JP2004043579A - Method for hydrogenating gas oil - Google Patents

Method for hydrogenating gas oil Download PDF

Info

Publication number
JP2004043579A
JP2004043579A JP2002201070A JP2002201070A JP2004043579A JP 2004043579 A JP2004043579 A JP 2004043579A JP 2002201070 A JP2002201070 A JP 2002201070A JP 2002201070 A JP2002201070 A JP 2002201070A JP 2004043579 A JP2004043579 A JP 2004043579A
Authority
JP
Japan
Prior art keywords
catalyst
reaction zone
hydrotreating
gas oil
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002201070A
Other languages
Japanese (ja)
Inventor
Yasuyuki Suzuki
鈴木 康之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2002201070A priority Critical patent/JP2004043579A/en
Publication of JP2004043579A publication Critical patent/JP2004043579A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for hydrogenating gas oil, especially the gas oil attaining a sulfur content of ≤50 mass ppm. <P>SOLUTION: This method for hydrogenating gas oil, comprising hydrogenating the gas oil in two or more catalytic hydrogenation reaction zones, is characterized by disposing a catalyst comprising nickel and/or cobalt, molybdenum and phosphorus carried on a refractory inorganic oxide carrier and having an average pore diameter of 70 to 150Å in the first reaction zone and further disposing a catalyst comprising nickel and/or cobalt, molybdenum and phosphorus carried on a refractory inorganic oxide carrier and having a larger average pore diameter by 20 to 120Å than the average pore diameter of the catalyst in the reaction zone just in the front of the second or more reaction zones in the second or more reaction zones. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は軽油の水素化処理方法に関し、特に、硫黄分を50質量ppm以下に低減することが可能な軽油の水素化処理方法に関するものである。
【0002】
【従来の技術】
現在、環境規制に対応するために軽油を製造する際に、その硫黄分を500質量ppm以下を目標として製造している。しかし、最近の厳しい環境規制に対応するためにジーゼルエンジン用の軽油の硫黄分を50質量ppm以下、できれば15質量ppm以下とすること等が検討されている。そのため、直留軽油はもとより、重質軽油、また比較的穏和な条件で精製されていた減圧軽油や分解軽油についても、将来の環境規制に対応するための硫黄分、アロマ分の高度な精製技術が要求されている。さらに窒素規制、パティキュレート規制問題等が重要視されておりその解決が急がれている。
アルミナ系無機酸化物担体に水素化活性物質として周期律表第6族、8族、9族、10族の金属を担持した従来型の脱硫触媒では、脱硫活性点を増加させるために、活性金属の担持における高い分散度を得る高度な触媒調製技術が開発されてきた。例えば、活性金属塩溶液に有機物を添加する方法(特開平6−228572号公報)、アルミナゲルと金属塩溶液とをスラリー状で混合して比表面積を増大する方法(特開平5−115781号公報)、金属含浸後に焼成工程を省き、金属の凝集を防止する方法(特開平8−332385号公報、特開平8−332386号公報)等が考案されている。しかし、いずれの方法も生成軽油中の硫黄分は300〜500質量ppm程度であり、このレベルの低硫黄軽油は難脱硫性の硫黄化合物として知られているジメチルジベンゾチオフェン類の脱硫までは十分にされていない。このような難脱硫性の硫黄化合物を含む軽油をさらに低硫黄化するには上記のような脱硫活性点の増加技術だけでは限界があった。
【0003】
より低い硫黄分レベルを達成するためには軽油留分等の炭化水素油中に含まれる難脱硫成分であるジメチルジベンゾチオフェン類の効率的な脱硫が不可欠であり、そのため、軽油留分等の炭化水素油の高性能な水素化脱硫方法として、従来のアルミナ系脱硫触媒の改善と共に、難脱硫成分であるジメチルジベンゾチオフェン類の効率的な脱硫のための炭化水素油の異性化、核水素化反応を狙った触媒を水素化脱硫触媒に組み合わせて用いる方法が考えられている。例えば、NiMo担持触媒/CoMo担持触媒を組み合わせる脱硫方法(特開平4−183786号公報)、第一段にNi、W、P−アルミナ触媒、第二段にNi、Mo、P−アルミナ触媒を組み合わせる脱硫方法(特開平4−288397号公報)、ゼオライト触媒とアルミナ触媒を組み合わせる脱硫方法(特許2567291号)、アルミナ触媒、ゼオライト触媒、アルミナ触媒を組み合わせる脱硫方法(特開昭60−195190号公報)などがあり、脱硫、脱窒素能の向上などを図っている。しかし、上記に開示されている脱硫処理技術の組み合わせ方法では難脱硫性硫黄化合物の脱硫は充分ではなく、生成軽油の硫黄分はそれぞれの触媒を単独で用いる場合よりも効果的ではあるが、目的とするところまでは容易に低下させることはできなかった。
【0004】
【発明が解決しようとする課題】
本発明は、前記の課題を解決するためになされたもので、求められる軽油の品質として硫黄分50質量ppm以下、さらには15質量ppm以下という低レベルの硫黄分濃度を達成した軽油の水素化処理方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の水素化処理触媒の組み合わせ、すなわち、2以上の接触的水素化処理反応帯域を有し、第一反応帯域に耐火性無機酸化物担体にニッケル及び/又はコバルトと、モリブデンと、リンとを担持し、平均細孔直径が70〜150Åである触媒を配置し、第二反応帯域以降に耐火性無機酸化物担体にニッケル及び/又はコバルトと、モリブデンと、リンとを担持し、平均細孔直径が該反応帯域の直前の反応帯域の触媒の平均細孔直径より20〜120Å大きい触媒を配置した軽油の水素化処理方法により、硫黄分が50質量ppm以下という低レベルの軽油を製造することができることを見い出し本発明を完成したものである。
【0006】
すなわち、本発明は、
(1)2以上の接触的水素化処理反応帯域において軽油を水素化処理する方法であって、第一反応帯域に耐火性無機酸化物担体にニッケル及び/又はコバルトと、モリブデンと、リンとを担持し、平均細孔直径が70〜150Åである触媒を配置し、第二反応帯域以降に耐火性無機酸化物担体にニッケル及び/又はコバルトと、モリブデンと、リンとを担持し、平均細孔直径が該反応帯域の直前の反応帯域の触媒の平均細孔直径より20〜120Å大きい触媒を配置したことを特徴とする軽油の水素化処理方法、
(2)軽油中の硫黄含有量を50質量ppm以下に低減させる上記(1)の軽油の水素化処理方法、
(3)反応帯域が2又は3である上記(1)の軽油の水素化処理方法、
(4)第一反応帯域に配置する触媒の比表面積が70〜300m2 /g、第二反応帯域以降に配置する触媒の比表面積が直前の反応帯域の触媒の比表面積より5〜100m2 /g小さい上記(1)の軽油の水素化処理方法。
(5)第一反応帯域の触媒及び第二反応帯域以降の触媒の少なくとも1つの触媒が、シリカを2〜20質量%(酸化物基準)含有する上記(1)の軽油の水素化処理方法、
(6)第一反応帯域の触媒量が全触媒量に対し10〜85容量%、第二反応帯域以降の触媒量が全触媒量に対し15〜90容量%である上記(1)〜(5)のいずれかに記載の軽油の水素化処理方法、
