JP2004043745A - Fluororubber composition - Google Patents

Fluororubber composition Download PDF

Info

Publication number
JP2004043745A
JP2004043745A JP2002206400A JP2002206400A JP2004043745A JP 2004043745 A JP2004043745 A JP 2004043745A JP 2002206400 A JP2002206400 A JP 2002206400A JP 2002206400 A JP2002206400 A JP 2002206400A JP 2004043745 A JP2004043745 A JP 2004043745A
Authority
JP
Japan
Prior art keywords
fluororubber
gas
fuel cell
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002206400A
Other languages
Japanese (ja)
Inventor
Masaru Okamoto
岡本 勝
Jinya Oshige
大重 仁哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchiyama Manufacturing Corp
Original Assignee
Uchiyama Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchiyama Manufacturing Corp filed Critical Uchiyama Manufacturing Corp
Priority to JP2002206400A priority Critical patent/JP2004043745A/en
Publication of JP2004043745A publication Critical patent/JP2004043745A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Gasket Seals (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gasket material in a solid polymer type fuel cell for sealing produced water generated by the reaction, a gas used in the reaction and cooling water that holds stable sealing properties over a long period of time. <P>SOLUTION: The gasket material is formed from a rubber composition which comprises a heat curable fluororubber, a filler having reinforcement properties, a peroxide as a vulcanizing agent for vulcanizing the fluororubber and a co-crosslinking agent for increasing a crosslinking density. The rubber composition can fully be used as a packing material for a fuel cell. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は固体高分子型燃料電池において発生する生成水及び反応に用いられるガス、並びに冷却水をシールするためのガスケット材料に関するものである。
【0002】
【従来技術の内容】
従来、固体高分子型燃料電池は、平板状の電極構造体の両側にセパレーターが積層されたものが一つのセルとなり複数のセルが積層されて燃料電池のスタックとして構成されている。電極構造体は、正極側の電極触媒層(カソード)と負極側の電極触媒層(アノード)との間に高分子電解膜がはさまれ、各電極触媒層の外側にガス拡散層が配置された積層体である。セパレータは電子伝達機能を有する材料からなるもので電極構造体への対向面にはガス通路が形成され少なくとも一方のセパレータの表面には冷媒通路が形成されている。これら通路はいずれも溝状であってガス通路には、燃料ガスである水素ガスと酸素や空気等の酸化剤ガスがそれぞれ独立して流され、冷媒通路には水エチレングリコール等の冷媒が流される。
セパレータは、各ガス通路間の突起部がガス拡散層に接触する状態で電極構造体に積層される。
【0003】
このような燃料電池によると例えば負極側に配されたセパレータのガス通路に燃料ガスを流し、正極側に配されたセパレータのガス通路に酸化剤ガスを流すと電気化学反応が起こって電気が発生する。
当該燃料電池の作動中においては、ガス拡散層は電気化学反応によって生成した電子を電極触媒層とセパレータとの間で伝達させると同時に燃料ガス及び酸化剤ガスを拡散させる。
また負極側の電極触媒層は燃料ガスに化学反応を起こさせプロトンと電子を発生させ、正極側の電極触媒層は酸素とプロトンと電子から水を生成し、電解膜はプロトンをイオン伝導させる。そして、正負の電極触媒層を通して電力が取り出される。
【0004】
上記のような燃料電池においては燃料ガス、酸化剤ガスおよび冷媒を、それぞれ独立したガス通路及び冷媒通路に流通させる必要があることから、これら通路をシールによって隔絶している。シールする部位としては、燃料電池スタックの構造により若干異なるが、例えば燃料電池スタックを貫通するガス通路の連通口の周囲、電極構造体の周縁部、セパレータの表面に設けられた冷媒通路の周囲、セパレータ表面の周縁部等が挙げられる。
そしてこれらの箇所のシール材にはシリコーン系、フッ素系、エチレンプロピレン系、イソブチレン・イソプロピレン系などの有機ゴムからなる弾性材料が用いられており現在ではシリコーン系が主流となっている。
【0005】
【発明が解決しようとする課題】
燃料電池に用いられるガスケットでは上述したような燃料ガス、酸化剤ガス、冷媒をシールすることが必要であり、さらには電気化学反応によって発生した生成水をシールすることも要求される。この電気化学反応によって発生した生成水の中には電解膜中に含まれるフッ素イオンや硫酸イオンが溶出するため生成水は酸性を示し運転状況によってはガスケット材料に影響を与えることがある。また設計上低温から高温領域に至るまで非常にわずかな締め代によってシール性を維持することが必要であり極度に圧縮永久歪みの良好な材料が必要とされている。
そのためガスケット材料にはガス透過性、ガスシール性、耐冷媒性、低温性、低圧縮永久歪み性、耐フッ酸、耐硫酸性等が要求されるがすべてを満足する材料は今のところ見あたらず低温性、低圧縮永久歪み性を重視し、シリコーン系の有機弾性材料を用いているのが現状である。
【0006】
しかしながらシリコーン系の材料はその構造上、酸、アルカリによって加水分解を起こすという致命的な欠点を持っており電気化学反応によって発生する生成水の中に含まれるフッ酸と硫酸に侵され、シール性が損なわれるという問題点を有しており、かかる問題点を克服する材料の出現が望まれていた。
したがってかかる発明は、上述したガス透過性、ガスシール性、耐冷媒性、低温性等を有し且つ生成水中に含まれるフッ酸、硫酸に対し耐性のある材料を提供し長期に渡って安定したシール性を保持することを目的として開発されたものである。
【0007】
【課題を解決するための手段】
本発明は一般式
【化1】

