JP2004042004A - Method of treating soil mixed with burnt lime - Google Patents
Method of treating soil mixed with burnt lime Download PDFInfo
- Publication number
- JP2004042004A JP2004042004A JP2002232307A JP2002232307A JP2004042004A JP 2004042004 A JP2004042004 A JP 2004042004A JP 2002232307 A JP2002232307 A JP 2002232307A JP 2002232307 A JP2002232307 A JP 2002232307A JP 2004042004 A JP2004042004 A JP 2004042004A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- quicklime
- elution
- mixed
- heavy metals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Description
【0001】
【発明の属する技術の分野】
この発明は、生石灰混合土壌の処理方法に関する。さらに詳細には、主に揮発性炭化水素系物質が含まれた土壌から該物質を除去処理するなどの目的で、対土壌8〜20重量%の生石灰を投入、混合して土壌を処理する際に、生石灰の混合によりアルカリ性となった該処理土壌からのアルカリ成分の溶出を抑制するとともに、土壌中に含まれる有害重金属類や有害元素類の溶出を抑制する方法に関する。
【0002】
【従来の技術】
近年、トリクロロエチレンやベンゼンなどの揮発性炭化水素系物質による環境汚染が問題となっている。これらの物質が、不測の事態によって直接漏出、排出されて土壌中に混入し、そのまま放置されると、自然浸透や雨水などにより土壌中にさらに侵入して地下水を汚染することになり、人体に重大な影響を及ぼすことが懸念される。
【0003】
上記問題を解決するために、揮発性塩素化炭化水素系物質が含まれた土壌に、水と発熱反応する無機化合物を撹拌混合し、土壌中の揮発性塩素化炭化水素系物質を揮発させる方法が提案されている(特許第2589002号公報)。水と発熱反応する無機化合物としては、安全性や価格、発熱効率などの点から生石灰を好適に使用することができるが、揮発性炭化水素系物質を揮発させる目的で生石灰を土壌に混合する場合には、軟弱地盤を改良する目的で生石灰を土壌に混合していた従来の場合に比して、約2〜3倍量の生石灰を必要とすることから処理土壌がアルカリ性となり、知見はないがさらに雨水などによってアルカリ成分が溶出する問題が懸念される。
【0004】
また、鉱工業地帯やその周辺地域においては、6価クロムに代表される有害重金属類や砒素などの有害元素類による地質汚染がしばしば発生している。さらに、宅地化あるいは商業地化した工業跡地などにおいて、土壌に降り注いだ雨水などの浸透水に土壌中に含まれる有害重金属類や有害元素類が溶出し、地下水や河川を汚染して深刻な環境問題を引き起こしている。
【0005】
従来、このような有害重金属類や有害元素類を含有する汚染土壌によって引き起こされる問題に対処するために、汚染土壌の最終処分地への移送および隔離、薬剤による化学的処理、コンクリートなどによる固化処理などが採用されている。
【0006】
一方、ベントナイトは、自然界に存在する粘性土であって、膨潤性、懸濁性、粘着性、チキソトロピー性などの性能を有することから、ベントナイトを用いた遮水工法(特開昭63−67322号公報)や、高含水比土である地盤に対してベントナイトとセメントあるいは石灰などの固化材とを混合して遮水層を形成させることによる人工池などの遮水工法などが提案されている(特開平10−331152号公報参照)。
【0007】
【発明が解決しようとする課題】
揮発性炭化水素系物質を除去する目的などのために、多量の生石灰を土壌に混合処理した場合にアルカリ性となった土壌を中和する方法として、酸性の無機化合物などの中和剤を添加する方法が考えられる。しかしながら、中和剤は全体的に高価であるとともに、液体の中和剤を使用した場合には、土壌に均一に混合することが困難であるという問題点があった。また、固体の中和剤を使用した場合にも、本来、土壌は弱アルカリ性であるため中和度合の調整が難しいという問題点があった。
【0008】
また、多くの重金属類は、高アルカリ性下においては難溶解性の水酸化物を形成するため溶出が抑制される。しかしながら、雨水などの浸透により土壌のアルカリ性度が弱まったり、あるいは、生石灰混合によりアルカリ性となった土壌を中和するために中和剤を使用して土壌が酸性になると、土壌中の重金属類が溶出する可能性があるという問題点があった。
