JP5911716B2 - Treatment agent and treatment method for contaminated soil - Google Patents

Treatment agent and treatment method for contaminated soil Download PDF

Info

Publication number
JP5911716B2
JP5911716B2 JP2011271063A JP2011271063A JP5911716B2 JP 5911716 B2 JP5911716 B2 JP 5911716B2 JP 2011271063 A JP2011271063 A JP 2011271063A JP 2011271063 A JP2011271063 A JP 2011271063A JP 5911716 B2 JP5911716 B2 JP 5911716B2
Authority
JP
Japan
Prior art keywords
contaminated
mass
parts
radionuclide
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011271063A
Other languages
Japanese (ja)
Other versions
JP2013122010A (en
Inventor
谷元 佳代彦
佳代彦 谷元
光也 谷元
光也 谷元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011271063A priority Critical patent/JP5911716B2/en
Publication of JP2013122010A publication Critical patent/JP2013122010A/en
Application granted granted Critical
Publication of JP5911716B2 publication Critical patent/JP5911716B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本願発明は、放射性核種や重金属により汚染された土壌などに有効な処理剤と処理方法に関するものである。 The present invention relates to a treatment agent and a treatment method effective for soil contaminated with radionuclides and heavy metals.

原発事故に伴い発生した放射性核種による汚染土壌の除染や飛散流出防止の有効な対策の立案は、わが国における焦眉の急の課題である。
本発明者は、長年の環境対策の知見に基づき、硝酸第二鉄と、ポリ硫酸第二鉄および塩化第二鉄とに着目して、その対策を検討した。
The planning of effective measures for decontamination of contaminated soil and the prevention of scattered runoff by radionuclides generated in the nuclear accident is a urgent issue in Japan.
Based on the knowledge of environmental measures for many years, the inventor focused on ferric nitrate, polyferric sulfate and ferric chloride, and examined the measures.

特許文献1においては、液状化或いは泥状化された対象物から有害物質を凝結させる工程の固化剤として、塩素を含まない溶媒にホスホン酸と硫酸マグネシウムを混合し、数分間撹拌し、その後、硫酸アルミニウムとポリ硫酸第二鉄を投与し、数分間撹拌してなる無機電解凝集剤とすることが示された有害物質を含む焼却灰や土壌等の再生浄化処理方法が提案されているが、これは、ダイオキシン類、PCB、アスベスト及び各種重金属類等の有害物質を含むものを処理の対象とするであり、放射性核種で汚染された土壌を対象とするものではなかった。 In Patent Document 1, phosphonic acid and magnesium sulfate are mixed in a solvent that does not contain chlorine as a solidifying agent for the step of condensing harmful substances from a liquefied or muddy object, and then stirred for several minutes. A method for regenerating and purifying incinerated ash and soil containing harmful substances that has been shown to be an inorganic electrolytic flocculant administered with aluminum sulfate and polyferric sulfate and stirred for several minutes has been proposed. This is intended for treatment of substances containing harmful substances such as dioxins, PCBs, asbestos and various heavy metals, not for soil contaminated with radionuclides.

特許文献2においては、原子力発電所から発生する放射性廃棄物を、水硬性無機固化材を用いて固化する際に、自由電子及び水和電子と反応速度が大きい電子捕捉剤を添加するものであり、この電子捕捉剤を硝酸鉄として固化材重量に対し、0.01%以上、5%以下の添加量とする放射性廃棄物の固化方法が提案されているが、放射性核種で汚染された土壌を対象とするものではなかった。
非特許文献1においては、土壌における放射性セシウムなどの挙動に関する研究結果が示されている。
In Patent Document 2, when radioactive waste generated from a nuclear power plant is solidified using a hydraulic inorganic solidifying material, an electron scavenger having a high reaction rate with free electrons and hydrated electrons is added. A method of solidifying radioactive waste using iron scavenger as an iron nitrate with an addition amount of 0.01% or more and 5% or less based on the weight of the solidified material has been proposed, but soil contaminated with radionuclides has been proposed. It was not intended.
Non-Patent Document 1 shows the results of research on the behavior of radioactive cesium and the like in soil.

一般に粘土鉱物は、カオリナイトやハロイサイトのような1:1型粘土鉱物と、モンモリロナイトやバーミキュライトのような2:1型粘土鉱物があるといわれる。1:1型粘土鉱物は、ケイ素四面体層とアルミニウム八面体層とが結合して単位層となり、これらの単位層が重なっている。2:1型粘土鉱物は、ケイ素四面体層とアルミニウム八面体層とケイ素四面体層との3層が結合して単位層となり、これらの単位層が重なっている。ケイ素四面体層には、直径約264pmの空間がSi−O原子面を構成する酸素6員環によって作られ、この空間中に、カリウムイオンやアンモニウムイオンが入り込み固定化されるといわれる。セシウムイオンはカリウムイオンと化学的性質およびイオン直径が似ているため、同様に固定される。非特許文献1においては、複数種類の土壌に対して、セシウム−137を含む水溶液を加えて、1時間震盪後1昼夜静置した後、遠心分離して得られた上澄液画分を水溶態画分とするなどの操作を行い、交換態(水溶態を含む)におけるセシウム−137と、土壌中に留まる固定態におけるセシウム−137との量を比較し、2:1型粘土鉱物のモンモリロナイは、1:1型粘土鉱物のカオリナイトよりも固定態画分のセシウム−137が多いことを明らかにした。 Generally, clay minerals are said to be 1: 1 type clay minerals such as kaolinite and halloysite, and 2: 1 type clay minerals such as montmorillonite and vermiculite. In the 1: 1 type clay mineral, a silicon tetrahedral layer and an aluminum octahedral layer are combined to form a unit layer, and these unit layers are overlapped. In the 2: 1 type clay mineral, three layers of a silicon tetrahedral layer, an aluminum octahedral layer, and a silicon tetrahedral layer are combined to form a unit layer, and these unit layers are overlapped. In the silicon tetrahedral layer, a space having a diameter of about 264 pm is formed by an oxygen six-membered ring constituting the Si—O atomic plane, and potassium ions and ammonium ions are said to enter and be fixed in this space. Cesium ions are similarly fixed because they are similar in chemical nature and ion diameter to potassium ions. In Non-Patent Document 1, an aqueous solution containing cesium-137 is added to a plurality of types of soil, left to stand for 1 day after shaking for 1 hour, and then the supernatant fraction obtained by centrifugation is dissolved in water. The amount of cesium-137 in the exchanged state (including the water-soluble state) and the amount of cesium-137 in the fixed state remaining in the soil were compared, and the 2: 1 type clay mineral montmorillonite Revealed that there was more cesium-137 in the stationary fraction than in the 1: 1 type clay mineral kaolinite.

