JP2004045236A - Overcurrent sensor - Google Patents

Overcurrent sensor Download PDF

Info

Publication number
JP2004045236A
JP2004045236A JP2002203562A JP2002203562A JP2004045236A JP 2004045236 A JP2004045236 A JP 2004045236A JP 2002203562 A JP2002203562 A JP 2002203562A JP 2002203562 A JP2002203562 A JP 2002203562A JP 2004045236 A JP2004045236 A JP 2004045236A
Authority
JP
Japan
Prior art keywords
current
voltage
hall
output voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002203562A
Other languages
Japanese (ja)
Inventor
Kazuo Fukunaga
福永 和男
Takashi Urano
浦野 高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002203562A priority Critical patent/JP2004045236A/en
Publication of JP2004045236A publication Critical patent/JP2004045236A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To utilize characteristics in an electronic circuit, to improve prearcing time-current characteristics instead of a fuse for large currents, and at the same time to achieve a current protection function even to a use where a variation in load is large. <P>SOLUTION: The overcurrent sensor detects current to be measured in a current path passing through the inside of a magnetic material where a gap is formed in a closed magnetic circuit, and controls time to break according to the size. The overcurrent sensor comprises: Hall elements 2A, 2B installed in the gap; an inversely proportional voltage generation means 3 for making constant a Hall output voltage in the Hall element 2A, controlling a control current, and obtaining the output voltage being inversely proportional to the current to be measured; a current conversion means 4 for outputting the output current being proportional to the Hall output voltage in the Hall element 2B where the control current is constant; a charge voltage generation means 5 for charging the output current to a capacitor C3; and a comparison means 6 for comparing the output voltage of the inversely proportional voltage generation means 3 with a charge voltage in the charge voltage generation means 5 and for outputting a breaking signal when the charge voltage exceeds the output voltage of the inversely proportional voltage generation means 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ハイブリッド車や電気自動車のバッテリーに異常な過大電流が流れた時に、回路を遮断するヒューズの代替品として用いられ、特に100〜1000Aクラスのヒューズ機能を、電子回路に代替えすることによって小型、安価に提供することを可能とした過電流センサに関する。
【0002】
【従来の技術】
従来は、登録実用新案第2565750号公報、特開2001−54223号公報にあるようなヒューズを用いて過電流を検知する方法が知られている。
【0003】
【発明が解決しようとする課題】
ヒューズの最も大きな問題は個々のバラツキが大きい事と、短絡発生時に配線やシステムを過電流による熱破壊から保護するための理想的な遮断機能が不満足であることである。短絡時には、配線やシステムの抵抗値と短絡電流の自乗と保持時間との積に比例した熱を発生するので、熱的保護の面からは、ある温度以上にならないような設定を考え、規定温度を越えない瞬時電流には遮断せず、上限電流値を越えた電流が流れた時に電流値の自乗に反比例した時間で遮断することが望ましい。
【0004】
図4に一般的な大電流用ヒューズの遮断特性を示すが、溶断時間は電流値の5〜6乗に逆比例していることがわかる。すなわち大電流ほど早めに(短絡電流の自乗に反比例した時間よりも更に早めに)溶断することになり、問題とならないサージ電流で溶断しないように設定することは意外と困難で、負荷の変動が激しい用途の保護にはヒューズは難しい素子であった。
【0005】
本発明の第1の目的は、電子回路の特徴を利用し、大電流用ヒューズに替わり、溶断特性を改善し、かつ負荷変動の激しい用途に対しても電流保護機能を実現可能とした過電流センサを提供することにある。
【0006】
本発明の第2の目的は、再生が不可能であるヒューズに替わり、復帰可能な電流ブレーカー機能を実現可能とした過電流センサを提供することにある。
【0007】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本願請求項1の発明は、閉磁路の一部にギャップを形成してなる磁性体の内側を貫通する電流路を通る被測定電流を検知し、当該被測定電流の大きさによって遮断に至る時間を制御する過電流センサにおいて、
前記磁性体のギャップに設置された第1及び第2のホール素子と、
前記第1のホール素子のホール出力電圧が一定となるように前記第1のホール素子の制御電流を制御して前記被測定電流に反比例した出力電圧を得る反比例電圧生成手段と、
制御電流が一定に制御された前記第2のホール素子のホール出力電圧に比例する出力電流を出力する電流変換手段と、
前記電流変換手段の出力電流を一定容量のコンデンサに充電しその充電電圧を得る充電電圧生成手段と、
前記反比例電圧生成手段の前記被測定電流に反比例した出力電圧と前記充電電圧生成手段の充電電圧とを比較し、該充電電圧が前記反比例電圧生成手段の出力電圧を超えたときに遮断信号を発生して保持する比較手段とを備える。
【0009】
また、本願請求項2の発明は、閉磁路の一部にギャップを形成してなる磁性体の内側を貫通する電流路を通る被測定電流を検知し、当該被測定電流の大きさによって遮断に至る時間を制御する過電流センサにおいて、
前記電流路に対して前記磁性体が2つ設けられていて、一方の磁性体のギャップに設置された第1のホール素子及び他方の磁性体のギャップに設置された第2のホール素子と、
前記第1のホール素子のホール出力電圧が一定となるように前記第1のホール素子の制御電流を制御して前記被測定電流に反比例した出力電圧を得る反比例電圧生成手段と、
制御電流が一定に制御された前記第2のホール素子のホール出力電圧に比例する出力電流を出力する電流変換手段と、
前記電流変換手段の出力電流を一定容量のコンデンサに充電しその充電電圧を得る充電電圧生成手段と、
前記反比例電圧生成手段の前記被測定電流に反比例した出力電圧と前記充電電圧生成手段の充電電圧とを比較し、該充電電圧が前記反比例電圧生成手段の出力電圧を超えたときに遮断信号を発生して保持する比較手段とを備える。
【0010】
【発明の実施の形態】
以下、本発明に係る過電流センサの実施の形態を図面に従って説明する。
【0011】
図1は本発明に係る過電流センサの第1の実施の形態を示すブロック図、図2は磁性体に対するホール素子の配置を示す斜視図である。図1及び図2のように、過電流センサは、磁性体1、第1及び第2のホール素子2A,2B、反比例電圧生成手段3、電流変換手段4、充電電圧生成手段5、及び比較手段6を備えている。
【0012】
図2のように、前記磁性体1は、閉磁路の一部にギャップGを形成した略C字状であり、同一ギャップGに2個のホール素子2A,2Bが設置され、また磁性体1の内側中心を電流路としてのブスバー7が貫通するように配置されている。ブスバー7には、例えばバッテリーの供給電流等の被測定電流Ibが流れており、例えば正常時には100A以下の電流が、異常時には1000Aにも達する電流が流れる。ブスバー7に被測定電流が流れると、その被測定電流に起因して磁性体1の閉磁路に発生する磁束が第1及び第2のホール素子2A,2Bを通過する。
【0013】
前記反比例電圧生成手段3は第1のホール素子2Aのホール出力電圧VHAが一定となるように第1のホール素子2Aの制御電流ICAを制御して前記被測定電流Ibに反比例した出力電圧Vrを、制御電流ICAの経路に挿入された抵抗R1の両端に得るものである。一般に、ホール素子は、制御電流が一定であれば、それが配置された位置の磁束密度に比例した(すなわち被測定電流値に比例した)ホール出力電圧を出力するものであるが、逆に、反比例電圧生成手段3のように、ホール出力電圧VHAが一定となるように制御電流ICAを制御すれば、制御電流ICAは被測定電流値に反比例することになり、制御電流ICAの電流経路に抵抗R1を挿入して、その電圧降下を得れば、それが被測定電流値に反比例した電圧値となる。
【0014】
一方、第2のホール素子2Bは制御電流ICBが一定電流値に制御されており、従って、それが配置された位置の磁束密度に比例した(すなわち被測定電流値Ibに比例した)ホール出力電圧VHBを出力する。
【0015】
前記電流変換手段4は第2のホール素子2Bのホール出力電圧VHBを受けて、これに比例する出力電流を出力するものであり、電流変換手段4の出力電流で充電電圧生成手段5の一定容量のコンデンサC3が充電されるようになっている。なお、放電用抵抗R12がコンデンサC3に並列に接続されており、電流変換手段4の出力電流が少ない領域(過電流を検出していない状態、つまりホール素子2Bのホール出力電圧VHBが小さい状態)ではコンデンサC3の充電電圧が上昇しないように放電用抵抗R12で設定している。
【0016】
前記比較手段6は、充電電圧生成手段5が有するコンデンサC3の充電電圧と、反比例電圧生成手段3の出力電圧Vrとを比較し、コンデンサC3の充電電圧が出力電圧Vrを越えたときに遮断信号(過電流を検出したことを示す過電流検出信号で、例えばハイレベル出力)を出力端子Voutに出し、かつ当該遮断信号を保持し続ける機能を有する。
【0017】
この第1の実施の形態において、図2のブスバー7に流れる被測定電流が定常範囲であれは、同一ギャップGに配設されたホール素子2A,2Bに加わる磁束密度は低く、ホール素子2Aのホール出力電圧VHAを一定に制御する反比例電圧生成手段3の被測定電流に反比例した出力電圧Vrは高い電圧値となる。これに反し、制御電流ICBが一定に制御されたホール素子2Bのホール出力電圧VHBは小さく、これに比例した電流変換手段4の出力電流は微弱であり、放電用抵抗R12で放電されて充電電圧生成手段5のコンデンサC3の充電電圧は出力電圧Vrを越える電圧値にまで上昇することはない。このため、比較手段6は過電流を検出せず、遮断信号(過電流検出信号)は発生しない。
【0018】
一方、ブスバー7に過電流が流れれば、ホール素子2A,2Bに加わる磁束密度は定常時の数倍以上となり、ホール素子2Aのホール出力電圧VHAを一定に制御する反比例電圧生成手段3の被測定電流に反比例した出力電圧Vrは低い電圧値となる(グランドレベルに近づく)。これに反し、制御電流ICBが一定に制御されたホール素子2Bのホール出力電圧VHBは大きくなり、これに比例した電流変換手段4の出力電流は大きくなり、放電用抵抗R12による放電電流をしのぎ、充電電圧生成手段5のコンデンサC3の充電電圧は出力電圧Vrを越えることになる。これにより、比較手段6は過電流を検出し、遮断信号を出力し、かつその状態を保持する。そして、この遮断信号によりブスバー7の被測定電流を遮断する遮断器等を作動させる。
【0019】
ここで、被測定電流が過電流となったときに、その電流値の自乗に反比例した時間で遮断できることを説明する。今、仮に比較手段6の一方の入力電圧(出力電圧Vr)が一定であるとすると、電流変換手段4の出力電流、つまりコンデンサC3を充電する電流は被測定電流に比例して増大するから、ブスバー7に流れる過電流値が大きい程、コンデンサC3の充電電圧が出力電圧Vrを越えるのに要する時間は短くなり、過電流発生時点から遮断信号発生に至る時間は電流値に反比例する関係となる。実際には、本実施の形態では比較手段6の一方の入力電圧、すなわち出力電圧Vrが被測定電流に反比例するように設定されているため、相乗効果により被測定電流の自乗に反比例した時間で遮断できることになる。換言すれば、被測定電流の逆自乗特性を有する遮断時間(過電流発生時から遮断するまでの時間)でもって遮断信号を出力する特性が得られる。つまり、過電流による発熱の物理的現象に合わせているため、理想的な保護ユニットとなる。また、充電電圧生成手段5が有するコンデンサC3の充電電圧を検出動作に利用しているため、サージ電流による影響は受けにくい利点がある。図4に本発明(本実施の形態)の遮断特性(遮断時間と被測定電流との関係)を従来の大電流用ヒューズの遮断特性と対比して示す。
【0020】
この第1の実施の形態によれば、閉磁路の一部にギャップGを形成してなる磁性体1の内側を貫通する電流路を通る被測定電流を検知し、当該被測定電流の大きさによって遮断に至る時間を制御する過電流センサにおいて、前記ギャップGに設置された第1及び第2のホール素子2A,2Bと、第1のホール素子2Aのホール出力電圧VHAが一定となるように第1のホール素子2Aの制御電流ICAを制御して前記被測定電流に反比例した出力電圧を得る反比例電圧生成手段3と、制御電流ICBが一定に制御された第2のホール素子2Bのホール出力電圧VHBに比例する出力電流を出力する電流変換手段4と、前記電流変換手段4の出力電流を一定容量のコンデンサC3に充電しその充電電圧を得る充電電圧生成手段5と、前記反比例電圧生成手段3の前記被測定電流に反比例した出力電圧Vrと前記充電電圧生成手段5の充電電圧とを比較し、該充電電圧が前記出力電圧Vrを超えたときに遮断信号を発生して保持する比較手段6とを備える構成としたので、安全ブレーカーとしての機能を実現可能である。すなわち、被測定電流の逆自乗特性を有する遮断時間(過電流発生時から遮断するまでの時間)でもって遮断信号(過電流検出信号)を出力する特性を得ることができる。