【0009】
この発明は、上記のような問題点に鑑み、揮発性炭化水素系物質や有害重金属類などで汚染された土壌に対し、揮発性炭化水素系物質を除去する目的のために多量の生石灰を土壌に混合処理した場合に、安全、経済的かつ簡易な操作で、アルカリ性となった処理土壌からのアルカリ成分の溶出を抑制するとともに、土壌中に含まれる有害重金属類や有害元素類の溶出を抑制する方法を提供することを課題とする。
【0010】
【課題を解決するための手段】
この発明の発明者らは、対土壌8〜20重量%という多量の生石灰を投入、混合したことによりアルカリ性となった土壌からのアルカリ成分の溶出を抑制する方法について鋭意研究した結果、対土壌2〜20重量%のベントナイトを、処理土壌を掘削し埋め戻す箇所に撒布および/または生石灰とともに投入、混合することにより、生石灰混合土壌からのアルカリ成分の溶出を顕著に抑制でき、さらに土壌中に含まれる有害重金属類や有害元素類の溶出をも抑制できる事実を見出し、この発明を完成するに到った。
【0011】
この発明におけるベントナイトの添加量は、前記従来の技術に記載した、対象土とベントナイト、石灰などの固化材とを混合して遮水層を形成する場合のベントナイトの添加量に比較して、約60〜80%という少ない量で、生石灰混合土壌からのアルカリ成分の溶出および土壌中に含まれる有害重金属類や有害元素類の溶出を抑制できることから、意外な事実の確認であるといえる。
【0012】
かくしてこの発明によれば、土壌に対し8〜20重量%の生石灰を投入、混合して土壌を処理する際に、対土壌2〜20重量%のベントナイトを、処理土壌を掘削し埋め戻す箇所に撒布および/または生石灰とともに投入、混合することにより、生石灰混合土壌からのアルカリ成分の溶出を抑制するとともに、土壌中に含まれる重金属類の溶出を抑制することを特徴とする生石灰混合土壌の処理方法が提供される。
【0013】
【発明の実施の形態】
この発明の方法において、土壌に投入、混合する生石灰の添加量は、処理土壌に対し8〜20重量%とするのが、ベントナイトによるアルカリ成分溶出抑制効果の点から好ましい。また、生石灰を土壌に投入、混合する目的が土壌中に含まれる揮発性炭化水素系物質の除去処理の場合は、生石灰の添加量は10〜15重量%とするのが好ましい。
【0014】
土壌と生石灰との混合方法は特に限定されるものではなく、土壌の表面に生石灰を撒布し物理的手段を用いて撹拌することによりその場で混合してもよく、土壌と土壌との間に生石灰をサンドウィッチ形式に挟み込んでもよい。このように、混合は均一でも不均一でもよいが、揮発性炭化水素系物質を除去処理する場合には、その除去効果の点から均一に混合するのが好ましい。また、場合によっては、土壌を採取し、別の場所や容器内で均一混合してもよい。
【0015】
またこの発明の方法において、ベントナイトを土壌に対し2〜20重量%、好ましくは2〜8重量%、さらに好ましくは7〜8重量%の割合で生石灰とともに投入、混合するのが、アルカリ性となった処理土壌からのアルカリ成分の溶出抑制、および土壌中に含まれる有害重金属類や有害元素類の溶出抑制の点から好ましい。2重量%未満では、十分なアルカリ成分および有害重金属類溶出抑制効果が得られず、また8重量%を超えても添加量に見合うだけの効果が得られないため好ましくない。
【0016】
この発明の方法において、溶出を抑制できる土壌中に含まれる重金属類としては、例えば、Cd、Pb、Cr、Cu、Zn、Ni、Hgなどの有害重金属類が金属陽イオンとして存在しているもの、上記有害重金属類が複合酸化物を含む酸化物あるいは亜酸化物として存在しているもの、砒素、ホウ素、フッ素などの有害元素が酸化物あるいは亜酸化物として存在しているものなどが挙げられるが、これらに限定されるものではない。
【0017】
一方、この発明の方法において土壌へのベントナイトの添加方法は、生石灰混合土壌を掘削し埋め戻す箇所に撒布および/または生石灰とともに投入、混合する方法が挙げられる。前記両方法を併用するか、あるいは生石灰混合土壌を掘削し埋め戻す箇所に撒布する方法単独でも、生石灰混合土壌からのアルカリ成分の溶出抑制効果が顕著に得られることから好ましい実施態様であるといえる。また、操作の簡易性の点からは、ベントナイトを生石灰とともに投入、混合する方法が好ましい実施態様であり、土質強度や土質含水比などを参考にして適宜選択するとよい。
【0018】
またこの発明の方法において、生石灰混合土壌にベントナイトを添加した後、該土壌を転圧することが、土壌からのアルカリ成分の溶出抑制効果および有害重金属類溶出抑制効果の点から好ましい。転圧の方法はとくに限定はなく、たとえば土壌をローラなどで物理的に圧迫すればよい。