Figure 2004043745
で示される加熱硬化型のフッ素ゴムに補強性を有する充填剤とフッ素ゴムを加硫させるための加硫剤としての過酸化物、並びに架橋密度を増加させる共架橋剤とによって構成されるゴム組成物によって達成される。
【0008】
【発明の実施の形態】
本発明に用いられるフッ素ゴムとしては一般式
【化1】
Figure 2004043745
で示される加熱硬化型のフッ素ゴムを用い、充填剤として粒径が200〜600ミリミクロンのサーマルブラックを3重量部から35重量部添加し、加硫剤として過酸化物を0.5〜10重量部、共架橋剤としてTAIC(トリアリルイソシアネート)を0.5〜6重量部配合したものをロールあるいは密閉式混合機によって混合し、ロールあるいは押し出し機等によって所定の形状に加工し成形に供する。成形にあたっては加圧加熱型のプレスによる圧縮成形、その他トランスファー成形、射出成形等任意の成形機を用いて所定の形状に加工することが出来る。以上の方法によって加工されたフッ素ゴム組成物は
150℃〜250℃、好ましくは200℃にて1〜8時間2次加硫を行った後製品として供される。
【0009】
【実施例】
次に実施例について本発明を説明する。実施例 フッ素ゴム(ダイキン工業製、ダイエルLT−302)、比較例 シリコーンゴム(東レ・ダウコーニング社製、SH747U)に表1に示される各配合成分を加え、オープンロールにて混練した後、シート状にし、加圧プレスを用いて、170℃、3分間の条件下でシート(150×150×2mm)とOリング(線径3.4mm、内径25mm)をそれぞれ加硫成形した。
得られた加硫物について、実施例1、2のフッ素ゴムに関しては200℃、4時間の熱処理(オーブン加硫)を行い、JIS K−6251、JIS K−6253、JIS K−6262に準拠して物性試験を行った。ここで表1の圧縮永久歪み試験は上述で得られたOリングを25%圧縮し、圧縮した治具ごと3000ppmの濃度のフッ酸水溶液(90℃)及びPH=2に調整した硫酸水溶液に表1に示される時間浸漬後、治具を開放し、圧縮永久歪みを測定した。また低温シール性試験は上述で得られたOリングを専用の試験治具に30%にて圧縮し、−35℃の条件下、圧力0.5Mpaの空気を治具内に入れ、Oリングからの空気洩れの有無を評価した。
【0010】
【表1】
Figure 2004043745
【0011】
【発明の効果】
本発明によって得られたフッ素ゴム組成物は耐フッ酸性、耐硫酸性に優れた耐性を示すだけでなく本来要求されるべきガス透過性、ガスシール性、耐冷媒性、低圧縮永久歪み性、低温性等を満足し燃料電池用のパッキン材料として十分に使用することのできるものである。[0001]
[Industrial application fields]
The present invention relates to a product material generated in a polymer electrolyte fuel cell, a gas used for a reaction, and a gasket material for sealing cooling water.
[0002]
[Contents of prior art]
Conventionally, a polymer electrolyte fuel cell is configured as a fuel cell stack in which a separator is laminated on both sides of a flat electrode structure to form one cell and a plurality of cells are laminated. In the electrode structure, a polymer electrolyte membrane is sandwiched between a positive electrode catalyst layer (cathode) and a negative electrode catalyst layer (anode), and a gas diffusion layer is disposed outside each electrode catalyst layer. Laminated body. The separator is made of a material having an electron transfer function, and a gas passage is formed on the surface facing the electrode structure, and a refrigerant passage is formed on the surface of at least one of the separators. Each of these passages is groove-shaped, and hydrogen gas, which is a fuel gas, and an oxidant gas such as oxygen or air flow independently through the gas passage, and a coolant such as water ethylene glycol flows through the coolant passage. It is.
The separator is laminated on the electrode structure in a state in which the protrusions between the gas passages are in contact with the gas diffusion layer.
[0003]
According to such a fuel cell, for example, when a fuel gas is caused to flow through the gas passage of the separator disposed on the negative electrode side and an oxidant gas is caused to flow through the gas passage of the separator disposed on the positive electrode side, an electrochemical reaction occurs and electricity is generated. To do.
During operation of the fuel cell, the gas diffusion layer transmits electrons generated by the electrochemical reaction between the electrode catalyst layer and the separator, and simultaneously diffuses the fuel gas and the oxidant gas.
The electrode catalyst layer on the negative electrode side causes a chemical reaction to the fuel gas to generate protons and electrons, the electrode catalyst layer on the positive electrode side generates water from oxygen, protons and electrons, and the electrolytic membrane conducts protons in ionic conduction. Then, electric power is taken out through the positive and negative electrode catalyst layers.
[0004]
In the fuel cell as described above, since the fuel gas, the oxidant gas, and the refrigerant need to be circulated through independent gas passages and refrigerant passages, these passages are isolated by a seal. The part to be sealed varies slightly depending on the structure of the fuel cell stack.For example, the periphery of the gas passage through the fuel cell stack, the periphery of the electrode structure, the periphery of the refrigerant passage provided on the surface of the separator, Examples include the peripheral portion of the separator surface.
The sealing material at these locations is made of an elastic material made of organic rubber such as silicone, fluorine, ethylene propylene, isobutylene / isopropylene, and the silicone is the mainstream at present.
[0005]
[Problems to be solved by the invention]