【0021】
従って、遮断信号(過電流検出信号)を出力するタイミングを、過電流による発熱の物理的現象に合わせているため、理想的な保護ユニットとなる。また、ヒューズと比ベバラツキが非常に小さく、回路が簡易でコストが安い利点がある。
【0022】
図3は本発明の第2の実施の形態であって、具体的な回路図を示す。磁性体に対するホール素子の配置は前述した図2の通りでよい。
【0023】
図3に示すように、直流電圧供給端子Vin(+5V)に接続される正側ラインとグランド端子GNDに接続されたグランドライン間に、抵抗R11、第1のホール素子2Aの端子▲1▼−▲3▼、抵抗R1の経路で当該第1のホール素子2Aに制御電流ICAが供給されるようになっている。ここで、第1のホール素子2Aのホール出力電圧VHAが一定となるように第1のホール素子2Aの制御電流ICAを制御する反比例電圧生成手段3は、演算増幅器OP1,OP2、抵抗R1,R11、コンデンサC2、及びオフセット電圧源Vofで構成されている。なお、オフセット電圧源VofはダイオードD2、抵抗R13,R14で構成され、温度依存性を持たせ、ホール素子の温度補償を行っている。
【0024】
前記第1のホール素子2Aのホール出力電圧VHAはその端子▲2▼−▲4▼間に現れ(ここでは▲2▼の電位≧▲4▼の電位)、端子▲2▼の電圧が演算増幅器OP1の非反転入力に印加されている。ここで、ブスバーに流れる被測定電流Ibが大きいほど▲2▼の電位Vは大きくなり、V∝Ib×ICA となる。演算増幅器OP1は電圧ホロアを構成しており、ハイ入力インピーダンスでロー出力インピーダンスの増幅率1の増幅器として動作し、その出力電圧にオフセット電圧源Vofのオフセット電圧が加算されて演算増幅器OP2の反転入力に印加される。この演算増幅器OP2の非反転入力端には第1のホール素子2Aの端子▲4▼の電圧が印加されており、演算増幅器OP2は比較器として機能し、非反転入力端に印加された端子▲4▼の電圧が反転入力端に印加された比較用の電圧(端子▲2▼の電圧+オフセット電圧;但し図示の例では端子▲2▼の電圧とオフセット電圧の極性は互いに逆となっている)に一致するように、出力端の電圧(つまり制御電流ICA)を制御する。前述の第1の実施の形態でも述べたように、ホール出力電圧VHAが一定となるように制御電流ICAを制御すれば、制御電流ICAは被測定電流値に反比例することになり、制御電流ICAの電流経路に挿入された抵抗R1の両端に被測定電流値に反比例した電圧Vrが得られる。この電圧Vrは後述する比較手段6の一方の入力端に印加される。
【0025】
第2のホール素子2Bに一定の制御電流ICBを流すための定電流回路8は、演算増幅器OP3、その出力端とグランドライン間にホール素子2Bの端子▲1▼−▲3▼と直列に挿入された抵抗R3、直流電圧供給端子Vinとグランド端子GND間の供給電圧を分圧して演算増幅器OP3の非反転入力端に印加する抵抗R4,R5、及びコンデンサC4とから構成されている。演算増幅器OP3の反転入力端に印加されたホール素子2Bの端子▲3▼の電圧が非反転入力端の電圧(一定値)に一致するように制御されることで、制御電流ICBは一定に維持される。従って、被測定電流に比例したホール出力電圧VHBがその端子▲2▼−▲4▼間に現れる(ここでは▲2▼の電位≧▲4▼の電位)。
【0026】
制御電流ICBが一定に制御された第2のホール素子2Bのホール出力電圧VHBに比例する出力電流を出力する電流変換手段4は、トランジスタQ1〜Q4、抵抗R6〜R9で構成されている。ここで、トランジスタQ2と抵抗R6の対と、トランジスタQ1と抵抗R7の対とはカレントミラー回路(ミラー電流回路)を構成しており、トランジスタQ1のコレクタ電流はトランジスタQ2のコレクタ電流と実質的に同じ電流となるように制御される。トランジスタQ3,Q4は入力側(ベース側)がハイインピーダンスでエミッタ側をローインピーダンスに変換するエミッタホロアとして動作し、トランジスタQ3,Q4のベースにはそれぞれホール素子2Bの端子▲2▼、端子▲4▼の電圧が印加されている。そして、抵抗R6、トランジスタQ2、トランジスタQ3、抵抗R8及び抵抗R9の経路の電流が、ホール素子2Bの端子▲2▼−▲4▼間の電圧(つまりホール出力電圧VHB)に比例するようにトランジスタQ3は動作する。この結果、トランジスタQ2とカレントミラー回路を構成するトランジスタQ1のコレクタ電流はトランジスタQ2のコレクタ電流と実質的に同じとなり、抵抗R7、トランジスタQ1の経路で充電電圧生成手段5のコンデンサC3を充電する。なお、抵抗R12はコンデンサC3充電の際のオフセット電流調整と放電抵抗を兼ねている。
【0027】
充電電圧生成手段5はコンデンサC3とオフセット電流調整抵抗R12の並列回路であり、オフセット電流調整抵抗R12は、微小充電電流ではコンデンサC3の充電電圧が上昇してしまわないようにするとともに、直流電圧供給端子Vinへの電圧供給が一旦停止されて過電流センサ自体がリセットされたとき、コンデンサC3の電荷を放電して充電電圧を零に戻すリセット放電の機能も兼ねる。
【0028】
比較手段6は演算増幅器OP4及びこのハイレベル出力を保持するためのラッチ用ダイオードD1を有している。そして、前記コンデンサC3の充電電圧が演算増幅器OP4の非反転入力に印加され、反転入力には抵抗R1の両端の被測定電流値に反比例した電圧Vrが印加される。この比較手段6はコンデンサC3の充電電圧が被測定電流値に反比例した電圧Vrを越えたときにハイレベルの遮断信号を出力端子Voutに出力する設定である。
【0029】
なお、正側ラインとグランドライン間には交流バイパスコンデンサC1が接続されている。
【0030】
この第2の実施の形態において、図2のブスバー7に流れる被測定電流が定常範囲であれは、同一ギャップGに配設されたホール素子2A,2Bに加わる磁束密度は低く、ホール素子2Aのホール出力電圧VHAを一定に制御する反比例電圧生成手段3の被測定電流に反比例した抵抗R1両端の出力電圧Vrは高い電圧値となる。これに反し、制御電流ICBが一定に制御されたホール素子2Bのホール出力電圧VHBは小さく、電流変換手段4内のトランジスタQ3,Q4のベース電位差は小さく、トランジスタQ3のコレクタ電流は微弱(実質的に零)である。つまり、トランジスタQ3に直列関係にあるトランジスタQ2のコレクタ電流、これと実質同じトランジスタQ1のコレクタ電流も微弱(実質的に零)となる。この結果、充電電圧生成手段5のコンデンサC3の充電電圧は出力電圧Vrを越える電圧値にまで上昇することはない。このため、比較手段6の演算増幅器OP4は過電流を検出せず、遮断信号(過電流検出信号)は発生しない。
【0031】
一方、図2のブスバー7に過電流が流れれば、ホール素子2A,2Bに加わる磁束密度は定常時の数倍以上となり、ホール素子2Aのホール出力電圧VHAを一定に制御する反比例電圧生成手段3の被測定電流に反比例した抵抗R1両端の出力電圧Vrは低い電圧値となる(グランドレベルに近づく)。これに反し、制御電流ICBが一定に制御されたホール素子2Bのホール出力電圧VHBは大きくなり、電流変換手段4内のトランジスタQ3,Q4のベース電位差は大きくなり、トランジスタQ3のコレクタ電流は増大する。つまり、トランジスタQ3に直列関係にあるトランジスタQ2のコレクタ電流、これと実質同じトランジスタQ1のコレクタ電流も増大し、充電電圧生成手段5のコンデンサC3の充電電圧は出力電圧Vrを越えることになる。これにより、比較手段6の演算増幅器OP4は過電流を検出し、出力端がハイレベルとなった遮断信号を出力端子Voutに出力し、かつその出力電圧をダイオードD1を介し非反転入力端に印加することで遮断信号出力を保持する。そして、この遮断信号によりブスバー7の被測定電流を遮断する遮断器等を作動させる。
【0032】
なお、被測定電流が過電流となったときに、その電流値の自乗に反比例した時間で遮断できることは前述の第1の実施の形態で説明した通りである。
【0033】
この第2の実施の形態によれば、次の通りの効果を得ることができる。
【0034】
(1) 第1のホール素子2Aのホール出力電圧VHAが一定となるように第1のホール素子2Aの制御電流ICAを制御して被測定電流に反比例した出力電圧Vrを得る反比例電圧生成手段3と、制御電流ICBが一定に制御された第2のホール素子2Bのホール出力電圧VHBに比例する出力電流を出力する電流変換手段4と、電流変換手段4の出力電流を一定容量のコンデンサC3に充電しその充電電圧を得る充電電圧生成手段5とを用い、比較手段6により被測定電流に反比例した出力電圧Vrと充電電圧生成手段5の充電電圧とを比較することで、該充電電圧が前記反比例電圧生成手段3の出力電圧Vrを越えたときに遮断信号(過電流検出力)を発生し、以後これを保持することができる。これにより、安全ブレーカーとしての機能、すなわち近似的に被測定電流の逆自乗特性を有する遮断時間でもって遮断信号を出力する特性を得ることができる。
【0035】
(2) 充電電圧生成手段5のコンデンサC3の充電電圧を比較手段6の一方入力として利用しており、ブスバー7にサージ電流が瞬間的に流れた場合には遮断信号が出ないようにすることが可能であり、負荷変動の激しい用途に対しても電流保護機能を実現できる。
【0036】
(3) 主な使用部品は2個のホール素子と複数の演算増幅器及びトランジスタであり、安価な回路構成となっている。
【0037】
なお、上記第1及び第2の実施の形態では、磁性体の同一ギャップに第1及び第2のホール素子を配置した場合を例示したが、被測定電流が流れる電流路としてのブスバーに対して磁性体が2つ設けられていて、一方の磁性体のギャップに第1のホール素子を配置し、他方の磁性体のギャップに第2のホール素子を配置する構成とすることも動作原理上可能である。
【0038】
以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0039】
【発明の効果】
以上説明したように、本発明に係る過電流センサによれば、サージ電流でも溶断してしまう大電流用ヒューズの溶断特性を改善し、負荷変動の激しい用途の電流保護機能を実現し、しかも、電子回路の特徴を利用して復帰可能な電流ブレーカー機能も実現可能である。また、大電流用ヒューズに比べてバラツキを少なくでき、コスト面でも安価に製造可能な利点がある。
【図面の簡単な説明】
【図1】本発明に係る過電流センサの第1の実施の形態を示すブロック図である。
【図2】各実施の形態における磁性体及びホール素子の配置を示す斜視図である。
【図3】本発明の第2の実施の形態を示す回路図である。
【図4】大電流用ヒューズと本発明の遮断特性を比較して示す特性図である。
【符号の説明】
1 磁性体
2A,2B ホール素子
3 反比例電圧生成手段
4 電流変換手段
5 充電電圧生成手段
6 比較手段
7 ブスバー
8 定電流回路
C1〜C4 コンデンサ
D1,D2 ダイオード
OP1〜OP4 演算増幅器
Q1〜Q4 トランジスタ
R1〜R9,R11〜R14 抵抗
[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is used as a substitute for a fuse that cuts off a circuit when an abnormally large current flows in a battery of a hybrid vehicle or an electric vehicle. In particular, a fuse function of 100 to 1000 A class is replaced by an electronic circuit. The present invention relates to an overcurrent sensor that can be provided in a small size and at low cost.
[0002]
[Prior art]
Conventionally, a method of detecting an overcurrent using a fuse as disclosed in Japanese Utility Model Registration No. 2565750 and Japanese Patent Application Laid-Open No. 2001-54223 is known.
[0003]
[Problems to be solved by the invention]
The biggest problems with fuses are that they have large variations, and that the ideal shutoff function for protecting wiring and systems from thermal damage due to overcurrent in the event of a short circuit is unsatisfactory. When a short circuit occurs, heat is generated in proportion to the product of the resistance value of the wiring or system, the square of the short circuit current, and the holding time.From the viewpoint of thermal protection, consider setting the temperature so that it does not exceed a certain temperature. It is desirable not to interrupt the instantaneous current that does not exceed the maximum current value but to interrupt the current in a time inversely proportional to the square of the current value when a current exceeding the upper limit current value flows.
[0004]
FIG. 4 shows the breaking characteristics of a general high-current fuse. It can be seen that the fusing time is inversely proportional to the fifth to sixth powers of the current value. In other words, the larger the current, the earlier the blow (the earlier the time is inversely proportional to the square of the short-circuit current), and it is surprisingly difficult to set the fuse so that it does not blow with a surge current that is not a problem. Fuses have been difficult elements to protect applications.