【0019】
【実施例】
この発明を実施例によりさらに詳細に説明するが、この発明はこれらの実施例により限定されるものではない。
【0020】
試験例1(生石灰混合土壌からのアルカリ成分流出抑制確認試験)
含水比9.2%の供試土壌20gに3g(対土壌15重量%)の生石灰を混合し十分に撹拌したものを、底面にベントナイト1gを均一に隙間なく撒布した減圧吸引ろ過器(ミルポア)に充填した。減圧吸引ろ過器上部より純水250mlを投入し、減圧吸引ろ過を行い、減圧吸引ろ過下部より流出する水量が50mlになるまでに要した時間を測定した。その結果を表1に示す。
【0021】
【表1】
【0022】
試験例2(生石灰混合土壌からのアルカリ成分流出抑制確認試験)
含水比1.78%の供試土壌20gに3g(対土壌15重量%)の生石灰を混合し十分に撹拌した後、さらにベントナイトを混合して十分に撹拌したものを、減圧吸引ろ過器(ミルポア)に充填した。減圧吸引ろ過器上部より純水250mlを投入し、減圧吸引ろ過を行い、減圧吸引ろ過下部より流出する水量が50mlになるまでに要した時間を測定した。その結果を表2に示す。
【0023】
【表2】
【0024】
試験例3(土壌中に含まれる重金属類溶出抑制効果確認試験)
含水比8.58%の土壌に、鉛(Pb)5mg、水銀(Hg)0.5mg、砒素(As)5mg、六価クロム(Cr)5mg、ホウ素(B)5mg、フッ素(F)26.2mgを混合した供試土壌66gに、生石灰11.6gを混合した後、ベントナイト2.4gを混合し、十分に攪拌した。この土壌に対し、平成6年環境庁告示の土壌環境基準の試験方法に従い、土壌からの重金属類溶出試験を行った。また比較対象として、生石灰、ベントナイトともに混合しない無処理土壌、および生石灰のみを混合した土壌についても同様に試験を行った。
その結果を表3に示す。
【0025】
【表3】
【0026】
【発明の効果】
この発明の方法により、多量の生石灰を土壌に混合処理した場合に、安全、経済的かつ簡易な操作で、アルカリ性となった処理土壌からのアルカリ成分の溶出を顕著に抑制し、さらに土壌中に含まれる有害重金属類および有害元素類の溶出を抑制することによって複合汚染土壌の一括処理ができ、産業上極めて有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating quicklime mixed soil. More specifically, when the soil is treated by adding and mixing 8 to 20% by weight of quicklime with respect to the soil, mainly for the purpose of removing the volatile hydrocarbon-based substance from the soil containing the substance, for example. In addition, the present invention relates to a method for suppressing the elution of alkali components from the treated soil which has become alkaline due to the mixing of quick lime and the elution of harmful heavy metals and harmful elements contained in the soil.
[0002]
[Prior art]
In recent years, environmental pollution by volatile hydrocarbon-based substances such as trichlorethylene and benzene has become a problem. If these substances are leaked and discharged directly in the unforeseen circumstances and mixed into the soil, and if left untouched, they will further penetrate into the soil by natural infiltration or rainwater and contaminate the groundwater, causing human health. There is a concern that it will have a significant effect.