このように、セシウム−137は土壌構成成分のうち、粘土画分を構成する粘土鉱物および腐植によって吸着される。土壌に降下したセシウム−137は、その一部が粘土鉱物および腐植の表面に交換態として吸着されるが、他は結晶性粘土鉱物に固定態として吸着される。 Thus, cesium-137 is adsorbed by clay minerals and humus constituting the clay fraction among the soil constituents. A part of the cesium-137 descended to the soil is adsorbed on the surface of the clay mineral and humus as an exchange state, while the other is adsorbed as a fixed state on the crystalline clay mineral.

特開2009−136812号公報JP 2009-136812 A 特開平7−128497号公報JP 7-128497 A

津村昭人・駒村美佐子・小林宏信(1984)土壌および土壌−植物系における放射性ストロンチウムとセシウムの挙動に関する研究、農技研報B,36:57−113Akihito Tsumura, Misako Komamura, Hironobu Kobayashi (1984) Study on behavior of radioactive strontium and cesium in soil and soil-plant system, Agricultural Research Institute B, 36: 57-113

本発明は、原発事故に伴い発生した放射性核種による汚染土壌を主とし、さらには、津波被災の海泥に起因する重金属等々の複合汚染土壌に対して、包括的洗浄処理を施し、粘土鉱物中に付着する結合基を破壊して、抽出による無害化を可能にした汚染土壌対策用の処理剤と処理方法の提供を目的とする。 The present invention mainly focuses on soil contaminated with radionuclides generated in the nuclear accident, and also performs comprehensive cleaning treatment on complex contaminated soil such as heavy metals resulting from tsunami-affected sea mud. The purpose of the present invention is to provide a treatment agent and a treatment method for dealing with contaminated soil, which can be detoxified by extraction by destroying the bonding group adhering to the soil.

また、本発明は、汚染土壌対策用として、飛散又は流出の防止を可能にした処理剤と処理方法の提供を目的とする。 Moreover, this invention aims at provision of the processing agent and the processing method which enabled prevention of scattering or outflow as a countermeasure for contaminated soil.

本発明は、ポリ硫酸第二鉄と塩化第二鉄との少なくとも何れか一方と、硝酸第二鉄と、強酸(主として硫酸)とを含有する浄化用処理剤を提供する。これらの好ましい配合量は、ポリ硫酸第二鉄と塩化第二鉄との少なくとも何れか一方が35〜50質量部、硝酸第二鉄が11〜30質量部、強酸(硫酸)が0.75〜3質量部である。さらに、硝酸ソーダと硝酸カルシウムとの少なくとも何れか一方を、好ましくは5.6〜11.2質量部を加えることもできる。 The present invention provides a treating agent for purification containing at least one of polyferric sulfate and ferric chloride, ferric nitrate, and a strong acid (mainly sulfuric acid). These preferable blending amounts are 35-50 parts by mass of at least one of ferric sulfate and ferric chloride, 11-30 parts by mass of ferric nitrate, and 0.75-0.5 of strong acid (sulfuric acid). 3 parts by mass. Furthermore, it is also possible to add at least one of sodium nitrate and calcium nitrate, preferably 5.6 to 11.2 parts by mass.

前記の浄化用処理剤は、硝酸第二鉄と硝酸ソーダとの少なくとも何れか一方(好適には8〜20質量部)と、強酸(好適には硫酸)とエチレンジアミン四酢酸四ナトリウムの少なくとも何れか一方(好適には30〜37.5質量部)とを含有する前処理剤と組み合わせた2液性の洗浄機能剤として用いることができる。 The purification treatment agent is at least one of ferric nitrate and sodium nitrate (preferably 8 to 20 parts by mass), strong acid (preferably sulfuric acid), and at least one of ethylenediaminetetraacetic acid tetrasodium. One (preferably 30 to 37.5 parts by mass) containing a pretreatment agent can be used as a two-component cleaning function agent.

この2液性の洗浄機能剤は、次の方法によって放射性核種や重金属に汚染された土壌を洗浄することができる。すなわち、放射性核種汚染された土壌と水と前記前処理剤とを一次被処理物として混合攪拌する第一攪拌工程と、前記第一攪拌工程を経た前記一次被処理物を固相と液相とに実質的に固液分離する第一固液分離工程と、前記固相と水と前記浄化用処理剤とを二次被処理物として混合攪拌する第二攪拌工程と、前記第一攪拌工程を経た前記二次被処理物を固相と液相とに実質的に固液分離する第二固液分離工程とを行い、前記第二固液分離工程により得られた前記固相を洗浄済みの土壌とするものである。 This two-component cleaning function agent can clean soil contaminated with radionuclides and heavy metals by the following method. That is, a first stirring step of mixing and stirring the radionuclide-contaminated soil, water, and the pretreatment agent as a primary treatment object, and the primary treatment object that has undergone the first stirring step as a solid phase and a liquid phase A first solid-liquid separation step for substantially solid-liquid separation, a second stirring step for mixing and stirring the solid phase, water, and the purification treatment agent as a secondary treatment object, and the first stirring step. A second solid-liquid separation step of substantially solid-liquid separating the secondary processed material that has passed through into a solid phase and a liquid phase, and the solid phase obtained by the second solid-liquid separation step has been washed The soil.

このうち、放射性核種汚染土壌に対しては、前記前処理剤に前記硫酸と前記硝酸第二鉄とを必須に含むものとし、前記浄化用処理剤には前記ポリ硫酸第二鉄を必須に含むとする。 Among these, for radionuclide contaminated soil, the pretreatment agent must contain the sulfuric acid and the ferric nitrate, and the purification treatment agent must contain the polyferric sulfate. To do.

また、重金属汚染土壌に対しては、前記前処理剤に前記エチレンジアミン四酢酸四ナトリウムと前記硝酸ソーダとを必須に含むものとし、前記浄化用処理剤に前記塩化第二鉄を必須に含むものとする。 Moreover, with respect to heavy metal contaminated soil, the said pretreatment agent shall contain the said ethylenediaminetetraacetic acid tetrasodium and the said sodium nitrate essentially, and the said processing agent for purification shall contain the said ferric chloride essential.