Gaskets used in fuel cells need to seal the fuel gas, oxidant gas, and refrigerant as described above, and also require the generated water generated by the electrochemical reaction to be sealed. The generated water generated by this electrochemical reaction elutes fluorine ions and sulfate ions contained in the electrolytic membrane, so that the generated water is acidic and may affect the gasket material depending on the operating conditions. In addition, it is necessary to maintain the sealing performance by a very small tightening allowance from a low temperature to a high temperature range by design, and a material having extremely good compression set is required.
Therefore, gas permeability, gas seal, refrigerant resistance, low temperature, low compression set, hydrofluoric acid, sulfuric acid resistance, etc. are required for gasket materials, but no materials that satisfy all of them are found so far. At present, silicone-based organic elastic materials are used with emphasis on low-temperature properties and low compression set.
[0006]
However, silicone-based materials have a fatal defect that they are hydrolyzed by acids and alkalis due to their structure. They are affected by hydrofluoric acid and sulfuric acid contained in the water produced by the electrochemical reaction, resulting in a sealing property. Thus, there has been a demand for the appearance of a material that overcomes this problem.
Therefore, the invention provides a material having the above-described gas permeability, gas sealing property, refrigerant resistance, low temperature property and the like and resistant to hydrofluoric acid and sulfuric acid contained in the generated water, and is stable for a long time. It was developed for the purpose of maintaining sealing performance.
[0007]
[Means for Solving the Problems]
The present invention is represented by the general formula:
Figure 2004043745
A rubber composition comprising a filler having a reinforcing property, a peroxide as a vulcanizing agent for vulcanizing the fluororubber, and a co-crosslinking agent for increasing the crosslinking density Achieved by things.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The fluororubber used in the present invention is represented by the general formula:
Figure 2004043745
Is used, and 3 to 35 parts by weight of thermal black having a particle size of 200 to 600 millimicrons is added as a filler, and a peroxide is added as a vulcanizing agent in an amount of 0.5 to 10%. A mixture of 0.5 to 6 parts by weight of TAIC (triallyl isocyanate) as a co-crosslinking agent is mixed with a roll or a closed mixer, processed into a predetermined shape with a roll or an extruder, and used for molding. . In the molding, it can be processed into a predetermined shape using an arbitrary molding machine such as compression molding by a pressurizing and heating type press, other transfer molding, injection molding or the like. The fluororubber composition processed by the above method is used as a product after secondary vulcanization at 150 ° C. to 250 ° C., preferably 200 ° C. for 1 to 8 hours.
[0009]
【Example】
Next, the present invention will be described with reference to examples. Examples Fluororubber (Daikin Industries, Daiel LT-302), Comparative Example Silicone rubber (manufactured by Dow Corning Toray, SH747U) was added with each compounding component shown in Table 1 and kneaded with an open roll, then sheet Using a pressure press, a sheet (150 × 150 × 2 mm) and an O-ring (wire diameter 3.4 mm, inner diameter 25 mm) were respectively vulcanized and molded at 170 ° C. for 3 minutes.
About the obtained vulcanizates, the fluororubbers of Examples 1 and 2 were subjected to heat treatment (oven vulcanization) at 200 ° C. for 4 hours, in accordance with JIS K-6251, JIS K-6253, and JIS K-6262. The physical property test was conducted. Here, the compression set test shown in Table 1 is obtained by compressing the O-ring obtained above by 25% and adding the compressed jig to a 3000 ppm concentration hydrofluoric acid aqueous solution (90 ° C.) and a sulfuric acid aqueous solution adjusted to PH = 2. After immersion for the time indicated in 1, the jig was opened and compression set was measured. In the low temperature sealability test, the O-ring obtained above was compressed at 30% into a dedicated test jig, and air at a pressure of 0.5 Mpa was placed in the jig under the condition of -35 ° C. The presence or absence of air leakage was evaluated.
[0010]
[Table 1]
Figure 2004043745
[0011]
【The invention's effect】
The fluororubber composition obtained by the present invention not only exhibits excellent resistance to hydrofluoric acid and sulfuric acid, but also inherently required gas permeability, gas sealability, refrigerant resistance, low compression set, It satisfies the low temperature property and can be sufficiently used as a packing material for a fuel cell.