[0003]
In order to solve the above-mentioned problem, a method of stirring and mixing an inorganic compound which reacts exothermically with water in a soil containing a volatile chlorinated hydrocarbon-based material to volatilize the volatile chlorinated hydrocarbon-based material in the soil. Has been proposed (Japanese Patent No. 2589002). As an inorganic compound that reacts exothermically with water, quicklime can be suitably used in terms of safety, price, heat generation efficiency, etc., but when quicklime is mixed with soil for the purpose of volatilizing volatile hydrocarbon-based substances. In comparison with the conventional case in which quicklime was mixed with soil for the purpose of improving soft ground, the treated soil became alkaline because it required about 2-3 times the amount of quicklime, and there is no knowledge. Further, there is a concern that the alkaline component is eluted by rainwater or the like.
[0004]
In addition, in the industrial zone and its surrounding area, geological pollution is often caused by harmful heavy metals represented by hexavalent chromium and harmful elements such as arsenic. In addition, on industrial sites that have been converted into residential or commercial areas, harmful heavy metals and harmful elements contained in soil elute into permeated water such as rainwater that has poured into the soil, contaminating groundwater and rivers, causing serious environmental problems. Causing the problem.
[0005]
Conventionally, in order to address the problems caused by contaminated soil containing such harmful heavy metals and harmful elements, transfer and sequestration of contaminated soil to final disposal sites, chemical treatment with chemicals, solidification treatment with concrete, etc. And so on.
[0006]
On the other hand, bentonite is a viscous soil that exists in nature and has properties such as swelling, suspending properties, tackiness, and thixotropy. Therefore, a water-blocking method using bentonite (JP-A-63-67322) Publication) and a method of impermeable ponds and the like by mixing bentonite and a solidifying material such as cement or lime on the ground having a high water content to form an impermeable layer. See JP-A-10-331152).
[0007]
[Problems to be solved by the invention]
As a method of neutralizing soil that has become alkaline when a large amount of quicklime is mixed with soil for the purpose of removing volatile hydrocarbon-based substances, a neutralizing agent such as an acidic inorganic compound is added. There is a method. However, there is a problem that the neutralizing agent is expensive as a whole, and it is difficult to uniformly mix the neutralizing agent with the soil when a liquid neutralizing agent is used. Further, even when a solid neutralizing agent is used, there is a problem that it is difficult to adjust the degree of neutralization because the soil is originally weakly alkaline.
[0008]
In addition, many heavy metals form a hardly soluble hydroxide under high alkalinity, so that elution is suppressed. However, if the soil becomes less alkaline due to infiltration of rainwater, or if the soil becomes acidic using a neutralizing agent to neutralize the soil that has become alkaline due to the mixing of quicklime, heavy metals in the soil will be reduced. There is a problem that there is a possibility of elution.
[0009]
In view of the above problems, the present invention provides a method for removing a large amount of quicklime from soil contaminated with volatile hydrocarbon-based substances and harmful heavy metals for the purpose of removing volatile hydrocarbon-based substances. When mixed, the safe, economical and simple operation suppresses the elution of alkaline components from the alkalinized treated soil and the elution of harmful heavy metals and harmful elements contained in the soil. It is an object to provide a method for performing the above.
[0010]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies on a method for suppressing the elution of alkali components from soil that has become alkaline by adding and mixing a large amount of quick lime of 8 to 20% by weight with respect to soil. Up to 20% by weight of bentonite is sprinkled and / or added together with quick lime to a site where the treated soil is excavated and backfilled, whereby the elution of the alkali component from the quick lime mixed soil can be significantly suppressed, and further included in the soil The present inventors have found that the elution of harmful heavy metals and harmful elements can be suppressed, and have completed the present invention.
[0011]
The amount of added bentonite in the present invention is about the same as the amount of bentonite added when the target soil and bentonite are mixed with a solidifying material such as lime to form a water barrier layer, as described in the above-described conventional technique. It can be said that this is a confirmation of an unexpected fact because the elution of the alkali component from the quicklime mixed soil and the elution of harmful heavy metals and harmful elements contained in the soil can be suppressed with a small amount of 60 to 80%.
[0012]
Thus, according to the present invention, when the soil is treated by adding and mixing 8 to 20% by weight of quicklime to the soil, bentonite in an amount of 2 to 20% by weight with respect to the soil is excavated and backfilled with the treated soil. A method for treating quicklime mixed soil, characterized by suppressing dissolution of alkali components from quicklime mixed soil and dispersing heavy metals contained in the soil by dispersing and / or charging and mixing with quicklime. Is provided.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method of the present invention, the amount of quicklime added and mixed into the soil is preferably 8 to 20% by weight based on the treated soil, from the viewpoint of the effect of suppressing the elution of alkali components by bentonite. When the purpose of adding and mixing quicklime into soil is to remove volatile hydrocarbon-based substances contained in soil, the amount of quicklime added is preferably 10 to 15% by weight.