(7)水素化処理が水素化脱硫処理である上記(1)〜(6)のいずれかに記載の軽油の水素化処理方法、
を提供するものである。
【0007】
【発明の実施の形態】
石油留分の水素化脱硫に関しては、上述したように反応帯域内での金属種や担体組成の異なる触媒の組合せ技術は知られていた。しかし、触媒細孔径、比表面積の異なる触媒の組合せ技術は知られていなかった。細孔径の異なる触媒の組合せの例としては、残油等の重質油の水素化処理において大細孔径/小細孔径を使用して脱メタル、脱硫を促進するもの。前段のスケール処理に大細孔径触媒を使用し、順次細孔径を縮小し、高比表面積を有した触媒との組合せで長期安定運転を行っている場合があるが、灯軽油等の軽質油の水素化処理においては、今まで、細孔分布を特徴的に組合せる触媒システムはなかった。従来、軽油等は、含有される炭化水素が比較的低分子量であり、触媒劣化を引き起こすメタル分、重質炭化水素が少ないために大きい細孔径を有する触媒を用いる必要性は無く、専ら高い脱硫性能を引き出すために担体の比表面積を増大して水素化活性を上げる検討がなされていた。細孔径も重質油処理100〜200Åに対して60〜90Å程度と小さいものがよいとされてきた。
【0008】
これに対し、本発明者らは、水素及び脱硫反応により生成する硫化水素の触媒細孔内での拡散に注目した。すなわち、反応帯域の下流に移るにつれて増大する硫化水素に対して、細孔内拡散を高めるように徐々に細孔直径(細孔径)を増大させていく、触媒充填システムを検討し、下流の反応帯域の触媒の細孔内に流入する硫化水素が細孔外に出やすくすることができるように下流の反応帯域の触媒の細孔径の拡大を図ることで高度な脱硫を達成できることを見い出した。さらに、これによりフレッシュな水素は細孔内へ入り易くなり、活性点に吸着している硫黄分を硫化水素として除去可能となるようにし、水素化反応を促進できるようにした。
【0009】
軽油中の比較的脱硫しやすい易脱硫成分は反応塔の最前部の比表面積の大きい触媒層で速やかに脱硫されるが、細孔内の硫化水素分圧は高く、活性点の中では硫黄分がそのまま吸着されたままの活性点も多く、後段の反応帯域に移るにつれ軽油分が徐々に脱硫されにくくなり、特に難脱硫成分の脱硫効率は低下する。
本発明においては、ここで硫化水素濃度の比率が徐々に増加する反応塔内部の状態に対して、触媒層の細孔径を徐々に増大させていくことにより、硫化水素を触媒細孔外に、水素を触媒細孔内に移動しやすくする。反応塔の途中に水素供給ラインを併設して水素濃度を高めることを合わせて行うとこの水素置換効果はさらに増長される。
【0010】
本発明においては、反応帯域の数(充填触媒層数(段数で呼ぶこともある。))は2段以上、好ましくは2段又は3段である。各段に充填する触媒の種類、量は原料油の質、目標硫黄分レベルに応じて決められる。一段目で脱硫活性が高い比表面積の大きい(平均細孔直径は70〜150Å)触媒を用い、易脱硫性の硫黄化合物を脱硫する。二段目では、例えば4,6ジメチルジベンゾチオフェン等の難脱硫性硫黄化合物を高い水素化活性により脱硫するためH2 及びH2 Sの拡散を促進してさらなる深脱を促進させる。二段目の触媒は、一段目の触媒細孔径より20〜120Å大きい細孔分布を付与し、担体としては例えばCoMo系、NiMo系のどちらでも使用できるが、水素化活性を高めたNiMo系触媒が好ましい。二段目の触媒は難脱硫成分の芳香環を核水素化することにより、C−S結合の切断を促進させる。さらに厳しい超深脱を達成するには、第三反応帯域(三段目)で脱硫能の高いCoMo系触媒を用い、水素化されたアルキルジベンゾチオフェン類の脱硫を完結させ、あるいは未反応の硫黄化合物の脱硫を行えば好適な場合がある。この場合も、三段目の触媒は二段目の触媒細孔径より20〜120Å大きい細孔分布を付与し、水素、硫化水素の拡散を高め活性点の吸着硫黄を速やかに脱離させる。本発明の水素化処理方法は、このようにして軽油の50ppm以下の深度脱硫領域の脱硫を促進させる水素化処理方法である。
【0011】
以下、本発明の軽油の水素化処理方法をさらに詳細に説明する。
本発明において、第一反応帯域で使用される触媒は、平均細孔直径が70〜150Åであり、80〜140Åであると好ましい。比表面積は通常70〜300m2 /gであると好ましく、130〜250m2 /gであるとさらに好ましい。また、耐火性無機酸化物担体にニッケル及び/又はコバルトと、モリブデンと、リンとを担持したものであり、通常用いられる軽油の脱硫触媒のうち上記条件に適合するものであれば使用することができる。担体となる耐火性無機酸化物としては、アルミナ、シリカ、アルミナ−シリカ、アルミナ−ボリア、アルミナ−マグネシア、シリカ−マグネシアなどを単独又は複数で用いることができる。これらの耐火性無機酸化物はゲル状物質、固体微粉末に水を加えたもの、ゾル状物質、共沈法(コゲル法)、含浸法により得られるものなどが好適である。
上記担体の乾燥、焼成工程につき説明する。乾燥条件としては、乾燥温度30〜200℃、乾燥時間0.1〜24時間が適している。焼成条件としては、焼成温度300〜750℃、好ましくは450〜700℃が適している。焼成温度が300℃より低いと焼成効果(不純物の除去)が十分でなく、750℃を越えると無機酸化物等の変質が起こり易くなる。焼成時間は1〜10時間、好ましくは2〜7時間が適している。
【0012】
上記操作により得られた担体に金属を担持する工程につき説明する。
上記操作により得られた耐火性無機酸化物担体に、ニッケル(Ni)及び/又はコバルト(Co)と、モリブデン(Mo)と、リン(P)とを担持させれば本発明の第一反応帯域で使用される触媒が得られる。これら成分担持後の耐火性無機酸化物担体に対する担持金属の量は、Ni及び/又はCoが、酸化物基準で4〜15質量%、好ましくは5〜10質量%、Moが酸化物基準で20〜50質量%、好ましくは25〜40質量%、Pが酸化物基準で1〜10質量%、好ましくは3〜10質量%である。活性金属は、例えばNiMoPやCoMoPが母体として挙げられるが、MoにFe、Pt、Pd、Rh、Ru、Ir、Os等の周期律表第8,9,10族金属を少なくとも1種以上を添加してもよい。
【0013】
担体への金属担持法としては、常圧含浸法、真空含浸法、混練法、共沈法など通常の方法を用いればよい。金属の分散性を高めるため、金属溶液に水溶性有機溶媒を添加しても良い。担持されたものは乾燥、焼成工程を経て本発明における第一反応帯域で使用される触媒となる。乾燥、焼成条件は通常の脱硫触媒の乾燥、焼成条件を適用すればよい。具体的には、乾燥温度30〜200℃、乾燥時間0.1〜24時間、焼成温度200〜750℃、好ましくは250〜700℃、焼成時間1〜10時間、好ましくは2〜7時間が好適である。焼成温度が200℃より低いと焼成効果(不純物の除去)が不十分となり、750℃を越えると耐火性無機酸化物の変質、担持金属のシンタリングによる変質などが起こり易く好ましくない。
【0014】
なお、上記触媒はシリカを含有するものが好適に使用できる。シリカの含有量は酸化物として2〜20質量%、さらには3〜15質量%が好ましい。シリカの含有量が多すぎると担持金属のモリブデンの凝集を起こさせることがあり、少なすぎると効果が得られない。シリカの添加方法は無機酸化物として担体中に混合してもよいし、担持金属と同時に担体に担持してもよい。
本発明において第一反応帯域で使用される触媒としては、Ni−Mo−P−Al−Si又はCo−Mo−P−Al−Siを含有する触媒が特に好適に使用できる。
【0015】
本発明の第二反応帯域以降(二段目以降)で使用される触媒は、平均細孔直径がその前段より20〜120Å大きいもの、好ましくは30〜100Å大きいものとする。また、比表面積は通常前段より5〜100m2 /g小さいと好ましく、20〜80m2 /g小さいとさらに好ましい。また、第二反応帯域以降の少なくとも一つの反応帯域の触媒が細孔分布に二つのピークを持つものも有効である。
【0016】
さらに、本発明の第二反応帯域以降(二段目以降)で使用される触媒は、耐火性無機酸化物担体にニッケル及び/又はコバルトと、モリブデンと、リンとを担持したものであればよい。通常用いられる炭化水素油の脱硫触媒のうち上記条件に適合するものであれば使用することができる。担体となる耐火性無機酸化物としてはアルミナ、シリカ、マグネシア、アルミナ−シリカ、アルミナ−ボリア、アルミナ−マグネシア、シリカ−マグネシアなどを単独又は複数で用いることができる。これらの耐火性無機酸化物はゲル状物質、固体微粉末に水を加えたもの、ゾル状物質、共沈法(コゲル法)、含浸法により得られるものなどが好適である。
上記担体の乾燥、焼成工程につき説明する。乾燥条件としては、乾燥温度30〜200℃、乾燥時間0.1〜24時間が適している。焼成条件としては、焼成温度200〜750℃、好ましくは250〜700℃が適している。焼成温度が200℃より低いと焼成効果(不純物の除去)が十分でなく、750℃を越えると無機酸化物等の変質が起こり易くなる。焼成時間は1〜10時間、好ましくは2〜7時間が適している。
【0017】
上記操作により得られた担体に金属を担持する工程につき説明する。
上記操作により得られた耐火性無機酸化物担体に、ニッケル及び/又はコバルトと、モリブデンと、リンとを担持させれば本発明の第二反応帯域以降で使用される触媒が得られる。これら成分担持後の耐火性無機酸化物担体に対する担持金属の量は、Ni及び/又はCoが、酸化物基準で4〜15質量%、好ましくは5〜10質量%、Moが酸化物基準で20〜50質量%、好ましくは25〜40質量%、Pが酸化物基準で1〜10質量%、好ましくは3〜10質量%である。活性金属は、例えばNiMoPやCoMoPが母体として挙げられるが、MoにFe、Pt、Pd、Rh、Ru、Ir、Os等の周期律表第8,9,10族金属を少なくとも1種以上を添加してもよい。
【0018】
担体への金属担持法としては、常圧含浸法、真空含浸法、混練法、共沈法など通常の方法を用いればよい。金属の分散性を高めるため、金属溶液に水溶性有機溶媒を添加しても良い。担持されたものは乾燥、焼成工程を経て本発明における第二反応帯域以降で使用される触媒となる。乾燥、焼成条件は通常の脱硫触媒の乾燥、焼成条件を適用すればよい。具体的には、乾燥温度30〜200℃、乾燥時間0.1〜24時間、焼成温度200〜750℃、好ましくは250〜700℃、焼成時間1〜10時間、好ましくは2〜7時間が好適である。焼成温度が200℃より低いと焼成効果(不純物の除去)が不十分となり、750℃を越えると耐火性無機酸化物の変質、担持金属のシンタリングによる変質などが起こり易く好ましくない。
【0019】
なお、上記触媒はシリカを含有するものが好適に使用できる。シリカの含有量は酸化物として2〜20質量%、さらには3〜10質量%が好ましい。シリカの含有量が多すぎると担持金属のモリブデンの凝集を起こさせることがあり、少なすぎると効果が得られない。シリカの添加方法は無機酸化物として担体中に混合してもよいし、担持金属と同時に担体に担持してもよい。
本発明において第二反応帯域で使用される触媒としては、Ni−Mo−P、Co−Mo−P、Ni−Co−Mo−P、Ni−Mo−P−Al−Si又はCo−Mo−P−Al−Siを含有する触媒が特に好適に使用できる。また、異性化能を強化するために、ゼオライトの酸性質と金属の水素化活性をバランスよく設計したゼオライト触媒を第二反応帯域以降に使用しても効果的である。
【0020】
反応帯域の触媒量は、第一反応帯域の触媒量が全触媒量に対し10〜85容量%、第二反応帯域以降の触媒量が全触媒量に対し15〜90容量%であることが好ましい。なお、以上の触媒の充填量比を満足していれば、本発明の目的を損なわない範囲で他の反応帯域が存在し、もしくは他の触媒がさらに存在していてもよい。
【0021】
次に、上記第一反応帯域及び第二反応帯域以降で使用される触媒に共通する代表的な製造方法を説明する。
担持処理に用いられる金属化合物としては、特に限定されないが、例えば、酸化物、硫酸塩、硝酸塩、炭酸塩、塩基性炭酸塩、蓚酸塩、酢酸塩、アンモニウム塩、有機酸塩、ハロゲン化物等の水溶液が好適に用いられる。具体的には、パラモリブデン酸塩、メタモリブデン酸塩、三酸化モリブデン、パラタングステン酸塩、メタタングステン酸塩、三酸化タングステン、硝酸ニッケル、硝酸コバルト、塩基性炭酸コバルト、塩基性炭酸ニッケル等を水溶液としたものが挙げられる。
【0022】
金属化合物の担持処理には、水酸基及び/又はエーテル結合を有する水溶性有機化合物を用いると触媒上での担持金属の分散がよくなり、脱硫活性等が向上する。担持処理に用いられる水酸基及び/又はエーテル結合を有する水溶性有機化合物としては、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンフェニルエーテル、ポリエチレングリコール等のエーテル含有水溶性高分子、ポリビニルアルコール等のアルコール性水酸基含有水溶性高分子、サッカロース、グルコース等の各糖類、メチルセルロース、デンプン等の水溶性多糖類若しくはこれらの誘導体が挙げられ、好ましくはポリエチレングリコールが用いられる。
【0023】
また、前記水溶性有機化合物としては、分子量が300以上のものが用いられ、分子量が300〜10,000のものが好ましく、分子量350〜6,000のものがさらに好ましく用いられる。300未満では触媒活性に劣り、10,000を超えると溶解や担持工程に時間を要し、取扱いが困難となることがあるためである。前記水溶性有機化合物の添加量は、耐火性無機酸化物担体100重量部に対して0.5〜100重量部が好ましく、1〜50重量部であるとさらに好ましい。0.5重量部未満では、添加効果が発揮されないことがあり、100重量部を超えると担持が困難になることがあるためである。
【0024】
前記金属化合物と前記水溶性有機化合物の担持法は特に限定されないが、真空含浸法、常圧含浸法、浸漬法、混練法、塗布法等の公知の方法及びこれらを組み合わせた方法が用いられる。前記金属化合物と前記水溶性有機化合物の耐火性酸化物担体への担持は、金属化合物と水溶性有機化合物の水溶液を用いて同時に行うことが好ましい。また、あらかじめ水溶性有機化合物又はその水溶液を用いて水溶性有機化合物を耐火性酸化物担体上に担持し、次いで金属化合物水溶液を用いて金属化合物を耐火性酸化物担体上に担持してもよい。
以上のようにして、本発明で使用する触媒が製造される。
【0025】
次に、上記触媒の存在下での軽油の水素化処理方法について説明する。
水素化処理方法の反応形式は特に限定されないが、通常は固定床流通式反応装置を用いて上述の触媒を上述の配置方法で配置して軽油を水素化脱硫する。反応塔の上部から通油するダウンフロー型の反応、反応塔の下部から通油するアップフロー型の反応のどちらも選択でき、どちらの場合も触媒の配置は通油の方向を基準として上述の方法で行えばよい。
【0026】
水素化処理条件としては、反応温度は、通常250〜450℃、好ましくは300〜400℃、さらに好ましくは320〜380℃、水素分圧は、通常1.0〜200kg/cm2 G、好ましくは10〜150kg/cm2 G、さらに好ましくは20〜90kg/cm2 Gが好適である。さらに、水素/油比は、通常10〜2,000Nm3 /キロリットル、好ましくは30〜1,500Nm3 /キロリットル、さらに好ましくは50〜700Nm3 /キロリットル、液空間速度(LHSV)は、通常0.1〜15h−1、好ましくは0.2〜10h−1、さらに好ましくは0.5〜5h−1が好適である。
【0027】
本発明の水素化処理方法に適用できる軽油としては、直留軽油、水素化分解軽油、接触分解軽油、熱分解軽油、コーカーガスオイル、水素化処理軽油、水素化脱硫軽油など軽油の基材としてそのまま用いられるもの、あるいはそれらの混合物、さらには、水素化脱硫や他の水素化処理した灯軽油留分、重質軽油、減圧軽油のような重質化した留分、あるいはこれらの混合物、又はこれらと前記軽油の基材との混合物や一部に灯油や重油、ナフサ等を含むものでもよい。
【0028】
このように、本発明は平均細孔直径(細孔径)の制御された触媒を特別の状態に配置し、水素及び硫化水素の触媒活性点付近での拡散を促進し、ニッケル/コバルト系触媒等の異性化能、核水素化能を選択的に利用して軽油の水素化脱硫等の水素化処理を行い、軽油中の難脱硫性硫黄化合物の高度な脱硫により環境問題に対応した軽油を製造できる。
すなわち、上記のような本発明の水素化処理方法によれば、水素化処理触媒の高い水素化脱硫活性が発揮でき、各種軽油の脱硫を効率良く行うことができ、かつ生成油の安定性の悪い芳香族による着色を防止し、しかも過分解による軽油留分の損失を極力防止して軽油を水素化処理でき、特に硫黄分を50質量ppm以下というレベルまで大幅に低減でき、多環アロマの低減も併せて行うことができる。
【0029】
なお、本発明における触媒細孔直径及び比表面積は、BJH法(Barrett−Joyner−Halenda法)により、窒素ガス吸着法で求めた。
【0030】
【実施例】
次に、実施例を用いて本発明をさらに詳しく説明する。
製造例1
NiMoPアルミナ触媒A(小細孔直経触媒の製造)
シリカ−アルミナベーマイトゲル100g(乾燥重量)を混練捏和、円柱で押出し成形し、乾燥(120℃、3時間)、焼成(550℃,3時間)した成形担体を用い、ポリエチレングリコール400(分子量約400)10g、炭酸ニッケル、酸化モリブデン、正リン酸を混合した含浸溶液を含浸担持し、その後、乾燥(120℃,3時間)、焼成(350℃,3時間)することでNiO 6質量%,MoO3 32質量%,P2 5 4.5質量%,シリカ5質量%(酸化物基準)のNiMoPアルミナ触媒Aを得た。この触媒Aについて前記BJH法により窒素ガス吸着法で触媒細孔直径及び比表面積を求めたところ、平均細孔直径は82Å、比表面積(SA)は150m2 /gであった。
【0031】
製造例2
NiMoPアルミナ触媒B(大細孔直経触媒の製造)
触媒Aと同様に成形した成形担体のうち、大きな平均細孔径を有するものを選別して用いた以外は製造例1と同様にして、NiO 6質量%,MoO3 32質量%,P2 5 4.5質量%,シリカ5質量%(酸化物基準)のNiMoPアルミナ触媒Bを得た。この触媒Bについて前記BJH法により窒素ガス吸着法で触媒細孔直径及び比表面積を求めたところ、平均細孔直径は174Å、SAは82m2 /gであった。
製造例3〜5
表1に示す成分及び量として、製造例1と同様にして、アルミナ触媒C〜Eを得た。これらの触媒について前記BJH法により窒素ガス吸着法で触媒細孔直径及び比表面積を求めた結果を表1に示す。
【0032】
【表1】

Figure 2004043579
【0033】
実施例1(軽油留分の水素化脱硫処理)
固定床流通式反応装置の反応管に全触媒量を100ccとし、下段から触媒Aを80容量%(第一反応帯域触媒)、触媒Bを20容量%(第二反応帯域触媒)充填した。原料油は水素ガスと共に反応管の下段から導入するアップフロー形式で流通させて反応性を評価した。予備硫化及び水素化脱硫処理用原料として表2に示す性状の中東系直留軽油(LGO)を用いた。予備硫化は水素ガスと共に250℃24時間流通することにより行った。予備硫化後、原料油(LGO)を水素ガスと共に流通して水素化脱硫処理を行った。反応温度340℃、水素分圧50kg/cm2 、水素ガス/原料油比250Nm3 /キロリットル、LHSV 2.0hr−1の条件で実施した。水素化脱硫処理後の生成油の硫黄分の評価結果を表3に示す。
【0034】
実施例2〜5(軽油留分の水素化脱硫処理)
固定床流通式反応装置の反応管に表3に示す触媒の種類及び割合で充填した以外は実施例1と同様にして水素化脱硫処理を行った。水素化脱硫処理後の生成油の硫黄分の評価結果を表3に示す。
比較例1〜5(軽油留分の水素化脱硫処理)
固定床流通式反応装置の反応管に表4に示す触媒の種類及び割合で充填した以外は実施例1と同様にして水素化脱硫処理を行った。水素化脱硫処理後の生成油の硫黄分の評価結果を表4に示す。
【0035】
【表2】
Figure 2004043579
【0036】
【表3】
Figure 2004043579
【0037】
【発明の効果】
以上詳細に説明したように、本発明の軽油の水素化処理方法によると、各種軽油の脱硫を効率良く行うことができ、特に硫黄分を50質量ppm以下、さらには15質量ppm以下という低レベルの濃度まで硫黄分を大幅に低減できるため、軽油中の難脱硫性硫黄化合物の高度な脱硫により環境問題に対応した軽油を製造できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for hydrotreating gas oil, and more particularly to a method for hydrotreating gas oil capable of reducing the sulfur content to 50 mass ppm or less.
[0002]
[Prior art]
At present, when producing light oil in order to comply with environmental regulations, the production is aimed at the sulfur content of 500 mass ppm or less. However, in order to cope with recent severe environmental regulations, it has been studied to reduce the sulfur content of diesel oil for diesel engines to 50 ppm by mass or less, preferably to 15 ppm by mass or less. Therefore, advanced refining technology for sulfur and aroma to meet future environmental regulations, not only for straight-run gas oil, but also for heavy gas oil and vacuum gas oil and cracked gas oil that have been refined under relatively mild conditions. Is required. Furthermore, nitrogen regulation and particulate regulation issues are regarded as important, and their solutions are urgently needed.
In a conventional desulfurization catalyst in which a metal of Group 6, 8, 9 or 10 of the periodic table is supported as a hydrogenation active substance on an alumina-based inorganic oxide carrier, an active metal is required to increase the desulfurization active point. Advanced catalyst preparation techniques have been developed to obtain a high degree of dispersion in the loading of. For example, a method of adding an organic substance to an active metal salt solution (JP-A-6-228572), a method of mixing an alumina gel and a metal salt solution in a slurry form to increase the specific surface area (JP-A-5-115781) ), A method of omitting a firing step after metal impregnation and preventing aggregation of metal (JP-A-8-332385, JP-A-8-332386) and the like have been devised. However, in any of the methods, the sulfur content in the produced gas oil is about 300 to 500 ppm by mass, and the low sulfur gas oil at this level is sufficient until the desulfurization of dimethyldibenzothiophenes, which are known as difficult-to-desulfurize sulfur compounds. It has not been. In order to further reduce the sulfur content of such a gas oil containing a hardly desulfurizable sulfur compound, there is a limit only by the technique for increasing the desulfurization active sites as described above.
[0003]
In order to achieve a lower sulfur level, efficient desulfurization of dimethyldibenzothiophenes, which are difficult-to-desulfurize components contained in hydrocarbon oils such as gas oil fractions, is indispensable. As a high-performance hydrodesulfurization method for hydrogen oil, isomerization and nuclear hydrogenation of hydrocarbon oils for efficient desulfurization of dimethyldibenzothiophenes, which are difficult-to-desulfurize components, along with improvement of conventional alumina-based desulfurization catalysts A method has been considered in which a catalyst aimed at is used in combination with a hydrodesulfurization catalyst. For example, a desulfurization method combining a NiMo supported catalyst / CoMo supported catalyst (Japanese Patent Laid-Open No. 4-183786), a Ni, W, P-alumina catalyst in the first stage, and a Ni, Mo, P-alumina catalyst in the second stage Desulfurization method (JP-A-4-28897), desulfurization method combining zeolite catalyst and alumina catalyst (Japanese Patent No. 2567291), desulfurization method combining alumina catalyst, zeolite catalyst and alumina catalyst (JP-A-60-195190), etc. To improve desulfurization and denitrification capabilities. However, the desulfurization of the difficult-to-desulfurize sulfur compound is not sufficient in the combined method of the desulfurization treatment techniques disclosed above, and the sulfur content of the produced gas oil is more effective than the case where each catalyst is used alone. It was not possible to easily lower it.
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the hydrogenation of light oil having achieved a low level of sulfur content of 50 mass ppm or less, more preferably 15 mass ppm or less, as the required quality of gas oil. It is intended to provide a processing method.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, have a specific combination of hydrotreating catalysts, that is, two or more catalytic hydrotreating reaction zones, and a first reaction zone. A catalyst having nickel and / or cobalt, molybdenum, and phosphorus supported on the refractory inorganic oxide support and having an average pore diameter of 70 to 150 ° is disposed, and the refractory inorganic oxide support is provided after the second reaction zone. Hydrogenation of a gas oil carrying nickel and / or cobalt, molybdenum, and phosphorus, and a catalyst having an average pore diameter of 20 to 120 ° larger than the average pore diameter of the catalyst in the reaction zone immediately before the reaction zone. The inventors have found that a low-level gas oil having a sulfur content of 50 mass ppm or less can be produced by the treatment method, and have completed the present invention.
[0006]
That is, the present invention
(1) A method for hydrotreating gas oil in two or more catalytic hydrotreating reaction zones, wherein nickel and / or cobalt, molybdenum and phosphorus are contained in a first reaction zone on a refractory inorganic oxide carrier. A catalyst having an average pore diameter of 70 to 150 ° is disposed, and nickel and / or cobalt, molybdenum, and phosphorus are supported on the refractory inorganic oxide support after the second reaction zone. A method for hydrotreating light oil, comprising arranging a catalyst whose diameter is larger by 20 to 120 ° than the average pore diameter of the catalyst in the reaction zone immediately before the reaction zone,
(2) The method for hydrotreating light oil according to (1), wherein the sulfur content in the light oil is reduced to 50 mass ppm or less;
(3) The method for hydrotreating gas oil according to the above (1), wherein the reaction zone is 2 or 3.
(4) The specific surface area of the catalyst arranged in the first reaction zone is 70 to 300 m 2 / G, the specific surface area of the catalyst disposed after the second reaction zone is 5 to 100 m from the specific surface area of the catalyst in the immediately preceding reaction zone. 2 / G small gas oil hydrotreating method according to the above (1).
(5) The method for hydrotreating light oil according to the above (1), wherein at least one of the catalyst in the first reaction zone and the catalyst in the second and subsequent reaction zones contains 2 to 20% by mass (on an oxide basis) of silica.
(6) The above-mentioned (1) to (5), wherein the amount of the catalyst in the first reaction zone is 10 to 85% by volume relative to the total amount of the catalyst, and the amount of the catalyst after the second reaction zone is 15 to 90% by volume relative to the total amount of the catalyst. The method for hydrotreating light oil according to any one of the above,
(7) The method for hydrotreating light oil according to any one of the above (1) to (6), wherein the hydrotreatment is a hydrodesulfurization treatment.
Is provided.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
As for hydrodesulfurization of petroleum fractions, as described above, a technique of combining catalysts having different metal species and carrier compositions in a reaction zone has been known. However, a technique of combining catalysts having different catalyst pore diameters and specific surface areas has not been known. An example of a combination of catalysts having different pore diameters is one that promotes demetallization and desulfurization by using a large pore diameter / small pore diameter in the hydrogenation treatment of heavy oil such as residual oil. A long-term stable operation may be performed in combination with a catalyst having a high specific surface area by using a large pore diameter catalyst for the former stage scale treatment, sequentially reducing the pore diameter, and using a light oil such as kerosene oil. In the hydrotreating process, there has hitherto not been a catalyst system that characteristically combines the pore distribution. Conventionally, there is no need to use a catalyst with a large pore diameter because light hydrocarbons contain relatively low molecular weight hydrocarbons, and there are few metals and heavy hydrocarbons that cause catalyst deterioration. Studies have been made to increase the specific surface area of the support to increase the hydrogenation activity in order to bring out the performance. It has been considered that the pore diameter should be as small as about 60 to 90 ° with respect to the heavy oil processing of 100 to 200 °.
[0008]
In contrast, the present inventors have paid attention to the diffusion of hydrogen and hydrogen sulfide generated by the desulfurization reaction in the catalyst pores. In other words, for a hydrogen sulfide that increases as it moves downstream of the reaction zone, a catalyst packing system that gradually increases the pore diameter (pore diameter) so as to enhance diffusion in the pores is studied. It has been found that a high degree of desulfurization can be achieved by enlarging the pore diameter of the catalyst in the downstream reaction zone so that hydrogen sulfide flowing into the pores of the catalyst in the zone can easily exit the pores. Furthermore, this makes it easier for fresh hydrogen to enter the pores, so that sulfur adsorbed at the active site can be removed as hydrogen sulfide, and the hydrogenation reaction can be promoted.
[0009]
The relatively easy-to-desulfurize component in gas oil is desulfurized quickly in the catalyst layer with a large specific surface area at the forefront of the reaction tower, but the hydrogen sulfide partial pressure in the pores is high, and the sulfur content in the active point is high. Many active sites remain adsorbed as they are, and the gas oil gradually becomes difficult to desulfurize as it moves to the subsequent reaction zone, and in particular, the desulfurization efficiency of the hardly desulfurized component decreases.
In the present invention, by gradually increasing the pore diameter of the catalyst layer with respect to the state inside the reaction tower where the ratio of the hydrogen sulfide concentration gradually increases, hydrogen sulfide is moved out of the catalyst pores. It facilitates the transfer of hydrogen into the catalyst pores. When the hydrogen supply line is provided in the middle of the reaction tower to increase the hydrogen concentration, the hydrogen replacement effect is further enhanced.
[0010]
In the present invention, the number of reaction zones (the number of packed catalyst layers (sometimes referred to as the number of stages)) is two or more, preferably two or three. The type and amount of the catalyst to be filled in each stage is determined according to the quality of the feedstock oil and the target sulfur content level. In the first stage, a desulfurizable sulfur compound is desulfurized using a catalyst having a high desulfurization activity and a large specific surface area (average pore diameter is 70 to 150 °). In the second stage, H 2 is used to desulfurize difficult-to-desulfurize sulfur compounds such as 4,6 dimethyldibenzothiophene with high hydrogenation activity. 2 And H 2 It promotes the diffusion of S to promote further deep escaping. The second-stage catalyst gives a pore distribution larger by 20 to 120 ° than the first-stage catalyst pore diameter, and can be used as a carrier, for example, either of CoMo-based or NiMo-based, but a NiMo-based catalyst having enhanced hydrogenation activity Is preferred. The second-stage catalyst promotes cleavage of the C—S bond by nuclear hydrogenation of the aromatic ring of the hardly-desulfurized component. In order to achieve more severe ultra-deep desulfurization, the desulfurization of hydrogenated alkyldibenzothiophenes is completed using a CoMo-based catalyst having high desulfurization ability in the third reaction zone (third stage), or unreacted sulfur is removed. In some cases, desulfurization of the compound is preferable. Also in this case, the third-stage catalyst gives a pore distribution larger by 20 to 120 ° than the second-stage catalyst pore diameter, enhances the diffusion of hydrogen and hydrogen sulfide, and quickly desorbs the adsorbed sulfur at the active site. The hydrotreating method of the present invention is a hydrotreating method that promotes desulfurization of gas oil in a deep desulfurization region of 50 ppm or less.
[0011]
Hereinafter, the method for hydrotreating light oil of the present invention will be described in more detail.
In the present invention, the catalyst used in the first reaction zone has an average pore diameter of 70 to 150 °, preferably 80 to 140 °. Specific surface area is usually 70-300m 2 / G, preferably 130 to 250 m 2 / G is more preferable. In addition, nickel and / or cobalt, molybdenum, and phosphorus are supported on a refractory inorganic oxide carrier, and a commonly used gas oil desulfurization catalyst that meets the above conditions may be used. it can. As the refractory inorganic oxide serving as a carrier, alumina, silica, alumina-silica, alumina-boria, alumina-magnesia, silica-magnesia, or the like can be used alone or in combination. These refractory inorganic oxides are preferably gel-like substances, those obtained by adding water to solid fine powder, sol-like substances, those obtained by coprecipitation method (cogel method), impregnation method and the like.
The drying and firing steps of the carrier will be described. Suitable drying conditions are a drying temperature of 30 to 200 ° C. and a drying time of 0.1 to 24 hours. Suitable firing conditions are a firing temperature of 300 to 750 ° C, preferably 450 to 700 ° C. If the firing temperature is lower than 300 ° C., the firing effect (removal of impurities) is not sufficient. The firing time is 1 to 10 hours, preferably 2 to 7 hours.
[0012]
The step of supporting a metal on the carrier obtained by the above operation will be described.
The first reaction zone of the present invention can be obtained by supporting nickel (Ni) and / or cobalt (Co), molybdenum (Mo), and phosphorus (P) on the refractory inorganic oxide support obtained by the above operation. Is obtained. The amount of the supported metal with respect to the refractory inorganic oxide carrier after supporting these components is such that Ni and / or Co are 4 to 15% by mass, preferably 5 to 10% by mass on the oxide basis, and Mo is 20 on the oxide basis. -50 mass%, preferably 25-40 mass%, and P is 1-10 mass%, preferably 3-10 mass%, based on the oxide. Examples of the active metal include NiMoP and CoMoP as a base material, and at least one of Group 8, 9, and 10 metals of the periodic table such as Fe, Pt, Pd, Rh, Ru, Ir, and Os is added to Mo. May be.
[0013]
As a method for supporting the metal on the carrier, a normal method such as a normal pressure impregnation method, a vacuum impregnation method, a kneading method, and a coprecipitation method may be used. In order to enhance the dispersibility of the metal, a water-soluble organic solvent may be added to the metal solution. The supported catalyst becomes a catalyst used in the first reaction zone in the present invention through a drying and calcining process. The drying and calcination conditions may be the same as those of ordinary desulfurization catalysts. Specifically, a drying temperature of 30 to 200 ° C, a drying time of 0.1 to 24 hours, a firing temperature of 200 to 750 ° C, preferably 250 to 700 ° C, a firing time of 1 to 10 hours, preferably 2 to 7 hours is suitable. It is. If the firing temperature is lower than 200 ° C., the firing effect (removal of impurities) becomes insufficient, and if it exceeds 750 ° C., alteration of the refractory inorganic oxide and alteration due to sintering of the supported metal tend to occur, which is not preferable.
[0014]
In addition, the catalyst containing silica can be suitably used. The content of silica is preferably 2 to 20% by mass, more preferably 3 to 15% by mass as an oxide. If the content of silica is too large, molybdenum of the supported metal may be agglomerated, and if the content is too small, the effect cannot be obtained. Regarding the method of adding silica, the silica may be mixed in the carrier as an inorganic oxide, or may be supported on the carrier simultaneously with the supported metal.
As the catalyst used in the first reaction zone in the present invention, a catalyst containing Ni-Mo-P-Al-Si or Co-Mo-P-Al-Si can be particularly preferably used.
[0015]
The catalyst used in the second and subsequent reaction zones (second and subsequent stages) of the present invention has an average pore diameter of 20 to 120 ° larger than that of the preceding stage, preferably 30 to 100 ° larger. The specific surface area is usually 5 to 100 m from the previous stage. 2 / G is preferably 20 to 80 m 2 / G is more preferable. It is also effective that the catalyst in at least one reaction zone after the second reaction zone has two peaks in the pore distribution.
[0016]
Further, the catalyst used in the second reaction zone and thereafter (second and subsequent stages) of the present invention may be any catalyst that supports nickel and / or cobalt, molybdenum, and phosphorus on a refractory inorganic oxide carrier. . Any of the commonly used hydrocarbon oil desulfurization catalysts that meet the above conditions can be used. As the refractory inorganic oxide serving as a carrier, alumina, silica, magnesia, alumina-silica, alumina-boria, alumina-magnesia, silica-magnesia, or the like can be used alone or in combination. These refractory inorganic oxides are preferably gel-like substances, those obtained by adding water to solid fine powder, sol-like substances, those obtained by coprecipitation method (cogel method), impregnation method and the like.
The drying and firing steps of the carrier will be described. Suitable drying conditions are a drying temperature of 30 to 200 ° C. and a drying time of 0.1 to 24 hours. Suitable firing conditions are a firing temperature of 200 to 750 ° C, preferably 250 to 700 ° C. If the firing temperature is lower than 200 ° C., the firing effect (removal of impurities) is not sufficient. The firing time is 1 to 10 hours, preferably 2 to 7 hours.
[0017]
The step of supporting a metal on the carrier obtained by the above operation will be described.
If nickel and / or cobalt, molybdenum, and phosphorus are supported on the refractory inorganic oxide support obtained by the above operation, the catalyst used in the second and subsequent reaction zones of the present invention can be obtained. The amount of the supported metal with respect to the refractory inorganic oxide carrier after supporting these components is such that Ni and / or Co are 4 to 15% by mass, preferably 5 to 10% by mass on the oxide basis, and Mo is 20 on the oxide basis. -50 mass%, preferably 25-40 mass%, and P is 1-10 mass%, preferably 3-10 mass%, based on the oxide. Examples of the active metal include NiMoP and CoMoP as a base material, and at least one of Group 8, 9, and 10 metals of the periodic table such as Fe, Pt, Pd, Rh, Ru, Ir, and Os is added to Mo. May be.
[0018]
As a method for supporting the metal on the carrier, a normal method such as a normal pressure impregnation method, a vacuum impregnation method, a kneading method, and a coprecipitation method may be used. In order to enhance the dispersibility of the metal, a water-soluble organic solvent may be added to the metal solution. The supported catalyst becomes a catalyst to be used in the second and subsequent reaction zones in the present invention after the drying and firing steps. The drying and calcination conditions may be the same as those of ordinary desulfurization catalysts. Specifically, a drying temperature of 30 to 200 ° C, a drying time of 0.1 to 24 hours, a firing temperature of 200 to 750 ° C, preferably 250 to 700 ° C, a firing time of 1 to 10 hours, preferably 2 to 7 hours is suitable. It is. If the firing temperature is lower than 200 ° C., the firing effect (removal of impurities) becomes insufficient, and if it exceeds 750 ° C., alteration of the refractory inorganic oxide and alteration due to sintering of the supported metal tend to occur, which is not preferable.
[0019]
In addition, the catalyst containing silica can be suitably used. The content of silica is preferably 2 to 20% by mass, more preferably 3 to 10% by mass as an oxide. If the content of silica is too large, molybdenum of the supported metal may be agglomerated, and if the content is too small, the effect cannot be obtained. Regarding the method of adding silica, the silica may be mixed in the carrier as an inorganic oxide, or may be supported on the carrier simultaneously with the supported metal.
The catalyst used in the second reaction zone in the present invention includes Ni-Mo-P, Co-Mo-P, Ni-Co-Mo-P, Ni-Mo-P-Al-Si or Co-Mo-P. A catalyst containing -Al-Si can be particularly preferably used. It is also effective to use a zeolite catalyst in which the acidity of zeolite and the hydrogenation activity of the metal are well-balanced in order to enhance the isomerization ability in the second reaction zone and thereafter.
[0020]
The amount of catalyst in the reaction zone is preferably such that the amount of catalyst in the first reaction zone is 10 to 85% by volume relative to the total amount of catalyst, and the amount of catalyst in the second and subsequent reaction zones is 15 to 90% by volume relative to the total amount of catalyst. . As long as the above-mentioned catalyst filling ratio is satisfied, another reaction zone may be present or another catalyst may be further present as long as the object of the present invention is not impaired.