また、本発明の浄化用処理剤は、ポリアクリル酸ナトリウム(好適には0.2〜0.5質量部)と珪酸ナトリウム(好適には20〜40質量部)とを含有する無機系のバインダー水溶液と組み合わせて2液性の飛散流出防止剤とすることもできる。この飛散流出防止剤を用いて放射性核種汚染地を処理する方法は、前記バインダー水溶液を放射性核種汚染地に散布する第一散布工程と、前記第一噴霧工程を経た前記放射性核種汚染地に前記前記浄化用処理剤を散布する第二散布工程とを行うことを特徴とするものである。 Moreover, the processing agent for purification | cleaning of this invention is an inorganic binder containing sodium polyacrylate (preferably 0.2-0.5 mass part) and sodium silicate (preferably 20-40 mass part). In combination with an aqueous solution, a two-part spillage prevention agent can also be obtained. A method for treating a radionuclide-contaminated site using the scattering spill preventive agent includes the first spraying step of spraying the binder aqueous solution to the radionuclide-contaminated site, and the radionuclide-contaminated site through the first spraying step. A second spraying step of spraying the purification treatment agent is performed.

本願発明は、原発事故に伴い発生した放射性核種による汚染土壌を主とし、さらには、津波被災の海泥に起因する重金属等々の汚染土壌に対して、有効な洗浄処理を施すことができる汚染土壌対策用の処理剤と処理方法を提供することができたものである。 The present invention is mainly contaminated soil due to radionuclides generated in the nuclear accident, and moreover, contaminated soil capable of performing effective cleaning treatment on contaminated soil such as heavy metals caused by tsunami-affected sea mud It was possible to provide treatment agents and treatment methods for countermeasures.

本発明の洗浄機能剤を用いた土壌の浄化方法の工程説明図。Process explanatory drawing of the purification method of the soil using the cleaning function agent of this invention. 本発明の放射性核種汚染地の処理方法後の傾斜地表の模式図。The schematic diagram of the inclined ground surface after the processing method of the radionuclide contaminated land of this invention. シュルツ・バーデイの法則の説明図。An illustration of Schulz Barday's law. 本発明の放射性核種汚染地の処理方法の実験装置の説明図。Explanatory drawing of the experimental apparatus of the processing method of the radionuclide contaminated land of this invention.

以下、図面に基づき本願発明の実施の形態を説明する。以下の説明で、工程などの後ろに付した符号は、図1における符号である。
(2液性の洗浄機能剤による汚染土壌の浄化処理)
本発明においては、前処理剤と、浄化用処理剤とを組み合わせた2液性の洗浄機能剤を提供し、これを用いて汚染土壌を浄化処理する方法を提案する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the reference numerals after the processes are the reference numerals in FIG.
(Purification treatment of contaminated soil with a two-component cleaning function agent)
In the present invention, a two-component cleaning function agent that combines a pretreatment agent and a purification treatment agent is provided, and a method for purifying contaminated soil using this is proposed.

(前処理剤)
まず、前処理剤から説明する。
前処理剤(A)は、下記の(1a)(1b)を含有し、これらを(1c)水と混合する。
(1a)強酸(塩酸、硝酸なども使用可能であるが好適には硫酸)とエチレンジアミン四酢酸四ナトリウムの少なくとも何れか一方。
(1b)硝酸第二鉄と硝酸ソーダとの少なくとも何れか一方。
(Pretreatment agent)
First, the pretreatment agent will be described.
The pretreatment agent (A) contains the following (1a) and (1b), and these are mixed with (1c) water.
(1a) At least one of a strong acid (hydrochloric acid, nitric acid, etc. can be used but preferably sulfuric acid) and tetrasodium ethylenediaminetetraacetate.
(1b) At least one of ferric nitrate and sodium nitrate.

配合量については、
(1a)硫酸は30〜37.5質量部、エチレンジアミン四酢酸四ナトリウムは40〜50質量部を配合することが望ましく、(1b)硝酸第二鉄は8〜20質量部、硝酸ソーダは5.6〜11.2質量部を配合することが望ましい。(1c)水は30〜50質量部を配合することが適当である。
放射線核種を処理する場合には、(1a)硫酸と、(1b)硝酸第二鉄とを含有させることが望ましく、重金属を処理する場合には、(1a)エチレンジアミン四酢酸四ナトリウムと、(1b)硝酸ソーダとを配合することが好ましく、両者の複合汚染の場合は、全てを含有させることが望ましい。
About compounding amount,
(1a) 30-37.5 parts by mass of sulfuric acid, 40-50 parts by mass of tetrasodium ethylenediaminetetraacetate are desirable, (1b) 8-20 parts by mass of ferric nitrate, and sodium nitrate 5. It is desirable to blend 6 to 11.2 parts by mass. (1c) It is appropriate to mix 30 to 50 parts by mass of water.
When treating radionuclides, it is desirable to contain (1a) sulfuric acid and (1b) ferric nitrate, and when treating heavy metals, (1a) tetrasodium ethylenediaminetetraacetate and (1b ) Sodium nitrate is preferably blended, and in the case of combined contamination of both, it is desirable to contain all of them.

(成分の説明)
(1a)の強酸(好適には硫酸)は、金属の溶解性に優れ、前述の粘土鉱物中の結晶構造を破壊すると考えられる。
(1a)のエチレンジアミン四酢酸四ナトリウムは、金属イオンのキレート剤で、金属イオン捕集剤としての効果が期待される。特に、重金属イオンと強固な可溶性錯塩を形成するもので、金属イオンが有機多座配位子によって中心に包み込まれるような構造を形成しているキレート化合物には、錯塩安定性が大きい。
(1b)の硝酸第二鉄は、硝酸に金属を溶解したもので、腐食性に著しいものがあると言われており、放射性物質の吸着剤として用いられる。
(1b)の硝酸ソーダ(硝酸ナトリウム)は、強力な酸化力を有することから、金属表面の処理剤などに用いられる。
(Description of ingredients)
The strong acid (preferably sulfuric acid) of (1a) is considered to be excellent in metal solubility and destroy the crystal structure in the clay mineral.
Ethylenediaminetetraacetic acid tetrasodium (1a) is a metal ion chelating agent and is expected to be effective as a metal ion scavenger. In particular, a chelate compound that forms a strong soluble complex salt with a heavy metal ion and has a structure in which the metal ion is encapsulated in the center by an organic polydentate ligand has high complex salt stability.
The ferric nitrate (1b) is obtained by dissolving a metal in nitric acid, and is said to be extremely corrosive, and is used as an adsorbent for radioactive substances.
Since sodium nitrate (sodium nitrate) (1b) has a strong oxidizing power, it is used as a treatment agent for metal surfaces.

(第一攪拌工程1)
前記の前処理剤は、土壌とこれに添加する水(以下、一次被処理物という)と、混合攪拌される。土壌と水との配合率は、質量比で1対2が好ましい。この一次被処理物に対して、上記の前処理剤(1a)(1b)(1c)を3質量%加え、十分に攪拌する。これが第一攪拌工程である。
(First stirring step 1)
The pretreatment agent is mixed and stirred with soil and water added to the soil (hereinafter referred to as a primary material to be treated). The mixing ratio of soil and water is preferably 1 to 2 in terms of mass ratio. 3% by mass of the pretreatment agent (1a) (1b) (1c) is added to the primary object to be treated, and the mixture is sufficiently stirred. This is the first stirring step.

(第一攪拌工程1の目的)
第一攪拌工程は、土壌と前処理剤とを十分に混合攪拌するものであり、前処理剤の添加によって、pH1.5〜1.8の強酸性と酸化力に優れた(Fe3+−SO4 2-+1の洗浄雰囲気とし、土壌粘土鉱物中において放射性核種・重金属が吸着しているケイ素四面体とアルミニウム八面体を破壊し、頑固な固定態核種や重金属を水溶態又は交換態に移行させる。即ち、前処理剤による強酸性・酸化雰囲気により、ケイ素四面体に結合している放射性核種の溶出促進とアルミニウム八面体の吸着基となる結晶構造の破壊・溶解を図り、水溶態及び交換態に移行させることを目的とする。
(Purpose of the first stirring step 1)
The first stirring step is to sufficiently mix and stir the soil and the pretreatment agent, and by adding the pretreatment agent, it was excellent in strong acidity and oxidizing power of pH 1.5 to 1.8 (Fe 3+ − SO 4 2- ) +1 cleaning atmosphere, destroying silicon tetrahedrons and aluminum octahedrons adsorbed with radionuclides and heavy metals in soil clay minerals, stubborn stationary nuclides and heavy metals in water or exchanged state To migrate. That is, the strongly acidic / oxidizing atmosphere by the pretreatment agent promotes the elution of radionuclides bound to the silicon tetrahedron and destroys / dissolves the crystal structure that serves as the adsorbing group of the aluminum octahedron, so that it can be in water and exchanged state The purpose is to migrate.

(第一固液分離工程2)
第一固液分離工程は、前記第一攪拌工程を経た前記一次被処理物を固相と液相とに実質的に固液分離する工程である。具体的には、前記一次被処理物を静置し、その上澄液を吸引等で引き抜くことで、液相と、沈殿物である固相とに実質的に固液分離する。また、サイクロン分離機やシックナーなどの他の固液分離手段を用いてもよい。なお、固相と液相との完全な分離は不可能であり、また、不要であるため、上澄液を吸引して分離する程度の固液分離が図れれば足りる。
(First solid-liquid separation step 2)
The first solid-liquid separation step is a step of substantially solid-liquid separation of the primary object to be processed after the first stirring step into a solid phase and a liquid phase. Specifically, the primary object to be treated is allowed to stand, and the supernatant liquid is pulled out by suction or the like, thereby substantially solid-liquid separation into a liquid phase and a solid phase that is a precipitate. Further, other solid-liquid separation means such as a cyclone separator or a thickener may be used. In addition, since complete separation between the solid phase and the liquid phase is impossible and unnecessary, it is sufficient to achieve solid-liquid separation to the extent that the supernatant is sucked and separated.

(浄化用処理剤)
次に、浄化用処理剤について説明する。
浄化用処理剤(B)は、下記の(2a)(2b)(2c)を含有し、好ましくは(2d)を加えたもので、これらを(2e)水と混合する。
(2a)ポリ硫酸第二鉄と塩化第二鉄との少なくとも何れか一方(好適な配合量35〜50質量部)。
(2b)硝酸第二鉄(好適な配合量11〜30質量部)。
(2c)強酸(塩酸、硝酸なども使用可能であるが好ましくは硫酸)(好適な配合量0.75〜3質量部)。
(2d)硝酸ソーダと硝酸カルシウムとの少なくとも何れか一方(好適な配合量5.6〜11.2質量部)。
(2e)水(好適な配合量13〜19質量部)。
放射線核種を処理する場合には、(2a)ポリ硫酸第二鉄と、(2d)硝酸ソーダとを含有させることが望ましく、重金属を処理する場合には、(2a)塩化第二鉄と、(2d)硝酸カルシウムとを配合することが好ましく、両者の複合汚染の場合は、全てを含有させることが望ましい。
(Treatment agent for purification)
Next, the purification treatment agent will be described.
The purification treatment agent (B) contains the following (2a), (2b), and (2c), preferably (2d) added, and these are mixed with (2e) water.
(2a) At least any one of ferric sulfate and ferric chloride (preferable compounding amount 35-50 mass parts).
(2b) Ferric nitrate (preferred blending amount: 11 to 30 parts by mass).
(2c) Strong acid (hydrochloric acid, nitric acid, etc. can be used, but preferably sulfuric acid) (suitable blending amount: 0.75 to 3 parts by mass).
(2d) At least one of sodium nitrate and calcium nitrate (preferred blending amount: 5.6 to 11.2 parts by mass).
(2e) Water (preferably 13 to 19 parts by mass).
When treating radionuclides, it is desirable to contain (2a) polyferric sulfate and (2d) sodium nitrate. When treating heavy metals, (2a) ferric chloride and ( 2d) It is preferable to mix calcium nitrate, and in the case of complex contamination of both, it is desirable to contain all of them.

(成分の説明)
(2a)のポリ硫酸第二鉄は、鉄系の無機高分子凝集剤であり、アルミ系よりも金属含有量が高く低添加量で使用できる利点がある。塩化第二鉄よりもpHが下がりにくく効果幅が広いと言われ、また腐食の問題も比較的少ないとされる。
(2a)の塩化第二鉄も、無機系凝集剤であり、アルミ系よりも金属含有量が高く低添加量で使用できるが、pHが下がりやすいので効果幅が狭く、腐食の問題に注意が必要となると言われている。
(Description of ingredients)
The ferric polysulfate (2a) is an iron-based inorganic polymer flocculant, and has an advantage that the metal content is higher than that of an aluminum-based material and can be used with a low addition amount. It is said that the pH is less likely to lower than ferric chloride and the effect range is wide, and the problem of corrosion is relatively small.
Ferric chloride (2a) is also an inorganic flocculant and has a metal content higher than that of aluminum and can be used at a low addition amount. However, since the pH tends to decrease, the effect range is narrow, and attention is paid to corrosion problems. It is said that it will be necessary.

(第二攪拌工程3)
第二攪拌工程は、前記浄化用処理剤と、前記第一固液分離工程により得られた固相と、水(清水)と、を二次被処理物として混合攪拌する工程である。
具体的には、前記の第一固液分離工程にて固相と分離された液相と略同量の水(清水)を加える。この固相と加えた水(清水)の総重量に対して、前述の浄化用処理剤を4%添加する。なお、二次被処理物は、pH6.5〜7.0に調整することが好ましく、pH調整剤として水酸化ナトリウムなどを必要に応じて添加し、十分に攪拌する(第二攪拌工程)。
(Second stirring step 3)
The second stirring step is a step of mixing and stirring the purification treatment agent, the solid phase obtained by the first solid-liquid separation step, and water (fresh water) as a secondary treatment object.
Specifically, approximately the same amount of water (fresh water) as the liquid phase separated from the solid phase in the first solid-liquid separation step is added. 4% of the above-mentioned purification treatment agent is added to the total weight of the solid phase and the added water (fresh water). In addition, it is preferable to adjust a secondary to-be-processed object to pH 6.5-7.0, and sodium hydroxide etc. are added as needed as a pH adjuster, and are fully stirred (2nd stirring process).

(第二攪拌工程の目的)
第二攪拌工程は、酸化雰囲気下で攪拌を行うものであり、前述の第一攪拌工程の強酸性雰囲気で攪拌されながらもなおもケイ素四面体とアルミニウム八面体の吸着基に残存する放射性核種の固定態及び交換態の核種イオンを、浄化用処理剤の多価金属イオンにより中和し、硝酸鉄イオンに吸着させ、限界値に至る除染を極めることを目的とする。即ち、強力な酸化雰囲気において放射性核種の固定態イオン及び浄化用処理剤の金属イオンを活性化し、プラスイオンの増加により固定態イオンの減少を促進すると同時にイオン交換による吸着除染を図る。
(Purpose of the second stirring step)
In the second stirring step, stirring is performed in an oxidizing atmosphere, and the radionuclide remaining in the adsorbing group of the silicon tetrahedron and aluminum octahedron is still stirred in the strongly acidic atmosphere of the first stirring step described above. The purpose is to neutralize the fixed and exchanged nuclide ions with the polyvalent metal ions of the purification treatment agent, adsorb them to the iron nitrate ions, and decontaminate to the limit value. That is, in a strong oxidizing atmosphere, the radionuclide stationary ions and the metal ion of the purification treatment agent are activated, and the increase of positive ions promotes the reduction of stationary ions and at the same time, adsorption decontamination is achieved by ion exchange.

(第二固液分離工程4)
第二固液分離工程は、前記第二攪拌工程を経た前記二次被処理物を固相と液相とに実質的に固液分離する工程である。具体的には、前記二次被処理物を静置し、その上澄液を吸引等で引き抜くことで、液相と、沈殿物である固相とに実質的に固液分離する。また、サイクロン分離機やシックナーなどの他の固液分離手段を用いてもよい。
(Second solid-liquid separation step 4)
The second solid-liquid separation step is a step of substantially solid-liquid separation of the secondary processed material that has undergone the second stirring step into a solid phase and a liquid phase. Specifically, the secondary material to be processed is allowed to stand, and the supernatant liquid is pulled out by suction or the like, so that the liquid phase and the solid phase that is a precipitate are substantially solid-liquid separated. Further, other solid-liquid separation means such as a cyclone separator or a thickener may be used.

前述の第二攪拌工程において、ポリ硫酸第二鉄などに吸着された放射性核種は水中に溶存しているため、第二固液分離工程によって、液相を、固相である土壌粒子から分離することで、土壌の除染を達成することができる。 In the second stirring step, the radionuclide adsorbed on ferric sulfate or the like is dissolved in water, so the liquid phase is separated from the solid phase soil particles by the second solid-liquid separation step. Thus, decontamination of the soil can be achieved.

サイクロン分離機は75μmアップの土壌粒子の固液分離を目的とし、75μmアンダーの微細粒子は、必要に応じて、シックナーにより固液分離を図る。特に、農地の土壌粒子は、95%以上が75μmアンダーであるため、シックナーによる自然沈降を複数回繰り返し行なって固液分離を行なうことが望ましい。この場合には、シックナーの攪拌作動は停止状態とする。 The cyclone separator is intended for solid-liquid separation of soil particles up to 75 μm, and fine particles under 75 μm are subjected to solid-liquid separation by a thickener as necessary. In particular, since 95% or more of the soil particles of farmland are under 75 μm, it is desirable to perform solid-liquid separation by repeating natural sedimentation by a thickener a plurality of times. In this case, the thickener stirring operation is stopped.

なお、上記のとおり、ポリ硫酸第二鉄などに吸着された放射性核種は水中に溶存しているが、長時間(3〜6時間以上)静置した場合は、沈降現象が起る。従って、固液分離工程の際(特に第二固液分離工程の際)に、シックナーによる固液分離を行なう際には、オーバーフローの緩やかな流水を維持しつつ沈降分離を図ることが望ましい。又、土壌の性状に応じて、複数のシックリーの連結を自在化とし、先のシックナーで沈降分離を確認した後、次に連結されたシックナーに流入させるようにしてもよい。この連結されたシックナーは、放射性核種を含む液相の処理とリサイクルの項で、より詳しく説明する。
前述の第一と第二の攪拌工程及び第一と第二の固液分離工程は、必要に応じてそれぞれ複数回繰り返すことも可能である。
As described above, the radionuclide adsorbed on polyferric sulfate or the like is dissolved in water, but when left standing for a long time (3 to 6 hours or more), a sedimentation phenomenon occurs. Therefore, when performing solid-liquid separation by a thickener during the solid-liquid separation step (particularly during the second solid-liquid separation step), it is desirable to achieve sedimentation separation while maintaining a gentle flowing water. Further, depending on the properties of the soil, the connection of a plurality of sickles may be made flexible, and after the sedimentation separation is confirmed by the previous thickener, it is allowed to flow into the next connected thickener. This coupled thickener is described in more detail in the section on processing and recycling of liquid phases containing radionuclides.
The first and second stirring steps and the first and second solid-liquid separation steps can be repeated a plurality of times as necessary.

