JP2004044132A - Fireproof heat insulation bed material - Google Patents

Fireproof heat insulation bed material Download PDF

Info

Publication number
JP2004044132A
JP2004044132A JP2002200146A JP2002200146A JP2004044132A JP 2004044132 A JP2004044132 A JP 2004044132A JP 2002200146 A JP2002200146 A JP 2002200146A JP 2002200146 A JP2002200146 A JP 2002200146A JP 2004044132 A JP2004044132 A JP 2004044132A
Authority
JP
Japan
Prior art keywords
component
fire
inorganic
heat
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002200146A
Other languages
Japanese (ja)
Other versions
JP3977176B2 (en
Inventor
Ken Oide
大出 謙
Hiromichi Kato
加藤 裕道
Tatsuya Ono
小野 達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002200146A priority Critical patent/JP3977176B2/en
Publication of JP2004044132A publication Critical patent/JP2004044132A/en
Application granted granted Critical
Publication of JP3977176B2 publication Critical patent/JP3977176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fireproof heat insulation bed material, used for a bed material of a roof, a wall or the like, and having both excellent heat insulation performance and fireproof performance. <P>SOLUTION: This fireproof heat insulation bed material 18 is formed by stacking a plate-like inorganic foam 15 and a fitting plate 14 serving as a support in fitting the bed material to a construction place with an inorganic adhesive 16. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、耐火性能に優れ、かつ断熱性能に優れた屋根、壁等の下地材に関する。
【0002】
【従来の技術】
屋根下地材に求められる機能として、一般的には下記▲1▼〜▲5▼の機能が要求される。
▲1▼屋根葺材、断熱材、ルーフィング材などの下葺材、パーライトモルタル、葺土などに対する支持を行う機能
▲2▼積雪荷重および風荷重に対する支持を行う機能
▲3▼屋根葺材との緊結を行う機能
▲4▼防火、断熱、防露、遮音、吸音の各機能
▲5▼施工用足場としての機能
【0003】
また、床面積が2000mを超える観覧場や公会堂、床面積が合計2000m以上の学校の体育館等のように公共性が増した建物では、屋根下地材の性能として、▲4▼の防火に関する耐火性能が絶対的に必要となる。
【0004】
例えば、図5のように鉄骨の建物における屋根構造は、所定間隔で並ぶ母屋1上に垂木2を交差する方向に一定の間隔で並べて設け、この垂木2上に木毛セメント板3を葺設した後、木毛セメント板3の上にアスファルトルーフィング4等の防水層を設け、その上にパッド7を介して金属製の屋根葺材5を重ねて葺設する構成になっている。なお、図中6は吊子、8はシース溶接ラインを示す。
【0005】
図5に示す構成によって、前記▲1▼〜▲3▼の要件は満足することができる。しかし、この構成では、火災時の800〜1000℃にも達する火熱に耐えて屋外に火炎を出さない耐火構造を得ることはできない。耐火構造にするには、鉄骨の母屋に金網下地を取り付け、この上にモルタルを塗るなどの耐火被覆を行わなければならない。また、単なる木毛セメント板を下地材とするだけでは不十分であり、火災で屋内温度が800〜1000℃になった場合でも、30〜60分くらいでは裏面のアスファルトルーフィングに着火することがないよう、裏面の温度上昇を防ぐ下地材でなければならない。
【0006】
さらに、火災発生時に下地材の端部突き合わせ部分から外部に火炎が吹き出すことのない下地材を使用しなければならない。また、これらの屋根は、観覧場、公会堂、学校の体育館等に使われるため、充分な断熱性と耐火性を有するものでなければならない。断熱材として硬質ウレタンフォームが使用されることがあったが、硬質ウレタンフォームは310℃で着火するため、火災を助長してしまう。現在、下地材には木毛セメント板、高圧木毛セメント板、木片セメント板、スレート/木毛セメント積層板等の種々のものがあるが、充分な耐火性能を有し、しかも高い断熱性を有する下地材はない。
【0007】
図6は従来の屋根下地材の一例を示す。この屋根下地材9は、厚さ20mmの木毛セメント板11と、厚さ20mmの合板10とがエポキシ系接着剤12により接着されたものである。この下地材9は、図7に示すように、下地材9の側端部13同士を突き合わせて鉄骨の垂木にドリルビス等で取り付けて施工する。
【0008】
図7のように側端部の突き合わせ部13を中央にした試験体を作り、木毛セメント板11側(屋内側)からISO−834の試験法で加熱し、30分の耐火試験を行ったところ、25分が経過して加熱温度が815℃になった時に、下地材9の突き合わせ部13より火炎が吹き上げ合板に着火した。また、下地材9自体の性能を確認すべく、同じ材料構成で突き合わせ部をなくした図6に示すような試験体を作り、ISO−834の30分の耐熱試験を行った。その結果、加熱温度が842℃に達した時の加熱面と反対側の合板表面中央部の温度は206.6℃となっていた。建築基準法第2条第7号および平成12年度建設省告示第1432号では、壁については加熱面以外の面のうち最も高い部分の温度が200℃以上に上昇することがないよう定められており、可燃物の燃焼温度を最高温度200℃、平均温度160℃としている。
【0009】
【発明が解決しようとする課題】
建築基準法第2条第7号(耐火構造)の規定に基づく認定に係る性能評定では、屋根に関しては屋内側より30分加熱したときに842℃に至る温度に対する耐火性能が求められる。しかし、従来技術では、断熱と耐火の両性能を同時に満足させることができる屋根、壁等の下地材は存在しなかった。
【0010】
本発明は、前述した事情に鑑みてなされたもので、優れた断熱性能と耐火性能を併有する耐火断熱下地材を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、前記目的を達成するため、ISO−834の耐火試験において、屋内側からの加熱により60分で945℃になる加熱を行っても、屋外に火炎を出す原因となる亀裂その他の損傷を生じず、特に下地材の端部同士の繋ぎ部より火炎が屋外側へ噴出することのない耐火断熱下地材を得るべく鋭意検討を行った。
【0012】
本発明は、上記検討の結果なされたもので、下記(1)〜(5)に示す耐火断熱下地材を提供する。
(1)屋根、壁等の下地材であって、板状の無機フォームと、該無機フォームの支持体として機能する取付板とを、無機系の接着剤により積層してなることを特徴とする耐火断熱下地材。
【0013】
(2)前記取付板は、高圧木毛セメント板、木片セメント板、木毛セメント板および合板から選ばれる1種、または2種以上の積層板であることを特徴とする(1)の耐火断熱下地材。
【0014】
(3)前記無機フォームが、結石性無機成分、アルカリ性領域で前記結石性成分の硬化をする水含有第2成分、耐火性付与第3成分および発泡性成分を含む成形材料を発泡させたもの(B組成の無機フォーム)であることを特徴とする(1)、(2)の耐火断熱下地材。
【0015】
(4)前記B組成の無機フォームにおいて、結合性無機成分がアルミナセメント、メタカオリンおよびポルトランドセメントからなる群から選ばれた少なくとも1つであり、アルカリ性領域で結石性成分の硬化をする水含有第2成分が1モルのKOおよび/またはNaO当たり1〜3モルの二酸化珪素を有する金属珪酸塩溶液であり、耐火性付与第3成分が金属水和物であり、発泡性成分が過酸化水素水であることを特徴とする(3)の耐火断熱下地材。
【0016】
(5)前記無機フォームおよび取付板が同じ幅、長さを有し、これら無機フォームおよび取付板を幅方向、長さ方向とも所定幅ずらして積層することにより、隣接する下地材の横方向、縦方向の接続時に継ぎ手構造で接続できることを特徴とする(1)〜(4)の耐火断熱下地材。
【0017】
本発明の耐火断熱下地材は、無機フォームと取付板とを無機系の接着剤により積層したので、これら無機フォーム、取付板および無機系の接着剤の相乗作用により、優れた断熱性能と耐火性能を併有する。また、無機フォームの支持体として機能する取付板を無機フォームに積層したので、この取付板を利用して鉄骨等の施工箇所にドライブビス等を用いて容易に取り付けることができる。
【0018】
以下、本発明につきさらに詳しく説明する。本発明の耐火断熱下地材は、無機フォームの支持体として機能する取付板を有している。この取付板は、該取付板を鉄骨等の施工箇所にドライブビス等の固定用部材を用いて取り付けることにより、耐火断熱下地材が施工箇所にしっかりと取り付けられるものであればよい。取付板の材質に特に限定はないが、高圧木毛セメント板、木片セメント板、木毛セメント板および合板から選ばれる1種、または2種以上の積層板であることが適当である。
【0019】
次に、無機フォームについて説明する。本発明において、無機フォームは、結石性無機成分、アルカリ性領域で前記結石性成分の硬化をする水含有第2成分、耐火性付与第3成分および発泡性成分を含む成形材料を発泡させた耐火性能の高いもの(B組成の無機フォーム)であることが好ましい。無機フォームとしてB組成のものを用いた場合、B組成の無機フォームは高温時に含有する結晶水を放出し、さらに気化熱を奪うため、より優れた耐火性能、耐熱性能、断熱性能を有する耐火断熱下地材を得ることができる。
【0020】
また、上記B組成の無機フォームにおいて、結合性無機成分がアルミナセメント、メタカオリンおよびポルトランドセメントからなる群から選ばれた少なくとも1つであり、アルカリ性領域で結石性成分の硬化をする水含有第2成分が1モルのKOおよび/またはNaO当たり1〜3モルの二酸化珪素を有する金属珪酸塩溶液であり、耐火性付与第3成分が金属水和物であり、発泡性成分が過酸化水素水であることが好適である。ここで、結石性無機成分にアルミナセメント、メタカオリン、ポルトランドセメントを用いているのは、アルミナセメントは硬化反応を早くする効果、ポルトランドセメントは長期の圧縮強度向上効果、メタカオリンはポゾラン反応によるポルトランドセメントの組織強化効果を有するためである。
【0021】
上記B組成の無機フォームにおける各成分の配合量は、結石性無機成分を100重量部に対し、アルカリ性領域で前記結石性成分の硬化をする水含有第2成分を150〜450重量部、耐火性付与第3成分を50〜300重量部、発泡性成分を5〜50重量部とすることが適当である。結石性無機成分100重量部に対し水含有第2成分を150〜450重量部としているのは、150重量部より少ないと硬化反応に必要なアルカリ量が不足して製造時に硬化不良が発生しやすく、450重量部を超えると得られる無機フォームの耐水性が悪くなるからである。耐火性付与第3成分を50〜300重量部としているのは、50重量部より少ないと得られる無機フォームの十分な耐火性が得られず、300重量部を超えると無機フォームが硬化しにくくなるからである。発泡性成分を5〜50重量部としているのは、5重量部より少ないと十分な発泡倍率(断熱性)が得られず、50重量部より多いと気泡の破れが多くなりすぎ、無機フォームの強度が低下するからである。
【0022】
より具体的には、B組成の無機フォームは、例えば、結合性無機成分としてアルミナセメント、メタカオリンおよびポルトランドセメントから選ばれるもの、好ましくはこれら3種全てを適宜割合で100重量部、アルカリ性領域で結石性成分の硬化をする水含有第2成分として1モルのKOおよび/またはNaO当たり1〜3モルの二酸化珪素を有する金属珪酸塩溶液を150〜450重量部、耐火性を付与するための第3成分として結晶水を有する水酸化アルミニウムおよび/または結晶水を有する水酸化マグネシウムを50〜300重量部、および発泡剤として過酸化水素水(10〜20%濃度)を5〜50重量部使用して成形材料を調製し、この成形材料を発泡成形後、加熱硬化乾燥して得ることができる。
【0023】
本発明では、無機フォームをB組成1層としてもよいが、多層からなる積層構造を有するものとし、少なくとも1層の無機フォームは前記B組成の無機フォーム、他層の無機フォームは結石性無機成分、アルカリ性領域で結石性成分の硬化をする水含有第2成分および発泡性成分を含む成形材料を発泡させた断熱性能の高いもの(H組成の無機フォーム)とすることができる。このようにB組成の無機フォームとH組成の無機フォームとを組み合わせた場合には、B組成の無機フォームで耐火性能を向上させ、H組成の無機フォームで断熱性能を向上させることにより、無機フォームの総厚さを薄くすることができる。