[0014]
The method of mixing the soil and quicklime is not particularly limited, and the quicklime may be mixed on the spot by spraying quicklime on the surface of the soil and stirring using physical means. Quick lime may be sandwiched between sandwiches. As described above, the mixing may be uniform or non-uniform. However, when the volatile hydrocarbon-based material is removed, it is preferable that the mixing be performed uniformly from the viewpoint of the removing effect. In some cases, soil may be collected and uniformly mixed in another place or container.
[0015]
In the method of the present invention, the addition and mixing of bentonite with quicklime at a ratio of 2 to 20% by weight, preferably 2 to 8% by weight, more preferably 7 to 8% by weight with respect to the soil became alkaline. It is preferable from the viewpoint of suppressing the elution of alkali components from the treated soil and the elution of harmful heavy metals and harmful elements contained in the soil. If the amount is less than 2% by weight, a sufficient alkali component and harmful heavy metal elution suppressing effect cannot be obtained, and if it exceeds 8% by weight, the effect corresponding to the added amount cannot be obtained, which is not preferable.
[0016]
In the method of the present invention, examples of heavy metals contained in soil that can suppress elution include those in which harmful heavy metals such as Cd, Pb, Cr, Cu, Zn, Ni, and Hg are present as metal cations. And those in which the harmful heavy metals are present as oxides or suboxides containing complex oxides, and those in which harmful elements such as arsenic, boron and fluorine are present as oxides or suboxides. However, the present invention is not limited to these.
[0017]
On the other hand, in the method of the present invention, a method of adding bentonite to soil includes a method of excavating and mixing the quicklime mixed soil together with quicklime at a place where the soil is excavated and backfilled. It can be said that this is a preferred embodiment because the above two methods are used in combination, or even the method of digging the quicklime mixed soil and scattering it at the place to be backfilled alone has a remarkable effect of suppressing the elution of the alkali component from the quicklime mixed soil. . In addition, from the viewpoint of simplicity of operation, a method in which bentonite is added and mixed with quicklime is a preferred embodiment, and may be appropriately selected with reference to soil strength, soil moisture content, and the like.
[0018]
In the method of the present invention, after adding bentonite to the quicklime mixed soil, the soil is preferably compacted from the viewpoint of the effect of suppressing the elution of alkali components from the soil and the effect of suppressing the elution of harmful heavy metals. The method of rolling is not particularly limited, and for example, the soil may be physically pressed with a roller or the like.
[0019]
【Example】
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0020]
Test Example 1 (Test for confirming suppression of alkaline component outflow from quicklime mixed soil)
A vacuum suction filter (Milpore) in which 3 g (15% by weight of soil) of quicklime was mixed with 20 g of a test soil having a water content of 9.2% and thoroughly stirred, and 1 g of bentonite was uniformly spread on the bottom without gaps. Filled. 250 ml of pure water was introduced from the upper portion of the vacuum suction filter, and the solution was subjected to vacuum suction filtration, and the time required for the amount of water flowing out from the lower portion of the vacuum suction filter to reach 50 ml was measured. Table 1 shows the results.
[0021]
[Table 1]
[0022]
Test Example 2 (Test for confirming suppression of alkaline component outflow from quicklime mixed soil)
3 g (15% by weight of soil) of quicklime was mixed with 20 g of the test soil having a water content of 1.78%, and the mixture was sufficiently stirred. Then, bentonite was further mixed and sufficiently stirred, and the mixture was thoroughly filtered with a vacuum suction filter (Milpore). ). 250 ml of pure water was introduced from the upper portion of the vacuum suction filter, and the solution was subjected to vacuum suction filtration, and the time required for the amount of water flowing out from the lower portion of the vacuum suction filter to reach 50 ml was measured. Table 2 shows the results.
