JP2000358335A - Semiconductor device for controlling charging and discharging - Google Patents

Semiconductor device for controlling charging and discharging

Info

Publication number
JP2000358335A
JP2000358335A JP2000114173A JP2000114173A JP2000358335A JP 2000358335 A JP2000358335 A JP 2000358335A JP 2000114173 A JP2000114173 A JP 2000114173A JP 2000114173 A JP2000114173 A JP 2000114173A JP 2000358335 A JP2000358335 A JP 2000358335A
Authority
JP
Japan
Prior art keywords
circuit
voltage
charging current
current
abnormal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000114173A
Other languages
Japanese (ja)
Inventor
Shinichi Yoshida
信一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2000114173A priority Critical patent/JP2000358335A/en
Publication of JP2000358335A publication Critical patent/JP2000358335A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To prevent efficiency from being degraded due to heat from the resistance component of a current fuse by avoiding use of the current fuse and using the resistance value of a switching element, when it is at on state to detect an abnormal charging current. SOLUTION: With a switch element 16 for controlling discharging current contained in the detection voltage block in an abnormal charging current detection circuit 11, the resistance value of the switching element differs by 10 digits or more on the same charging current, depending on whether the switching element 16 for controlling discharging current is on or off. Therefore, the voltage produced in the detection voltage block in the abnormal charging current detection circuit 11 differs significantly. Abnormal charging current detection voltage is fixed by having an abnormal charging current detected only when the switching element 16 for controlling discharging current is on. As a result, heating from extra resistance components such as current fuse is eliminated, and the discharging efficiency is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は充電器から2次電池
への充電電流が異常に大きい場合(異常充電電流の場
合)における2次電池の保護に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to protection of a secondary battery when the charging current from the charger to the secondary battery is abnormally large (in the case of an abnormal charging current).

【従来の技術】図2に従来の2次電池の充電および放電
に対する保護ICおよび保護装置を示す。従来の保護装置
は従来の保護IC21と放電電流制御スイッチ素子16と
充電電流制御スイッチ素子17と電流ヒューズ22とか
らなり、従来の保護IC21は過充電検出回路7、過放電
検出回路8、過電流検出回路9、レベル変換回路10、
NOR回路14、などを有し、放電電流制御スイッチ素子
16と充電電流制御スイッチ素子17のオン/オフを制
御することによって、2次電池15が過大な電圧にまで
充電されるのを防止する機能(過充電保護機能)と、2
次電池15が過小な電圧にまで放電されるのを防止する
機能(過放電保護機能)と、2次電池15が過大な電流
を放電するのを防止する機能(過電流保護機能)を有す
る。従来の保護装置では、充電器から2次電池15へ過
大な充電電流を流すのを防止する機能(異常充電電流保
護機能)を実現するために、2次電池正極接続端子2と
充電器正極接続端子19の間に電流ヒューズ22を設
け、大きな充電電流(異常な充電電流)が流れると電流
ヒューズ22が切断されるようになっていた。
2. Description of the Related Art FIG. 2 shows a conventional protection IC and a protection device for charging and discharging a secondary battery. The conventional protection device includes a conventional protection IC 21, a discharge current control switch element 16, a charging current control switch element 17, and a current fuse 22. The conventional protection IC 21 includes an overcharge detection circuit 7, an overdischarge detection circuit 8, A detection circuit 9, a level conversion circuit 10,
A function of preventing the secondary battery 15 from being charged to an excessive voltage by controlling ON / OFF of the discharge current control switch element 16 and the charge current control switch element 17 (Overcharge protection function) and 2
It has a function of preventing the secondary battery 15 from being discharged to an excessively low voltage (overdischarge protection function) and a function of preventing the secondary battery 15 from discharging an excessive current (overcurrent protection function). In the conventional protection device, in order to realize a function of preventing an excessive charging current from flowing from the charger to the secondary battery 15 (abnormal charging current protection function), the secondary battery positive terminal 2 and the charger positive terminal are connected. A current fuse 22 is provided between the terminals 19, and when a large charging current (abnormal charging current) flows, the current fuse 22 is cut.

【発明が解決しようとする課題】従来の電流ヒューズを
用いた場合、1度でも異常充電電流を検出すると、保護
装置を含んだ2次電池は2度と使えなくなってしまうと
言う問題点があった。また電流ヒューズの抵抗成分によ
る発熱によって効率が落ちると言う問題点があった。ま
た電流ヒューズを付けることによって部品点数が増え、
実装面積も大きくなって、低コスト化、小型軽量化の妨
げになると言う問題点があった。
When a conventional current fuse is used, if an abnormal charging current is detected even once, the secondary battery including the protection device cannot be used again. Was. Further, there is a problem that the efficiency is reduced due to heat generated by the resistance component of the current fuse. Also, adding a current fuse increases the number of parts,
There is a problem that the mounting area becomes large, which hinders cost reduction and reduction in size and weight.