Claims (4)

フッ素ゴム100重量部に対しカーボンブラック5〜30重量部、有機過酸化物1〜10重量部、共架橋剤1〜5重量部を含有して成るゴム組成物。A rubber composition comprising 5 to 30 parts by weight of carbon black, 1 to 10 parts by weight of an organic peroxide, and 1 to 5 parts by weight of a co-crosslinking agent with respect to 100 parts by weight of fluororubber. フッ素ゴムが一般式
Figure 2004043745
で示される請求項1記載のフッ素ゴム組成物。
Fluoro rubber is a general formula
Figure 2004043745
The fluororubber composition of Claim 1 shown by these.
カーボンブラックが平均粒径200ミリミクロン以上のサーマルブラックを5〜30重量部含有してなる請求項1記載のフッ素ゴム組成物 。The fluororubber composition according to claim 1, wherein the carbon black contains 5 to 30 parts by weight of thermal black having an average particle size of 200 mm or more. 燃料電池用のパッキン材料として用いられ、加硫成形後170℃〜250℃で熱処理される請求項1記載のフッ素ゴム組成物。The fluororubber composition according to claim 1, which is used as a packing material for a fuel cell and is heat-treated at 170 ° C to 250 ° C after vulcanization molding.
JP2002206400A 2002-07-16 2002-07-16 Fluororubber composition Pending JP2004043745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002206400A JP2004043745A (en) 2002-07-16 2002-07-16 Fluororubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206400A JP2004043745A (en) 2002-07-16 2002-07-16 Fluororubber composition

