Device and method for evaluating electrophotographic photoreceptor, device and method for manufacturing electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2004045606A true JP2004045606A (en) 2004-02-12

Family

ID=31707748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201121A Pending JP2004045606A (en) 2002-07-10 2002-07-10 Device and method for evaluating electrophotographic photoreceptor, device and method for manufacturing electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2004045606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058294A (en) * 2004-08-23 2006-03-02 Samsung Electronics Co Ltd Inspection method of pattern formed on substrate, and inspection apparatus for implementing same
KR101281392B1 (en) * 2011-11-21 2013-07-02 주식회사 포스코 Method and apparatus for measuring thickness of oxidation layer formed on high temperature steel plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058294A (en) * 2004-08-23 2006-03-02 Samsung Electronics Co Ltd Inspection method of pattern formed on substrate, and inspection apparatus for implementing same
KR101281392B1 (en) * 2011-11-21 2013-07-02 주식회사 포스코 Method and apparatus for measuring thickness of oxidation layer formed on high temperature steel plate

Similar Documents

Publication Publication Date Title
TWI629449B (en) Film thickness measuring method and film thickness measuring device
JP4773155B2 (en) Method for inspecting pattern formed on substrate, and inspection apparatus for performing the same
JP5365581B2 (en) Evaluation method of wafer with thin film
JP2853615B2 (en) Apparatus and method for evaluating electrophotographic photoreceptor, apparatus and method for manufacturing electrophotographic photoreceptor
US20080049214A1 (en) Measuring Diffractive Structures By Parameterizing Spectral Features
CN111279166B (en) Bandgap measurement of patterned film stacks using spectral metrology
US11906302B2 (en) Method and system for measuring a surface of an object comprising different structures using low coherence interferometry
JP2004085276A (en) Film-thickness measuring method and film-thickness measuring apparatus
US7498578B2 (en) Method and system for calibrating a reflection infrared densitometer in a digital image reproduction machine
US20100253942A1 (en) Method and device for characterizing silicon layer on translucent substrate
JP2004045606A (en) Device and method for evaluating electrophotographic photoreceptor, device and method for manufacturing electrophotographic photoreceptor
JP3651219B2 (en) Electrophotographic photosensitive member film thickness measuring apparatus and film thickness measuring method, electrophotographic photosensitive member manufacturing apparatus and manufacturing method
JPH0643957B2 (en) Refractive index dispersion measuring method and film thickness measuring method
EP1733208A1 (en) Method and apparatus for measurement of thin films and residues on semiconductor substrates
JPH11201730A (en) Film thickness measuring device and method of electrophotographic photoreceptor, manufacturing device and method of electrophotographic photoreceptor
US8139215B2 (en) Method for measuring polarization characteristics and measurement apparatus
KR100672691B1 (en) Method for measuring pattern in semiconductor device
US8045156B2 (en) System and method for correlating photoreceptor pigmented film layer to electrical performance
JP7300332B2 (en) Apparatus and method for evaluation of multi-layer film forming body
JP2000258129A (en) Film thickness measurement device and film thickness measurement method for electrophotographic photoreceptor
KR100588988B1 (en) Method of measuring a thin film thickness
JP2006275521A (en) Device and method for measuring thickness of film
JP2001124524A (en) Apparatus and method of measuring film thickness
JPH09329899A (en) Production of electrophotographic photoreceptor and producing device
JP2010250189A (en) Method for manufacturing electrophotographic photoreceptor