(除染された土壌6)
以上の前記第二固液分離工程により得られた前記固相は、除染された土壌として、元に戻すことができる程度に安全なものとなっている。従って、固液分離されて除染された土壌は、例えば、農地グランド上に遮水シートを敷きつめた上に山形に盛土して、自然脱水作用により完全脱水を確認した後、農地に均等に敷き戻すことができる。上記の自然脱水の際に流出した汚水は、遮水シートの周囲に形成したU字溝によって回収し、シックナーによる分離された液相に合流させる。以上の固液分離手段は、除染地域の広がりに応じて、何箇所又は何十箇所も設置することができる。
(Decontaminated soil 6)
The solid phase obtained by the second solid-liquid separation step is safe to the extent that it can be restored as decontaminated soil. Therefore, soil that has been separated by solid-liquid separation and decontaminated is, for example, piled in a mountain shape on a farmland ground and then completely dehydrated by natural dehydration, and then spread evenly on farmland. Can be returned. The sewage that has flowed out during the natural dehydration is collected by a U-shaped groove formed around the water-impervious sheet and joined to the liquid phase separated by the thickener. The above-mentioned solid-liquid separation means can be installed at any number or dozens according to the spread of the decontamination area.

(放射性核種を含む液相の処理工程7)
前述の第二固液分離工程によって得られた放射性核種を含む液相5は、今日行なわれている除染方法などの適当な方法によって、処理すればよいが、これに関しても、本発明者は次の方法を提案する。
(Process 7 for liquid phase containing radionuclide)
The liquid phase 5 containing the radionuclide obtained by the above-mentioned second solid-liquid separation step may be treated by an appropriate method such as a decontamination method performed today. The following method is proposed.

凝集用シックナーを2連結にし、前述のように、先のシックナーにおいて第二固液分離工程を実施し、ここで得られた放射性核種を含む液相を、先のシックナーに連結された凝集清澄化処理を行なうシックナーに、緩やかに連続注入を図りながら、前述の浄化用処理剤を注入して攪拌する。この浄化用処理剤は、洗浄汚染水に対して0.3〜0.6質量%の割合となるように自動注入を図ると同時に、シックナー攪拌機の作動を開始し、苛性ソーダ等のpH調整剤の添加によって、pH6.5〜7に自動調整する。 As described above, the aggregation thickener is made into two linkages, and as described above, the second solid-liquid separation step is performed in the previous thickener, and the liquid phase containing the radionuclide obtained here is agglomerated and clarified linked to the previous thickener. The above-mentioned purification treatment agent is injected into the thickener that performs the treatment while stirring continuously and gently stirred. This purifying treatment agent is automatically injected so as to have a ratio of 0.3 to 0.6% by mass with respect to the cleaning contaminated water, and at the same time, the operation of the thickener stirrer is started, and the pH adjusting agent such as caustic soda is added. Automatically adjust to pH 6.5-7 by addition.

この混合攪拌後に、高分子凝集剤(アニオン系)の水溶液を注入する。この高分子凝集剤(アニオン系)の水溶液は、0.8〜1.5質量%の割合となるように自動注入を続ける。その結果、放射性核種及び重金属等の有害物質は、浄化用処理剤中の吸着成分と共にフロックとなり、水中より分離沈殿される。つまり、2つのシックナーの2連続オーバー水は、完全に清澄化される。なお、浄化用処理剤やpH調整剤の投入などは、自動的に連続処理することができる。 After this mixing and stirring, an aqueous solution of a polymer flocculant (anionic) is injected. The aqueous solution of the polymer flocculant (anionic) is continuously injected so that the ratio becomes 0.8 to 1.5% by mass. As a result, harmful substances such as radionuclides and heavy metals become floc together with adsorbed components in the purification treatment agent, and are separated and precipitated from water. That is, the two continuous over waters of the two thickeners are completely clarified. It should be noted that the processing agent for purification and the addition of the pH adjusting agent can be automatically and continuously processed.

以上のように、前述の放射性核種を含む液相5に関して、液相中の放射性核種については凝集しフロックとして沈殿させることができる。この放射性核種を含むフロック9と分離された清澄化された水8は、河川や海等にそのまま流すことができる他、種々の処分が可能である。この処分の一つとして、清澄化された水8を、第一攪拌工程1や第二攪拌工程3にて加える水、としてリサイクルすることができる。また、放射性核種を含むフロック9については、処理前の汚染土壌に比して、充分に減容されており、この減容された形態で最適な最終処分を待つことになる。 As described above, regarding the liquid phase 5 containing the above-mentioned radionuclide, the radionuclide in the liquid phase can be aggregated and precipitated as a floc. The clarified water 8 separated from the floc 9 containing the radionuclide can be flowed as it is to a river or the sea, and can be variously disposed of. As one of the disposals, the clarified water 8 can be recycled as water added in the first stirring step 1 and the second stirring step 3. Further, the floc 9 containing the radionuclide is sufficiently reduced in volume as compared with the contaminated soil before the treatment, and an optimum final disposal is awaited in the reduced form.

(2液性の飛散流出防止剤による汚染土地の飛散流出防止処理)
以上の説明においては、汚染された土地から土壌を回収して、その除染を行うことを提案したが、以下の説明では、その回収除染が困難な土地(例えば、山間の傾斜地)の表面に散布することで、放射性核種などの有害物質の飛散や流出を防止する方法を提案する。
具体的には、次に述べる無機系のバインダー水溶液と前述の浄化用処理剤とを汚染地に噴霧する。
(Spill-out prevention treatment for contaminated land with a two-part splash-out agent)
In the above explanation, it was proposed to collect soil from contaminated land and decontaminate it. However, in the following explanation, the surface of land that is difficult to collect and decontaminate (for example, mountain slopes). We propose a method to prevent the scattering and outflow of harmful substances such as radionuclides.
Specifically, the inorganic binder aqueous solution described below and the purification treatment agent described above are sprayed onto the contaminated area.

(無機系のバインダー水溶液)
無機系のバインダー水溶液(3)は、下記の(3a)(3b)を含有し、これらを(3c)水と混合する。
(3a)ポリアクリル酸ナトリウム(好適には0.2〜0.5質量部)
(3b)珪酸ナトリウム(好適には20〜40質量部)
(3c)水(好適には59.5〜79.8質量部)
(Inorganic binder aqueous solution)
The inorganic binder aqueous solution (3) contains the following (3a) and (3b), and these are mixed with (3c) water.
(3a) Sodium polyacrylate (preferably 0.2 to 0.5 parts by mass)
(3b) Sodium silicate (preferably 20 to 40 parts by mass)
(3c) Water (preferably 59.5 to 79.8 parts by mass)

(成分の説明)
(3a)ポリアクリル酸ナトリウムは、高吸水性高分子の一種であり、網目構造の中に多数の水分子を取り込み、ゲル構造を作る。
(3b)珪酸ナトリウムは、水ガラスとも呼ばれ、本発明では珪酸塩と鉄塩との接触により触媒反応なを惹起させるなど、後述の作用を果たす。
(Description of ingredients)
(3a) Sodium polyacrylate is a kind of highly water-absorbing polymer, and incorporates a large number of water molecules into the network structure to form a gel structure.
(3b) Sodium silicate is also called water glass. In the present invention, the sodium silicate performs the following actions such as causing a catalytic reaction by contact between the silicate and the iron salt.

(浄化用処理剤)
浄化用処理剤については、先に述べた通りである。放射性核種汚染地を処理する場合には、前記ポリ硫酸第二鉄が必須となる。
(Treatment agent for purification)
The purification treatment agent is as described above. In the case of processing a radionuclide contaminated site, the ferric sulfate is essential.

(放射性核種汚染地の処理方法)
汚染された山間傾斜地などの土地の下草を刈り取り、枯れ葉なども除去し、裸地が露出した状態で、噴霧作業を行う。まず、無機系のバインダー水溶液を噴霧し、続いて(望ましくは5〜10分間の浸透時間付与後)、浄化用処理剤を噴霧する。
(Method of treating radionuclide contaminated areas)
Mow the undergrowth of contaminated mountain slopes, remove dead leaves, and perform spraying with bare ground exposed. First, an inorganic binder aqueous solution is sprayed, and then (desirably after a permeation time of 5 to 10 minutes is applied), a purification treatment agent is sprayed.

(反応)
無機系のバインダー水溶液は、これを裸地に吹き付け噴霧することによって、地表の微細粘土粒子及び腐植微細物質に付着浸透する。5〜10分間の浸透時間付与後、浄化用処理剤を噴霧することにより、珪酸塩と鉄塩との接触により、迅速な触媒反応が起こり、粘土粒子を巻き込みながら、珪酸塩析出結晶体が形成され、経時と共に粘土粒子間に架橋となるエトリンガイドが完成される。
即ち、地表面粘土粒子が保持する多種の元素との反応に預かり、粘土粒子間に以下の架橋等の結晶体が析出される。
(reaction)
The inorganic binder aqueous solution adheres to and penetrates the fine clay particles and the humic fine substance on the ground surface by spraying it on the bare ground and spraying it. After applying a permeation time of 5 to 10 minutes, by spraying a purification treatment agent, a rapid catalytic reaction occurs due to contact between the silicate and the iron salt, and a silicate precipitation crystal is formed while entraining clay particles. As a result, an etrin guide that is crosslinked between clay particles with time is completed.
That is, it is entrusted to the reaction with various elements held by the ground surface clay particles, and the following crystals such as cross-linking are precipitated between the clay particles.

アルミン酸三石灰3CaO・Al22、アルミン酸四鉄石灰4C2O・Al23・Fe23が水と反応し、3CaO・Al22・6H2Oの立方系の結晶体などが次々と析出されると共に珪酸鉄塩石灰の水和物によるエトリンガイドの転化による安定した不溶性の珪酸鉄カルシウム系の結晶体でポーラス状のエトリンガイド2Ca3SiO5+Fe23・6H2O等々が完成され、傾斜面などの地表一体にマイクロメーター単位の網目ネットが架かることになる(図2参照)。 Aluminates tricalcium 3CaO · Al 2 O 2, aluminate tetracalcium iron lime 4C 2 O · Al 2 O 3 · Fe 2 O 3 reacts with water, crystals of cubic system of 3CaO · Al 2 O 2 · 6H 2 O The body is deposited one after the other, and the stable insoluble iron calcium silicate crystal by the conversion of the ethrin guide by the hydrate of iron silicate lime and porous ethrin guide 2Ca 3 SiO 5 + Fe 2 O 3・ 6H 2 O, etc. will be completed, and a mesh net of micrometer units will be built on the ground surface such as an inclined surface (see Fig. 2).

(目的と効果)
放射性核種汚染地の処理方法の目的は、山間傾斜面が風雨に晒された場合を勘案し、放射性核種が付着する微細粘土粒子の飛散防止及び流出防止を図ることにより、河川や湖沼・水経路への流入を阻止することを主目的とする。
即ち、シリカ系ポーラス結晶構造体は、放射性物質の付着・拘束は無力であるが、前述のとおり、粘土粒子間の拘束力は無類の優れた能力を発揮すると同時に、前述の浄化用処理剤を併用することにより、無機特有のイオン増加が起こり、夫々の特徴的役割を担いつつ、粘土粒子が持つ異電荷とイオン衝突を起して中和され、拘束水分子の親水基が破壊されるため、粒子間より付着水が散出する。その結果、シュルツ・バーデイの法則に従い、粘土粒子間に誘引反応(水素結合)が起こり、図3の団粒子に成長する。一方、硝酸第二鉄Fe(NO33は、放射性物質の吸着剤に用いられる通り、放射性核種の吸着に優れた能力を発揮する。
(Purpose and effect)
The purpose of the treatment method for radionuclide contaminated sites is to prevent the scattering of fine clay particles to which radionuclides adhere and the outflow of rivers, lakes, and water paths, taking into account the case where mountain slopes are exposed to wind and rain. The main purpose is to prevent inflow.
That is, the silica-based porous crystal structure has no power to attach and restrain radioactive substances, but as described above, the restraining force between clay particles exhibits an unparalleled excellent ability, and at the same time, the above-mentioned purification treatment agent is used. When used in combination, the increase in ions peculiar to inorganics occurs, and while neutralizing each ion by colliding with the different charges of clay particles and ionic collisions while taking on their respective characteristic roles, the hydrophilic groups of the constrained water molecules are destroyed. Adhesive water scatters from between the particles. As a result, in accordance with Schulz-Bardy's law, an attraction reaction (hydrogen bonding) occurs between the clay particles, and grows into the aggregate particles in FIG. On the other hand, ferric nitrate Fe (NO 3 ) 3 exhibits excellent ability to adsorb radionuclides, as used in adsorbents for radioactive substances.