Publications (1)

Publication Number Publication Date
JP2004043745A true JP2004043745A (en) 2004-02-12

Family

ID=31711392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206400A Pending JP2004043745A (en) 2002-07-16 2002-07-16 Fluororubber composition

Country Status (1)

Country Link
JP (1) JP2004043745A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195947A (en) * 2008-03-07 2008-08-28 Nok Corp Fluororubber composition
JP2015115149A (en) * 2013-12-11 2015-06-22 パナソニックIpマネジメント株式会社 Manufacturing method of fuel cell member
KR20170092549A (en) * 2014-11-28 2017-08-11 아사히 가라스 가부시키가이샤 Fluororubber compositions and crosslinked fluororubber article
CN112795118A (en) * 2020-12-30 2021-05-14 广州机械科学研究院有限公司 Insulating fluororubber material and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195947A (en) * 2008-03-07 2008-08-28 Nok Corp Fluororubber composition
JP2015115149A (en) * 2013-12-11 2015-06-22 パナソニックIpマネジメント株式会社 Manufacturing method of fuel cell member
KR20170092549A (en) * 2014-11-28 2017-08-11 아사히 가라스 가부시키가이샤 Fluororubber compositions and crosslinked fluororubber article
KR102445981B1 (en) 2014-11-28 2022-09-21 에이지씨 가부시키가이샤 Fluororubber compositions and crosslinked fluororubber article
CN112795118A (en) * 2020-12-30 2021-05-14 广州机械科学研究院有限公司 Insulating fluororubber material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US9640807B2 (en) Integrated fluorine gasket manufactured by injection molding for hydrogen fuel cells
US9437883B2 (en) Manufacturing method of fuel cell module and manufacturing method of fuel cell
EP1982372B1 (en) Sealant integrated fuel cell components and methods and systems for producing the same
US20090253014A1 (en) Fuel cell module and manufacturing method thereof
EP1174482A1 (en) Gasket
Basuli et al. Properties and degradation of the gasket component of a proton exchange membrane fuel cell—A review
JP3511373B2 (en) Fuel cell seal structure and method of forming rubber packing
JP2000223136A (en) Solid polymer electrolyte film for fuel cell, its manufacture and fuel cell
CN101030653A (en) Fuel cells comprising moldable gaskets, and methods of making
JP2004043745A (en) Fluororubber composition
JP4450607B2 (en) Method for sealing fuel cell and forming rubber packing for fuel cell
JP2004051728A (en) Fluororubber composition
TWI244791B (en) Elastomeric separator plates and method of fabrication
JP4512316B2 (en) Adhesive composition
JP2005011662A (en) Fuel cell seal material forming method
JP2004178977A (en) Manufacturing method of separator for fuel cell with seal and separator for fuel cell with seal
JP2004178978A (en) Separator for fuel cell with seal and membrane electrode assembly with seal
JP3456935B2 (en) Method of forming sealing material for fuel cell
JP2010174202A (en) Fluororubber composition and molding formed by using the same
JP4486801B2 (en) Adhesive composition
KR100838117B1 (en) Polymer electrolyte membrane electrode assembly with integrated seal and thereof fabrication method
JP3552101B2 (en) Fuel cell separator and method of molding rubber packing
JP2005243327A (en) Gasket for fuel cell
JP4056928B2 (en) Method for forming sealing material for fuel cell
JP2017177720A (en) Method for producing rubber molding

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040820

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024