[0021]
Next, a typical production method common to the catalysts used in the first and second reaction zones and thereafter will be described.
The metal compound used for the supporting treatment is not particularly limited, but includes, for example, oxides, sulfates, nitrates, carbonates, basic carbonates, oxalates, acetates, ammonium salts, organic acid salts, halides and the like. An aqueous solution is preferably used. Specifically, paramolybdate, metamolybdate, molybdenum trioxide, paratungstate, metatungstate, tungsten trioxide, nickel nitrate, cobalt nitrate, basic cobalt carbonate, basic nickel carbonate, etc. An aqueous solution may be used.
[0022]
When a water-soluble organic compound having a hydroxyl group and / or an ether bond is used in the loading treatment of the metal compound, the dispersion of the loaded metal on the catalyst is improved, and the desulfurization activity and the like are improved. Examples of the water-soluble organic compound having a hydroxyl group and / or an ether bond used in the supporting treatment include water-soluble polymers containing ether such as polyoxyethylene octyl phenyl ether, polyoxyethylene phenyl ether and polyethylene glycol, and alcoholic compounds such as polyvinyl alcohol. Examples include hydroxyl-containing water-soluble polymers, saccharides such as saccharose and glucose, water-soluble polysaccharides such as methylcellulose and starch, and derivatives thereof, and preferably polyethylene glycol.
[0023]
Further, as the water-soluble organic compound, those having a molecular weight of 300 or more are used, those having a molecular weight of 300 to 10,000 are preferable, and those having a molecular weight of 350 to 6,000 are more preferably used. If it is less than 300, the catalytic activity is inferior, and if it exceeds 10,000, the dissolution and loading steps require time, and handling may be difficult. The amount of the water-soluble organic compound to be added is preferably 0.5 to 100 parts by weight, more preferably 1 to 50 parts by weight, per 100 parts by weight of the refractory inorganic oxide carrier. If the amount is less than 0.5 part by weight, the effect of addition may not be exhibited, and if the amount exceeds 100 parts by weight, it may be difficult to carry.
[0024]
The method of supporting the metal compound and the water-soluble organic compound is not particularly limited, and a known method such as a vacuum impregnation method, a normal pressure impregnation method, an immersion method, a kneading method, a coating method, and a combination thereof are used. The loading of the metal compound and the water-soluble organic compound on the refractory oxide carrier is preferably performed simultaneously using an aqueous solution of the metal compound and the water-soluble organic compound. Alternatively, the water-soluble organic compound or an aqueous solution thereof may be used to support the water-soluble organic compound on the refractory oxide carrier, and then the metal compound may be supported using the aqueous metal compound solution on the refractory oxide carrier. .
As described above, the catalyst used in the present invention is manufactured.
[0025]
Next, a method for hydrotreating light oil in the presence of the catalyst will be described.
The type of reaction in the hydrotreating method is not particularly limited, but usually the gas oil is hydrodesulfurized by disposing the above-mentioned catalyst by the above-described disposition method using a fixed-bed flow reactor. It is possible to select either a down-flow type reaction in which oil is passed from the upper part of the reaction tower or an up-flow type reaction in which oil is passed from the lower part of the reaction tower.In both cases, the arrangement of the catalyst is based on the direction of oil flow as described above. It can be done by the method.
[0026]
As the hydrogenation conditions, the reaction temperature is usually 250 to 450 ° C, preferably 300 to 400 ° C, more preferably 320 to 380 ° C, and the hydrogen partial pressure is usually 1.0 to 200 kg / cm. 2 G, preferably 10 to 150 kg / cm 2 G, more preferably 20-90 kg / cm 2 G is preferred. Further, the hydrogen / oil ratio is usually 10 to 2,000 Nm. 3 / Kl, preferably 30-1,500 Nm 3 / Kl, more preferably 50-700Nm 3 / Kl, liquid hourly space velocity (LHSV) is usually 0.1 to 15 h -1 , Preferably 0.2 to 10 h -1 , More preferably 0.5 to 5 hours -1 Is preferred.
[0027]
Examples of the gas oil applicable to the hydrotreating method of the present invention include straight-run gas oil, hydrocracked gas oil, catalytic cracking gas oil, pyrolysis gas oil, coker gas oil, hydrotreated gas oil, and hydrodesulfurized gas oil such as gas oil base material. What is used as it is, or a mixture thereof, further, a hydrodesulfurized or other hydrotreated kerosene gas oil fraction, heavy gas oil, a heavy fraction such as vacuum gas oil, or a mixture thereof, or A mixture of these with the base material of the light oil or a part thereof may contain kerosene, heavy oil, naphtha or the like.
[0028]
As described above, the present invention arranges a catalyst having a controlled average pore diameter (pore diameter) in a special state, promotes diffusion of hydrogen and hydrogen sulfide in the vicinity of a catalytic active point, and produces a nickel / cobalt-based catalyst or the like. Hydrogenation such as hydrodesulfurization of gas oil by selectively utilizing the isomerization ability and nuclear hydrogenation ability of oil to produce light oil that responds to environmental issues by advanced desulfurization of difficult-to-desulfurize sulfur compounds in light oil it can.
That is, according to the hydrotreating method of the present invention as described above, a high hydrodesulfurization activity of the hydrotreating catalyst can be exhibited, desulfurization of various light oils can be efficiently performed, and stability of the produced oil can be improved. Hydrogenation of gas oil can be prevented by preventing coloring by bad aromatics and minimizing loss of gas oil fraction due to over-decomposition. Particularly, sulfur content can be greatly reduced to a level of 50 mass ppm or less, and polycyclic aroma can be reduced. Reduction can also be performed at the same time.
[0029]
In addition, the catalyst pore diameter and specific surface area in the present invention were determined by a BJH method (Barrett-Joyner-Halenda method) by a nitrogen gas adsorption method.
[0030]
【Example】
Next, the present invention will be described in more detail using examples.
Production Example 1
NiMoP alumina catalyst A (manufacture of small pore straight catalyst)
100 g (dry weight) of silica-alumina boehmite gel was kneaded and kneaded, extruded with a cylinder, dried (120 ° C., 3 hours), and calcined (550 ° C., 3 hours). 400) Impregnated with 10 g of an impregnating solution containing a mixture of nickel carbonate, molybdenum oxide and orthophosphoric acid, and then dried (120 ° C., 3 hours) and calcined (350 ° C., 3 hours) to obtain 6% by mass of NiO. MoO 3 32% by mass, P 2 O 5 A NiMoP alumina catalyst A of 4.5% by mass and 5% by mass of silica (on an oxide basis) was obtained. The catalyst A was found to have a catalyst pore diameter and a specific surface area by the nitrogen gas adsorption method according to the BJH method. The average pore diameter was 82 ° and the specific surface area (SA) was 150 m. 2 / G.
[0031]
Production Example 2
NiMoP alumina catalyst B (manufacture of large pore straight catalyst)
6% by mass of NiO, MoO in the same manner as in Production Example 1 except that among the molded supports molded in the same manner as the catalyst A, those having a large average pore diameter were selected and used. 3 32% by mass, P 2 O 5 A NiMoP alumina catalyst B containing 4.5% by mass and 5% by mass of silica (on an oxide basis) was obtained. When the catalyst B was measured for its catalyst pore diameter and specific surface area by nitrogen gas adsorption according to the BJH method, the average pore diameter was 174 ° and SA was 82 m. 2 / G.
Production Examples 3 to 5
Alumina catalysts C to E were obtained in the same manner as in Production Example 1 with the components and amounts shown in Table 1. Table 1 shows the results of determining the catalyst pore diameter and the specific surface area of these catalysts by the BJH method by the nitrogen gas adsorption method.
[0032]
[Table 1]
Figure 2004043579
[0033]
Example 1 (hydrodesulfurization treatment of gas oil fraction)
The reaction tube of the fixed bed flow type reactor was charged with 100 cc of the total catalyst, and 80% by volume of catalyst A (catalyst of the first reaction zone) and 20% by volume of catalyst B (catalyst of the second reaction zone) from the lower stage. The feedstock was circulated together with hydrogen gas in an up-flow format in which the feed was introduced from the lower stage of the reaction tube, and the reactivity was evaluated. Middle Eastern straight-run gas oil (LGO) having the properties shown in Table 2 was used as a raw material for the preliminary sulfurization and hydrodesulfurization treatment. Preliminary sulfurization was carried out by flowing at 250 ° C. for 24 hours together with hydrogen gas. After the preliminary sulfurization, the raw oil (LGO) was circulated together with hydrogen gas to perform hydrodesulfurization treatment. Reaction temperature 340 ° C, hydrogen partial pressure 50kg / cm 2 , Hydrogen gas / feed oil ratio 250Nm 3 / Kl, LHSV 2.0hr -1 It carried out on condition of. Table 3 shows the results of evaluating the sulfur content of the product oil after the hydrodesulfurization treatment.
[0034]
Examples 2 to 5 (hydrodesulfurization of gas oil fraction)
Hydrodesulfurization treatment was performed in the same manner as in Example 1 except that the reaction tubes of the fixed bed flow type reactor were filled with the catalyst types and ratios shown in Table 3. Table 3 shows the results of evaluating the sulfur content of the product oil after the hydrodesulfurization treatment.
Comparative Examples 1 to 5 (hydrodesulfurization treatment of gas oil fraction)
Hydrodesulfurization treatment was carried out in the same manner as in Example 1 except that the reaction tubes of the fixed bed flow type reactor were filled with the catalyst types and ratios shown in Table 4. Table 4 shows the results of evaluating the sulfur content of the product oil after the hydrodesulfurization treatment.
[0035]
[Table 2]
Figure 2004043579
[0036]
[Table 3]
Figure 2004043579
[0037]
【The invention's effect】
As described above in detail, according to the gas oil hydrotreating method of the present invention, desulfurization of various gas oils can be efficiently performed, and particularly, the sulfur content is 50 mass ppm or less, and further, the low level of 15 mass ppm or less. The sulfur content can be greatly reduced to a concentration of, and therefore, a light oil that meets environmental issues can be produced by advanced desulfurization of the non-desulfurizable sulfur compound in the light oil.

Claims (7)

2以上の接触的水素化処理反応帯域において軽油を水素化処理する方法であって、第一反応帯域に耐火性無機酸化物担体にニッケル及び/又はコバルトと、モリブデンと、リンとを担持し、平均細孔直径が70〜150Åである触媒を配置し、第二反応帯域以降に耐火性無機酸化物担体にニッケル及び/又はコバルトと、モリブデンと、リンとを担持し、平均細孔直径が該反応帯域の直前の反応帯域の触媒の平均細孔直径より20〜120Å大きい触媒を配置したことを特徴とする軽油の水素化処理方法。A method for hydrotreating gas oil in two or more catalytic hydrotreating reaction zones, wherein nickel and / or cobalt, molybdenum, and phosphorus are supported on a refractory inorganic oxide carrier in a first reaction zone, A catalyst having an average pore diameter of 70 to 150 ° is disposed, nickel and / or cobalt, molybdenum, and phosphorus are supported on a refractory inorganic oxide support after the second reaction zone, and the average pore diameter is A method for hydrotreating light oil, comprising disposing a catalyst 20 to 120 ° larger than the average pore diameter of the catalyst in the reaction zone immediately before the reaction zone. 軽油中の硫黄含有量を50質量ppm以下に低減させる請求項1記載の軽油の水素化処理方法。The method for hydrotreating light oil according to claim 1, wherein the sulfur content in the light oil is reduced to 50 mass ppm or less. 反応帯域が2又は3である請求項1記載の軽油の水素化処理方法。The method for hydrotreating light oil according to claim 1, wherein the number of reaction zones is 2 or 3. 第一反応帯域に配置する触媒の比表面積が70〜300m2 /g、第二反応帯域以降に配置する触媒の比表面積が直前の反応帯域の触媒の比表面積より5〜100m2 /g小さい請求項1記載の軽油の水素化処理方法。The specific surface area of the catalyst arranged in the first reaction zone is 70 to 300 m 2 / g, and the specific surface area of the catalyst arranged in the second and subsequent reaction zones is 5 to 100 m 2 / g smaller than the specific surface area of the catalyst in the immediately preceding reaction zone. Item 6. A method for hydrotreating light oil according to Item 1. 第一反応帯域の触媒及び第二反応帯域以降の触媒の少なくとも1つの触媒が、シリカを2〜20質量%(酸化物基準)含有する請求項1記載の軽油の水素化処理方法。The method for hydrotreating gas oil according to claim 1, wherein at least one of the catalyst in the first reaction zone and the catalyst in the second and subsequent reaction zones contains 2 to 20% by mass of silica (on an oxide basis). 第一反応帯域の触媒量が全触媒量に対し10〜85容量%、第二反応帯域以降の触媒量が全触媒量に対し15〜90容量%である請求項1〜5のいずれかに記載の軽油の水素化処理方法。The amount of catalyst in the first reaction zone is 10 to 85% by volume based on the total amount of the catalyst, and the amount of catalyst in the second and subsequent reaction zones is 15 to 90% by volume based on the total amount of the catalyst. Method of hydroprocessing diesel oil. 水素化処理が水素化脱硫処理である請求項1〜6のいずれかに記載の軽油の水素化処理方法。The method for hydrotreating light oil according to any one of claims 1 to 6, wherein the hydrotreatment is a hydrodesulfurization treatment.
JP2002201070A 2002-07-10 2002-07-10 Method for hydrogenating gas oil Pending JP2004043579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201070A JP2004043579A (en) 2002-07-10 2002-07-10 Method for hydrogenating gas oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201070A JP2004043579A (en) 2002-07-10 2002-07-10 Method for hydrogenating gas oil