[0005]
A first object of the present invention is to use a characteristic of an electronic circuit, replace a fuse for a large current, improve a fusing characteristic, and realize an overcurrent capable of realizing a current protection function even in an application in which load changes are severe. It is to provide a sensor.
[0006]
A second object of the present invention is to provide an overcurrent sensor capable of realizing a current breaker function capable of restoring in place of a fuse that cannot be reproduced.
[0007]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 of the present application detects a measured current passing through a current path penetrating the inside of a magnetic body having a gap formed in a part of a closed magnetic circuit, and detects the measured current. In the overcurrent sensor that controls the time until the interruption by the size of
First and second Hall elements installed in the gap of the magnetic body,
Inverse proportional voltage generation means for controlling a control current of the first Hall element so that a Hall output voltage of the first Hall element is constant to obtain an output voltage inversely proportional to the measured current;
Current conversion means for outputting an output current proportional to a Hall output voltage of the second Hall element, wherein the control current is controlled to be constant;
Charging voltage generating means for charging an output current of the current converting means to a capacitor having a constant capacity to obtain a charging voltage thereof,
An output voltage of the inversely proportional voltage generator is inversely proportional to the current to be measured, and a charge voltage of the charge voltage generator is compared. When the charge voltage exceeds an output voltage of the inverse proportional voltage generator, a cutoff signal is generated. And a comparing means for holding the data.
[0009]
Further, the invention of claim 2 of the present application detects a measured current passing through a current path penetrating the inside of a magnetic body having a gap formed in a part of a closed magnetic circuit, and shuts off the current based on the magnitude of the measured current. In the overcurrent sensor that controls the time until
Two magnetic bodies are provided for the current path, a first Hall element installed in a gap of one magnetic body and a second Hall element installed in a gap of the other magnetic body,
Inverse proportional voltage generation means for controlling a control current of the first Hall element so that a Hall output voltage of the first Hall element is constant to obtain an output voltage inversely proportional to the measured current;
Current conversion means for outputting an output current proportional to a Hall output voltage of the second Hall element, wherein the control current is controlled to be constant;
Charging voltage generating means for charging an output current of the current converting means to a capacitor having a constant capacity to obtain a charging voltage thereof,
An output voltage of the inversely proportional voltage generator is inversely proportional to the current to be measured, and a charge voltage of the charge voltage generator is compared. When the charge voltage exceeds an output voltage of the inverse proportional voltage generator, a cutoff signal is generated. And a comparing means for holding the data.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of an overcurrent sensor according to the present invention will be described with reference to the drawings.
[0011]
FIG. 1 is a block diagram showing a first embodiment of an overcurrent sensor according to the present invention, and FIG. 2 is a perspective view showing an arrangement of a Hall element with respect to a magnetic body. As shown in FIGS. 1 and 2, the overcurrent sensor includes a magnetic body 1, first and second Hall elements 2A and 2B, an inversely proportional voltage generator 3, a current converter 4, a charging voltage generator 5, and a comparator. 6 is provided.
[0012]
As shown in FIG. 2, the magnetic body 1 has a substantially C shape in which a gap G is formed in a part of a closed magnetic circuit, and two Hall elements 2A and 2B are installed in the same gap G. The bus bar 7 serving as a current path penetrates the center of the inner side. The bus bar 7 is supplied with a measured current Ib such as a battery supply current. For example, a current of 100 A or less flows in a normal state and a current of 1000 A flows in an abnormal state. When a current to be measured flows through the bus bar 7, a magnetic flux generated in the closed magnetic circuit of the magnetic body 1 due to the current to be measured passes through the first and second Hall elements 2A and 2B.
[0013]
The inverse voltage generating means 3 is output voltage which is inversely proportional to the control current I CA control to the measured current Ib of the first Hall element 2A of the Hall output voltage V HA is first to be constant of the Hall element 2A the vr, those obtained at both ends of the control current I CA path inserted a resistor R1. In general, if the control current is constant, the Hall element outputs a Hall output voltage proportional to the magnetic flux density at the position where the control element is disposed (that is, proportional to the current value to be measured). as the inverse voltage generating means 3, by controlling the control current I CA as Hall output voltage V HA is constant, the control current I CA will be inversely proportional to the current value to be measured, control current I CA If the voltage drop is obtained by inserting the resistor R1 into the current path, it becomes a voltage value that is inversely proportional to the current value to be measured.
[0014]
On the other hand, the second Hall element 2B is the control current I CB are controlled to a constant current value, therefore, it (proportional to That measured current value Ib) proportional to the magnetic flux density of the deployed position Hall output The voltage VHB is output.
[0015]
The current converting means 4 receives the Hall output voltage VHB of the second Hall element 2B and outputs an output current proportional to the Hall output voltage VHB. The capacitor C3 having a capacity is charged. The discharge resistor R12 is connected in parallel with the capacitor C3, a state that does not detect the output current is small regions (overcurrent of the current conversion unit 4, that is, the Hall output voltage V HB of the Hall element 2B small state In ()), the discharging resistor R12 is set so that the charging voltage of the capacitor C3 does not increase.
