JP2004045175A - Rotation detector - Google Patents

Rotation detector Download PDF

Info

Publication number
JP2004045175A
JP2004045175A JP2002202302A JP2002202302A JP2004045175A JP 2004045175 A JP2004045175 A JP 2004045175A JP 2002202302 A JP2002202302 A JP 2002202302A JP 2002202302 A JP2002202302 A JP 2002202302A JP 2004045175 A JP2004045175 A JP 2004045175A
Authority
JP
Japan
Prior art keywords
rotation
magnetic
permanent magnet
detection sensor
encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002202302A
Other languages
Japanese (ja)
Inventor
Toshiaki Maeda
前田 俊秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002202302A priority Critical patent/JP2004045175A/en
Publication of JP2004045175A publication Critical patent/JP2004045175A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To greatly change an output signal of a rotation detection sensor 13a by greatly changing a characteristic of a magnetic detection element 21 constituting the rotation detection sensor 13a. <P>SOLUTION: The magnetic detection element 21 is arranged so as to be inclined with respect to a central axis α of a detection part 20a of the rotation detection sensor 13a. Then, a direction to which a magnetic flux β is output from a permanent magnet 15 constituting an encoder 12 is made orthogonal to the magnetic detection element 21. As a result, the characteristic of the magnetic detection element 21 is greatly changed corresponding to changes in a direction and a density of the magnetic flux β caused by the rotation of the encoder 12, thereby solving the problem. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明に係る回転検出装置は、例えば転がり軸受ユニットと組み合わせて、この転がり軸受ユニットにより懸架装置に対し回転自在に支持した自動車の車輪の回転速度を検出する為に利用する。
【0002】
【従来の技術】
アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)を制御する為に、転がり軸受ユニットにより懸架装置に支持された車輪の回転速度を検出する必要がある。この為従来から、上記転がり軸受ユニットに回転速度検出装置を組み込んだ回転速度検出装置付転がり軸受ユニットにより、上記車輪を懸架装置に対して回転自在に支持すると共に、この車輪の回転速度を検出する事が、広く行なわれている。又、この場合に、回転輪側に設けるエンコーダとして永久磁石を使用する事が、近年多くなっている。永久磁石製のエンコーダを使用した場合には、静止輪側に設ける回転検出センサの検出素子として、ホール素子、磁気抵抗素子の如く、磁束の密度と方向とのうちの少なくとも一方の変化に基づいて特性を変化させる磁気検出素子(半導体素子)を使用する。この様な構造によれば、上記回転検出センサの小型・軽量化と低速時に於ける回転速度検出の信頼性向上とを図れる。
【0003】
例えば、特開2001−208763号公報には、図2に示す様な、回転速度検出装置付転がり軸受ユニットが記載されている。この回転速度検出装置付転がり軸受ユニットは、使用時にも回転しない静止部材である外輪1の内径側に、使用時に回転する回転部材であるハブ2を回転自在に支持している。この為、上記外輪1の内周面に、複列の外輪軌道3、3を設けている。又、上記ハブ2及びこのハブ2に外嵌固定した内輪4の外周面に、内輪軌道5、5を設けている。そして、これら各内輪軌道5、5と上記各外輪軌道3、3との間にそれぞれ複数個ずつの転動体6、6を、それぞれ保持器7、7により保持した状態で転動自在に設け、上記外輪1の内側に上記ハブ2及び内輪4を、回転自在に支持している。
【0004】
又、上記ハブ2の外(自動車への組み付け状態で幅方向外側となる側を言い、図2の左側)端部で上記外輪1の外端部から軸方向外方に突出した部分に、車輪を取り付ける為のフランジ8を設けている。又、上記外輪1の内(自動車への組み付け状態で幅方向中央側となる側を言い、図2の右側)端部に、この外輪1を懸架装置に取り付ける為の取付部9を設けている。又、上記外輪1の外端開口部と上記ハブ2の中間部外周面との間をシールリング10により、上記外輪1の内端開口部をカバー11により、それぞれ塞いでいる。
【0005】
そして、上記ハブ2の一部に固定したエンコーダ12の回転速度を、上記カバー11を介して上記外輪1に支持した回転検出センサ13により検出自在としている。上記エンコーダ12は、支持環14の内側面に永久磁石15を添着して成る。この支持環14は、軟鋼板等の磁性金属板に塑性加工を施す事により、断面L字形で全体を円環状に形成したもので、円筒部16と円輪部17とを備え、このうちの円筒部16を上記内輪4の内端部に締まり嵌めで外嵌する事により、この内輪4の内端部に固定している。上記永久磁石15は、上記円輪部17の内側面に、焼き付け、接着、自身の磁気吸着力等により、全周に亙って添着している。上記永久磁石15は、軸方向(図2の左右方向)に着磁しており、且つ、着磁方向は、円周方向に関して交互に且つ等間隔で変化させている。従って、被検出面である上記永久磁石15の内側面22には、S極とN極とが交互に、且つ、等間隔で配置されている。
【0006】
一方、上記回転検出センサ13は、上記外輪1の内端開口部に嵌合固定した前記カバー11に支持している。即ち、このカバー11に形成した挿入孔19を通じて上記回転検出センサ13の検知部20を、このカバー11の内側に挿入すると共に、この回転検出センサ13をこのカバー11に対し係止している。そして、この状態で、上記検知部20の先端面を、上記エンコーダ12を構成する永久磁石15の内側面に、微小隙間を介して対向させている。
【0007】
上述の様な回転速度検出装置付転がり軸受ユニットの使用時には、前記取付部9により上記外輪1を懸架装置に対して、図示しないボルトにより結合固定すると共に、前記ハブ2の外周面に固設したフランジ8に車輪を、このフランジ8に設けたスタッド18により固定する事で、上記懸架装置に対して上記車輪を回転自在に支持する。この状態で車輪が回転すると、上記回転検出センサ13の検知部20の端面近傍を、上記永久磁石15の内側面22に配置したS極とN極とが交互に通過する。この結果、上記回転検出センサ13の検知部20内に組み込んだ磁気検出素子21(次述する図4参照)内を流れる磁束の密度及び方向が変化する。この結果、この磁気検出素子21の特性が変化し、上記回転検出センサ13の出力が変化する。この様にして回転検出センサ13の出力が変化する周波数は、上記車輪の回転数に比例する。従って、上記回転検出センサ13の出力を図示しない制御器に送れば、ABSやTCSを適切に制御できる。
【0008】
【発明が解決しようとする課題】
上述した様な回転速度検出装置付転がり軸受ユニットを含め、従来から知られている、エンコーダ12に永久磁石15を利用した回転検出装置の場合、この永久磁石15から出る磁束の方向と、回転検出センサ13の検知部20内に組み込む磁気検出素子21を配置する方向との関係に就いては、特に配慮していなかった。この為、上記回転検出センサ13の出力を十分に大きくできない可能性がある。この点に就いて、図3〜4を参照しつつ説明する。
【0009】
被検出面である上記永久磁石15の内側面22に、図3に示す様に円周方向に関して交互に配置されたN極とS極とのうち、N極から出た磁束がS極に向け、直接又は強磁性材製の支持環14を通じて、図3〜4に矢印で示す様に流れる。図4に記載した矢印から明らかな通り、磁束の方向は上記内側面22の直近部分ではこの内側面22に対し直角方向若しくは直角方向に近い方向であるが、この内側面22から離れるに従って直角方向から大きくずれる。一方、従来の回転検出装置の場合、図4に示す様に、上記磁気検出素子21を上記検知部20内に、上記内側面22と平行に設置していた。
【0010】
この様な従来構造の場合には、上記磁気検出素子21を上記内側面22の直近部分に配置しない限り、この磁気検出素子21を通過する上記磁束の方向が、この磁気検出素子21に対し直角方向若しくは直角に近い方向にならない。前記エンコーダ12と上記回転検出センサ13とは使用時に相対回転する部材であり、上記永久磁石15と上記磁気検出素子21とは、或る程度離隔させる必要がある。従って、この磁気検出素子21を通過する上記磁束の流れ方向と、この磁気検出素子21に直交する方向とがずれる事が避けられない。磁束の密度及び方向に基づく、この磁気検出素子21の特性の変化は、上記磁束の方向がこの磁気検出素子21を直交する方向である場合に最も大きくなる。そして、上記磁束の方向がこの直交する方向からずれるに従って、上記変化が急激に小さくなる。
【0011】
上記回転検出センサ13から送られて来る信号の処理回路のコストを抑えつつ、回転速度検出の信頼性を確保する為には、上記回転検出センサ13から出る信号の出力を高くする事が好ましい。そして、この為には、上記磁気検出素子21の特性の変化を大きくする必要がある。
本発明の回転検出装置は、この様な事情に鑑みて発明したものである。
【0012】
【課題を解決するための手段】
本発明の回転検出装置は、従来から知られている回転検出装置と同様に、エンコーダと回転検出センサとから成る。
このうちのエンコーダは、回転部材の一部に支持され、この回転部材と同心に設けられた被検出面にS極とN極とを回転方向に関して交互に配置した永久磁石を備える。
又、上記回転検出センサは、磁束の密度と方向とのうちの少なくとも一方の変化に基づいて特性を変化させる磁気検出素子を備え、上記回転部材の近傍に設けられた静止部材に支持されている。
特に、本発明の回転検出装置に於いては、上記磁気検出素子を、上記永久磁石から出る磁束に直交する方向に配置している。
【0013】
【作用】
上述の様に構成する本発明の回転検出装置の場合、エンコーダを構成する永久磁石から出た磁束が、磁気検出素子を直交する状態で流れる。従って、この磁気検出素子の特性を大きく変化させて、この磁気検出素子を組み込んだ回転検出センサの出力変化を大きくできる。
【0014】
【発明の実施の形態】
図1は、本発明の実施の形態の1例を示している。尚、本発明の特徴は、回転検出センサ13aの出力信号の変化を大きくすべく、この回転検出センサ13aを構成する磁気検出素子21の配置方向を規制する点にある。その他の部分の構成及び作用に就いては、前述の図2に示した構造を含め、従来から広く知られ、或は実施されている回転検出装置と同様である。即ち、本発明は、永久磁石を備えたエンコーダと、磁気検出素子を備えた回転検出センサとから成る回転検出センサであれば、回転速度検出装置付転がり軸受ユニットに限らず、各種構造のものが対象となる。エンコーダを構成する永久磁石にしても、径方向に着磁してその周面にS極とN極とを交互に配置した構造も対象となり得る。
【0015】
本例の回転検出装置に於いては、上記回転検出センサ13aの検知部20aの中心軸αを、被検出面である、エンコーダ12を構成する永久磁石15の内側面22に対し直角方向に配置している。これに合わせて本例の場合には、上記磁気検出素子21を、上記検知部20aの中心軸αに対し、角度θだけ傾斜させている。この磁気検出素子21をこの中心軸αに対し傾斜させる方向及びその角度θの大きさは、この磁気検出素子21が上記永久磁石15から出る磁束βに直交する方向及びこの磁束βが上記内側面22の直角方向に対して傾斜している角度の大きさとしている。
【0016】
上述の様に構成する本例の回転検出装置の場合、上記永久磁石15から出た磁束βが、上記磁気検出素子21を直交する状態で流れる。従って、上記エンコーダ12の回転に伴う磁束βの密度及び方向の変化に基づき、上記磁気検出素子21の特性を大きく変化させて、この磁気検出素子21を組み込んだ回転検出センサ13aの出力変化を大きくできる。
【0017】
【発明の効果】
本発明の回転検出装置は、以上に述べた通り構成され作用するので、回転検出センサから送られて来る信号の処理回路のコストを抑えつつ、回転速度検出の信頼性確保を図れる。
【図面の簡単な説明】
【図1】本発明の実施の形態の1例を示す模式図。
【図2】本発明の対象となる回転検出装置を組み込んだ、回転速度検出装置付転がり軸受ユニットの1例を示す断面図。
【図3】エンコーダを構成する永久磁石から出た磁束の流れを説明する為の部分拡大斜視図。
【図4】従来構造の問題点を説明する為の模式図。
【符号の説明】
1  外輪
2  ハブ
3  外輪軌道
4  内輪
5  内輪軌道
6  転動体
7  保持器
8  フランジ
9  取付部
10  シールリング
11  カバー
12  エンコーダ
13、13a 回転検出センサ
14  支持環
15  永久磁石
16  円筒部
17  円輪部
18  スタッド
19  挿入孔
20、20a 検知部
21  磁気検出素子
22  内側面
[0001]
TECHNICAL FIELD OF THE INVENTION
The rotation detecting device according to the present invention is used, for example, in combination with a rolling bearing unit to detect a rotation speed of a wheel of an automobile rotatably supported by a suspension device by the rolling bearing unit.
[0002]
[Prior art]
In order to control an antilock brake system (ABS) or a traction control system (TCS), it is necessary to detect the rotation speed of wheels supported by a suspension device by a rolling bearing unit. For this reason, conventionally, the above-mentioned wheel is rotatably supported with respect to a suspension device and the rotation speed of the wheel is detected by a rolling bearing unit with a rotation speed detection device in which a rotation speed detection device is incorporated in the above-mentioned rolling bearing unit. Things are widespread. In this case, a permanent magnet is often used as an encoder provided on the rotating wheel side in recent years. When using a permanent magnet encoder, as a detection element of the rotation detection sensor provided on the stationary wheel side, such as a Hall element, a magnetoresistive element, based on a change in at least one of the density and direction of the magnetic flux A magnetic sensing element (semiconductor element) that changes the characteristics is used. According to such a structure, the size and weight of the rotation detection sensor can be reduced, and the reliability of rotation speed detection at low speed can be improved.
[0003]
For example, JP-A-2001-208763 describes a rolling bearing unit with a rotation speed detecting device as shown in FIG. This rolling bearing unit with a rotation speed detecting device rotatably supports a hub 2, which is a rotating member that rotates during use, on the inner diameter side of an outer ring 1, which is a stationary member that does not rotate during use. For this purpose, double-row outer raceways 3 are provided on the inner peripheral surface of the outer race 1. In addition, inner ring raceways 5 and 5 are provided on the outer peripheral surface of the hub 2 and the inner ring 4 which is externally fitted and fixed to the hub 2. A plurality of rolling elements 6, 6 are provided between the inner raceways 5, 5 and the outer raceways 3, 3, respectively, in such a manner as to be freely rolled while being held by retainers 7, 7, respectively. The hub 2 and the inner ring 4 are rotatably supported inside the outer ring 1.
[0004]
Further, a portion protruding outward from the outer end of the outer race 1 in the axial direction at an outer end of the hub 2 (the side that is outward in the width direction when assembled to an automobile and referred to as a left side in FIG. 2) Is provided. A mounting portion 9 for mounting the outer ring 1 to a suspension device is provided at an end of the outer ring 1 (a side which is a center side in the width direction in a state of being assembled to an automobile, and a right side in FIG. 2). . Further, a space between the outer end opening of the outer race 1 and the outer peripheral surface of the intermediate portion of the hub 2 is closed by a seal ring 10, and the inner end opening of the outer race 1 is closed by a cover 11.
[0005]
The rotation speed of an encoder 12 fixed to a part of the hub 2 can be detected by a rotation detection sensor 13 supported on the outer ring 1 via the cover 11. The encoder 12 is formed by attaching a permanent magnet 15 to an inner surface of a support ring 14. The support ring 14 is formed by subjecting a magnetic metal plate such as a mild steel plate to plastic working so as to have an L-shaped cross section as a whole, and has a cylindrical portion 16 and a circular ring portion 17. The cylindrical portion 16 is fixed to the inner end of the inner ring 4 by tightly fitting the cylindrical portion 16 to the inner end of the inner ring 4. The permanent magnet 15 is attached to the inner surface of the annular portion 17 over the entire circumference by baking, bonding, own magnetic attraction force, and the like. The permanent magnets 15 are magnetized in the axial direction (horizontal direction in FIG. 2), and the magnetization directions are alternately changed at equal intervals in the circumferential direction. Therefore, S poles and N poles are alternately arranged at equal intervals on the inner side surface 22 of the permanent magnet 15, which is the surface to be detected.
[0006]
On the other hand, the rotation detection sensor 13 is supported by the cover 11 fitted and fixed to the inner end opening of the outer ring 1. That is, the detection unit 20 of the rotation detection sensor 13 is inserted into the inside of the cover 11 through the insertion hole 19 formed in the cover 11, and the rotation detection sensor 13 is locked to the cover 11. Then, in this state, the distal end surface of the detection unit 20 is opposed to the inner side surface of the permanent magnet 15 constituting the encoder 12 via a minute gap.
[0007]
When the above-described rolling bearing unit with a rotation speed detecting device is used, the outer ring 1 is fixedly connected to a suspension device by a bolt (not shown) by the mounting portion 9 and fixed to the outer peripheral surface of the hub 2. By fixing the wheel to the flange 8 by a stud 18 provided on the flange 8, the wheel is rotatably supported with respect to the suspension device. When the wheel rotates in this state, the S pole and the N pole arranged on the inner side surface 22 of the permanent magnet 15 alternately pass near the end face of the detection unit 20 of the rotation detection sensor 13. As a result, the density and direction of the magnetic flux flowing in the magnetic detection element 21 (see FIG. 4 described below) incorporated in the detection unit 20 of the rotation detection sensor 13 changes. As a result, the characteristics of the magnetic detection element 21 change, and the output of the rotation detection sensor 13 changes. The frequency at which the output of the rotation detection sensor 13 changes in this way is proportional to the rotation speed of the wheel. Therefore, if the output of the rotation detection sensor 13 is sent to a controller (not shown), the ABS and TCS can be appropriately controlled.
[0008]
[Problems to be solved by the invention]
In the case of a conventionally known rotation detecting device using the permanent magnet 15 for the encoder 12, including the rolling bearing unit with the rotation speed detecting device as described above, the direction of the magnetic flux emitted from the permanent magnet 15 and the rotation detection No special consideration was given to the relationship with the direction in which the magnetic detection element 21 to be incorporated in the detection unit 20 of the sensor 13 is arranged. Therefore, there is a possibility that the output of the rotation detection sensor 13 cannot be increased sufficiently. This point will be described with reference to FIGS.
[0009]
On the inner surface 22 of the permanent magnet 15, which is the surface to be detected, the magnetic flux emitted from the N pole out of the N pole and the S pole alternately arranged in the circumferential direction as shown in FIG. Flows directly or through the support ring 14 made of a ferromagnetic material, as shown by arrows in FIGS. As is clear from the arrows shown in FIG. 4, the direction of the magnetic flux is in a direction perpendicular to or near the right angle to the inner surface 22 at a portion immediately near the inner surface 22, but in a direction perpendicular to the inner surface 22 as the distance from the inner surface 22 increases. Greatly deviated from On the other hand, in the case of the conventional rotation detecting device, as shown in FIG. 4, the magnetic detecting element 21 is installed in the detecting unit 20 in parallel with the inner side surface 22.
[0010]
In the case of such a conventional structure, the direction of the magnetic flux passing through the magnetic detecting element 21 is perpendicular to the magnetic detecting element 21 unless the magnetic detecting element 21 is disposed in the immediate vicinity of the inner side surface 22. Direction or near right angle. The encoder 12 and the rotation detection sensor 13 are members that rotate relatively during use, and the permanent magnet 15 and the magnetic detection element 21 need to be separated to some extent. Therefore, it is inevitable that the flow direction of the magnetic flux passing through the magnetic detection element 21 and the direction orthogonal to the magnetic detection element 21 are deviated. The change in the characteristics of the magnetic sensing element 21 based on the density and the direction of the magnetic flux is greatest when the direction of the magnetic flux is orthogonal to the magnetic sensing element 21. Then, as the direction of the magnetic flux deviates from this orthogonal direction, the above-mentioned change becomes sharply small.
[0011]
In order to reduce the cost of a circuit for processing the signal sent from the rotation detection sensor 13 and to ensure the reliability of the rotation speed detection, it is preferable to increase the output of the signal output from the rotation detection sensor 13. For this purpose, it is necessary to increase the change in the characteristics of the magnetic detection element 21.
The rotation detecting device of the present invention has been made in view of such circumstances.
[0012]
[Means for Solving the Problems]
The rotation detecting device according to the present invention includes an encoder and a rotation detecting sensor, similarly to a conventionally known rotation detecting device.
The encoder includes a permanent magnet which is supported by a part of a rotating member and has S poles and N poles alternately arranged in the rotation direction on a detection surface provided concentrically with the rotating member.
The rotation detection sensor includes a magnetic detection element that changes characteristics based on a change in at least one of a density and a direction of a magnetic flux, and is supported by a stationary member provided near the rotation member. .
In particular, in the rotation detecting device of the present invention, the magnetic detecting element is disposed in a direction orthogonal to the magnetic flux emitted from the permanent magnet.
[0013]
[Action]
In the case of the rotation detecting device of the present invention configured as described above, the magnetic flux emitted from the permanent magnets forming the encoder flows in a state orthogonal to the magnetic detecting elements. Therefore, the characteristics of the magnetic detecting element can be largely changed, and the output change of the rotation detecting sensor incorporating the magnetic detecting element can be increased.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an example of an embodiment of the present invention. A feature of the present invention is that the arrangement direction of the magnetic detection elements 21 constituting the rotation detection sensor 13a is regulated in order to increase the change in the output signal of the rotation detection sensor 13a. The configuration and operation of the other parts, including the structure shown in FIG. 2 described above, are the same as those of a conventionally widely known or implemented rotation detecting device. That is, the present invention is not limited to the rolling bearing unit with the rotation speed detection device, but may be any of various structures as long as the rotation detection sensor includes an encoder having a permanent magnet and a rotation detection sensor having a magnetic detection element. Be eligible. As a permanent magnet constituting the encoder, a structure in which S poles and N poles are alternately arranged on the circumferential surface by magnetizing in the radial direction may be an object.
[0015]
In the rotation detecting device of the present embodiment, the central axis α of the detection unit 20a of the rotation detection sensor 13a is disposed in a direction perpendicular to the inner surface 22 of the permanent magnet 15 constituting the encoder 12, which is the surface to be detected. are doing. Accordingly, in the case of the present example, the magnetic detection element 21 is inclined by an angle θ with respect to the central axis α of the detection unit 20a. The direction in which the magnetic detecting element 21 is inclined with respect to the central axis α and the magnitude of the angle θ are determined by the direction in which the magnetic detecting element 21 is orthogonal to the magnetic flux β emitted from the permanent magnet 15 and the magnetic flux β 22 has a size that is inclined with respect to the perpendicular direction.
[0016]
In the case of the rotation detecting device of the present example configured as described above, the magnetic flux β emitted from the permanent magnet 15 flows in the magnetic detecting element 21 in a state of being orthogonal. Therefore, based on the change in the density and direction of the magnetic flux β caused by the rotation of the encoder 12, the characteristics of the magnetic detection element 21 are greatly changed, and the output change of the rotation detection sensor 13a incorporating the magnetic detection element 21 is greatly increased. it can.
[0017]
【The invention's effect】
Since the rotation detection device of the present invention is configured and operates as described above, the reliability of the rotation speed detection can be ensured while suppressing the cost of the processing circuit for the signal sent from the rotation detection sensor.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating an example of an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an example of a rolling bearing unit with a rotation speed detection device, incorporating a rotation detection device to which the present invention is applied.
FIG. 3 is a partially enlarged perspective view for explaining a flow of a magnetic flux emitted from a permanent magnet constituting the encoder.
FIG. 4 is a schematic diagram for explaining a problem of a conventional structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Outer ring track 4 Inner ring 5 Inner ring track 6 Rolling element 7 Cage 8 Flange 9 Mounting part 10 Seal ring 11 Cover 12 Encoder 13, 13a Rotation detection sensor 14 Support ring 15 Permanent magnet 16 Cylindrical part 17 Circular ring part 18 Stud 19 Insertion hole 20, 20a Detector 21 Magnetic detector 22 Inner surface

Claims (1)

回転部材の一部に支持され、この回転部材と同心に設けられた被検出面にS極とN極とを回転方向に関して交互に配置した永久磁石を備えるエンコーダと、磁束の密度と方向とのうちの少なくとも一方の変化に基づいて特性を変化させる磁気検出素子を備え、上記回転部材の近傍に設けられた静止部材に支持された回転検出センサとから成る回転検出装置に於いて、上記磁気検出素子を、上記永久磁石から出る磁束に直交する方向に配置した事を特徴とする回転検出装置。An encoder provided with a permanent magnet which is supported by a part of the rotating member and has S poles and N poles alternately arranged with respect to the rotation direction on a detection surface provided concentrically with the rotating member; A rotation detecting device provided with a magnetic detecting element that changes characteristics based on at least one of the changes, and a rotation detecting sensor supported by a stationary member provided near the rotating member; A rotation detecting device, wherein the elements are arranged in a direction orthogonal to the magnetic flux emitted from the permanent magnet.
JP2002202302A 2002-07-11 2002-07-11 Rotation detector Pending JP2004045175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202302A JP2004045175A (en) 2002-07-11 2002-07-11 Rotation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202302A JP2004045175A (en) 2002-07-11 2002-07-11 Rotation detector

Publications (1)

Publication Number Publication Date
JP2004045175A true JP2004045175A (en) 2004-02-12

Family

ID=31708522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202302A Pending JP2004045175A (en) 2002-07-11 2002-07-11 Rotation detector

Country Status (1)

Country Link
JP (1) JP2004045175A (en)

Similar Documents

Publication Publication Date Title
JP3189624B2 (en) Rolling bearing unit with rotation speed detector
JP3312531B2 (en) Hub unit with rotation speed detector
JP4857485B2 (en) Rotation support device for wheels with encoder
JP2004353735A (en) Rotating device with sensor and its forming method
JPH05107255A (en) Rolling bearing unit for detecting rotational speed
JP4311091B2 (en) Rolling bearing unit for wheel support with rotational speed detector
JPH11118816A (en) Rolling bearing unit with rotating speed detector
JP2004084798A (en) Roller bearing device
JP2006177865A (en) Magnetic encoder and bearing for wheel equipped with it
JP2005016569A (en) Rolling bearing unit with encoder, and manufacturing method for the same
JP2004076752A (en) Rolling bearing device
JP2004045177A (en) Rotation detector
JP2004045175A (en) Rotation detector
JP3491393B2 (en) Rolling bearing unit with rotation speed detector
JP2011179536A (en) Bearing unit for supporting sensor-provided wheel
JPH1123597A (en) Bearing provided with rotating speed sensor
JP4622185B2 (en) Encoder and rolling bearing unit with encoder
JP2004354102A (en) Encoder, and rolling bearing unit having the same
JP2551613Y2 (en) Bearing unit for rotation speed detection
JP2004176730A (en) Roller bearing unit for wheel with encoder
JP3948053B2 (en) Rolling bearing unit with rotational speed detector
JP3700291B2 (en) Rolling bearing unit with rotational speed detector
JP3635700B2 (en) Rolling bearing unit with rotational speed detector
JP2002365303A (en) Wheel rotation supporting device with rotation speed detecting device
JP2004045176A (en) Rotation detector