Publications (1)

Publication Number Publication Date
JP2004043579A true JP2004043579A (en) 2004-02-12

Family

ID=31707709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201070A Pending JP2004043579A (en) 2002-07-10 2002-07-10 Method for hydrogenating gas oil

Country Status (1)

Country Link
JP (1) JP2004043579A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209529A (en) * 2012-03-30 2013-10-10 Jx Nippon Oil & Energy Corp Hydrogenation purification method for heavy residual oil
KR20140106710A (en) * 2011-12-22 2014-09-03 어드벤스드 리파이닝 테크놀로지즈 엘엘씨 Silica containing alumina supports, catalysts made therefrom and processes using the same
KR101560074B1 (en) 2011-02-07 2015-10-13 미쯔비시 레이온 가부시끼가이샤 Knitted cord drawing out method, method of manufacturing porous film, and knitted cord supply apparatus
JP2015536823A (en) * 2012-11-29 2015-12-24 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Hydroprocessing catalyst from alumina gel and method for preparing the catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101560074B1 (en) 2011-02-07 2015-10-13 미쯔비시 레이온 가부시끼가이샤 Knitted cord drawing out method, method of manufacturing porous film, and knitted cord supply apparatus
KR20140106710A (en) * 2011-12-22 2014-09-03 어드벤스드 리파이닝 테크놀로지즈 엘엘씨 Silica containing alumina supports, catalysts made therefrom and processes using the same
JP2015508380A (en) * 2011-12-22 2015-03-19 アドバンスド・リフアイニング・テクノロジーズ・エルエルシー Silica-containing alumina support, catalyst produced therefrom and method of use thereof
KR102041652B1 (en) * 2011-12-22 2019-11-06 어드벤스드 리파이닝 테크놀로지즈 엘엘씨 Silica containing alumina supports, catalysts made therefrom and processes using the same
US11090638B2 (en) 2011-12-22 2021-08-17 Advanced Refining Technologies Llc Silica containing alumina supports, catalysts made therefrom and processes using the same
US11642664B2 (en) 2011-12-22 2023-05-09 Advanced Refining Technologies Llc Silica containing alumina supports, catalysts made therefrom and processes using the same
JP2013209529A (en) * 2012-03-30 2013-10-10 Jx Nippon Oil & Energy Corp Hydrogenation purification method for heavy residual oil
JP2015536823A (en) * 2012-11-29 2015-12-24 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Hydroprocessing catalyst from alumina gel and method for preparing the catalyst

Similar Documents

Publication Publication Date Title
JP5616937B2 (en) Catalyst comprising molybdenum and a Group VIII metal and its use for hydrodesulfurized hydrodistillate
JP2631712B2 (en) Catalyst composition for hydrotreating heavy hydrocarbon oil and hydrotreating method using the same
EP3003554B1 (en) A hydroprocessing catalyst composition containing a heterocyclic polar compound, a method of making such a catalyst, and a process of using such catalyst
US9901908B2 (en) Catalyst for the first hydrodemetalization step in a hydroprocessing system with multiple reactors for the improvement of heavy and extra heavy crudes
US20090038993A1 (en) Composition useful in the catalytic hydroprocessing of hydrocarbon feedstocks, a method of making such catalyst, and a process of using such catalyst
US9404053B2 (en) Low-pressure process utilizing a stacked-bed system of specific catalysts for the hydrotreating of a gas oil feedstock
CN101460596B (en) Improved hydrocracker post-treat catalyst for production of low sulfur fuels
CN109196077A (en) Upgrade the system and method for heavy oil
CN104437518A (en) Selective hydrodesulfurization catalyst, and preparation and application thereof
US8197672B2 (en) Hydroprocessing of naphtha streams at moderate conditions
CN103059934B (en) A kind of hydro-upgrading pour-point depressing method taking into account diesel product quality
RU2468864C1 (en) Catalyst, method of its preparation and method of hydrorefining diesel distillates
JP4576257B2 (en) Production method of oil fraction
US5116484A (en) Hydrodenitrification process
JP2004043579A (en) Method for hydrogenating gas oil
CN113862027B (en) Grading method of heavy oil hydrotreating catalyst and heavy oil hydrotreating method
RU2610869C2 (en) Hydroprocessing catalyst and methods of making and using such catalyst
JP4456692B2 (en) Process for hydrotreating diesel oil
JP2001040368A (en) Hydrogenation method for gas oil
JP4938178B2 (en) Hydrocarbon hydrotreating method
RU2737374C1 (en) Method for use of hydrodemetallization catalyst during hydrogenation processing of oil stock
JP2007507590A (en) How to improve naphtha quality
JP2005013848A (en) Carrier for hydrogenation catalyst, hydrogenation catalyst of hydrocarbon oil and hydrogenation method using the hydrogenation catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A131 Notification of reasons for refusal

Effective date: 20071218

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415