[0016]
The comparing means 6 compares the charging voltage of the capacitor C3 of the charging voltage generating means 5 with the output voltage Vr of the inversely proportional voltage generating means 3, and when the charging voltage of the capacitor C3 exceeds the output voltage Vr, a cutoff signal. (An overcurrent detection signal indicating that an overcurrent has been detected, for example, a high level output) is output to the output terminal Vout and has a function of continuing to hold the cutoff signal.
[0017]
In the first embodiment, when the current to be measured flowing through the bus bar 7 in FIG. 2 is in the steady range, the magnetic flux density applied to the Hall elements 2A and 2B disposed in the same gap G is low, and the Hall element 2A The output voltage Vr, which is inversely proportional to the current to be measured, of the inversely proportional voltage generation means 3 for controlling the Hall output voltage V HA to be constant has a high voltage value. Contrary to this, the control current I CB Hall output voltage V HB of the Hall element 2B, which is controlled to be constant is small, this output current of the current converter 4 in proportion is weak, it is discharged by the discharge resistor R12 The charging voltage of the capacitor C3 of the charging voltage generating means 5 does not rise to a voltage value exceeding the output voltage Vr. For this reason, the comparison means 6 does not detect an overcurrent and does not generate a cutoff signal (overcurrent detection signal).
[0018]
On the other hand, if an overcurrent flows through the bus bar 7, the magnetic flux density applied to the Hall elements 2A and 2B becomes several times or more of the steady state, and the inverse proportional voltage generation means 3 for controlling the Hall output voltage V HA of the Hall element 2A to be constant. The output voltage Vr that is inversely proportional to the current to be measured has a low voltage value (approaches the ground level). On the other hand, the Hall output voltage V HB of the Hall element 2B in which the control current I CB is controlled to be constant increases, and the output current of the current conversion means 4 increases in proportion to this, and the discharge current by the discharge resistor R12 is reduced. In the meantime, the charging voltage of the capacitor C3 of the charging voltage generating means 5 exceeds the output voltage Vr. As a result, the comparing means 6 detects the overcurrent, outputs the cutoff signal, and holds the state. Then, a circuit breaker or the like that cuts off the current to be measured of the bus bar 7 is operated by the cutoff signal.
[0019]
Here, it will be described that, when the measured current becomes an overcurrent, the current can be cut off in a time inversely proportional to the square of the current value. Now, if one input voltage (output voltage Vr) of the comparison means 6 is constant, the output current of the current conversion means 4, that is, the current for charging the capacitor C3 increases in proportion to the measured current. As the overcurrent value flowing through the bus bar 7 increases, the time required for the charging voltage of the capacitor C3 to exceed the output voltage Vr decreases, and the time from the occurrence of the overcurrent to the generation of the cutoff signal has a relationship inversely proportional to the current value. . Actually, in the present embodiment, one input voltage of the comparison means 6, that is, the output voltage Vr is set so as to be inversely proportional to the current to be measured. Therefore, the time is inversely proportional to the square of the current to be measured due to a synergistic effect. It will be able to cut off. In other words, a characteristic of outputting a cutoff signal is obtained with a cutoff time (time from occurrence of overcurrent to cutoff) having an inverse square characteristic of the measured current. That is, the protection unit is an ideal protection unit because it is adjusted to the physical phenomenon of heat generation due to overcurrent. Further, since the charging voltage of the capacitor C3 included in the charging voltage generation means 5 is used for the detection operation, there is an advantage that it is hardly affected by the surge current. FIG. 4 shows the breaking characteristics (the relationship between the breaking time and the current to be measured) of the present invention (this embodiment) in comparison with the breaking characteristics of a conventional large current fuse.
[0020]
According to the first embodiment, a current to be measured passing through a current path penetrating the inside of the magnetic body 1 having a gap G formed in a part of a closed magnetic circuit is detected, and the magnitude of the current to be measured is detected. In the overcurrent sensor that controls the time until the interruption by the first and second Hall elements 2A and 2B installed in the gap G, the Hall output voltage V HA of the first Hall element 2A is constant. second Hall element 2B inversely proportional voltage generating means 3 for controlling the current by controlling the I CA obtain an output voltage which is inversely proportional to the current to be measured of the first Hall element 2A, the control current I CB is controlled to be constant in Current conversion means 4 for outputting an output current proportional to the Hall output voltage VHB of the above, charging voltage generation means 5 for charging the output current of the current conversion means 4 to a capacitor C3 having a constant capacity to obtain the charging voltage, Reciprocal ratio Example The output voltage Vr of the voltage generating means 3 is compared with the output voltage Vr which is inversely proportional to the current to be measured, and the charging voltage of the charging voltage generating means 5. When the charging voltage exceeds the output voltage Vr, a cutoff signal is generated. With the configuration including the comparing means 6 for holding, a function as a safety breaker can be realized. That is, it is possible to obtain a characteristic of outputting a cutoff signal (overcurrent detection signal) with a cutoff time (time from occurrence of overcurrent to cutoff) having an inverse square characteristic of the current to be measured.
[0021]
Therefore, the timing of outputting the cutoff signal (overcurrent detection signal) is adjusted to the physical phenomenon of heat generation due to the overcurrent, so that an ideal protection unit is obtained. Further, there is an advantage that the variation in the fuse is very small, the circuit is simple and the cost is low.
[0022]
FIG. 3 shows a second embodiment of the present invention, and shows a specific circuit diagram. The arrangement of the Hall element with respect to the magnetic body may be as shown in FIG.
[0023]
As shown in FIG. 3, between the positive line connected to the DC voltage supply terminal Vin (+5 V) and the ground line connected to the ground terminal GND, the resistor R11 and the terminal {1} − of the first Hall element 2A. (3) The control current ICA is supplied to the first Hall element 2A through the path of the resistor R1. Here, inverse voltage generating means 3 Hall output voltage V HA of the first Hall element 2A controls the control current I CA of the first Hall element 2A so as to be constant, the operational amplifier OP1, OP2, resistors R1 , R11, a capacitor C2, and an offset voltage source Vof. The offset voltage source Vof is composed of a diode D2 and resistors R13 and R14, has a temperature dependency, and performs temperature compensation of the Hall element.
[0024]
The Hall output voltage V HA of the first Hall element 2A appears between the terminals (2) and (4) (here, the potential of (2) ≧ the potential of (4)), and the voltage of the terminal (2) is calculated. It is applied to the non-inverting input of the amplifier OP1. Here, as the measured current Ib is greater flowing to the bus bars ▲ 2 ▼ potential V 2 of the increases, the V 2 αIb × I CA. The operational amplifier OP1 constitutes a voltage follower, operates as an amplifier having a high input impedance and a low output impedance and an amplification factor of 1, and the output voltage thereof is added with an offset voltage of an offset voltage source Vof, thereby obtaining an inverted input of the operational amplifier OP2. Is applied. The voltage of the terminal (4) of the first Hall element 2A is applied to the non-inverting input terminal of the operational amplifier OP2. The operational amplifier OP2 functions as a comparator, and the terminal (4) applied to the non-inverting input terminal. The voltage of (4) is applied to the inverting input terminal for comparison (voltage of terminal (2) + offset voltage; however, the polarity of the voltage of terminal (2) and the offset voltage are opposite to each other in the illustrated example. ) Is controlled so that the voltage at the output end (that is, the control current I CA ) is matched. As described in the first embodiment described above, by controlling the control current I CA as Hall output voltage V HA is constant, the control current I CA will be inversely proportional to the current value to be measured, voltage Vr which is inversely proportional to the current value to be measured at both ends of the control current I CA inserted resistor in the current path of R1 is obtained. This voltage Vr is applied to one input terminal of the comparing means 6 described later.
[0025]
Constant current circuit 8 for supplying a constant control current I CB in the second Hall element 2B is an operational amplifier OP3, the terminal of the Hall element 2B between its output terminal and ground line ▲ 1 ▼ - ▲ 3 ▼ and in series It comprises an inserted resistor R3, resistors R4 and R5 for dividing a supply voltage between the DC voltage supply terminal Vin and the ground terminal GND and applying the divided voltage to the non-inverting input terminal of the operational amplifier OP3, and a capacitor C4. By controlling the voltage of the terminal (3) of the Hall element 2B applied to the inverting input terminal of the operational amplifier OP3 to match the voltage (constant value) of the non-inverting input terminal, the control current ICB becomes constant. Will be maintained. Accordingly, a Hall output voltage VHB proportional to the measured current appears between the terminals (2) and (4) (here, the potential of (2) ≧ the potential of (4)).
[0026]
Current conversion means 4 for controlling current I CB outputs an output current proportional to the Hall output voltage V HB of the second Hall element 2B, which is controlled to be constant is composed of transistors Q1 to Q4, resistors R6~R9 . Here, the pair of the transistor Q2 and the resistor R6 and the pair of the transistor Q1 and the resistor R7 form a current mirror circuit (mirror current circuit), and the collector current of the transistor Q1 is substantially equal to the collector current of the transistor Q2. The current is controlled to be the same. The transistors Q3 and Q4 operate as an emitter follower that converts the input side (base side) to high impedance and the emitter side to low impedance, and the bases of the transistors Q3 and Q4 have terminals (2) and (4) of the Hall element 2B respectively. Is applied. Then, the current in the path of the resistor R6, the transistor Q2, the transistor Q3, the resistor R8, and the resistor R9 is proportional to the voltage between the terminals (2) and (4) of the Hall element 2B (that is, the hall output voltage V HB ). The transistor Q3 operates. As a result, the collector current of the transistor Q1 forming a current mirror circuit with the transistor Q2 becomes substantially the same as the collector current of the transistor Q2, and charges the capacitor C3 of the charging voltage generating means 5 through the path of the resistor R7 and the transistor Q1. Note that the resistor R12 also serves as an offset current adjustment and a discharge resistor when charging the capacitor C3.
[0027]
The charging voltage generating means 5 is a parallel circuit of a capacitor C3 and an offset current adjusting resistor R12. The offset current adjusting resistor R12 prevents the charging voltage of the capacitor C3 from increasing with a small charging current and supplies a DC voltage. When the supply of the voltage to the terminal Vin is temporarily stopped and the overcurrent sensor itself is reset, it also has a function of a reset discharge for discharging the charge of the capacitor C3 and returning the charge voltage to zero.
[0028]
The comparing means 6 has an operational amplifier OP4 and a latch diode D1 for holding this high level output. Then, the charging voltage of the capacitor C3 is applied to the non-inverting input of the operational amplifier OP4, and the voltage Vr inversely proportional to the measured current value across the resistor R1 is applied to the inverting input. The comparison means 6 is set to output a high-level cutoff signal to the output terminal Vout when the charging voltage of the capacitor C3 exceeds a voltage Vr that is inversely proportional to the measured current value.
[0029]
Note that an AC bypass capacitor C1 is connected between the positive line and the ground line.
[0030]
In the second embodiment, when the current to be measured flowing through the bus bar 7 of FIG. 2 is in a steady range, the magnetic flux density applied to the Hall elements 2A and 2B disposed in the same gap G is low, and the Hall element 2A The output voltage Vr across the resistor R1, which is inversely proportional to the current to be measured, of the inversely proportional voltage generation means 3 for controlling the Hall output voltage V HA to be constant has a high voltage value. Contrary to this, the control current I CB Hall output voltage V HB of the Hall element 2B, which is controlled to be constant is small, small base potential of the transistor Q3, Q4 of the current converting means 4, the collector current of the transistor Q3 is weak ( (Substantially zero). That is, the collector current of the transistor Q2 in series with the transistor Q3 and the collector current of the transistor Q1, which is substantially the same as the transistor Q2, are also weak (substantially zero). As a result, the charging voltage of the capacitor C3 of the charging voltage generating means 5 does not rise to a voltage value exceeding the output voltage Vr. Therefore, the operational amplifier OP4 of the comparison means 6 does not detect an overcurrent, and does not generate a cutoff signal (overcurrent detection signal).
[0031]
On the other hand, if an overcurrent flows through the bus bar 7 shown in FIG. 2, the magnetic flux density applied to the Hall elements 2A and 2B becomes several times or more of the steady state, and the inverse proportional voltage generation for controlling the Hall output voltage V HA of the Hall element 2A to be constant. The output voltage Vr across the resistor R1, which is inversely proportional to the measured current of the means 3, has a low voltage value (approaches the ground level). Contrary to this, the Hall output voltage V HB of the Hall element 2B in which the control current I CB is controlled to be constant is increased, the base potential of the transistors Q3, Q4 of the current converter 4 increases, the collector current of the transistor Q3 is Increase. That is, the collector current of the transistor Q2, which is in series with the transistor Q3, and the collector current of the transistor Q1, which is substantially the same, also increase, and the charging voltage of the capacitor C3 of the charging voltage generating means 5 exceeds the output voltage Vr. As a result, the operational amplifier OP4 of the comparing means 6 detects the overcurrent, outputs the cutoff signal whose output terminal has become high level to the output terminal Vout, and applies the output voltage to the non-inverting input terminal via the diode D1. By doing so, the cutoff signal output is held. Then, a circuit breaker or the like that cuts off the current to be measured of the bus bar 7 is operated by the cutoff signal.
[0032]
As described in the first embodiment, when the measured current becomes an overcurrent, the current can be cut off in a time inversely proportional to the square of the current value.
[0033]
According to the second embodiment, the following effects can be obtained.
[0034]
(1) inverse voltage generation Hall output voltage V HA of the first Hall element 2A is obtained an output voltage Vr which is inversely proportional to the first control to the current to be measured a control current I CA Hall elements 2A so as to be constant Means 3, a current converting means 4 for outputting an output current proportional to the Hall output voltage V HB of the second Hall element 2B in which the control current I CB is controlled to be constant, and an output current of the current converting means 4 having a constant capacity. By using the charging voltage generating means 5 for charging the capacitor C3 of the above and obtaining the charging voltage, the comparing means 6 compares the output voltage Vr inversely proportional to the measured current with the charging voltage of the charging voltage generating means 5, and When the charging voltage exceeds the output voltage Vr of the inversely proportional voltage generating means 3, a cutoff signal (overcurrent detection force) is generated, and this signal can be maintained thereafter. As a result, it is possible to obtain a function as a safety breaker, that is, a characteristic of outputting a cutoff signal with a cutoff time having approximately the inverse square characteristic of the measured current.
[0035]
(2) The charging voltage of the capacitor C3 of the charging voltage generating means 5 is used as one input of the comparing means 6 so that a shutoff signal is not output when a surge current instantaneously flows through the bus bar 7. And a current protection function can be realized even in an application in which load fluctuation is severe.
[0036]
(3) The main components used are two Hall elements, a plurality of operational amplifiers, and transistors, which are inexpensive circuit configurations.
[0037]
In the first and second embodiments, the case where the first and second Hall elements are arranged in the same gap of the magnetic body is exemplified. However, the bus bar as the current path through which the current to be measured flows is described. It is possible on the operating principle that two magnetic bodies are provided, and the first Hall element is arranged in the gap of one magnetic body and the second Hall element is arranged in the gap of the other magnetic body. It is.
[0038]
Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to the embodiments and various modifications and changes can be made within the scope of the claims.
[0039]
【The invention's effect】
As described above, according to the overcurrent sensor according to the present invention, the fusing characteristics of a large-current fuse that is blown even by a surge current are improved, and a current protection function for an application with a severe load change is realized. It is also possible to realize a current breaker function capable of recovering by utilizing the characteristics of the electronic circuit. Further, there is an advantage that the variation can be reduced as compared with the fuse for a large current, and the fuse can be manufactured at a low cost.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first embodiment of an overcurrent sensor according to the present invention.
FIG. 2 is a perspective view showing an arrangement of a magnetic body and a Hall element in each embodiment.
FIG. 3 is a circuit diagram showing a second embodiment of the present invention.
FIG. 4 is a characteristic diagram showing a comparison between the fuse for a large current and the breaking characteristic of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Magnetic body 2A, 2B Hall element 3 Inverse proportional voltage generation means 4 Current conversion means 5 Charge voltage generation means 6 Comparison means 7 Bus bar 8 Constant current circuits C1-C4 Capacitors D1, D2 Diodes OP1-OP4 Operational amplifiers Q1-Q4 Transistors R1- R9, R11 to R14 Resistance

Claims (2)

閉磁路の一部にギャップを形成してなる磁性体の内側を貫通する電流路を通る被測定電流を検知し、当該被測定電流の大きさによって遮断に至る時間を制御する過電流センサにおいて、
前記磁性体のギャップに設置された第1及び第2のホール素子と、
前記第1のホール素子のホール出力電圧が一定となるように前記第1のホール素子の制御電流を制御して前記被測定電流に反比例した出力電圧を得る反比例電圧生成手段と、
制御電流が一定に制御された前記第2のホール素子のホール出力電圧に比例する出力電流を出力する電流変換手段と、
前記電流変換手段の出力電流を一定容量のコンデンサに充電しその充電電圧を得る充電電圧生成手段と、
前記反比例電圧生成手段の前記被測定電流に反比例した出力電圧と前記充電電圧生成手段の充電電圧とを比較し、該充電電圧が前記反比例電圧生成手段の出力電圧を超えたときに遮断信号を発生して保持する比較手段とを備えることを特徴とする過電流センサ。
In an overcurrent sensor that detects a measured current passing through a current path that passes through the inside of a magnetic body that forms a gap in a part of a closed magnetic path, and controls a time to be cut off by the magnitude of the measured current,
First and second Hall elements installed in the gap of the magnetic body,
Inverse proportional voltage generation means for controlling a control current of the first Hall element so that a Hall output voltage of the first Hall element is constant to obtain an output voltage inversely proportional to the measured current;
Current conversion means for outputting an output current proportional to a Hall output voltage of the second Hall element, wherein the control current is controlled to be constant;
Charging voltage generating means for charging an output current of the current converting means to a capacitor having a constant capacity to obtain a charging voltage thereof,
An output voltage of the inversely proportional voltage generator is inversely proportional to the current to be measured and a charge voltage of the charge voltage generator, and a cutoff signal is generated when the charge voltage exceeds an output voltage of the inverse voltage generator. An overcurrent sensor comprising: a comparison unit that holds the current as a current.
閉磁路の一部にギャップを形成してなる磁性体の内側を貫通する電流路を通る被測定電流を検知し、当該被測定電流の大きさによって遮断に至る時間を制御する過電流センサにおいて、
前記電流路に対して前記磁性体が2つ設けられていて、一方の磁性体のギャップに設置された第1のホール素子及び他方の磁性体のギャップに設置された第2のホール素子と、
前記第1のホール素子のホール出力電圧が一定となるように前記第1のホール素子の制御電流を制御して前記被測定電流に反比例した出力電圧を得る反比例電圧生成手段と、
制御電流が一定に制御された前記第2のホール素子のホール出力電圧に比例する出力電流を出力する電流変換手段と、
前記電流変換手段の出力電流を一定容量のコンデンサに充電しその充電電圧を得る充電電圧生成手段と、
前記反比例電圧生成手段の前記被測定電流に反比例した出力電圧と前記充電電圧生成手段の充電電圧とを比較し、該充電電圧が前記反比例電圧生成手段の出力電圧を超えたときに遮断信号を発生して保持する比較手段とを備えることを特徴とする過電流センサ。
In an overcurrent sensor that detects a measured current passing through a current path that passes through the inside of a magnetic body that forms a gap in a part of a closed magnetic path, and controls a time to be cut off by the magnitude of the measured current,
Two magnetic bodies are provided for the current path, a first Hall element installed in a gap of one magnetic body and a second Hall element installed in a gap of the other magnetic body,
Inverse proportional voltage generation means for controlling a control current of the first Hall element so that a Hall output voltage of the first Hall element is constant to obtain an output voltage inversely proportional to the measured current;
Current conversion means for outputting an output current proportional to a Hall output voltage of the second Hall element, wherein the control current is controlled to be constant;
Charging voltage generating means for charging an output current of the current converting means to a capacitor having a constant capacity to obtain a charging voltage thereof,
An output voltage of the inversely proportional voltage generator is inversely proportional to the current to be measured and a charge voltage of the charge voltage generator, and a cutoff signal is generated when the charge voltage exceeds an output voltage of the inverse voltage generator. An overcurrent sensor comprising: a comparison unit that holds the current as a current.
JP2002203562A 2002-07-12 2002-07-12 Overcurrent sensor Withdrawn JP2004045236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203562A JP2004045236A (en) 2002-07-12 2002-07-12 Overcurrent sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203562A JP2004045236A (en) 2002-07-12 2002-07-12 Overcurrent sensor

Publications (1)

Publication Number Publication Date
JP2004045236A true JP2004045236A (en) 2004-02-12

Family

ID=31709398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203562A Withdrawn JP2004045236A (en) 2002-07-12 2002-07-12 Overcurrent sensor

Country Status (1)

Country Link
JP (1) JP2004045236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009098091A (en) * 2007-10-19 2009-05-07 Toyota Motor Corp Current detector
JP2021520505A (en) * 2018-04-06 2021-08-19 インターチム エス アーInterchim S.A. Control method and control system for preparative liquid chromatography

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009098091A (en) * 2007-10-19 2009-05-07 Toyota Motor Corp Current detector
JP2021520505A (en) * 2018-04-06 2021-08-19 インターチム エス アーInterchim S.A. Control method and control system for preparative liquid chromatography
JP7482106B2 (en) 2018-04-06 2024-05-13 インターチム エス アー Method for controlling preparative liquid chromatography, preparative liquid chromatography system and program for carrying out the method

Similar Documents

Publication Publication Date Title
US7365952B2 (en) Battery pack having a protection circuit
JP3305257B2 (en) Charge / discharge control circuit, rechargeable power supply device and control method therefor
US6052016A (en) Charge and discharge control circuit
JPH04252611A (en) Static switch
US4493002A (en) Electronic circuit breaker
JPH04244724A (en) Overcurrent trip circuit
JP2004296165A (en) Battery pack with charge control function
JP2006109596A (en) Protection circuit
EP2106630A2 (en) Dc high power distribution assembly
JP2011142789A (en) Battery pack
EP0896410B1 (en) Overcurrent detection circuit
US4038695A (en) Static trip unit for circuit protective devices
WO2016153889A1 (en) Electronic trip units powered by current transformers and circuit breakers comprising the same
JP2008263776A (en) Protective circuit
JP2004045236A (en) Overcurrent sensor
JP2004266882A (en) Rechargeable battery with bypass resistor and protecting method thereof
JPS61116922A (en) High-speed current-limiting breaker
US5019936A (en) Voltage-to-frequency squared circuit
JP2004020460A (en) Overcurrent sensor
CN210326997U (en) Overload and short-circuit protection circuit
WO2002101901A3 (en) Circuit arrangement for a residual-current circuit breaker
CN110265966A (en) Overload and short-circuit protection circuit
JPS6331418A (en) Circuit breaker
JP2004037147A (en) Overcurrent sensor
JP2000358335A (en) Semiconductor device for controlling charging and discharging

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004