[0023]
[Table 2]
[0024]
Test Example 3 (Test for confirming the effect of inhibiting elution of heavy metals contained in soil)
In a soil having a water content of 8.58%, lead (Pb) 5 mg, mercury (Hg) 0.5 mg, arsenic (As) 5 mg, hexavalent chromium (Cr) 5 mg, boron (B) 5 mg, and fluorine (F) 26. After 11.6 g of quicklime was mixed with 66 g of the test soil mixed with 2 mg, 2.4 g of bentonite was mixed and sufficiently stirred. The soil was subjected to a test for elution of heavy metals from the soil in accordance with the test method of the soil environment standard notified by the Environment Agency in 1994. In addition, as a comparison object, a test was similarly performed on an untreated soil in which both quicklime and bentonite were not mixed and a soil in which only quicklime was mixed.
Table 3 shows the results.
[0025]
[Table 3]
[0026]
【The invention's effect】
According to the method of the present invention, when a large amount of quicklime is mixed and treated with soil, the elution of alkaline components from the treated alkaline soil is remarkably suppressed by a safe, economical and simple operation. By suppressing the elution of contained harmful heavy metals and harmful elements, it is possible to collectively treat complex contaminated soil, which is extremely useful in industry.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002232307A JP4061384B2 (en) | 2002-05-21 | 2002-08-09 | Treatment method of quicklime mixed soil |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002145530 | 2002-05-21 | ||
JP2002232307A JP4061384B2 (en) | 2002-05-21 | 2002-08-09 | Treatment method of quicklime mixed soil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004042004A true JP2004042004A (en) | 2004-02-12 |
JP4061384B2 JP4061384B2 (en) | 2008-03-19 |
Family
ID=31719570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002232307A Expired - Fee Related JP4061384B2 (en) | 2002-05-21 | 2002-08-09 | Treatment method of quicklime mixed soil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4061384B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022032225A (en) * | 2020-08-11 | 2022-02-25 | 株式会社エスエスティー協会 | Construction formation method |
-
2002
- 2002-08-09 JP JP2002232307A patent/JP4061384B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022032225A (en) * | 2020-08-11 | 2022-02-25 | 株式会社エスエスティー協会 | Construction formation method |
Also Published As
Publication number | Publication date |
---|---|
JP4061384B2 (en) | 2008-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd) | |
US5700107A (en) | Method of soil remediation | |
Kanchinadham et al. | Diffusion and leachability index studies on stabilization of chromium contaminated soil using fly ash | |
JPS63502570A (en) | Compositions for encapsulating toxic metals and/or organic pollutants from waste | |
US11697043B2 (en) | Method and reagents for treating materials contaminated with mercury, PFAS, or other contaminants | |
WO1999000159A1 (en) | A method to reduce hexavalent chromium in soils and other | |
US7736291B2 (en) | Method for stabilization of heavy metals and odor control with dicalcium phosphate dihydrate powder | |
US7530939B2 (en) | Method for stabilization of heavy metals in incinerator bottom ash and odor control with dicalcium phosphate dihydrate powder | |
JP5911716B2 (en) | Treatment agent and treatment method for contaminated soil | |
JP2014054602A (en) | Insolubilizer of harmful matter and insolubilization treatment method of harmful matter | |
CA2154532C (en) | Method of soil remediation | |
WO1991005586A1 (en) | Treatment of hazardous waste material | |
US20060217585A1 (en) | Method for stabilization of arsenic bearing waste or material | |
JP4687969B2 (en) | Methods for insolubilizing hazardous substances | |
JP4443290B2 (en) | Purification method for heavy metal contaminated soil | |
JP2007216069A (en) | Treating method of contaminated soil | |
JP4061385B2 (en) | Treatment method for complex contaminated soil | |
Ruiz et al. | Environmental behavior of cement-based stabilized foundry sludge products incorporating additives | |
JP2004042004A (en) | Method of treating soil mixed with burnt lime | |
JP5437589B2 (en) | Heavy metal insolubilizing agent and soil purification method using the same. | |
US12053809B2 (en) | Reagent system for treating mercury-contaminated material | |
JP4119534B2 (en) | Metal and dioxin and / or organochlorine compound simultaneous treating agent and processing method | |
TWI325795B (en) | Method for stabilization of heavy metals and odor control with dicalcium phosphate dihydrate powder in the incinerator bottom ash | |
JP2004051762A (en) | Method for controlling absorption of heavy metal in crop | |
Chowdhury et al. | Treating arsenic-contaminated soil at a former herbicide blending facility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050722 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071130 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120111 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120111 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130111 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130111 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130111 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140111 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |