JP2004042723A - Preceding vehicle follow-up controller - Google Patents

Preceding vehicle follow-up controller Download PDF

Info

Publication number
JP2004042723A
JP2004042723A JP2002200816A JP2002200816A JP2004042723A JP 2004042723 A JP2004042723 A JP 2004042723A JP 2002200816 A JP2002200816 A JP 2002200816A JP 2002200816 A JP2002200816 A JP 2002200816A JP 2004042723 A JP2004042723 A JP 2004042723A
Authority
JP
Japan
Prior art keywords
vehicle
preceding vehicle
inter
closest
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002200816A
Other languages
Japanese (ja)
Other versions
JP3891059B2 (en
Inventor
Seiji Takeda
武田 誠司
Katsunori Yamada
山田 勝規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002200816A priority Critical patent/JP3891059B2/en
Publication of JP2004042723A publication Critical patent/JP2004042723A/en
Application granted granted Critical
Publication of JP3891059B2 publication Critical patent/JP3891059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a driver from having sense of incongruity. <P>SOLUTION: When a new preceding vehicle is detected as the preceding vehicle closest to own vehicle and it is discriminated that old preceding vehicle which has been the preceding vehicle closest to own vehicle until then becomes the preceding vehicle closest to own vehicle after a first predetermined time t1 (step S103äNo}), braking and driving force is controlled so that distance between the old preceding vehicle and own vehicle agrees with target vehicle-to-vehicle distance (step S201). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、先行車との車間距離が目標車間距離に一致するように制駆動力を制御する先行車追従制御装置に関するものである。
【0002】
【従来の技術】
従来、このような先行車追従制御装置としては、自車速に基づいて目標車間距離を算出すると共に、自車に最も近い先行車を車間距離センサで検出し、その先行車との車間距離が当該目標車間距離に一致するようにスロットルアクチュエータ等を制御するものがある。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の先行車追従制御装置にあっては、自車に最も近い先行車との車間距離が目標車間距離に一致するように制御するため、例えば隣接車線を走行する他車両が自車と先行車とを追い越すときに、当該他車両が自車に最も近い先行車として一瞬だけ検出されて、その車両に追従走行するようにスロットルアクチュエータ等が制御されたり、自車に最も近い先行車として新たな先行車が検出されたことが短時間に連続して報知されたりして、運転者に違和感を与えてしまう恐れがあった。
【0004】
そこで本発明は、上記従来の先行車追従制御装置の問題点に着目してなされたものであって、運転者に違和感を与えてしまうことを防止できる先行車追従制御装置を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る先行車追従制御装置は、自車に最も近い先行車として新たな新先行車が検出されると共に、それまで自車に最も近い先行車であった旧先行車が第1所定時間後に自車に最も近い先行車になると判定されたときには、当該旧先行車との車間距離が目標車間距離に一致するように制駆動力を制御することを特徴とするものである。
【0006】
【発明の効果】
したがって、本発明の先行車追従制御装置によれば、自車に最も近い先行車として新たな新先行車が検出されると共に、それまで自車に最も近い先行車であった旧先行車が第1所定時間後に自車に最も近い先行車になると判定されたときには、当該旧先行車との車間距離が目標車間距離に一致するように制駆動力を制御する構成としたため、例えば隣接車線を走行する他車両が自車と先行車とを追い越すときに、当該他他車両が自車に最も近い先行車として一瞬だけ検出されても、当該他車両に追従走行するように制駆動力が制御されることはなく、運転者に違和感を与えてしまうことを防止できる。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1は本発明を後輪駆動車に適用した場合の一実施形態を示す概略構成図であり、図中、1FL,1FRは従動輪としての前輪、1RL,1RRは駆動輪としての後輪であって、当該後輪1RL,1RRは、エンジン2の駆動力が自動変速機3、プロペラシャフト4、最終減速装置5及び車軸6を介して伝達されて回転駆動される。
【0008】
前記前輪1FL,1FR及び後輪1RL,1RRには、制動力を発生するディスクブレーキ等で構成されるブレーキアクチュエータ7が設けられている。このブレーキアクチュエータ7には、その制動力を制御する制動制御装置8が設けられている。この制動制御装置8は、図示しないブレーキペダルの踏込量及び後述する追従制御用コントローラ20からの制動圧指令値PBRに応じて制動油圧を制御するように構成されている。
【0009】
また、前記エンジン2には、その出力を制御するエンジン出力制御装置11が設けられている。このエンジン出力制御装置11は、図示しないアクセルペダルの踏込量及び後述する追従制御用コントローラ20からのスロットル開度指令値θRに応じてスロットルアクチュエータ12を制御するように構成されている。また、前記自動変速機3の出力側に配設された出力軸の回転速度を検出することにより、自車速VSを検出する車速センサ13が配設されている。
【0010】
一方、車両前方側の車体下部には、先行車との車間距離を検出するレーダ方式の車間距離センサ14が設けられている。この車間距離センサ14は、車両前方にレーザ光を掃射して先行車からの反射光を受光することで当該車間距離Lを検出するように構成されている。また、前記エンジン2にはエンジン回転速度NEを検出するエンジン回転速度センサ15が設けられている。
【0011】
また、車室内には、自車に最も近い先行車として新たな先行車が検出されたことを報知する報知装置17が設けられている。この報知装置17は、図2に示すように、LCDやLED等の表示デバイスを有し、後述する追従制御用コントローラ20からの指令値に応じて当該表示デバイスに捕捉シンボル18を点滅表示するように構成されている。なお、この実施形態では、自車に最も近い先行車として新たな新先行車が検出されたことを表示デバイスで報知する例を示したが、これに限定されるものではなく、例えばスピーカ等の音響装置で報知するようにしてもよく、それら表示デバイスと音響装置とを組み合わせたもので報知するようにしてもよい。
【0012】
そして、前記車速センサ13から出力される自車速VSと、前記車間距離センサ14から出力される車間距離Lと、前記エンジン回転速度センサ15から出力されるエンジン回転速度NEとが追従制御用コントローラ20に入力され、この追従制御用コントローラ20では、先行車を捕捉しているときに車間距離Lを目標車間距離L*に一致させ、先行車を捕捉していないときに自車速VSを運転者が設定した設定車速VSETに一致させる制動圧指令値PBR及びスロットル開度指令値θRが出力される。
【0013】
この追従制御用コントローラ20は、マイクロコンピュータとその周辺機器を備え、そのマイクロコンピュータのソフトウェア形態により、図3に示す制御ブロックを構成している。この制御ブロックは、前記車間距離センサ14でレーザ光を掃射してから先行車の反射光を受光するまでの時間を計測し、その先行車との車間距離Lを算出する測距信号処理部21と、前記推定車体速度演算部9から読み込んだ自車速VSに基づいて目標車間距離L*を算出し、その目標車間距離L*に前記測距信号処理部21で算出される車間距離Lを一致させる目標車速VL*を算出する車間距離制御部40と、この車間距離制御部40で算出された目標車速VL*に基づいて目標加減速度G*を算出し、その目標加減速度G*に基づいて目標駆動軸トルクTW*を算出する車速制御部50と、その車速制御部50で算出された目標駆動軸トルクTW*に基づいてスロットル開度指令値θR及び制動圧指令値PBRを算出し、それらをスロットルアクチュエータ12及びブレーキアクチュエータ7に出力する駆動軸トルク制御部60とを備えている。
【0014】
また、前記車間距離制御部40は、前記車速センサ13から出力された自車速VSに基づいて目標車間距離L*を算出する目標車間距離設定部42と、その目標車間距離設定部42で算出された目標車間距離L*に前記測距信号処理部21から出力される車間距離Lを一致させる目標車速VL*を算出する車間距離制御演算部43とを備えている。
【0015】
ここで、前記目標車間距離設定部42は、自車が先行車の後方L0[m]の位置に到達するまでの時間である車間時間T0と前記車速センサ13で検出された自車速VSと停止時車間距離LSとに基づき、下記(1)式に従って目標車間距離L*を算出する。
L*=VS×T0+LS…………(1)
なお、この車間時間T0という概念を取り入れることにより、自車速VSが大きくなるほど車間距離Lが大きくなるように目標車間距離L*が算出される。
【0016】
また、前記車速制御部50は、先行車を捕捉しているときには前記車間距離制御部40から出力される目標車速VL*と運転者が設定した設定車速VSETとのいずれか小さいほうを目標車速V*に設定し、先行車を捕捉していないときには当該設定車速VSETを目標車速V*に設定する目標車速設定部51と、その目標車速設定部51で設定された目標車速V*に自車速VSが一致するように目標加減速度G*を算出する目標加減速度演算部52と、その目標加減速度演算部52で算出された目標加減速度G*を制限する目標加減速度制限部53と、その目標加減速度制限部53で制限された目標加減速度G*に基づいて目標駆動軸トルクTW*を算出する目標駆動軸トルク演算部54とを備えている。
【0017】
前記目標駆動軸トルク演算部54は、前記目標加減速度制限部53で制限された目標加減速度G*(n)に車両質量Mを乗算して目標制・駆動力F*(=M・G*(n))を算出する乗算器54aと、この乗算器54aから出力される目標制・駆動力F*にタイヤ半径RWを乗算して目標駆動軸トルクTW*を算出する乗算器54bとを有している。
【0018】
また、前記駆動軸トルク制御部60は、図4に示すように、目標駆動軸トルクTW*を実現するためのスロットル開度指令値θRと制動圧指令値PBRとを算出する。すなわち、目標駆動軸トルクTW*を係数KGEARで除算する除算器61で目標エンジントルクTE*を算出し、その目標エンジントルクTE*とエンジン回転速度NEとに基づき予め設定されたエンジンマップを参照するスロットル開度算出部62でスロットル開度指令値θRを算出し、そのスロットル開度θをリミッタ63でスロットルアクチュエータ12によって制御可能な範囲に制限し、その制限したものをエンジン出力制御装置11に出力する。また同時に、目標駆動軸トルクTW*をエンジンブレーキ補正演算部65で算出された値KGEAR{TE0−JE(dNE/dt)}(JE:エンジンイナーシャ、TE0:スロットル開度θRが“0”のときのエンジントルク、NE:エンジン回転速度)から減算する減算器64で目標ブレーキトルクTBR*を算出し、その目標ブレーキトルクTBR*をKBT(=8・AB・RB・μB,AB:ブレーキシリンダ面積、RB:ロータ有効半径、μB:パッド摩擦係数)で除する除算器66で制動圧指令値PBRを算出し、その制動圧指令値PBRをリミッタ67でブレーキアクチュエータ7によって制御可能な範囲に制限し、その制限したものを制動制御装置8に出力する。
【0019】
また同時に、この追従制御用コントローラ20では、自車に最も近い新たな新先行車が検出されたことを報知するための演算処理が実行される。この演算処理は、所定時間ΔT(例えば10msec. )毎のタイマ割込処理として実行されるようになっており、図5のフローチャートに示すように、まずステップS101で、自車に最も近い先行車として新たな新先行車が前記車間距離センサ14で検出されたか否かを判定し、新たな新先行車が検出された場合にはステップS102に移行し、そうでない場合にはメインプログラムに復帰する。新たな新先行車が自車に最も近い先行車であるか否かを判定する方法としては、図6に示すように、それまで自車に最も近い先行車であった旧先行車Aとの車間距離Laより当該新先行車Bとの車間距離Lbが小さいか否かを判定し、当該新先行車Bとの車間距離Lbが旧先行車との車間距離Laより小さい場合には当該新先行車が自車に最も近い先行車であると判定する。なお、直線路を走行しているときには、前記車間距離センサ14で検出される車間距離Lに重みづけをし、自車から前方に向けられた直線からの最小離間距離が小さいものほど自車に近い先行車であると評価されるように補正してもよい。また、ヨーレートや舵角に基づいて自車の将来の軌道を予測し、その将来の軌道からの最小離間距離が小さいものほど自車に近い先行車である評価されるようにしてもよい。
【0020】
このように本実施形態では、前記車間距離センサ14で検出される車間距離Lに基づいて、自車に最も近い先行車を検出するように構成したため、自車に最も近い先行車であるか否かを容易に判定することができる。
また、本実施形態では、自車に最も近い先行車であるか否かを車間距離Lのみに基づいて判定する例を示したが、これに限定されるものではなく、例えば特開2002−087109号公報に記載されているように、車間距離Lと相対速度変化とから判定するようにしてもよい。また、車間距離センサ14としてレーザレーダを用いるときには、車間距離データと共にスイープ角データも取得し、それまで自車に最も近い先行車であった旧先行車とは異なるスイープ角を有する新先行車との車間距離が当該旧先行車との車間距離より小さい場合に当該新先行車が自車に最も近い先行車であると判定するようにしてもよい。
【0021】
前記ステップS102では、前記ステップS101で新たな新先行車が自車に最も近い先行車であると判定されてから、それまで自車に最も近い先行車であった旧先行車が再び自車に最も近い先行車になるまでの時間を算出する。具体的には、図6に示すように、自車に最も近い先行車であると判定された新たな新先行車Bが、それまで自車に最も近い先行車であった旧先行車Aを追い越すまでの時間である予測追越時間toを、前記旧先行車Aとの車間距離La前記新先行車Bとの車間距離Lbと当該新先行車Bの車速Vbと自車速VSとに基づき、下記(2)式に従って予測算出する。
【0022】
to=(La―Lb)/(Vb―VS)………(2)
このように本実施形態では、新たな新先行車が自車に最も近い先行車であると判定されてから、それまで自車に最も近い先行車であった旧先行車が自車に最も近い先行車になるまでの時間を算出する構成としたため、自車に最も近い先行車が一時的に変更される時間を容易に予測することができる。
【0023】
前記ステップS103では、前記ステップS102で算出される予測追越時間toが、自車に最も近い先行車として新たな先行車を検出したことが連続して報知されたときにそれらの報知の意味を運転者が理解できる最小間隔である第1所定時間t1(例えば1〜2秒)より大きいか否かを判定し、当該第1所定時間t1より大きい場合にはステップS106に移行し、そうでない場合にはステップS104に移行する。
【0024】
前記ステップS104では、前記第1所定時間t1より大きい第2所定時間t2が経過するまでタイマをカウントしてから、ステップS105に移行する。
前記ステップS105では、前記ステップS101で自車に最も近い先行車であると判定された新たな新先行車が、それまで自車に最も近い先行車であった旧先行車より自車に近い先行車として再び検出されるか否かを判定し、検出された場合には前記ステップS106に移行し、そうでない場合にはメインプログラムに復帰する。
【0025】
前記ステップS106では、自車に最も近い先行車として新たな新先行車が検出されたことを報知する指令値を報知装置17に出力してから、メインプログラムに復帰する。
次に、本実施形態における先行車追従制御装置の動作を説明する。
まず、図6に示すように、自車線上の先行車Aに追従しながら曲線路を走行しているときに、隣接車線を走行する他車両Bが自車を追い越して車間距離センサ14のレーダ検出範囲内に進入したとする。すると、追従制御用コントローラ20の演算処理で、まず自車に最も近い先行車として前記他車両Bが検出されて、ステップS101の判定が「Yes」となり、ステップS102でそれまで自車に最も近い先行車であった旧先行車Aが再び自車に最も近い先行車になるまでの予測追越時間toが算出され、当該予測追越時間toが自車に最も近い先行車として新たな新先行車Bを検出したことが連続して報知されたときに、それらの報知の意味を運転者が理解できる最小間隔である第1所定時間t1以下であったとすると、ステップS103の判定が「No」となり、ステップS104で前記第1所定時間t1より大きい第2所定時間t2が経過するまでタイマがカウントされる。
【0026】
このように本実施形態では、自車に最も近い先行車として新たな新先行車Bが検出されると共に、それまで自車に最も近い先行車であった旧先行車Aが第1所定時間t1後に自車に最も近い先行車になると判定されたときには、自車に最も近い先行車として新たな先行車が検出されたことの報知を禁止する構成としたため、当該新先行車Bが自車に最も近い先行車として一瞬だけ検出されても、当該新先行車Bが検出されたことが報知されることはなく、運転者に違和感を与えてしまうことを防止できる。ちなみに、自車に最も近い先行車として新たな新先行車Bが検出されたときに、自車に最も近い先行車として新たな先行車が検出されたことを常に報知する従来の方法では、例えば隣接車線を走行する他車両Bが自車と先行車Aとを追い越すときに、当該他車両Bが自車に最も近い先行車として一瞬だけ検出されて、自車に最も近い先行車として新たな先行車が検出されたことが短時間に連続して報知され、運転者に違和感を与えてしまう恐れがある。
【0027】
またここで、前記タイマがカウントされているうちに、隣接車線を走行する他車両Bが、それまで自車に最も近い先行車であった旧先行車Aと自車との間に車線変更をしてきたとする。すると、ステップS105の判定が「Yes」となり、ステップS106で自車に最も近い先行車として新たな先行車が検出されたことを報知する指令値が報知装置17に出力される。
【0028】
このように本実施形態では、自車に最も近い先行車として新たな新先行車Bが検出されると共に、それまで自車に最も近い先行車であった旧先行車Aが第1所定時間t1後に自車に最も近い先行車となると判定されてから、当該第1所定時間t1より大きい第2所定時間t2が経過したときに当該旧先行車Aより自車に近い先行車として前記新先行車Bが検出されたときには、自車に最も近い先行車として新たな先行車が検出されたことを報知する構成としたため、自車の走行環境に対応した制駆動力制御が可能となる。
【0029】
次に、本発明の第2実施形態を図面に基づいて説明する。この第2実施形態は、自車に最も近い先行車として新たな新先行車が検出されると共に、それまで自車に最も近い先行車であった旧先行車が第1所定時間t1後に自車に最も近い先行車になると判定されたときには、当該旧先行車との車間距離Lが目標車間距離L*に一致するように制駆動力を制御するようにしたものである。すなわち、前記第1実施形態の追従制御用コントローラ20で行われる演算処理が、前記第1実施形態の図5のものから、図7のものに変更されている。そして、図7に示すように、図5のフローチャートのステップS103とS104との間にステップS201が追加されると共に、ステップS106に代えてステップS202が設けられている点が上記第1実施形態と異なる。なお、図7の演算処理は、前記第1実施形態の図5の演算処理と同等のステップを多く含んでおり、同等のステップには同等の符号を付して、その詳細な説明を省略する。
【0030】
前記ステップS201では、前記ステップS101で新たな新先行車が自車に最も近い先行車であると判定されるまで自車に最も近い先行車であった旧先行車との車間距離Lを目標車間距離L*に一致させるように前記目標車間距離設定部42に指令値を出力してから、前記ステップS105に移行する。
また、前記ステップS202では、前記ステップS101で自車に最も近い先行車であると判定された新たな新先行車との車間距離Lを目標車間距離L*に一致させるように前記目標車間距離設定部42に指令値を出力してから、メインプログラムに復帰する。
【0031】
次に、本実施形態における先行車追従制御装置の動作を説明する。
まず、図6に示すように、自車線上の先行車Aに追従しながら曲線路を走行しているときに、隣接車線を走行する他車両Bが自車を追い越して車間距離センサ14のレーダ検出範囲内に進入したとする。すると、追従制御用コントローラ20の演算処理で、まず自車に最も近い先行車として前記他車両Bが検出されて、ステップS101の判定が「Yes」となり、ステップS102でそれまで自車に最も近い先行車であった旧先行車Aが再び自車に最も近い先行車になるまでの予測追越時間toが算出され、当該予測追越時間toが所定の第1所定時間t1以下であったとすると、ステップS103の判定が「No」となり、ステップS201で、前記旧先行車Aとの車間距離Laを目標車間距離L*に一致させるように前記目標車間距離設定部42に指令値が出力され、ステップS104で前記第1所定時間t1より大きい第2所定時間t2が経過するまでタイマがカウントされる。
【0032】
このように本実施形態では、自車に最も近い先行車として新たな新先行車Bが検出されると共に、それまで自車に最も近い先行車であった旧先行車Aが第1所定時間t1後に自車に最も近い先行車になると判定されたときには、当該旧先行車Bとの車間距離Lbが目標車間距離L*に一致するように制駆動力を制御する構成としたため、当該新先行車Bが自車に最も近い先行車として一瞬だけ検出されても、当該新先行車Bに追従走行するように制駆動力が制御されることはなく、運転者に違和感を与えてしまうことを防止できる。ちなみに、自車に最も近い先行車として検出された先行車に常に追従走行する従来の方法では、例えば隣接車線を走行する他車両Bが自車と先行車Aとを追い越すときに、当該他車両Bが自車に最も近い先行車として一瞬だけ検出されて、当該他車両Bに追従走行するようにスロットルアクチュエータ等が制御され、運転者に違和感を与えてしまう恐れがあった。
【0033】
またここで、前記タイマがカウントされているうちに、隣接車線を走行する他車両Bが、それまで自車に最も近い先行車であった旧先行車Aと自車との間に車線変更してきたとする。すると、ステップS105の判定が「Yes」となり、ステップS202で自車に最も近い先行車であると判定された新たな新先行車との車間距離Lを目標車間距離L*に一致させるように前記目標車間距離設定部42に指令値が出力される。
【0034】
このように本実施形態では、自車に最も近い先行車として新たな新先行車Bが検出されると共に、それまで自車に最も近い先行車であった旧先行車Aが第1所定時間t1後に自車に最も近い先行車となると判定されてから、当該第1所定時間t1より大きい第2所定時間t2が経過したときに当該旧先行車Aより自車に近い先行車として前記新先行車Bが検出されたときには、当該新先行車Bとの車間距離Lが目標車間距離L*に一致するように制駆動力を制御する構成としたため、自車の走行環境に対応した制駆動力制御が可能となる。
【0035】
なお、上記実施の形態では、車間距離センサ14は車間距離検出手段に対応し、車速センサ13は車速検出手段に対応し、目標車間距離設定部42は目標車間距離設定手段に対応し、車間距離制御部40,車速制御部50,駆動軸トルク制御部60及びステップS201,S202は制駆動力制御手段に対応し、ステップS101は近傍車検出手段に対応し、ステップS102,S103は近傍車変更予測手段に対応する。
【0036】
また、上記第1及び第2の実施形態においては、車間距離センサ14としてレーザレーダを使用した場合について説明したが、これに限定されるものではなく、ミリ波レーダ等の他の測距装置を使用してもよい。さらにまた、上記第1及び第2の実施形態においては、追従制御用コントローラ20でソフトウェアによる演算処理を行う場合について説明したが、これに限定されるものではなく、関数発生器、比較器、演算器等を組み合わせて構成した電子回路でなるハードウェアを適用して構成するようにしてもよい。
【0037】
また、上記第1及び第2の実施形態においては、ブレーキアクチュエータ7としてディスクブレーキを適用した場合について説明したが、これに限定されるものではなく、ドラムブレーキ等の他のアクチュエータを適用することができることは勿論、制動圧以外に電気的に制御されるブレーキアクチュエータを適用してもよく、この場合には、駆動軸トルク制御部60で目標制動圧PBRに代えて、目標電流等の指令値を演算し、これを指令値に基づいてブレーキアクチュエータを制御する制動制御装置8に出力するようにすればよい。
【0038】
さらに、上記第1及び第2の実施形態においては、後輪駆動車に本発明を適用した場合について説明したが、前輪駆動車に本発明を適用することもでき、また回転駆動源としてエンジン2を適用した場合について説明したが、これに限定されるものではなく、電動モータを適用することもでき、さらには、エンジンと電動モータとを使用するハイブリッド仕様車にも本発明を適用することができる。
【0039】
また、図8に示すように、上記第1の実施形態及び第2の実施形態とを組み合わせて、自車に最も近い先行車として新たな新先行車が検出されると共に、それまで自車に最も近い先行車であった旧先行車が第1所定時間t1後に自車に最も近い先行車になると判定されたときには、当該旧先行車との車間距離Lが目標車間距離L*に一致するように制駆動力を制御すると共に、自車に最も近い先行車として新たな先行車が検出されたことの報知の禁止とを同時に行うようにしてもよい。
【図面の簡単な説明】
【図1】本発明の先行車追従制御装置の一実施形態を示す概略構成図である。
【図2】図1の報知装置を拡大して示す要部拡大図である。
【図3】図1の追従制御用コントローラ内で実行される追従処理の具体的構成を示すブロック図である。
【図4】図3の駆動軸トルク制御部を拡大して示す要部拡大図である。
【図5】図1の追従制御用コントローラ内で実行される演算処理を示すフローチャートである。
【図6】本発明の動作を説明するための説明図である。
【図7】本発明の第2実施形態において、図1の追従制御用コントローラ内で実行される演算処理を示すフローチャートである。
【図8】図1の追従制御用コントローラ内で実行される演算処理の変形例を示すフローチャートである。
【符号の説明】
1FL〜1FRは車輪
2はエンジン
3は自動変速機
4はプロペラシャフト
5は最終減速装置
6は車軸
7はブレーキアクチュエータ
8は制動制御装置
9は前記推定車体速度演算部
11はエンジン出力制御装置
12はスロットルアクチュエータ
13は車速センサ
14は車間距離センサ
15はエンジン回転速度センサ
17は報知装置
20は追従制御用コントローラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a preceding vehicle follow-up control device that controls braking / driving force so that an inter-vehicle distance with a preceding vehicle coincides with a target inter-vehicle distance.
[0002]
[Prior art]
Conventionally, as such a preceding vehicle follow-up control device, a target inter-vehicle distance is calculated based on the own vehicle speed, a preceding vehicle closest to the own vehicle is detected by an inter-vehicle distance sensor, and the inter-vehicle distance from the preceding vehicle is Some control the throttle actuator or the like so as to match the target inter-vehicle distance.
[0003]
[Problems to be solved by the invention]
However, in the conventional preceding vehicle follow-up control device described above, control is performed so that the inter-vehicle distance with the preceding vehicle closest to the own vehicle coincides with the target inter-vehicle distance. When the vehicle overtakes the vehicle and the preceding vehicle, the other vehicle is detected as the preceding vehicle closest to the own vehicle for a moment and the throttle actuator or the like is controlled so as to follow the vehicle, or the preceding vehicle closest to the own vehicle. As a result, it may be reported that a new preceding vehicle has been detected continuously in a short period of time, and the driver may feel uncomfortable.
[0004]
Therefore, the present invention has been made paying attention to the problems of the conventional preceding vehicle follow-up control device described above, and it is an object to provide a preceding vehicle follow-up control device that can prevent the driver from feeling uncomfortable. And
[0005]
[Means for Solving the Problems]
In order to solve the above-described problem, the preceding vehicle follow-up control device according to the present invention has detected a new new preceding vehicle as the preceding vehicle closest to the own vehicle and has been the preceding vehicle closest to the own vehicle until then. The braking / driving force is controlled so that the inter-vehicle distance with the old preceding vehicle coincides with the target inter-vehicle distance when it is determined that the old preceding vehicle becomes the preceding vehicle closest to the host vehicle after the first predetermined time. To do.
[0006]
【The invention's effect】
Therefore, according to the preceding vehicle follow-up control device of the present invention, a new new preceding vehicle is detected as the preceding vehicle closest to the own vehicle, and the old preceding vehicle that has been the nearest preceding vehicle until then is the first preceding vehicle. When it is determined that the preceding vehicle is closest to the host vehicle after one predetermined time, the braking / driving force is controlled so that the inter-vehicle distance with the old preceding vehicle matches the target inter-vehicle distance. When the other vehicle overtakes the vehicle and the preceding vehicle, the braking / driving force is controlled so that the vehicle follows the other vehicle even if the other vehicle is detected as the preceding vehicle closest to the own vehicle. It is possible to prevent the driver from feeling uncomfortable.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment in which the present invention is applied to a rear wheel drive vehicle. In the figure, 1FL and 1FR are front wheels as driven wheels, and 1RL and 1RR are rear wheels as drive wheels. The rear wheels 1RL and 1RR are driven to rotate by the driving force of the engine 2 being transmitted through the automatic transmission 3, the propeller shaft 4, the final reduction gear 5, and the axle 6.
[0008]
The front wheels 1FL and 1FR and the rear wheels 1RL and 1RR are provided with a brake actuator 7 composed of a disc brake or the like that generates a braking force. The brake actuator 7 is provided with a braking control device 8 that controls the braking force. The braking control device 8 is configured to control the braking hydraulic pressure in accordance with a depression amount of a brake pedal (not shown) and a braking pressure command value PBR from a follow-up control controller 20 described later.
[0009]
The engine 2 is provided with an engine output control device 11 for controlling the output thereof. The engine output control device 11 is configured to control the throttle actuator 12 in accordance with a depression amount of an accelerator pedal (not shown) and a throttle opening command value θR from a follow-up control controller 20 described later. Further, a vehicle speed sensor 13 for detecting the host vehicle speed VS by detecting the rotational speed of the output shaft provided on the output side of the automatic transmission 3 is provided.
[0010]
On the other hand, a radar inter-vehicle distance sensor 14 for detecting the inter-vehicle distance from the preceding vehicle is provided at the lower part of the vehicle body on the front side of the vehicle. The inter-vehicle distance sensor 14 is configured to detect the inter-vehicle distance L by sweeping laser light forward of the vehicle and receiving reflected light from the preceding vehicle. The engine 2 is provided with an engine speed sensor 15 for detecting the engine speed NE.
[0011]
In addition, a notification device 17 that notifies that a new preceding vehicle has been detected as the preceding vehicle closest to the host vehicle is provided in the passenger compartment. As shown in FIG. 2, the notification device 17 has a display device such as an LCD or LED, and blinks the captured symbol 18 on the display device in accordance with a command value from a follow-up control controller 20 described later. It is configured. In this embodiment, an example is shown in which a display device notifies that a new new preceding vehicle has been detected as the preceding vehicle closest to the host vehicle, but the present invention is not limited to this, for example, a speaker or the like You may make it alert | report by an audio equipment, and you may make it alert | report by what combined those display devices and an audio equipment.
[0012]
Then, the own vehicle speed VS output from the vehicle speed sensor 13, the inter-vehicle distance L output from the inter-vehicle distance sensor 14, and the engine rotational speed NE output from the engine rotational speed sensor 15 are the follow-up control controller 20. In the controller 20 for follow-up control, when the preceding vehicle is captured, the inter-vehicle distance L is made to coincide with the target inter-vehicle distance L *, and when the preceding vehicle is not captured, the driver determines the own vehicle speed VS. A braking pressure command value PBR and a throttle opening command value θR that match the set vehicle speed VSET are output.
[0013]
This follow-up control controller 20 includes a microcomputer and its peripheral devices, and constitutes a control block shown in FIG. 3 according to the software form of the microcomputer. This control block measures the time from when the inter-vehicle distance sensor 14 sweeps the laser light until it receives the reflected light of the preceding vehicle, and calculates the inter-vehicle distance L with respect to the preceding vehicle. And the target inter-vehicle distance L * is calculated based on the host vehicle speed VS read from the estimated vehicle body speed calculation unit 9, and the inter-vehicle distance L calculated by the ranging signal processing unit 21 matches the target inter-vehicle distance L *. An inter-vehicle distance control unit 40 for calculating the target vehicle speed VL * to be calculated, a target acceleration / deceleration G * based on the target vehicle speed VL * calculated by the inter-vehicle distance control unit 40, and based on the target acceleration / deceleration G *. A vehicle speed control unit 50 for calculating the target drive shaft torque TW *, a throttle opening command value θR and a braking pressure command value PBR are calculated based on the target drive shaft torque TW * calculated by the vehicle speed control unit 50, and The And a drive shaft torque controller 60 outputs the Tsu torr actuator 12 and the brake actuator 7.
[0014]
The inter-vehicle distance control unit 40 is calculated by a target inter-vehicle distance setting unit 42 that calculates a target inter-vehicle distance L * based on the host vehicle speed VS output from the vehicle speed sensor 13, and the target inter-vehicle distance setting unit 42. And an inter-vehicle distance control calculation unit 43 that calculates a target vehicle speed VL * that matches the inter-vehicle distance L output from the ranging signal processing unit 21 with the target inter-vehicle distance L *.
[0015]
Here, the target inter-vehicle distance setting unit 42 stops the inter-vehicle time T0 which is the time until the host vehicle reaches the position L0 [m] behind the preceding vehicle, the host vehicle speed VS detected by the vehicle speed sensor 13, and the stop. Based on the hourly inter-vehicle distance LS, the target inter-vehicle distance L * is calculated according to the following equation (1).
L * = VS × T0 + LS (1)
By adopting the concept of this inter-vehicle time T0, the target inter-vehicle distance L * is calculated so that the inter-vehicle distance L increases as the host vehicle speed VS increases.
[0016]
Further, the vehicle speed control unit 50 captures the target vehicle speed V whichever is smaller between the target vehicle speed VL * output from the inter-vehicle distance control unit 40 and the set vehicle speed VSET set by the driver when the preceding vehicle is being captured. * When the preceding vehicle is not captured, the target vehicle speed setting unit 51 sets the set vehicle speed VSET to the target vehicle speed V *, and the target vehicle speed V * set by the target vehicle speed setting unit 51 is equal to the host vehicle speed VS. , A target acceleration / deceleration calculation unit 52 that calculates the target acceleration / deceleration G * so as to match, a target acceleration / deceleration limiting unit 53 that limits the target acceleration / deceleration G * calculated by the target acceleration / deceleration calculation unit 52, and the target A target drive shaft torque calculator 54 that calculates a target drive shaft torque TW * based on the target acceleration / deceleration G * restricted by the acceleration / deceleration limiter 53.
[0017]
The target drive shaft torque calculation unit 54 multiplies the target acceleration / deceleration G * (n) restricted by the target acceleration / deceleration restriction unit 53 by the vehicle mass M to obtain a target braking / driving force F * (= M · G *). (N)) and a multiplier 54b for calculating the target drive shaft torque TW * by multiplying the target braking / driving force F * output from the multiplier 54a by the tire radius RW. doing.
[0018]
Further, as shown in FIG. 4, the drive shaft torque controller 60 calculates a throttle opening command value θR and a braking pressure command value PBR for realizing the target drive shaft torque TW *. That is, the target engine torque TE * is calculated by the divider 61 that divides the target drive shaft torque TW * by the coefficient KGEAR, and a preset engine map is referred to based on the target engine torque TE * and the engine speed NE. A throttle opening command value θR is calculated by the throttle opening calculation unit 62, the throttle opening θ is limited to a range that can be controlled by the throttle actuator 12 by the limiter 63, and the limited value is output to the engine output control device 11. To do. At the same time, the value KGEAR {TE0−JE (dNE / dt)} calculated by the engine brake correction calculation unit 65 for the target drive shaft torque TW * (JE: engine inertia, TE0: throttle opening θR is “0”) The target brake torque TBR * is calculated by a subtractor 64 that subtracts from the engine torque, NE: engine rotation speed, and the target brake torque TBR * is calculated as KBT (= 8 · AB · RB · μB, AB: brake cylinder area, A braking pressure command value PBR is calculated by a divider 66 divided by RB: rotor effective radius, μB: pad friction coefficient), and the braking pressure command value PBR is limited to a range controllable by the brake actuator 7 by a limiter 67; The limited one is output to the braking control device 8.
[0019]
At the same time, the follow-up control controller 20 executes a calculation process for notifying that a new new preceding vehicle closest to the host vehicle has been detected. This calculation process is executed as a timer interruption process every predetermined time ΔT (for example, 10 msec.), And as shown in the flowchart of FIG. 5, first, in step S101, the preceding vehicle closest to the own vehicle. It is determined whether or not a new new preceding vehicle has been detected by the inter-vehicle distance sensor 14, and if a new new leading vehicle is detected, the process proceeds to step S102, and if not, the process returns to the main program. . As a method for determining whether or not the new new preceding vehicle is the closest preceding vehicle, as shown in FIG. It is determined whether the inter-vehicle distance Lb with the new preceding vehicle B is smaller than the inter-vehicle distance La. If the inter-vehicle distance Lb with the new preceding vehicle B is smaller than the inter-vehicle distance La with the old preceding vehicle, the new preceding vehicle is determined. It is determined that the vehicle is the closest preceding vehicle. When traveling on a straight road, the inter-vehicle distance L detected by the inter-vehicle distance sensor 14 is weighted, and the smaller the minimum distance from the straight line directed forward from the own vehicle is, the smaller the vehicle is. You may correct | amend so that it may be evaluated that it is a near preceding vehicle. Further, the future track of the own vehicle may be predicted based on the yaw rate or the steering angle, and the smaller the minimum separation distance from the future track, the more likely the preceding vehicle is to be evaluated.
[0020]
As described above, in the present embodiment, since the preceding vehicle closest to the own vehicle is detected based on the inter-vehicle distance L detected by the inter-vehicle distance sensor 14, it is determined whether or not the preceding vehicle is closest to the own vehicle. Can be easily determined.
Further, in the present embodiment, an example in which it is determined based on only the inter-vehicle distance L whether or not the preceding vehicle is the closest to the own vehicle is shown, but the present invention is not limited to this, and for example, JP-A-2002-087109 As described in the publication, it may be determined from the inter-vehicle distance L and the relative speed change. When a laser radar is used as the inter-vehicle distance sensor 14, the sweep angle data is acquired together with the inter-vehicle distance data, and a new preceding vehicle having a sweep angle different from that of the old preceding vehicle that has been the closest to the own vehicle until then. When the inter-vehicle distance is smaller than the inter-vehicle distance with the old preceding vehicle, it may be determined that the new preceding vehicle is the preceding vehicle closest to the own vehicle.
[0021]
In step S102, after it is determined in step S101 that the new new preceding vehicle is the closest preceding vehicle, the old preceding vehicle that was the closest preceding vehicle until then becomes the own vehicle again. Calculate the time to reach the nearest preceding vehicle. Specifically, as shown in FIG. 6, the new new preceding vehicle B determined to be the closest preceding vehicle to the own vehicle is replaced with the old preceding vehicle A that was the preceding preceding vehicle closest to the own vehicle. The predicted overtaking time to, which is the time until overtaking, is based on the inter-vehicle distance La to the old preceding vehicle A, the inter-vehicle distance Lb to the new preceding vehicle B, the vehicle speed Vb of the new preceding vehicle B, and the host vehicle speed VS. Prediction is calculated according to the following equation (2).
[0022]
to = (La−Lb) / (Vb−VS) (2)
Thus, in this embodiment, after it is determined that the new new preceding vehicle is the closest preceding vehicle, the old preceding vehicle that was the closest preceding vehicle until then is the closest to the own vehicle. Since the time until the preceding vehicle is calculated is calculated, the time when the preceding vehicle closest to the host vehicle is temporarily changed can be easily predicted.
[0023]
In step S103, when the predicted passing time to calculated in step S102 is continuously informed that a new preceding vehicle has been detected as the preceding vehicle closest to the host vehicle, the meaning of the notification is given. It is determined whether or not it is longer than a first predetermined time t1 (for example, 1 to 2 seconds) that is the minimum interval that can be understood by the driver. If it is longer than the first predetermined time t1, the process proceeds to step S106. Then, the process proceeds to step S104.
[0024]
In step S104, the timer is counted until a second predetermined time t2 greater than the first predetermined time t1 has elapsed, and then the process proceeds to step S105.
In step S105, the new new preceding vehicle determined to be the preceding vehicle closest to the own vehicle in step S101 is closer to the own vehicle than the old preceding vehicle that was the closest preceding vehicle to the previous vehicle. It is determined whether or not the vehicle is detected again. If it is detected, the process proceeds to step S106. If not, the process returns to the main program.
[0025]
In step S106, a command value for notifying that a new new preceding vehicle has been detected as the preceding vehicle closest to the host vehicle is output to the notification device 17, and then the process returns to the main program.
Next, the operation of the preceding vehicle follow-up control device in this embodiment will be described.
First, as shown in FIG. 6, when traveling on a curved road following the preceding vehicle A on the own lane, the other vehicle B traveling on the adjacent lane overtakes the own vehicle and the radar of the inter-vehicle distance sensor 14 Assume that the vehicle has entered the detection range. Then, in the calculation process of the tracking control controller 20, the other vehicle B is first detected as the preceding vehicle closest to the own vehicle, the determination in step S101 becomes "Yes", and the closest to the own vehicle until then in step S102. The predicted overtaking time to until the old preceding vehicle A, which was the preceding vehicle, becomes the closest preceding vehicle again is calculated, and a new new preceding vehicle is calculated as the preceding vehicle closest to the own vehicle. When it is continuously notified that the vehicle B has been detected, if it is less than or equal to the first predetermined time t1, which is the minimum interval at which the driver can understand the meaning of these notifications, the determination in step S103 is “No”. In step S104, the timer is counted until a second predetermined time t2 greater than the first predetermined time t1 has elapsed.
[0026]
Thus, in the present embodiment, a new new preceding vehicle B is detected as the preceding vehicle closest to the own vehicle, and the old preceding vehicle A that has been the closest preceding the own vehicle until then is the first predetermined time t1. When it is determined that the preceding vehicle closest to the host vehicle is to be detected later, a notification that a new preceding vehicle has been detected as the preceding vehicle closest to the host vehicle is prohibited. Even if it is detected for a moment as the nearest preceding vehicle, it is not notified that the new preceding vehicle B has been detected, and it is possible to prevent the driver from feeling uncomfortable. Incidentally, when a new new preceding vehicle B is detected as a preceding vehicle closest to the own vehicle, in the conventional method of always informing that a new preceding vehicle is detected as the closest preceding vehicle, for example, When the other vehicle B traveling in the adjacent lane overtakes the own vehicle and the preceding vehicle A, the other vehicle B is detected for a moment as the preceding vehicle closest to the own vehicle, and new as the preceding vehicle closest to the own vehicle. The detection of the preceding vehicle is continuously reported in a short time, and the driver may feel uncomfortable.
[0027]
Also, here, while the timer is counted, the other vehicle B traveling in the adjacent lane changes the lane between the old preceding vehicle A and the own vehicle that was the closest preceding vehicle. Suppose you have. Then, the determination in step S105 is “Yes”, and a command value for notifying that a new preceding vehicle has been detected as the preceding vehicle closest to the host vehicle is output to the notification device 17 in step S106.
[0028]
Thus, in the present embodiment, a new new preceding vehicle B is detected as the preceding vehicle closest to the own vehicle, and the old preceding vehicle A that has been the closest preceding the own vehicle until then is the first predetermined time t1. The new preceding vehicle as the preceding vehicle closer to the own vehicle than the old preceding vehicle A when a second predetermined time t2 greater than the first predetermined time t1 has elapsed since it is determined that the preceding vehicle is closest to the own vehicle later. When B is detected, since it is configured to notify that a new preceding vehicle is detected as the preceding vehicle closest to the own vehicle, the braking / driving force control corresponding to the traveling environment of the own vehicle becomes possible.
[0029]
Next, 2nd Embodiment of this invention is described based on drawing. In the second embodiment, a new new preceding vehicle is detected as the preceding vehicle closest to the own vehicle, and the old preceding vehicle that has been the closest to the own vehicle until then is the own vehicle after the first predetermined time t1. When the vehicle is determined to be the closest preceding vehicle, the braking / driving force is controlled such that the inter-vehicle distance L with the old preceding vehicle coincides with the target inter-vehicle distance L *. That is, the arithmetic processing performed by the follow-up control controller 20 of the first embodiment is changed from that of FIG. 5 of the first embodiment to that of FIG. As shown in FIG. 7, step S201 is added between steps S103 and S104 in the flowchart of FIG. 5, and step S202 is provided instead of step S106. Different. The arithmetic processing in FIG. 7 includes many steps equivalent to the arithmetic processing in FIG. 5 of the first embodiment, and the same steps are denoted by the same reference numerals and detailed description thereof is omitted. .
[0030]
In step S201, the inter-vehicle distance L with the old preceding vehicle that was the closest preceding vehicle is determined as the target inter-vehicle distance until it is determined in step S101 that the new new preceding vehicle is the closest preceding vehicle. After the command value is output to the target inter-vehicle distance setting unit 42 so as to match the distance L *, the process proceeds to step S105.
In step S202, the target inter-vehicle distance setting is performed so that the inter-vehicle distance L with the new new preceding vehicle determined to be the closest preceding vehicle in step S101 matches the target inter-vehicle distance L *. After the command value is output to the unit 42, the process returns to the main program.
[0031]
Next, the operation of the preceding vehicle follow-up control device in this embodiment will be described.
First, as shown in FIG. 6, when traveling on a curved road following the preceding vehicle A on the own lane, the other vehicle B traveling on the adjacent lane overtakes the own vehicle and the radar of the inter-vehicle distance sensor 14 Assume that the vehicle has entered the detection range. Then, in the calculation process of the tracking control controller 20, the other vehicle B is first detected as the preceding vehicle closest to the own vehicle, the determination in step S101 becomes "Yes", and the closest to the own vehicle until then in step S102. Assume that the predicted overtaking time to until the old preceding vehicle A, which was the preceding vehicle, becomes the closest preceding vehicle again is calculated, and the predicted overtaking time to is less than or equal to the predetermined first predetermined time t1. The determination in step S103 is “No”, and in step S201, a command value is output to the target inter-vehicle distance setting unit 42 so that the inter-vehicle distance La with the old preceding vehicle A matches the target inter-vehicle distance L *. In step S104, the timer is counted until a second predetermined time t2 greater than the first predetermined time t1 has elapsed.
[0032]
Thus, in the present embodiment, a new new preceding vehicle B is detected as the preceding vehicle closest to the own vehicle, and the old preceding vehicle A that has been the closest preceding the own vehicle until then is the first predetermined time t1. When it is determined that the preceding vehicle is closest to the host vehicle later, the braking / driving force is controlled so that the inter-vehicle distance Lb with the old preceding vehicle B matches the target inter-vehicle distance L *. Even if B is detected as a preceding vehicle closest to the host vehicle for a moment, the braking / driving force is not controlled so as to follow the new preceding vehicle B, thereby preventing the driver from feeling uncomfortable. it can. By the way, in the conventional method of always following the preceding vehicle detected as the preceding vehicle closest to the own vehicle, for example, when the other vehicle B traveling in the adjacent lane passes the own vehicle and the preceding vehicle A, the other vehicle When B is detected as a preceding vehicle closest to the host vehicle for a moment, the throttle actuator or the like is controlled so as to follow the other vehicle B, and the driver may feel uncomfortable.
[0033]
Also, here, while the timer is counted, the other vehicle B traveling in the adjacent lane changes the lane between the old preceding vehicle A and the own vehicle, which was the closest preceding vehicle. Suppose. Then, the determination in step S105 is “Yes”, and the inter-vehicle distance L with the new new preceding vehicle determined to be the closest preceding vehicle to the own vehicle in step S202 is made to coincide with the target inter-vehicle distance L *. The command value is output to the target inter-vehicle distance setting unit 42.
[0034]
Thus, in the present embodiment, a new new preceding vehicle B is detected as the preceding vehicle closest to the own vehicle, and the old preceding vehicle A that has been the closest preceding the own vehicle until then is the first predetermined time t1. The new preceding vehicle as the preceding vehicle closer to the own vehicle than the old preceding vehicle A when a second predetermined time t2 greater than the first predetermined time t1 has elapsed since it is determined that the preceding vehicle is closest to the own vehicle later. When B is detected, since the braking / driving force is controlled so that the inter-vehicle distance L with the new preceding vehicle B matches the target inter-vehicle distance L *, the braking / driving force control corresponding to the traveling environment of the host vehicle Is possible.
[0035]
In the above embodiment, the inter-vehicle distance sensor 14 corresponds to the inter-vehicle distance detection means, the vehicle speed sensor 13 corresponds to the vehicle speed detection means, the target inter-vehicle distance setting unit 42 corresponds to the target inter-vehicle distance setting means, and the inter-vehicle distance The control unit 40, the vehicle speed control unit 50, the drive shaft torque control unit 60, and steps S201 and S202 correspond to braking / driving force control means, step S101 corresponds to the neighboring vehicle detection means, and steps S102 and S103 represent the neighboring vehicle change prediction. Corresponds to the means.
[0036]
In the first and second embodiments, the case where the laser radar is used as the inter-vehicle distance sensor 14 has been described. However, the present invention is not limited to this, and other ranging devices such as a millimeter wave radar can be used. May be used. Furthermore, in the first and second embodiments, the case where the tracking control controller 20 performs arithmetic processing by software has been described. However, the present invention is not limited to this, and a function generator, a comparator, an arithmetic operation is performed. It may be configured by applying hardware composed of an electronic circuit configured by combining devices and the like.
[0037]
In the first and second embodiments, the case where a disc brake is applied as the brake actuator 7 has been described. However, the present invention is not limited to this, and other actuators such as a drum brake can be applied. Of course, a brake actuator that is electrically controlled in addition to the braking pressure may be applied. In this case, the drive shaft torque control unit 60 uses a command value such as a target current instead of the target braking pressure PBR. What is necessary is just to calculate and to output this to the braking control apparatus 8 which controls a brake actuator based on a command value.
[0038]
Further, in the first and second embodiments, the case where the present invention is applied to the rear wheel drive vehicle has been described. However, the present invention can also be applied to the front wheel drive vehicle, and the engine 2 can be used as a rotational drive source. However, the present invention is not limited to this, and an electric motor can be applied. Furthermore, the present invention can be applied to a hybrid specification vehicle using an engine and an electric motor. it can.
[0039]
Further, as shown in FIG. 8, a combination of the first embodiment and the second embodiment described above detects a new new preceding vehicle as a preceding vehicle closest to the own vehicle, and until then, When it is determined that the old preceding vehicle that was the nearest preceding vehicle becomes the nearest preceding vehicle after the first predetermined time t1, the inter-vehicle distance L with respect to the old preceding vehicle matches the target inter-vehicle distance L *. The braking / driving force may be controlled at the same time, and at the same time, a notification that a new preceding vehicle has been detected as the preceding vehicle closest to the host vehicle may be simultaneously performed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a preceding vehicle follow-up control device of the present invention.
FIG. 2 is an enlarged view of a main part showing the notification device of FIG. 1 in an enlarged manner.
FIG. 3 is a block diagram showing a specific configuration of tracking processing executed in the tracking control controller of FIG. 1;
4 is an enlarged view of a main part showing an enlarged drive shaft torque control unit of FIG. 3;
FIG. 5 is a flowchart showing arithmetic processing executed in the follow-up control controller in FIG. 1;
FIG. 6 is an explanatory diagram for explaining the operation of the present invention.
7 is a flowchart showing a calculation process executed in the follow-up control controller of FIG. 1 in the second embodiment of the present invention.
8 is a flowchart showing a modification of the arithmetic processing executed in the follow-up control controller of FIG.
[Explanation of symbols]
1FL to 1FR are wheels
2 is the engine
3 is an automatic transmission
4 is the propeller shaft
5 is the final reduction gear
6 is the axle
7 is the brake actuator
8 is a braking control device
9 is the estimated vehicle speed calculation unit
11 is an engine output control device
12 is a throttle actuator.
13 is a vehicle speed sensor
14 is an inter-vehicle distance sensor
15 is an engine speed sensor
17 is a notification device
20 is a controller for tracking control

Claims (7)

自車に最も近い先行車との車間距離が目標車間距離に一致するように制駆動力を制御し、自車に最も近い先行車として新たな新先行車が検出されると共に、それまで自車に最も近い先行車であった旧先行車が第1所定時間後に自車に最も近い先行車になると判定されたときには、当該旧先行車との車間距離が目標車間距離に一致するように制駆動力を制御することを特徴とする先行車追従制御装置。The braking / driving force is controlled so that the inter-vehicle distance with the preceding vehicle closest to the host vehicle matches the target inter-vehicle distance, and a new new preceding vehicle is detected as the preceding vehicle closest to the own vehicle. When it is determined that the previous preceding vehicle that is the closest preceding vehicle becomes the preceding preceding vehicle that is closest to the host vehicle after the first predetermined time, the vehicle is controlled so that the inter-vehicle distance with the old preceding vehicle matches the target inter-vehicle distance. A preceding vehicle follow-up control device characterized by controlling force. 先行車との車間距離を検出する車間距離検出手段と、自車の車速を検出する車速検出手段と、その車速検出手段で検出された車速に基づいて目標車間距離を設定する目標車間距離設定手段と、前記車間距離検出手段で検出される車間距離が前記目標車間距離設定手段で設定された目標車間距離に一致するように制駆動力を制御する制駆動力制御手段と、自車に最も近い先行車を検出する近傍車検出手段と、その近傍車検出手段で自車に最も近い先行車として新たな新先行車が検出されたときに、それまで自車に最も近い先行車であった旧先行車が第1所定時間後に自車に最も近い先行車となるかを判定する近傍車変更予測手段とを備え、
前記制駆動力制御手段は、前記近傍車変更予測手段で前記旧先行車が前記第1所定時間後に自車に最も近い先行車になると判定されたときには、前記車間距離検出手段で検出される当該旧先行車との車間距離が前記目標車間距離設定手段で設定された目標車間距離に一致するように制駆動力を制御することを特徴とする先行車追従制御装置。
Inter-vehicle distance detection means for detecting the inter-vehicle distance from the preceding vehicle, vehicle speed detection means for detecting the vehicle speed of the host vehicle, and target inter-vehicle distance setting means for setting the target inter-vehicle distance based on the vehicle speed detected by the vehicle speed detection means And braking / driving force control means for controlling braking / driving force so that the inter-vehicle distance detected by the inter-vehicle distance detecting means matches the target inter-vehicle distance set by the target inter-vehicle distance setting means, and closest to the host vehicle When a new new preceding vehicle is detected as a preceding vehicle closest to the subject vehicle by the neighboring vehicle detecting means for detecting the preceding vehicle and the neighboring vehicle detecting means, the old vehicle that has been the nearest preceding vehicle until then A nearby vehicle change prediction means for determining whether the preceding vehicle becomes the preceding vehicle closest to the host vehicle after the first predetermined time;
The braking / driving force control means is detected by the inter-vehicle distance detection means when the neighboring vehicle change prediction means determines that the old preceding vehicle becomes the preceding vehicle closest to the host vehicle after the first predetermined time. A preceding vehicle follow-up control device that controls braking / driving force so that an inter-vehicle distance with an old preceding vehicle coincides with a target inter-vehicle distance set by the target inter-vehicle distance setting means.
前記制駆動力制御手段は、前記近傍車検出手段で自車に最も近い先行車として新たな新先行車が検出されると共に、前記近傍車変更予測手段でそれまで自車に最も近い先行車であった旧先行車が前記第1所定時間後に自車に最も近い先行車となると判定されてから前記第1所定時間より大きい第2所定時間が経過したときに、前記近傍車検出手段で当該旧先行車より自車に近い先行車として前記新先行車が検出されたときには、前記車間距離検出手段で検出される当該新先行車との車間距離が前記目標車間距離設定手段で設定された目標車間距離に一致するように制駆動力を制御することを特徴とする請求項2に記載の先行車追従制御装置。The braking / driving force control means detects the new preceding vehicle as the preceding vehicle closest to the own vehicle by the neighboring vehicle detection means, and detects the preceding vehicle closest to the own vehicle until then by the neighboring vehicle change prediction means. When a second predetermined time greater than the first predetermined time elapses after it is determined that the old previous vehicle becomes the closest preceding vehicle after the first predetermined time, the neighboring vehicle detection means When the new preceding vehicle is detected as a preceding vehicle that is closer to the host vehicle than the preceding vehicle, the inter-vehicle distance from the new preceding vehicle detected by the inter-vehicle distance detecting means is the target inter-vehicle distance set by the target inter-vehicle distance setting means The preceding vehicle follow-up control device according to claim 2, wherein the braking / driving force is controlled so as to coincide with the distance. 先行車との車間距離を検出する車間距離検出手段と、自車の車速を検出する車速検出手段と、その車速検出手段で検出された車速に基づいて目標車間距離を設定する目標車間距離設定手段と、前記車間距離検出手段で検出される車間距離が前記目標車間距離設定手段で設定された目標車間距離に一致するように制駆動力を制御する制駆動力制御手段と、自車に最も近い先行車を検出する近傍車検出手段と、その近傍車検出手段で自車に最も近い先行車として新たな新先行車が検出されたときに、それまで自車に最も近い先行車であった旧先行車が第1所定時間後に自車に最も近い先行車となるかを判定する近傍車変更予測手段と、前記近傍車検出手段で検出される先行車が変更されたことを報知する報知手段とを備え、
前記報知手段は、前記近傍車変更予測手段で前記旧先行車が前記第1所定時間後に自車に最も近い先行車となると判定されたときには、前記近傍車検出手段で検出される先行車が変更されたことの報知を禁止することを特徴とする先行車追従制御装置。
Inter-vehicle distance detection means for detecting the inter-vehicle distance from the preceding vehicle, vehicle speed detection means for detecting the vehicle speed of the host vehicle, and target inter-vehicle distance setting means for setting the target inter-vehicle distance based on the vehicle speed detected by the vehicle speed detection means And braking / driving force control means for controlling braking / driving force so that the inter-vehicle distance detected by the inter-vehicle distance detecting means matches the target inter-vehicle distance set by the target inter-vehicle distance setting means, and closest to the host vehicle When a new new preceding vehicle is detected as a preceding vehicle closest to the subject vehicle by the neighboring vehicle detecting means for detecting the preceding vehicle and the neighboring vehicle detecting means, the old vehicle that has been the nearest preceding vehicle until then A neighboring vehicle change predicting unit that determines whether the preceding vehicle becomes the preceding vehicle closest to the host vehicle after the first predetermined time; an informing unit that notifies that the preceding vehicle detected by the neighboring vehicle detecting unit has been changed; With
The informing means changes the preceding vehicle detected by the neighboring vehicle detection means when the neighboring vehicle change predicting means determines that the old preceding vehicle will be the nearest preceding vehicle after the first predetermined time. A preceding vehicle follow-up control device, which prohibits notification of being performed.
前記報知手段は、前記近傍車検出手段で自車に最も近い先行車として新たな新先行車が検出されると共に、前記近傍車変更予測手段でそれまで自車に最も近い先行車であった旧先行車が前記第1所定時間後に自車に最も近い先行車となると判定されてから、前記第1所定時間より大きい第2所定時間が経過したときに前記近傍車検出手段で当該旧先行車より自車に近い先行車として前記新先行車が検出されたときには、前記近傍車検出手段で検出される先行車が変更されたことを報知することを特徴とする請求項4に記載の先行車追従制御装置。The notification means detects a new new preceding vehicle as the preceding vehicle closest to the own vehicle by the neighboring vehicle detection means, and the old vehicle that has been closest to the own vehicle until then by the neighboring vehicle change prediction means. When it is determined that the preceding vehicle becomes the preceding vehicle closest to the host vehicle after the first predetermined time, and the second predetermined time greater than the first predetermined time has elapsed, the neighboring vehicle detection means detects the preceding vehicle from the old preceding vehicle. 5. The preceding vehicle follow-up according to claim 4, wherein when the new preceding vehicle is detected as a preceding vehicle close to the own vehicle, notification is made that the preceding vehicle detected by the neighboring vehicle detecting means has been changed. Control device. 前記近傍車検出手段は、前記車間距離検出手段で検出された車間距離に基づいて、自車に最も近い先行車を検出することを特徴とする請求項2乃至請求項5のいずれかに記載の先行車追従制御装置。The said nearby vehicle detection means detects the preceding vehicle nearest to the own vehicle based on the inter-vehicle distance detected by the said inter-vehicle distance detection means. A preceding vehicle following control device. 前記近傍車変更予測手段は、前記近傍車検出手段で新先行車が検出されたときに、旧先行車が自車に最も近い先行車になるまでの時間を算出し、その時間が前記第1所定時間以下であるか否かによって、当該旧先行車が前記第1所定時間後に自車に最も近い先行車となるか否かを判定することを特徴とする請求項2乃至請求項6のいずれかに記載の先行車追従制御装置。The nearby vehicle change prediction means calculates a time until the old preceding vehicle becomes the preceding vehicle closest to the own vehicle when the new preceding vehicle is detected by the nearby vehicle detection means, and the time is the first time. 7. The method according to claim 2, wherein whether or not the old preceding vehicle becomes a preceding vehicle closest to the host vehicle after the first predetermined time is determined depending on whether or not the time is equal to or less than a predetermined time. The preceding vehicle follow-up control device according to claim 1.
JP2002200816A 2002-07-10 2002-07-10 Preceding vehicle tracking control device Expired - Lifetime JP3891059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002200816A JP3891059B2 (en) 2002-07-10 2002-07-10 Preceding vehicle tracking control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002200816A JP3891059B2 (en) 2002-07-10 2002-07-10 Preceding vehicle tracking control device

Publications (2)

Publication Number Publication Date
JP2004042723A true JP2004042723A (en) 2004-02-12
JP3891059B2 JP3891059B2 (en) 2007-03-07

Family

ID=31707527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200816A Expired - Lifetime JP3891059B2 (en) 2002-07-10 2002-07-10 Preceding vehicle tracking control device

Country Status (1)

Country Link
JP (1) JP3891059B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001476A (en) * 2005-06-24 2007-01-11 Nissan Motor Co Ltd Lane deviation prevention device and traveling controller for vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217099A (en) * 1992-02-05 1993-08-27 Toyota Motor Corp Traveling control device for vehicle
JPH09178849A (en) * 1995-12-25 1997-07-11 Toyota Motor Corp On-vehicle radar device
JP2000137900A (en) * 1998-11-04 2000-05-16 Denso Corp Precedent vehicle selecting device, vehicle-to-vehicle distance controller, inter-vehicle alarming device, and recording medium
JP2003200753A (en) * 2001-11-02 2003-07-15 Honda Motor Co Ltd Follow-up running device of vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217099A (en) * 1992-02-05 1993-08-27 Toyota Motor Corp Traveling control device for vehicle
JPH09178849A (en) * 1995-12-25 1997-07-11 Toyota Motor Corp On-vehicle radar device
JP2000137900A (en) * 1998-11-04 2000-05-16 Denso Corp Precedent vehicle selecting device, vehicle-to-vehicle distance controller, inter-vehicle alarming device, and recording medium
JP2003200753A (en) * 2001-11-02 2003-07-15 Honda Motor Co Ltd Follow-up running device of vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001476A (en) * 2005-06-24 2007-01-11 Nissan Motor Co Ltd Lane deviation prevention device and traveling controller for vehicle

Also Published As

Publication number Publication date
JP3891059B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
JP6123873B2 (en) Advanced driver support system for vehicle and control method thereof
US8396642B2 (en) Adaptive cruise control system
JP6497349B2 (en) Vehicle travel control device
CN107444403B (en) Vehicle travel control apparatus
US9409554B2 (en) Method for improving the driving stability
JP5794381B2 (en) Travel control device and travel control method
US7124010B2 (en) Driving assist system for vehicle
JP4013825B2 (en) Vehicle travel control device
WO2012157633A1 (en) Drive control device
JP3891059B2 (en) Preceding vehicle tracking control device
JP4670841B2 (en) Vehicle travel control device
JP2003205764A (en) Travel controller for vehicle
JP2004161175A (en) Travel speed control device
JP2002012134A (en) Collision preventing apparatus for vehicle
JP3692911B2 (en) Vehicle tracking control device
JP6967935B2 (en) Vehicle control device and vehicle control method
JP3820829B2 (en) Vehicle tracking control device
CN113928326B (en) Vehicle control device
JP7347457B2 (en) Driving support device and driving support method
JP3533736B2 (en) Inter-vehicle distance control device
JP3791307B2 (en) Vehicle tracking control device
JP3873900B2 (en) Vehicle tracking control device
JP7294512B2 (en) vehicle controller
JP2004106723A (en) Running vehicle speed controller
JP2023035542A (en) Lane deviation prevention device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3891059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

EXPY Cancellation because of completion of term