【0024】
上記H組成の無機フォームにおいては、結合性無機成分がアルミナセメント、フライアッシュ、活性アルミナおよびポルトランドセメントからなる群から選ばれた少なくとも1つであり、アルカリ性領域で結石性成分の硬化をする水含有第2成分が1モルのKOおよび/またはNaO当たり1〜3モルの二酸化珪素を有する金属珪酸塩溶液であり、発泡性成分が過酸化水素水(好適には10〜20%濃度)であることが適当である。ここで、結石性無機成分をアルミナセメント、フライアッシュ、活性アルミナ、ポルトランドセメントとしているのは、アルミナセメントで硬化反応を早め、ポルトランドセメントで長期の圧縮強度を確保し、フライアッシュ、活性アルミナでポゾラン反応によるポルトランドセメントの組織強化と、組成の混合時、発泡時の流動性向上を図るためである。なお、フライアッシュは火力発電所の廃材であり、産業廃棄物として処理に困っているものであるが、H組成ではこのようなフライアッシュを有効に利用することができる。
【0025】
また、H組成の無機フォームにおける各成分の配合量は、結石性無機成分を100重量部、アルカリ性領域で前記結石性成分の硬化をする水含有第2成分を100〜200重量部、発泡性成分を5〜50重量部とすることが適当である。
【0026】
本発明において、B組成の無機フォームとH組成の無機フォームとを組み合わせて無機フォームを形成する場合、例えば下記に示す積層構造を採ることができるが、これらに限定されるものではない。
▲1▼屋外側B組成、屋内側H組成よりなる2層構造
▲2▼屋外側H組成、屋内側B組成よりなる2層構造
▲3▼屋外側B組成、中央H組成、屋内側B組成よりなる3層構造
▲4▼屋外側H組成、中央B組成、屋内側H組成よりなる3層構造
【0027】
【発明の実施の形態】
次に、添付図面を参照して本発明の実施の形態を説明するが、本発明は下記例に限定されるものではない。
【0028】
(実施例1)
図1は本発明の実施例1に係る耐火断熱下地材を示す斜視図である。本例の耐火断熱下地材18は、高圧木毛セメント板(取付板)14と板状の無機フォーム(B組成)15とを無機系接着剤16により積層したものである。無機フォーム15は、無機硬化反応により堅く硬化しており、この点でそれ自体が耐熱性を有するばかりでなく、結晶水を有する水酸化アルミニウムや水酸化マグネシウムを含有することにより、この無機フォーム15が積層された耐火断熱下地材18は全体として著しい耐火性能を発揮する。本例の耐火断熱下地材18の無機フォーム15を屋内側に配置し、屋内側より火災が発生した場合、加熱された無機フォーム15が結晶水を放出し、気化熱を奪うことにより、高圧木毛セメント板14へ伝わる火災による熱を著しく減ずることができる。また、無機フォーム15の断熱性、高圧木毛セメント板14の断熱性により、その上のアスファルトルーフィングに伝わる熱を著しく下げることができる。そして、無機フォーム15単体ではドリルビスによる鉄骨への取り付けはできないが、本例では高圧木毛セメント板14が耐火断熱下地材18を施工箇所に取り付ける際の支持体として機能するため、木毛セメント板14により耐火断熱下地材18を鉄骨にしっかりと取り付けることができるようになる。
【0029】
本例の耐火断熱下地材18を作製し、下記試験を行った。この場合、高圧木毛セメント板14としては、厚さ20mm、嵩密度0.95g/cm、重さ18.5kg/mのもの(竹村工業株式会社製TSボード)を用い、無機系接着剤16としてはモルタルを用いた。
【0030】
また、B組成の無機フォーム15の成形材料の組成は下記の通りとした。この無機フォーム15の厚さは20mm、密度は440kg/m、熱伝導率は0.128kcal/mh℃であった。
・結石性無機成分として
アルミナセメント    7.3重量%
メタカオリン      4.4重量%
ポルトランドセメント  2.7重量%
・アルカリ性領域内で結石性成分の硬化をする水含有第2成分として
水ガラス       40.0重量%
・耐火性能付与第3成分として
水酸化アルミニウム  23.8重量%
・発泡性成分として
過酸化水素水      3.9重量%
・無機フィラー      15.8重量%
【0031】
2枚の本例の耐火断熱下地材18の側端面同士を突き合わせ、突き合わせ部を中央にした試験体を作製し、ISO−834の試験法で30分の耐火試験を行った。この場合、無機フォーム15側から加熱を行った。その結果、30分経過時に加熱温度は842℃に達していたが、高圧木毛セメント板14の加熱面と反対側の中央部の温度は38℃と低い温度であった。すなわち、突き合わせ部よりの熱の通過が、B組成中の水酸化アルミニウムが結晶水を放出し、気化熱を奪うことにより防げられている。本例の耐火断熱下地材18の熱貫流率はK=2.89kcal/mh℃であった。
【0032】
(実施例2)
図2は本発明の実施例2に係る耐火断熱下地材を示す斜視図である。本例では、厚さ60mmの板状のH組成の無機フォーム17を作り、図2のような積層品を作製した。具体的には、厚さ20mmの高圧木毛セメント板(取付板)14、厚さ60mmのH組成の無機フォーム17、厚さ20mmのB組成の無機フォーム15を無機系接着剤16で接着して本例の耐火断熱下地材18を作製した。
【0033】
本例におけるB組成の無機フォーム15の成形材料の組成は実施例1と同様である。また、H組成の無機フォーム17の成形材料の組成は下記の通りである。本例におけるH組成の無機フォーム17の密度は270kg/m、熱伝導率は0.084kcal/mh℃であった。
・結石性無機成分として
アルミナセメント   11.0重量%
フライアッシュ     8.5重量%
活性アルミナ      5.9重量%
ポルトランドセメント  2.7重量%
・アルカリ性領域内で結石性成分の硬化をする水含有第2成分として
水ガラス       36.0重量%
・発泡性成分として
過酸化水素水      6.5重量%
・無機フィラー      24.3重量%
【0034】
本例の耐火断熱下地材18は、熱貫流率K=0.94kcal/mh℃の優れた断熱材となっている。
【0035】
(実施例3)
図3は本発明の実施例3に係る耐火断熱下地材を示す斜視図である。本例の耐火断熱下地材18は、同じ幅、長さを有する高圧木毛セメント板(取付板)14と無機フォーム(B組成)15とを、幅方向、長さ方向とも所定距離ずらして無機系接着剤(モルタル)16で積層することにより、幅方向両端部および長さ方向両端部にそれぞれ継ぎ手部を形成し、隣接する耐火断熱下地材18の横方向、縦方向の接続時に継ぎ手構造で接続できる積層体となっている。すなわち、長さ方向には長さ方向凸継ぎ手部20を作り、長さ方向凹継ぎ手部21と嵌めあえる構造となっている。幅方向には幅方向凸継ぎ手部22を作り、幅方向凹継ぎ手部23と嵌めあえる構造となっている。高圧木毛セメント板14は厚さ20mm、無機フォーム15は厚さ20mmとした。耐火断熱下地材18を鉄骨に貼って行くときに、単なる突き合わせであると火災時に突き合わせ部から熱が裏側へ伝わり易い。実施例3の場合は、耐火断熱下地材料の切れ目をなくし、熱が裏側へ伝わりにくいようにしている。
【0036】
耐火試験のため、図4のように1個所の継ぎ手部24を中央に設けた試験体を作り、ISO−834の試験を行った。この場合、無機フォーム15の側から加熱を行い、60分で946℃まで加熱した。このときの木毛セメント板14の反加熱側の表面中央部温度は42℃であった。
【0037】
【発明の効果】
以上のように、本発明に係る耐火断熱下地材は、優れた断熱性能と耐火性能を併有し、しかも鉄骨等の施工箇所にドライブビス等を用いて容易に取り付けることができるものである。より具体的には、本発明に係る耐火断熱下地材は、下記に示すような効果を奏する。
▲1▼鉄骨等にドライブビス等で容易に取り付けられる。
▲2▼ISO−834の60分でほぼ1000℃(946℃)に加熱する耐火試験では、反対面の温度も50℃以下の低温に抑えられる。すなわち、建築基準の火災時の屋根に対する屋内側からの30分で842℃までの加熱に耐えられるばかりでなく、60分で1000℃(946℃)までの加熱に耐えることができる。
▲3▼B組成の無機フォームの厚さを調整すれば、さらに高レベルの耐火性能を実現できる(ISO−834の加熱で120分で1029℃に耐えることもできる)。
▲4▼施工時の取り付け方や火災時の状況によっては、下地同士の接合部から熱が突き上げることがあるため、耐火性を向上した接合部が得られる。
▲5▼断熱性能において熱貫流率k=1kcal/mh℃以下を容易に実現できる屋根、壁の下地材を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る耐火断熱下地材を示す斜視図である。
【図2】本発明の実施例2に係る耐火断熱下地材を示す斜視図である。
【図3】本発明の実施例3に係る耐火断熱下地材を示す斜視図である。
【図4】耐火試験用の試験体の一例を示す斜視図である。
【図5】従来の鉄骨の建物における屋根構造の一例を示す斜視図である。
【図6】従来の屋根下地材の一例を示す斜視図である。
【図7】耐火試験用の試験体の一例を示す斜視図である。
【符号の説明】
1 母屋
2 垂木
3 木毛セメント板
4 アスファルトルーフィング
5 屋根葺材
6 吊子
7 パッド
8 シース溶接ライン
9 屋根下地材
10 合板
11 木毛セメント板
12 エポキシ系接着剤
13 突き合わせ部
14 高圧木毛セメント板(取付板)
15 無機フォーム(B組成)
16 無機系接着剤
17 無機フォーム(H組成)
18 耐火断熱下地材
20 長さ方向凸継ぎ手部
21 長さ方向凹継ぎ手部
22 幅方向凸継ぎ手部
23 幅方向凹継ぎ手部
24 継ぎ手部
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a base material such as a roof and a wall having excellent fire resistance and heat insulation performance.
[0002]
[Prior art]
Generally, the following functions (1) to (5) are required as functions required for a roof base material.
(1) Function to support underlaying materials such as roofing material, heat insulating material, roofing material, perlite mortar, roofing material, etc. (2) Function to support snow load and wind load (3) Tighten with roofing material Function 4) Fire protection, heat insulation, dew prevention, sound insulation, and sound absorption functions 5) Function as a scaffold for construction
In addition, viewing field and the auditorium floor area of more than 2000m 2, in the building of public property has increased as gymnasium or the like of the floor area of a total of 2000m 2 or more of the school, as the performance of the roof base material, on ▲ 4 ▼ of fire Fire resistance is absolutely necessary.
[0004]
For example, as shown in FIG. 5, a roof structure of a steel frame building is provided at a certain interval in a direction intersecting rafters 2 on a purlin 1 arranged at a predetermined interval, and a wool cement board 3 is laid on the rafters 2. After that, a waterproof layer such as an asphalt roofing 4 is provided on the wood wool cement board 3, and a metal roofing material 5 is overlaid on the waterproofing layer via a pad 7. In the drawing, reference numeral 6 denotes a hook, and 8 denotes a sheath welding line.
[0005]
With the configuration shown in FIG. 5, the above requirements (1) to (3) can be satisfied. However, with this configuration, it is not possible to obtain a fireproof structure that can withstand the heat of 800 to 1000 ° C. and does not emit a flame outdoors. In order to obtain a fire-resistant structure, a wire mesh base must be attached to a steel purlin, and a fire-resistant coating such as mortar must be applied thereon. Further, it is not sufficient to simply use a wood wool cement board as a base material. Even when the indoor temperature reaches 800 to 1000 ° C. due to a fire, the asphalt roofing on the back side does not ignite in about 30 to 60 minutes. Therefore, the base material must be a backing material for preventing a temperature rise on the back surface.
[0006]
Further, it is necessary to use a base material that does not cause a flame to blow out from the end butted portion of the base material when a fire occurs. In addition, since these roofs are used for viewing halls, public halls, school gymnasiums, etc., they must have sufficient heat insulation and fire resistance. Rigid urethane foam is sometimes used as a heat insulating material, but since rigid urethane foam ignites at 310 ° C., it promotes fire. At present, there are various types of base materials such as wood wool cement board, high pressure wood wool cement board, wood chip cement board, slate / wood wool cement laminate board, etc., which have sufficient fire resistance and high heat insulation. There is no base material to have.
[0007]
FIG. 6 shows an example of a conventional roof base material. The roof base material 9 is obtained by bonding a 20 mm thick wood wool cement board 11 and a 20 mm thick plywood 10 with an epoxy adhesive 12. As shown in FIG. 7, the base material 9 is attached to a steel rafter with abutting the side ends 13 of the base material 9 with drill screws or the like.
[0008]
As shown in FIG. 7, a test body having a butt portion 13 at the side end in the center was prepared, heated from the wood wool cement board 11 side (indoor side) by a test method of ISO-834, and a fire resistance test for 30 minutes was performed. However, when the heating temperature reached 815 ° C. after 25 minutes, a flame was blown up from the butted portion 13 of the base material 9 and ignited the plywood. Further, in order to confirm the performance of the base material 9 itself, a test body as shown in FIG. 6 was made with the same material composition but without the butted portion, and subjected to a heat resistance test of ISO-834 for 30 minutes. As a result, when the heating temperature reached 842 ° C., the temperature at the center of the plywood surface opposite to the heated surface was 206.6 ° C. The Building Standards Law, Article 2, Item 7, and the Ministry of Construction Notification No. 1432, 2000, stipulate that the temperature of the highest part of the wall other than the heated surface will not rise to 200 ° C or more. Therefore, the combustion temperature of combustibles is set to a maximum temperature of 200 ° C. and an average temperature of 160 ° C.
[0009]
[Problems to be solved by the invention]
In the performance evaluation related to the certification based on the provisions of Article 2, Item 7 (fireproof structure) of the Building Standard Act, fireproof performance for a temperature up to 842 ° C when the roof is heated from the indoor side for 30 minutes is required. However, in the prior art, there is no base material such as a roof or a wall that can satisfy both the heat insulation and the fire resistance at the same time.
[0010]
The present invention has been made in view of the above-described circumstances, and has as its object to provide a fire-resistant and heat-insulating base material having both excellent heat-insulating performance and fire-resistant performance.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventors of the present invention have conducted a fire resistance test of ISO-834. Intensive study was conducted to obtain a fire-resistant and heat-insulating base material that does not cause damage to the base material, and in particular, does not cause the flame to blow out to the outdoor side from the joint between the ends of the base material.
[0012]
The present invention has been made as a result of the above study, and provides a fire-resistant and heat-insulating base material shown in the following (1) to (5).
(1) A base material such as a roof or a wall, wherein a plate-like inorganic foam and a mounting plate functioning as a support for the inorganic foam are laminated with an inorganic adhesive. Fireproof insulation base material.
[0013]
(2) The fire-resistant insulation of (1), wherein the mounting plate is one or two or more laminated plates selected from a high-pressure wood wool cement board, a wood chip cement board, a wood wool cement board, and a plywood. Base material.
[0014]
(3) The inorganic foam obtained by foaming a molding material containing a calculus inorganic component, a water-containing second component for hardening the calculus component in an alkaline region, a fire resistance imparting third component, and a foamable component ( (1) and (2).
[0015]
(4) In the inorganic foam having the B composition, the binding inorganic component is at least one selected from the group consisting of alumina cement, metakaolin, and portland cement, and the water-containing second component that hardens the calculus component in the alkaline region. The component is a metal silicate solution having 1 to 3 mol of silicon dioxide per 1 mol of K 2 O and / or Na 2 O, the third component for imparting fire resistance is a metal hydrate, and the foaming component is excessive. (3) The fire-resistant and heat-insulating base material according to (3), which is an aqueous hydrogen oxide.
[0016]
(5) The inorganic foam and the mounting plate have the same width and length, and the inorganic foam and the mounting plate are laminated with a predetermined width in both the width direction and the length direction, whereby the inorganic base material and the mounting plate are stacked in the lateral direction of the adjacent base material. The fire-resistant and heat-insulating base material according to any one of (1) to (4), which can be connected by a joint structure when connecting in a vertical direction.
[0017]
The fire-resistant and heat-insulating base material of the present invention is obtained by laminating an inorganic foam and a mounting plate with an inorganic adhesive, so that the inorganic foam, the mounting plate and the inorganic adhesive have a synergistic action to provide excellent heat insulating performance and fire resistance performance. With. In addition, since the mounting plate that functions as a support for the inorganic foam is laminated on the inorganic foam, the mounting plate can be easily mounted to a construction site such as a steel frame using drive screws or the like.
[0018]
Hereinafter, the present invention will be described in more detail. The fire-resistant and heat-insulating base material of the present invention has a mounting plate that functions as a support for the inorganic foam. The mounting plate may be any as long as the fire-resistant and heat-insulating base material can be firmly attached to the construction site by attaching the mounting plate to a construction site such as a steel frame using a fixing member such as a drive screw. The material of the mounting plate is not particularly limited, but is preferably one or two or more laminated plates selected from a high-pressure wood wool cement board, a wood chip cement board, a wood wool cement board and a plywood.
[0019]
Next, the inorganic foam will be described. In the present invention, the inorganic foam is a fire-resistant performance obtained by foaming a molding material containing a calculus inorganic component, a water-containing second component for hardening the calculus component in an alkaline region, a fire-resistance imparting third component, and a foamable component. (Inorganic foam having the B composition). When a B-type inorganic foam is used as the inorganic foam, the B-type inorganic foam releases crystallization water contained at a high temperature and further deprives the heat of vaporization, so that it has better fire resistance, heat resistance, and heat insulation. A base material can be obtained.
[0020]
Further, in the inorganic foam having the B composition, the binding inorganic component is at least one selected from the group consisting of alumina cement, metakaolin and Portland cement, and a water-containing second component that hardens the calculus component in an alkaline region. Is a metal silicate solution having 1 to 3 moles of silicon dioxide per mole of K 2 O and / or Na 2 O, the third component for imparting fire resistance is a metal hydrate, and the foaming component is a peroxide. It is preferably hydrogen water. Here, alumina cement, metakaolin, and portland cement are used as the stone-forming inorganic components. This is because it has a tissue strengthening effect.
[0021]
The compounding amount of each component in the inorganic foam of the B composition is 150 to 450 parts by weight of a water-containing second component for curing the calculus component in an alkaline region with respect to 100 parts by weight of the calculus inorganic component, and fire resistance. It is appropriate that the imparting third component is 50 to 300 parts by weight and the foaming component is 5 to 50 parts by weight. When the water-containing second component is used in an amount of 150 to 450 parts by weight with respect to 100 parts by weight of the calcifying inorganic component, if the amount is less than 150 parts by weight, the amount of alkali required for the curing reaction is insufficient, and poor curing easily occurs during production. If the amount exceeds 450 parts by weight, the water resistance of the obtained inorganic foam is deteriorated. The reason for setting the fire resistance imparting third component to 50 to 300 parts by weight is that if the amount is less than 50 parts by weight, sufficient fire resistance of the obtained inorganic foam cannot be obtained, and if it exceeds 300 parts by weight, the inorganic foam is hardly cured. Because. When the amount of the foaming component is 5 to 50 parts by weight, if the amount is less than 5 parts by weight, a sufficient expansion ratio (insulating property) cannot be obtained. This is because the strength is reduced.
[0022]
More specifically, the inorganic foam of the B composition is, for example, one selected from alumina cement, metakaolin and portland cement as the binding inorganic component, preferably 100% by weight of all three in an appropriate ratio, and calculus in the alkaline region. 150 to 450 parts by weight of a metal silicate solution having 1 to 3 mol of silicon dioxide per 1 mol of K 2 O and / or Na 2 O as a water-containing second component for hardening of the acidic component, to provide fire resistance 50 to 300 parts by weight of aluminum hydroxide having water of crystallization and / or magnesium hydroxide having water of crystallization as a third component, and 5 to 50 parts by weight of aqueous hydrogen peroxide (10 to 20% concentration) as a blowing agent A molding material is prepared by using the above-mentioned parts, and the molding material can be obtained by subjecting the molded material to foam molding, followed by heat curing and drying.
[0023]
In the present invention, the inorganic foam may have one layer of the B composition. However, the inorganic foam has a laminated structure composed of multiple layers. At least one layer of the inorganic foam is the inorganic foam of the B composition, and the other layer of the inorganic foam is a calcific inorganic component. It is possible to foam a molding material containing a water-containing second component and a foaming component that cures a calculus component in an alkaline region and to form a foam having high heat insulation performance (an inorganic foam having an H composition). When the inorganic foam having the B composition and the inorganic foam having the H composition are combined as described above, the inorganic foam having the B composition improves the fire resistance performance, and the inorganic foam having the H composition improves the heat insulating performance. Can be reduced in total thickness.
[0024]
In the inorganic foam having the above H composition, the binding inorganic component is at least one selected from the group consisting of alumina cement, fly ash, activated alumina and Portland cement, and contains water that hardens the calculus component in the alkaline region. a metal silicate solution second component has a 1 mole of K 2 O and / or Na 2 O per 3 mol of silicon dioxide, 10-20% concentration foamable component hydrogen peroxide (preferably ) Is appropriate. The reason why the stone-forming inorganic component is alumina cement, fly ash, activated alumina and portland cement is that alumina cement accelerates the curing reaction, portland cement secures long-term compressive strength, and fly ash and activated alumina form pozzolan. This is for the purpose of strengthening the structure of Portland cement by the reaction and improving the fluidity during mixing and foaming of the composition. In addition, fly ash is a waste material of a thermal power plant, and is difficult to treat as industrial waste. However, such a fly ash can be effectively used in the H composition.
[0025]
In addition, the compounding amount of each component in the inorganic foam of the H composition is 100 parts by weight of the calculus inorganic component, 100 to 200 parts by weight of the water-containing second component that cures the calculus component in the alkaline region, and the foaming component. Is suitably 5 to 50 parts by weight.
[0026]
In the present invention, when the inorganic foam having the B composition and the inorganic foam having the H composition are combined to form an inorganic foam, for example, the following laminated structure can be adopted, but the present invention is not limited thereto.
{Circle around (1)} Two-layer structure composed of B composition on the outdoor side and H composition on the indoor side. {Circle over (2)} Two-layer structure composed of the H composition on the outdoor side and B composition on the indoor side. (3) Three-layer structure composed of H composition on the outdoor side, B composition on the center, and H composition on the indoor side
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited to the following examples.
[0028]
(Example 1)
FIG. 1 is a perspective view showing a fire-resistant and heat-insulating base material according to Embodiment 1 of the present invention. The fire-resistant and heat-insulating base material 18 of the present embodiment is obtained by laminating a high-pressure wood wool cement board (mounting board) 14 and a plate-like inorganic foam (B composition) 15 with an inorganic adhesive 16. The inorganic foam 15 is hardened by an inorganic curing reaction. In this respect, the inorganic foam 15 not only has heat resistance itself but also contains aluminum hydroxide and magnesium hydroxide having water of crystallization. The fire-resistant and heat-insulating base material 18 on which is laminated has a remarkable fire resistance performance as a whole. The inorganic foam 15 of the fire-resistant and heat-insulating base material 18 of the present example is disposed indoors, and when a fire occurs from the indoor side, the heated inorganic foam 15 releases water of crystallization and deprives heat of vaporization, so that the high-pressure wood The heat generated by the fire transmitted to the bristle cement board 14 can be significantly reduced. In addition, the heat transfer of the asphalt roofing thereon due to the heat insulating property of the inorganic foam 15 and the heat insulating property of the high-pressure wool cement board 14 can be significantly reduced. Although the inorganic foam 15 alone cannot be attached to a steel frame by drill screws, in this example, the high-pressure wood wool cement board 14 functions as a support when the fire-resistant and heat-insulating base material 18 is installed at a construction site, and thus the wood wool cement board is used. 14 allows the fire-resistant and heat-insulating base material 18 to be securely attached to the steel frame.
[0029]
The fire-resistant and heat-insulating base material 18 of this example was produced, and the following test was performed. In this case, the high-pressure wood wool cement board 14 having a thickness of 20 mm, a bulk density of 0.95 g / cm 3 , and a weight of 18.5 kg / m 2 (TS board manufactured by Takemura Kogyo Co., Ltd.) was used. Mortar was used as the agent 16.
[0030]
The composition of the molding material for the inorganic foam 15 having the B composition was as follows. The thickness of the inorganic foam 15 was 20 mm, the density was 440 kg / m 3 , and the thermal conductivity was 0.128 kcal / mh ° C.
・ 7.3% by weight of alumina cement as stone-forming inorganic component
Metakaolin 4.4% by weight
Portland cement 2.7% by weight
Water glass as a water-containing second component that hardens the calculus component in the alkaline region 40.0% by weight of water glass
23.8% by weight of aluminum hydroxide as the third component for imparting fire resistance
3.9% by weight of aqueous hydrogen peroxide as a foaming component
・ Inorganic filler 15.8% by weight
[0031]
Two side end surfaces of the fire-resistant and heat-insulating base material 18 of this example were butted against each other to prepare a test body with the abutting portion at the center, and a fire resistance test was conducted for 30 minutes by the ISO-834 test method. In this case, heating was performed from the inorganic foam 15 side. As a result, the heating temperature reached 842 ° C. after 30 minutes had elapsed, but the temperature at the center of the high-pressure wood wool cement board 14 opposite to the heating surface was as low as 38 ° C. That is, the passage of heat from the abutting portion is prevented by the aluminum hydroxide in the B composition releasing crystal water and depriving it of heat of vaporization. The heat transmission coefficient of the refractory and heat insulating base material 18 of this example was K = 2.89 kcal / m 2 h ° C.
[0032]
(Example 2)
FIG. 2 is a perspective view showing a fire-resistant and heat-insulating base material according to Embodiment 2 of the present invention. In the present example, a plate-shaped inorganic foam 17 having a H composition having a thickness of 60 mm was prepared, and a laminated product as shown in FIG. 2 was prepared. Specifically, a high-pressure wool cement board (mounting plate) 14 having a thickness of 20 mm, an inorganic foam 17 having a H composition having a thickness of 60 mm, and an inorganic foam 15 having a B composition having a thickness of 20 mm are bonded with an inorganic adhesive 16. Thus, the fire-resistant and heat-insulating base material 18 of this example was produced.
[0033]
The composition of the molding material of the inorganic foam 15 having the B composition in this example is the same as that in Example 1. The composition of the molding material for the inorganic foam 17 having the H composition is as follows. The density of the inorganic foam 17 having the H composition in this example was 270 kg / m 3 , and the thermal conductivity was 0.084 kcal / mh ° C.
・ 11.0% by weight of alumina cement as stone-forming inorganic component
8.5% by weight fly ash
5.9% by weight of activated alumina
Portland cement 2.7% by weight
36.0% by weight of water glass as a water-containing second component that hardens the calculus component in the alkaline region
-Hydrogen peroxide water 6.5% by weight as a foaming component
・ Inorganic filler 24.3% by weight
[0034]
The fire-resistant and heat-insulating base material 18 of this example is an excellent heat-insulating material having a heat transmission coefficient K of 0.94 kcal / m 2 h ° C.
[0035]
(Example 3)
FIG. 3 is a perspective view showing a fire-resistant and heat-insulating base material according to Embodiment 3 of the present invention. The fire-resistant and heat-insulating base material 18 of this example is obtained by shifting a high-pressure wood wool cement board (mounting plate) 14 and an inorganic foam (B composition) 15 having the same width and length by a predetermined distance in both the width direction and the length direction. By laminating with a system adhesive (mortar) 16, joints are formed at both ends in the width direction and both ends in the length direction, respectively. It is a laminate that can be connected. That is, the structure is such that the lengthwise convex joint portion 20 is formed in the lengthwise direction and is fitted to the lengthwise concave joint portion 21. In the width direction, a width direction convex joint portion 22 is formed, and has a structure capable of fitting with the width direction concave joint portion 23. The high-pressure wood wool cement board 14 had a thickness of 20 mm, and the inorganic foam 15 had a thickness of 20 mm. When the refractory and heat insulating base material 18 is pasted on the steel frame, if it is merely a butt, heat is easily transmitted from the butt portion to the back side in the event of a fire. In the case of the third embodiment, the break in the fire-resistant and heat-insulating base material is eliminated so that heat is not easily transmitted to the back side.
[0036]
For a fire resistance test, a test body having one joint 24 at the center as shown in FIG. 4 was prepared, and an ISO-834 test was performed. In this case, heating was performed from the side of the inorganic foam 15, and heating was performed to 946 ° C. in 60 minutes. At this time, the center temperature of the surface on the non-heating side of the wood wool cement board 14 was 42 ° C.
[0037]
【The invention's effect】
As described above, the fire-resistant and heat-insulating base material according to the present invention has both excellent heat-insulating performance and fire-resistant performance, and can be easily attached to construction sites such as steel frames using drive screws or the like. More specifically, the fire-resistant and heat-insulating base material according to the present invention has the following effects.
(1) It can be easily attached to a steel frame with a drive screw.
{Circle around (2)} In the fire resistance test of heating to approximately 1000 ° C. (946 ° C.) in 60 minutes according to ISO-834, the temperature of the opposite surface can be suppressed to a low temperature of 50 ° C. or less. That is, it can withstand heating up to 842 ° C. in 30 minutes from the indoor side of the roof in the event of a building standard fire, and can withstand heating up to 1000 ° C. (946 ° C.) in 60 minutes.
{Circle around (3)} By adjusting the thickness of the inorganic foam having the B composition, a higher level of fire resistance can be realized (it can withstand 1029 ° C. in 120 minutes by heating with ISO-834).
{Circle over (4)} Depending on the mounting method during construction and the situation at the time of fire, heat may rise from the joint between the bases, so that a joint with improved fire resistance can be obtained.
(5) It is possible to provide a base material for a roof or a wall which can easily realize a heat transmission coefficient of k = 1 kcal / m 2 h ° C. or less in heat insulation performance.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a fire-resistant and heat-insulating base material according to Example 1 of the present invention.
FIG. 2 is a perspective view showing a fire-resistant and heat-insulating base material according to a second embodiment of the present invention.
FIG. 3 is a perspective view showing a fire-resistant and heat-insulating base material according to a third embodiment of the present invention.
FIG. 4 is a perspective view showing an example of a test body for a fire resistance test.
FIG. 5 is a perspective view showing an example of a roof structure in a conventional steel frame building.
FIG. 6 is a perspective view showing an example of a conventional roof base material.
FIG. 7 is a perspective view showing an example of a test body for a fire resistance test.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main house 2 Rafter 3 Wood wool cement board 4 Asphalt roofing 5 Roofing material 6 Hanger 7 Pad 8 Sheath welding line 9 Roof base material 10 Plywood 11 Wood wool cement board 12 Epoxy adhesive 13 Butt joint 14 High pressure wood wool cement board ( Mounting plate)
15 Inorganic foam (B composition)
16 Inorganic adhesive 17 Inorganic foam (H composition)
18 Fireproof and heat-insulating base material 20 Lengthwise convex joint 21 Lengthwise concave joint 22 Widthwise convex joint 23 Widthwise concave joint 24 Joint

Claims (5)

屋根、壁等の下地材であって、板状の無機フォームと、該無機フォームの支持体として機能する取付板とを、無機系の接着剤により積層してなることを特徴とする耐火断熱下地材。A base material for a roof, a wall, or the like, wherein a plate-shaped inorganic foam and a mounting plate functioning as a support for the inorganic foam are laminated with an inorganic adhesive. Wood. 前記取付板は、高圧木毛セメント板、木片セメント板、木毛セメント板および合板から選ばれる1種、または2種以上の積層板であることを特徴とする請求項1に記載の耐火断熱下地材。The fire-resistant and heat-insulating base according to claim 1, wherein the mounting plate is one or two or more laminated plates selected from a high-pressure wood wool cement board, a wood chip cement board, a wood wool cement board, and a plywood. Wood. 前記無機フォームが、結石性無機成分、アルカリ性領域で前記結石性成分の硬化をする水含有第2成分、耐火性付与第3成分および発泡性成分を含む成形材料を発泡させたもの(B組成の無機フォーム)であることを特徴とする請求項1または2に記載の耐火断熱下地材。A foam obtained by foaming a molding material containing a calculus inorganic component, a water-containing second component for hardening the calculus component in an alkaline region, a fire resistance imparting third component, and a foamable component (the B composition). The fire-resistant and heat-insulating base material according to claim 1 or 2, which is an inorganic foam). 前記B組成の無機フォームにおいて、結合性無機成分がアルミナセメント、メタカオリンおよびポルトランドセメントからなる群から選ばれた少なくとも1つであり、アルカリ性領域で結石性成分の硬化をする水含有第2成分が1モルのKOおよび/またはNaO当たり1〜3モルの二酸化珪素を有する金属珪酸塩溶液であり、耐火性付与第3成分が金属水和物であり、発泡性成分が過酸化水素水であることを特徴とする請求項3に記載の耐火断熱下地材。In the inorganic foam having the B composition, the binding inorganic component is at least one selected from the group consisting of alumina cement, metakaolin, and Portland cement, and the water-containing second component that cures the calculus component in the alkaline region is 1%. A metal silicate solution having 1 to 3 mol of silicon dioxide per mol of K 2 O and / or Na 2 O, wherein the third component for imparting fire resistance is a metal hydrate, and the foaming component is aqueous hydrogen peroxide. The fire-resistant and heat-insulating base material according to claim 3, wherein 前記無機フォームおよび取付板が同じ幅、長さを有し、これら無機フォームおよび取付板を幅方向、長さ方向とも所定距離ずらして積層することにより、幅方向両端部および長さ方向両端部にそれぞれ継ぎ手部が形成されていることを特徴とする請求項1〜4のいずれか1項に記載の耐火断熱下地材。The inorganic foam and the mounting plate have the same width and length, and by laminating the inorganic foam and the mounting plate with a predetermined distance from each other in the width direction and the length direction, the width direction ends and the length direction both ends are laminated. The fire-resistant and heat-insulating base material according to any one of claims 1 to 4, wherein a joint portion is formed.
JP2002200146A 2002-07-09 2002-07-09 Refractory insulation base material Expired - Fee Related JP3977176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002200146A JP3977176B2 (en) 2002-07-09 2002-07-09 Refractory insulation base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002200146A JP3977176B2 (en) 2002-07-09 2002-07-09 Refractory insulation base material

Publications (2)

Publication Number Publication Date
JP2004044132A true JP2004044132A (en) 2004-02-12
JP3977176B2 JP3977176B2 (en) 2007-09-19

Family

ID=31707092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200146A Expired - Fee Related JP3977176B2 (en) 2002-07-09 2002-07-09 Refractory insulation base material

Country Status (1)

Country Link
JP (1) JP3977176B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052369A (en) * 2007-08-29 2009-03-12 Dow Kakoh Kk Heat-insulating board and composite heat-insulating board
CN102535657A (en) * 2011-07-14 2012-07-04 彭昊 Multifunctional fire-resistant insulation board and production method thereof
CN102587514A (en) * 2011-12-23 2012-07-18 彭昊 Multipurpose fireproof heat-insulation plate and service method thereof
JP2016118032A (en) * 2014-12-19 2016-06-30 大建工業株式会社 Outer wall fire resistance structure
JP2017193937A (en) * 2016-04-20 2017-10-26 Ecohouse株式会社 Thermal insulation board for roof, "eco insulation roof"
JP2019196300A (en) * 2018-05-07 2019-11-14 日本インシュレーション株式会社 Heat insulation material and manufacturing method therefor, and composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052369A (en) * 2007-08-29 2009-03-12 Dow Kakoh Kk Heat-insulating board and composite heat-insulating board
CN102535657A (en) * 2011-07-14 2012-07-04 彭昊 Multifunctional fire-resistant insulation board and production method thereof
CN102587514A (en) * 2011-12-23 2012-07-18 彭昊 Multipurpose fireproof heat-insulation plate and service method thereof
JP2016118032A (en) * 2014-12-19 2016-06-30 大建工業株式会社 Outer wall fire resistance structure
JP2017193937A (en) * 2016-04-20 2017-10-26 Ecohouse株式会社 Thermal insulation board for roof, "eco insulation roof"
JP2019196300A (en) * 2018-05-07 2019-11-14 日本インシュレーション株式会社 Heat insulation material and manufacturing method therefor, and composition

Also Published As

Publication number Publication date
JP3977176B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP4057361B2 (en) Fireproof insulation board
JP2005299194A (en) External wall structure of wooden building
JP3977176B2 (en) Refractory insulation base material
JPH08246609A (en) Roof structure
CN209942062U (en) A novel thermal-insulated structure that gives sound insulation keeps warm for dome structure
JP2002369891A (en) Fire limit wall
KR100495041B1 (en) A building material having dust prevention, sound-proofing and adiabatic function, a floor structure provided the same
JP2002356943A (en) Outer wall structure
JP3071150B2 (en) Building exterior wall construction method
JP3336461B2 (en) Outside insulation wall material
CN214615015U (en) High bending strength building calcium silicate partition plate
JPH10159204A (en) Structural insulation panel and its connection structure
CN210706352U (en) Fireproof sound insulation board
CN220434103U (en) Brush face structure of outer wall fireproof heat-insulating layer
CN211548357U (en) Light heat-insulating wall for assembled building outer wall
CN213926807U (en) Fireproof high-efficiency external wall insulation board
CN213115058U (en) Heat insulation decorative wall
JP2915800B2 (en) Exterior insulation panels and exterior insulation structures for wooden buildings
JPH1096274A (en) Light-weight heat-insulating panel
JPS6116122Y2 (en)
JPS6128810Y2 (en)
JP3127401U (en) Inside / outside wall structure of wooden buildings
KR200351139Y1 (en) a panel for construction
JP2021130964A (en) Fire-resistant structure and wall
JPS6035698Y2 (en) Fireproof insulation construction board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

RD03 Notification of appointment of power of attorney

Effective date: 20070409

Free format text: JAPANESE INTERMEDIATE CODE: A7423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Effective date: 20070620

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110629

LAPS Cancellation because of no payment of annual fees