【課題を解決するための手段】本発明は上記問題点を解
決するために、電流ヒューズを使用せず、スイッチ素子
のオン状態の抵抗値を用いて異常充電電流を検出するよ
うにした。
In order to solve the above-mentioned problems, the present invention does not use a current fuse, but detects an abnormal charging current by using a resistance value of an ON state of a switch element.

【発明の実施の形態】スイッチ素子のオン/オフによっ
て充電器から2次電池への充電電流と2次電池から負荷
への放電電流を制御する装置において、スイッチ素子の
オン状態の抵抗値を用いて異常充電電流を検出し、異常
充電電流を検出した後は充電器が切り離なされる迄、異
常充電電流検出状態を保持する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In an apparatus for controlling a charging current from a charger to a secondary battery and a discharging current from a secondary battery to a load by turning on / off a switching element, a resistance value of the switching element in an on state is used. After detecting the abnormal charging current, the abnormal charging current detection state is maintained until the charger is disconnected after detecting the abnormal charging current.

【実施例】図1に本発明の保護ICおよび保護装置の実施
例を示す。本発明の保護装置は保護IC1と放電電流制御
スイッチ素子16と充電電流制御スイッチ素子17とか
らなり、保護IC1は過充電検出回路7、過放電検出回路
8、過電流検出回路9、レベル変換回路10、異常充電
電流検出回路11、NOR回路14、NAND回路12,1
3、保持回路23、などを有し、放電電流制御スイッチ
素子16と充電電流制御スイッチ素子17のオン/オフ
を制御することによって、2次電池15が過大な電圧に
まで充電されるのを防止する機能(過充電保護機能)
と、2次電池15が過小な電圧にまで放電されるのを防
止する機能(過放電保護機能)と、2次電池15が過大
な放電電流を流すのを防止する機能(過電流保護機能)
と、充電器から2次電池15へ過大な充電電流が流され
るのを防止する機能(異常充電電流保護機能)を有す
る。過充電検出回路7は2次電池正極接続端子2と2次
電池負極接続端子3の間の電圧が所望の電圧(例えば
4.2V)以上になったら、レベル変換回路10を通し
て充電電流制御スイッチ素子17をオフさせるための回
路である。レベル変換回路10は充電電流制御スイッチ
素子17をオフさせるために、充電電流制御スイッチ素
子接続端子5のロー・レベルを充電器負極接続端子20
の電位に変換するための回路である。過放電検出回路8
は2次電池正極接続端子2と2次電池負極接続端子3の
間の電圧が所望の電圧(例えば2.3V)以下になった
ら放電電流制御スイッチ素子16をオフさせるための回
路である。過電流検出回路9は充電器負極接続端子20
の電圧が2次電池負極接続端子3の電圧に対して所望の
電圧値(例えば+0.2V)以上になったら放電電流制
御スイッチ素子16をオフさせるための回路である。抵
抗18は充電器の正極と負極が逆に接続された場合に流
れる電流を制限するためのもので通常1kΩから1MΩ程度
の値をとる。異常充電電流検出回路11は充電器負極接
続端子20の電圧が2次電池負極接続端子3の電圧に対
して所望の電圧値(例えば−0.4V)以下になったら
充電電流制御スイッチ素子17をオフさせるための回路
である。ここで、図1のように放電電流制御スイッチ素
子16が異常充電電流検出回路11の検出電圧区間(図
1では充電器負極接続端子20と2次電池負極接続端子
3の間)に含まれる場合は、所望の充電電流(例えば2A
以上の充電電流)で異常充電電流を検出するには放電電
流制御スイッチ素子16がオンであるかオフであるかに
よって異常充電電流検出電圧を変化させなければならな
い。なぜなら、図1のように放電電流制御スイッチ素子
16が異常充電電流検出回路11の検出電圧区間(図1
では充電器負極接続端子20と2次電池負極接続端子3
の間)に含まれる場合は、同じ充電電流でも放電電流制
御スイッチ素子16がオンの場合とオフの場合ではスイ
ッチ素子の抵抗値は10桁以上も異なるので、異常充電
電流検出回路11の検出電圧区間に発生する電圧は大き
く異なるからである。そこで、本発明では放電電流制御
スイッチ素子16がオンの時のみ異常充電電流を検出す
ることによって、異常充電電流検出電圧を固定する事が
出来るようになった。図1の実施例では、NAND回路12
によって放電電流制御スイッチ素子16がオンかつ充電
器負極接続端子20の電圧が2次電池負極接続端子3の
電圧に対して所望の電圧値(例えば−0.4V)以下の
時、充電電流制御スイッチ素子17をオフさせる構成を
取っている。さらに図1の実施例では、保持回路23に
よって異常充電電流を検出した後は充電器が切離される
迄(異常充電電流が解除される迄)、放電制御スイッチ
素子のオン/オフに関係無く、異常充電電流検出状態を
保持し、異常な充電器が接続されている間は必ず異常充
電電流保護機能が効くようにした。異常充電電流検出状
態を保持する回路(保持回路23)が無い場合、過放電
検出電圧以下の2次電池に異常な充電器が接続された場
合、下記に示す〜を繰り返して発振する。 異常な充電器が過放電検出電圧以下の2次電池に接
続されると過大な充電電流が流れる。 異常充電電流と2次電池の内部インピーダンスによ
って、2次電池の電圧が過放電解除電圧以上に上昇す
る。 保護ICは過放電を解除して放電電流制御スイッチ素
子をオンさせる。 放電電流制御スイッチ素子がオンになったので異常
充電電流を検出し始める。 異常充電電流を検出して充電電流制御スイッチ素子
をオフさせる。 充電電流制御スイッチ素子がオフしたので充電電流
が無くなり、2次電池の電圧が再び過放電検出電圧以下
に下がる。 保護ICは過放電を検出して放電電流制御スイッチ素
子をオフさせる。 放電電流制御スイッチ素子がオフになると異常充電
電流検出が無効になり、充電電流制御スイッチ素子がオ
ンする。 充電電流制御スイッチ素子がオンすると再び異常な
充電器から充電が開始されに戻る。 異常充電電流検出状態を保持する回路がある場合は、
において異常充電電流状態を保持するので発振しなくな
る。また、保持回路23を使用しなくとも、異常充電電
流を検出した後、過放電検出機能を停止することで(異
常充電電流を検出した後、放電電流制御スッチ素子をオ
フしないようにすることで)、過放電検出電圧以下の2
次電池に異常な充電器が接続された場合の発振を防ぐこ
とが可能である。本発明の実施例図1の回路ブロック
(7〜11、23)の中身の1例を図3から図9に示
す。図3は図1の過充電検出回路7の中身の1例であ
る。図3の回路は2次電池正極端子2と2次電池負極端
子3の間を過充電検出電圧調整用分割抵抗24で分圧し
た電圧と基準電圧回路25の出力電圧をコンパレータ回
路26で比較し、2次電池15の電圧が過充電検出電圧
以上になるとコンパレータ回路26の出力信号線Aの電
圧をHighからLowへ変化させる機能を有する。なお、図
3は回路構成を変えてコンパレータ回路26の出力をLo
wからHighへ変化させても良い。また、過充電の検出と
解除にヒステリシス電圧を設けたり、検出と解除に遅延
を設けたりしてコンパレータ回路26の出力が発振する
のを防いでも良い。図4は図1の過放電検出回路8の中
身の1例である。図4の回路は2次電池正極端子2と2
次電池負極端子3の間を過放電検出電圧調整用分割抵抗
27で分圧した電圧と基準電圧回路28の出力電圧をコ
ンパレータ回路29で比較し、2次電池15の電圧が過
放電検出電圧以下になるとコンパレータ回路29の出力
信号線Bの電圧をLowからHighへ変化させる機能を有す
る。なお、図4は回路構成を変えてコンパレータ回路2
9の出力をHighからLowへ変化させても良い。また、過
放電の検出と解除にヒステリシス電圧を設けたり、検出
と解除に遅延を設けたりしてコンパレータ回路29の出
力が発振するのを防いでも良い。図5は図1の過電流検
出回路9の中身の1例である。図5の回路は図1の充電
器負極接続端子6の電圧と基準電圧回路30の出力電圧
をコンパレータ回路31で比較し、充電器負極接続端子
6の電圧が過電流検出電圧以上になるとコンパレータ回
路31の出力信号線Cの電圧をLowからHighへ変化させる
機能を有する。なお、図5は回路構成を変えてコンパレ
ータ回路31の出力をHighからLowへ変化させても良
い。また、過電流の検出と解除にヒステリシス電圧を設
けたり、検出と解除に遅延を設けたりしてコンパレータ
回路31の出力が発振するのを防いでも良い。図6は図
1のレベル変換回路10の中身の1例である。図6の回
路はレベル変換回路の入力信号線DのLow電圧を図1の2
次電池負極端子3の電圧から充電器負極接続端子6の電
圧(充電器負極電位の入力信号線Eの電圧)へ変換して
レベル変換回路の出力信号線Fへ出力する機能を有す
る。例えば、レベル変換回路の入力信号線Dの電圧が2
次電池正極端子2の電圧と等しい場合は、Pchトランジ
スタ32がOFF、インバーター回路36の出力が2次電
池負極端子3と同電圧、Pchトランジスタ33がON、Nch
トランジスタ34がONとなり、レベル変換回路の出力信
号線Fの出力電圧は充電器負極接続端子6の電圧(充電
器負極電位の入力信号線Eの電圧)を出力する。次に、
レベル変換回路の入力信号線Dの電圧が2次電池負極端
子3の電圧と等しい場合は、Pchトランジスタ32がO
N、インバーター回路36の出力が2次電池正極端子2
と同電圧、Pchトランジスタ33がOFF、Nchトランジス
タ34がOFFとなり、レベル変換回路の出力信号線Fの出
力電圧は2次電池正極端子2の電圧を出力する。図7は
図1の異常充電電流検出回路11の中身の1例である。
図7の回路は図1の充電器負極接続端子6の電圧にオフ
セット電圧発生回路37の電圧を加算した電圧と2次電
池負極端子3の電圧をコンパレータ回路38で比較し、
充電器負極接続端子6の電圧が異常充電電流検出電圧以
下になるとコンパレータ回路38の出力信号線Cの電圧
をHighからLowへ変化させる機能を有する。なお、図7
は回路構成を変えてコンパレータ回路38の出力をLow
からHighへ変化させても良い。また、異常充電電流の検
出と解除にヒステリシス電圧を設けたり、検出と解除に
遅延を設けたりしてコンパレータ回路38の出力が発振
するのを防いでも良い。また、図7ではオフセット電圧
発生回路37をコンパレータ回路38と分けて描写して
いるが、オフセット電圧発生回路37を無くしてコンパ
レータ回路38に意図的にオフセット電圧を設けたもの
を用いても良い。図8は図1の保持回路23の中身の1
例である。図8の回路はSRラッチの一種で、保持回路の
入力信号線Hがセットバー入力に相当し、異常充電電流
検出回路の出力信号線Gがリセットバー入力に相当する
機能を有する。異常充電電流検出回路の出力信号線Gの
電圧がHighで、保持回路の入力信号線Hの電圧がLowから
Highに変わると保持回路の出力信号線Iの電圧がLowに保
持される。保持回路の出力信号線Iの電圧がHighに戻る
のは異常充電電流検出回路の出力信号線Gの電圧がLowに
なった時(異常充電電流が解除された時)である。図8
の点線で囲んだ部分はOR-NAND回路41であり、図9に
示すようにPchトランジスタ3個とNchトランジスタ3個
で構成され、論理的にはNANDの片方の入力にORが付いた
ものである。図3から図9に示した回路以外であって
も、本発明の意図することを実現するものであればどん
な回路であっても構わない、本発明は請求項で示した概
念に従って構成された保護ICおよび保護装置に関わるも
のであって、本発明の概念を実現する手段によって限定
されものでは無い。
FIG. 1 shows an embodiment of a protection IC and a protection device according to the present invention. The protection device of the present invention comprises a protection IC 1, a discharge current control switch element 16 and a charge current control switch element 17, and the protection IC 1 comprises an overcharge detection circuit 7, an overdischarge detection circuit 8, an overcurrent detection circuit 9, a level conversion circuit 10, abnormal charging current detection circuit 11, NOR circuit 14, NAND circuits 12, 1
3, a holding circuit 23, etc., to prevent the secondary battery 15 from being charged to an excessive voltage by controlling on / off of the discharge current control switch element 16 and the charge current control switch element 17. Function (overcharge protection function)
A function of preventing the secondary battery 15 from being discharged to an excessively low voltage (overdischarge protection function), and a function of preventing the secondary battery 15 from flowing an excessive discharge current (overcurrent protection function).
And a function of preventing an excessive charging current from flowing from the charger to the secondary battery 15 (abnormal charging current protection function). When the voltage between the secondary battery positive electrode connection terminal 2 and the secondary battery negative electrode connection terminal 3 exceeds a desired voltage (for example, 4.2 V), the overcharge detection circuit 7 passes through the level conversion circuit 10 to charge the charge current control switch element. 17 is a circuit for turning off. The level conversion circuit 10 changes the low level of the charging current control switch element connection terminal 5 to the charger negative connection terminal 20 to turn off the charging current control switch element 17.
This is a circuit for converting the electric potential into a potential. Overdischarge detection circuit 8
Is a circuit for turning off the discharge current control switch element 16 when the voltage between the secondary battery positive electrode connection terminal 2 and the secondary battery negative electrode connection terminal 3 becomes lower than a desired voltage (for example, 2.3 V). The overcurrent detection circuit 9 is connected to a charger negative connection terminal 20.
Is a circuit for turning off the discharge current control switch element 16 when the voltage of the secondary battery exceeds a desired voltage value (for example, +0.2 V) with respect to the voltage of the secondary battery negative electrode connection terminal 3. The resistor 18 limits the current flowing when the positive and negative electrodes of the charger are connected in reverse, and usually takes a value of about 1 kΩ to 1 MΩ. The abnormal charging current detecting circuit 11 activates the charging current control switch element 17 when the voltage of the charger negative connection terminal 20 falls below a desired voltage value (for example, -0.4 V) with respect to the voltage of the secondary battery negative connection terminal 3. This is a circuit for turning off. Here, as shown in FIG. 1, the discharge current control switch element 16 is included in the detection voltage section of the abnormal charging current detection circuit 11 (in FIG. 1, between the charger negative electrode connection terminal 20 and the secondary battery negative electrode connection terminal 3). Is the desired charging current (eg 2A
In order to detect an abnormal charging current with the above charging current, the abnormal charging current detection voltage must be changed depending on whether the discharge current control switch element 16 is on or off. This is because, as shown in FIG. 1, the discharge current control switch element 16 is connected to the detection voltage section of the abnormal charge current detection circuit 11 (FIG. 1).
Then, the charger negative electrode connection terminal 20 and the secondary battery negative electrode connection terminal 3
If the discharge current control switch element 16 is on and off, the resistance value of the switch element differs by more than 10 digits even if the charge current is the same. This is because the voltages generated in the sections differ greatly. Therefore, in the present invention, the abnormal charge current detection voltage can be fixed by detecting the abnormal charge current only when the discharge current control switch element 16 is ON. In the embodiment of FIG.
When the discharge current control switch element 16 is turned on and the voltage of the charger negative connection terminal 20 is lower than a desired voltage value (for example, -0.4 V) with respect to the voltage of the secondary battery negative connection terminal 3, the charge current control switch The configuration is such that the element 17 is turned off. Further, in the embodiment of FIG. 1, after the abnormal charging current is detected by the holding circuit 23, until the charger is disconnected (until the abnormal charging current is released), regardless of the on / off state of the discharge control switch element, The abnormal charging current detection state is maintained, and the abnormal charging current protection function is always activated while the abnormal charger is connected. If there is no circuit for holding the abnormal charging current detection state (holding circuit 23), and if an abnormal charger is connected to a secondary battery having a voltage equal to or lower than the overdischarge detection voltage, the following oscillations are repeated. When an abnormal charger is connected to a secondary battery having a voltage lower than the overdischarge detection voltage, an excessive charging current flows. Due to the abnormal charging current and the internal impedance of the secondary battery, the voltage of the secondary battery rises above the overdischarge release voltage. The protection IC releases the overdischarge and turns on the discharge current control switch element. Since the discharge current control switch element is turned on, detection of an abnormal charge current starts. An abnormal charging current is detected and the charging current control switch element is turned off. Since the charging current control switch element has been turned off, the charging current is lost, and the voltage of the secondary battery drops again below the overdischarge detection voltage. The protection IC detects overdischarge and turns off the discharge current control switch element. When the discharge current control switch element is turned off, the abnormal charge current detection is invalidated, and the charge current control switch element is turned on. When the charging current control switch element is turned on, charging is started again from the abnormal charger and returns to. If there is a circuit that holds the abnormal charging current detection state,
, Oscillation is stopped because the abnormal charging current state is maintained. Even if the holding circuit 23 is not used, the overdischarge detection function is stopped after detecting the abnormal charge current (by not turning off the discharge current control switch element after detecting the abnormal charge current). 2) below the overdischarge detection voltage
Oscillation when an abnormal charger is connected to the next battery can be prevented. FIG. 3 to FIG. 9 show an example of the contents of the circuit blocks (7 to 11, 23) of FIG. FIG. 3 is an example of the contents of the overcharge detection circuit 7 of FIG. In the circuit of FIG. 3, a comparator circuit 26 compares a voltage obtained by dividing the voltage between the positive terminal 2 of the secondary battery and the negative terminal 3 of the secondary battery by the overcharge detection voltage adjusting division resistor 24 with the output voltage of the reference voltage circuit 25. And a function of changing the voltage of the output signal line A of the comparator circuit 26 from High to Low when the voltage of the secondary battery 15 becomes equal to or higher than the overcharge detection voltage. FIG. 3 shows an example in which the output of the comparator circuit 26 is changed to Lo
It may be changed from w to High. Further, a hysteresis voltage may be provided for detection and release of overcharge, or a delay may be provided for detection and release to prevent the output of the comparator circuit 26 from oscillating. FIG. 4 shows an example of the contents of the overdischarge detection circuit 8 of FIG. The circuit shown in FIG.
The voltage divided between the secondary battery negative terminals 3 by the over-discharge detection voltage adjusting divided resistor 27 is compared with the output voltage of the reference voltage circuit 28 by the comparator circuit 29, and the voltage of the secondary battery 15 is equal to or less than the over-discharge detection voltage. , The function of changing the voltage of the output signal line B of the comparator circuit 29 from Low to High. FIG. 4 shows a comparator circuit 2 with a different circuit configuration.
9 may be changed from High to Low. Further, the output of the comparator circuit 29 may be prevented from oscillating by providing a hysteresis voltage for detecting and releasing the overdischarge, or providing a delay for detecting and releasing the overdischarge. FIG. 5 shows an example of the contents of the overcurrent detection circuit 9 of FIG. The circuit of FIG. 5 compares the voltage of the charger negative connection terminal 6 of FIG. 1 with the output voltage of the reference voltage circuit 30 by a comparator circuit 31. When the voltage of the charger negative connection terminal 6 becomes higher than the overcurrent detection voltage, the comparator circuit 31 has a function of changing the voltage of the output signal line C from Low to High. In FIG. 5, the output of the comparator circuit 31 may be changed from High to Low by changing the circuit configuration. In addition, the output of the comparator circuit 31 may be prevented from oscillating by providing a hysteresis voltage for detecting and releasing the overcurrent, or providing a delay for detecting and releasing the overcurrent. FIG. 6 shows an example of the contents of the level conversion circuit 10 of FIG. The circuit shown in FIG. 6 sets the low voltage of the input signal line D of the level conversion circuit to 2 in FIG.
It has a function of converting the voltage of the secondary battery negative electrode terminal 3 to the voltage of the charger negative electrode connection terminal 6 (the voltage of the input signal line E of the charger negative electrode potential), and outputting it to the output signal line F of the level conversion circuit. For example, if the voltage of the input signal line D of the level conversion circuit is 2
When the voltage is equal to the voltage of the secondary battery positive terminal 2, the Pch transistor 32 is OFF, the output of the inverter circuit 36 is the same voltage as the secondary battery negative terminal 3, the Pch transistor 33 is ON, and the Nch
The transistor 34 is turned on, and the output voltage of the output signal line F of the level conversion circuit outputs the voltage of the charger negative electrode connection terminal 6 (the voltage of the input signal line E of the charger negative electrode potential). next,
When the voltage of the input signal line D of the level conversion circuit is equal to the voltage of the negative terminal 3 of the secondary battery, the Pch transistor 32
N, the output of the inverter circuit 36 is the secondary battery positive terminal 2
The Pch transistor 33 is turned off, the Nch transistor 34 is turned off, and the output voltage of the output signal line F of the level conversion circuit outputs the voltage of the secondary battery positive terminal 2. FIG. 7 is an example of the contents of the abnormal charging current detection circuit 11 of FIG.
The circuit of FIG. 7 compares a voltage obtained by adding the voltage of the offset voltage generating circuit 37 to the voltage of the charger negative electrode connection terminal 6 of FIG.
When the voltage of the charger negative connection terminal 6 becomes lower than the abnormal charging current detection voltage, the voltage of the output signal line C of the comparator circuit 38 is changed from High to Low. FIG.
Changes the circuit configuration and changes the output of the comparator circuit 38 to Low.
From High to High. In addition, the output of the comparator circuit 38 may be prevented from oscillating by providing a hysteresis voltage for detecting and releasing the abnormal charging current, or providing a delay for detecting and releasing the abnormal charging current. Although the offset voltage generation circuit 37 is illustrated separately from the comparator circuit 38 in FIG. 7, a circuit in which the offset voltage generation circuit 37 is omitted and an offset voltage is intentionally provided in the comparator circuit 38 may be used. FIG. 8 shows one of the contents of the holding circuit 23 of FIG.
It is an example. The circuit in FIG. 8 is a type of SR latch, and has a function in which the input signal line H of the holding circuit corresponds to the set bar input, and the output signal line G of the abnormal charging current detection circuit corresponds to the reset bar input. The voltage of the output signal line G of the abnormal charging current detection circuit is high and the voltage of the input signal line H of the holding circuit is low.
When it changes to High, the voltage of the output signal line I of the holding circuit is held at Low. The voltage of the output signal line I of the holding circuit returns to High when the voltage of the output signal line G of the abnormal charging current detection circuit becomes Low (when the abnormal charging current is released). FIG.
The portion surrounded by the dotted line is an OR-NAND circuit 41, which is composed of three Pch transistors and three Nch transistors, as shown in FIG. is there. Any circuit other than the circuits shown in FIGS. 3 to 9 may be used as long as the purpose of the present invention is realized. The present invention is configured according to the concept described in the claims. The present invention relates to a protection IC and a protection device, and is not limited by means for realizing the concept of the present invention.

【発明の効果】本発明で示したように電流ヒューズを使
用せず、スイッチ素子のオン状態の抵抗値を用いて異常
充電電流を検出することによって、何度でも異常充電電
流を検出することが可能となり、異常充電電流検出後は
2度と使えなくなると言うことは無くなる。また電流ヒ
ューズなどの余分な抵抗成分による発熱が無くなり、放
電効率は向上する。また電流ヒューズが不要となるので
部品点数が減り、実装面積も小さくなって、低コスト
化、小型軽量化が可能となる。
As described in the present invention, the abnormal charging current can be detected any number of times by detecting the abnormal charging current by using the ON-state resistance value of the switch element without using the current fuse. It becomes possible, and it is no longer possible to use again after detecting the abnormal charging current. Further, heat generation due to an extra resistance component such as a current fuse is eliminated, and discharge efficiency is improved. In addition, since a current fuse is not required, the number of components is reduced, the mounting area is reduced, and cost reduction and reduction in size and weight can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の保護ICと保護装置である。FIG. 1 shows a protection IC and a protection device according to the present invention.

【図2】従来の保護ICと保護装置である。FIG. 2 shows a conventional protection IC and a protection device.

【図3】過充電検出回路である。FIG. 3 is an overcharge detection circuit.

【図4】過放電検出回路である。FIG. 4 is an overdischarge detection circuit.

【図5】過電流検出回路である。FIG. 5 is an overcurrent detection circuit.

【図6】レベル変換回路である。FIG. 6 shows a level conversion circuit.

【図7】異常充電電流検出回路である。FIG. 7 is an abnormal charging current detection circuit.

【図8】保持回路である。FIG. 8 illustrates a holding circuit.

【図9】OR-NAND回路である。FIG. 9 illustrates an OR-NAND circuit.

【符号の説明】[Explanation of symbols]

1 本発明の保護IC 2 2次電池正極接続端子 3 2次電池負極接続端子 4 放電電流制御スイッチ素子接続端子 5 充電電流制御スイッチ素子接続端子 6 充電器負極接続端子 7 過充電検出回路 8 過放電検出回路 9 過電流検出回路 10 レベル変換回路 11 異常充電電流検出回路 12,13 NAND回路 14 NOR回路 15 2次電池 16 放電電流制御スイッチ素子 17 充電電流制御スイッチ素子 18 充電器逆接続時電流制限抵抗 19 充電器正極接続端子 20 充電器負極接続端子 21 従来の保護IC 22 流ヒューズ 23 保持回路 24 過充電検出電圧調整用分割抵抗 25 基準電圧回路 26 コンパレータ回路 27 過放電検出電圧調整用分割抵抗 28 基準電圧回路 29 コンパレータ回路 30 基準電圧回路 31 コンパレータ回路 32,33 Pchトランジスタ 34,35 Nch トランジスタ 36 インバータ回路 37 オフセット電圧発生回路 38 コンパレータ回路 39,40 インバータ回路 41 OR-NAND回路 42,43,44 Pch トランジスタ 45,46,47 Nch トランジスタ A 過充電検出回路の出力信号線 B 過放電検出回路の出力信号線 C 過電流検出回路の出力信号線 D レベル変換回路の入力信号線 E 充電器負極電位の入力信号線 F レベル変換回路の出力信号線 G 異常充電電流検出回路の出力信号線 H 保持回路の入力信号線 I 保持回路の出力信号線 J,K OR-NAND回路のOR入力信号線 1 Protection IC of the present invention 2 Secondary battery positive connection terminal 3 Secondary battery negative connection terminal 4 Discharge current control switch element connection terminal 5 Charge current control switch element connection terminal 6 Charger negative electrode connection terminal 7 Overcharge detection circuit 8 Overdischarge Detection circuit 9 Overcurrent detection circuit 10 Level conversion circuit 11 Abnormal charge current detection circuit 12,13 NAND circuit 14 NOR circuit 15 Secondary battery 16 Discharge current control switch element 17 Charge current control switch element 18 Current limiting resistance when charger is reverse connected 19 Charger positive terminal 20 Charger negative terminal 21 Conventional protection IC 22 Current fuse 23 Holding circuit 24 Divider resistor for overcharge detection voltage adjustment 25 Reference voltage circuit 26 Comparator circuit 27 Divider resistor for overdischarge detection voltage adjustment 28 Reference Voltage circuit 29 Comparator circuit 30 Reference voltage circuit 31 Comparator circuit 32,33 Pch transistor 34,35 Nch transistor 36 Inverter circuit 37 Offset voltage generation circuit 38 Comparator circuit 39,40 Inverter circuit 41 OR-NAND circuit 42,43,44 Pch transistor 45,46,47 Nch transistor A Output signal line of overcharge detection circuit B Output signal line of overdischarge detection circuit C Overcurrent detection circuit Output signal line D Input signal line of level conversion circuit E Input signal line of charger negative potential F Output signal line of level conversion circuit G Output signal line of abnormal charging current detection circuit H Input signal line of holding circuit I Input circuit of holding circuit Output signal line OR input signal line of J, K OR-NAND circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一つ以上のスイッチ素子のオ
ン/オフによって充電器から2次電池への充電電流と2
次電池から負荷への放電電流を制御する装置において、
少なくとも一つ以上の前記スイッチ素子のオン状態の抵
抗値を用いて異常充電電流を検出することを特徴とす
る、充放電制御用半導体装置。
A charging current from a charger to a secondary battery is determined by turning on / off at least one switching element.
In the device that controls the discharge current from the secondary battery to the load,
A charge / discharge control semiconductor device, wherein an abnormal charge current is detected using a resistance value of at least one of the switch elements in an on state.
【請求項2】 請求項1記載のスイッチ素子の内、放電
電流制御スイッチ素子がオンである時にのみ異常充電電
流検出を可能とすることを特徴とする請求項1記載の充
放電用半導体装置。
2. The charge / discharge semiconductor device according to claim 1, wherein the abnormal charge current can be detected only when the discharge current control switch element of the switch elements is turned on.
【請求項3】 異常充電電流を検出した後は充電器が切
り離なされる迄、異常充電電流検出状態を保持すること
を特徴とする請求項2記載の充放電用半導体装置。
3. The charge / discharge semiconductor device according to claim 2, wherein after detecting the abnormal charging current, the abnormal charging current detection state is maintained until the charger is disconnected.
【請求項4】 異常充電電流を検出した後は充電器が切
り離なされる迄、過放電検出機能を停止することを特徴
とする請求項2記載の充放電用半導体装置。
4. The charge / discharge semiconductor device according to claim 2, wherein after detecting the abnormal charge current, the overdischarge detection function is stopped until the charger is disconnected.
JP2000114173A 1999-04-15 2000-04-14 Semiconductor device for controlling charging and discharging Pending JP2000358335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000114173A JP2000358335A (en) 1999-04-15 2000-04-14 Semiconductor device for controlling charging and discharging

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10800299 1999-04-15
JP11-108002 1999-04-15
JP2000114173A JP2000358335A (en) 1999-04-15 2000-04-14 Semiconductor device for controlling charging and discharging

Publications (1)

Publication Number Publication Date
JP2000358335A true JP2000358335A (en) 2000-12-26

Family

ID=26447979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000114173A Pending JP2000358335A (en) 1999-04-15 2000-04-14 Semiconductor device for controlling charging and discharging

Country Status (1)

Country Link
JP (1) JP2000358335A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325360A (en) * 2001-04-24 2002-11-08 Seiko Instruments Inc Circuit for monitoring battery state and battery device
JP2003180040A (en) * 2001-09-06 2003-06-27 Yokogawa Electric Corp Battery backup circuit
JP2015173568A (en) * 2014-03-12 2015-10-01 日立マクセル株式会社 battery protection circuit and battery pack
US11293985B2 (en) 2018-09-12 2022-04-05 Lg Energy Solution, Ltd. Switch diagnosing apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325360A (en) * 2001-04-24 2002-11-08 Seiko Instruments Inc Circuit for monitoring battery state and battery device
JP4555502B2 (en) * 2001-04-24 2010-10-06 セイコーインスツル株式会社 Battery state monitoring circuit and battery device
JP2003180040A (en) * 2001-09-06 2003-06-27 Yokogawa Electric Corp Battery backup circuit
JP2015173568A (en) * 2014-03-12 2015-10-01 日立マクセル株式会社 battery protection circuit and battery pack
US11293985B2 (en) 2018-09-12 2022-04-05 Lg Energy Solution, Ltd. Switch diagnosing apparatus and method

Similar Documents

Publication Publication Date Title
US6768289B2 (en) Charge/discharge protection circuit with latch circuit for protecting a charge control FET from overheating in a portable device
JP4186052B2 (en) Battery pack with charge control function
KR100993236B1 (en) Back-gate voltage generator circuit, four-terminal back gate switching fet, and charge and discharge protection circuit using same
TW398107B (en) Charge/discharge control circuit and charging type power-supply unit
KR101245412B1 (en) Charging and discharging control circuit and battery device
JP3305257B2 (en) Charge / discharge control circuit, rechargeable power supply device and control method therefor
JP2002034163A (en) Charging and discharging control circuit and charged power supply device
JP2001283932A (en) Charging and discharging control circuit and charging power source device
KR20020057793A (en) Battery state monitoring circuit and battery device
JP3863031B2 (en) Battery status monitoring circuit
JP2006340450A (en) Battery protective circuit
JPH0837737A (en) Secondary battery protective device
JP2007028898A (en) Charge and discharge protection circuit
JP3862012B2 (en) Secondary battery unit with external protection circuit
JPH06276696A (en) Over-discharge protective circuit of secondary battery
JP2001112182A (en) Protective circuit for secondary battery
US6198255B1 (en) Charge/discharge controlling semiconductor device
JP2000358335A (en) Semiconductor device for controlling charging and discharging
JP2005312140A (en) Charging and discharging control circuit
JP2004266882A (en) Rechargeable battery with bypass resistor and protecting method thereof
JP3278487B2 (en) Rechargeable power supply
JP2002044871A (en) Protection circuit for battery
JP2001057740A (en) Battery protecting device
JPH11258280A (en) Voltage detector for secondary battery and secondary battery device
JP2001145271A (en) Secondary battery protection method and circuit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060117