以下、本発明の理解を高めるために、実施例を示すが、本発明はこの実施例に限定して理解されるべきではない。 Hereinafter, in order to enhance the understanding of the present invention, examples will be shown, but the present invention should not be understood to be limited to these examples.

(実施例1)洗浄機能剤による放射性核種汚染土壌の浄化処理
前処理剤(A)
(1a)硫酸…33.75質量部(即ち、硫酸75%水溶液…45質量部)
(1b)硝酸第二鉄…15質量部
(1c)水(清水)…40質量部
を混合して1液の前処理剤(A)を作成した。
浄化用処理剤(B)
(2a)ポリ硫酸第二鉄…39.4質量部
(2b)硝酸第二鉄…14.8質量部
(2c)硫酸…1.5質量部(即ち、硫酸75%水溶液…2.0質量部)
(2d)硝酸ソーダ…8.61質量部(即ち、硝酸ソーダ70%水溶液…12.3質量部)
(2e)水…31.5質量部
を混合して1液の浄化用処理剤(B)を作成した。
(Example 1) Pretreatment agent (A) for purification treatment of radionuclide-contaminated soil with a cleaning function agent
(1a) Sulfuric acid: 33.75 parts by mass (ie, 75% sulfuric acid aqueous solution: 45 parts by mass)
(1b) Ferric nitrate: 15 parts by mass (1c) Water (fresh water): 40 parts by mass were mixed to prepare one liquid pretreatment agent (A).
Treatment agent for purification (B)
(2a) Polyferric sulfate ... 39.4 parts by mass (2b) Ferric nitrate ... 14.8 parts by mass (2c) Sulfuric acid ... 1.5 parts by mass (ie 75% sulfuric acid aqueous solution ... 2.0 parts by mass) )
(2d) Sodium nitrate: 8.61 parts by mass (ie, sodium nitrate 70% aqueous solution: 12.3 parts by mass)
(2e) 31.5 parts by mass of water was mixed to prepare one liquid purification treatment agent (B).

第一攪拌工程…土壌(福島県飯館村公民館の敷地土:表1に放射線量の測定結果を示す)と水とを、質量比で1対2で混合し、この混合物に対して前記前処理剤(A)を3質量%加えて、サンドポンプによって15分攪拌した。 First stirring step: Soil (site soil of Iidate Village Public Hall in Fukushima Prefecture: Table 1 shows the measurement results of radiation dose) and water are mixed in a mass ratio of 1: 2, and the pretreatment is performed on this mixture. 3% by mass of agent (A) was added and stirred for 15 minutes by a sand pump.

第一固液分離工程…上記第一攪拌工程を経たものを一昼夜静置し、固相と液相とに分離した後、液相である上澄液をポンプで吸引して引き抜いた。引き抜いた液相は、さらに固液分離して沈降した微細土粒子の沈降シルトを、前記固相に加えた。液相は、ポリ硫酸第二鉄などによる高分子の凝集剤によって凝集処理を施して清浄化し、放射性核種を含む沈降フロックは、自然乾燥によって脱水を行なった。 First solid-liquid separation step: After passing through the first stirring step, the mixture was allowed to stand overnight and separated into a solid phase and a liquid phase, and then the supernatant liquid as a liquid phase was sucked with a pump and pulled out. The extracted liquid phase was further added to the solid phase by sedimentation silt of fine soil particles settled by solid-liquid separation. The liquid phase was cleaned by agglomeration treatment with a polymeric flocculant such as polyferric sulfate, and the precipitated floc containing the radionuclide was dehydrated by natural drying.

第二攪拌工程…上述のポンプで吸引して引き抜いた上澄液と等量の水(清水)を、上記の第一固液分離工程後の固相に加えると共に、これらの固相と加えた水(清水)の総重量に対して、前述の浄化用処理剤(B)を4%添加して、サンドポンプによって15分攪拌した。 Second stirring step: The same amount of water (fresh water) as the supernatant liquid sucked out by the above-mentioned pump was added to the solid phase after the first solid-liquid separation step, and these solid phases were added. 4% of the above-described purification treatment agent (B) was added to the total weight of water (fresh water), and the mixture was stirred for 15 minutes by a sand pump.

第二固液分離工程…上記第二攪拌工程を経たものを一昼夜静置し、固相と液相とに分離した。液相である上澄液をポンプで吸引して引き抜いた。当該固相である浄化処理済の土壌について、75μの篩アップの土について放射線量の測定を行った。その結果を表2に示す。また、同浄化処理済の土壌から、溶出500年分の溶出液を作成し、その放射線量を測定した。その結果を表3に示す。 Second solid-liquid separation step: After passing through the second stirring step, the mixture was allowed to stand for 24 hours to separate into a solid phase and a liquid phase. The supernatant liquid phase was sucked with a pump and pulled out. About the soil after the purification process which is the said solid-phase, the radiation dose was measured about the soil of 75 micrometers sieve up. The results are shown in Table 2. Moreover, the elution liquid for 500 years of elution was created from the soil after the said purification process, and the radiation dose was measured. The results are shown in Table 3.

考察…処理前の表1と、処理後の表2との比較から明らかなように、土壌からの放射線量は約26分の1に減少しているものであり、また、表3の溶出試験から明らかなように、処理済土壌からの溶出の危険性は実質的に無視できる程度の僅かな量であると判断できるものであった。
なお、表1〜表3の測定は、千葉県千葉市緑区の内外テクノス株式会社関東環境技術センターに依頼して行なった。
なお、参考として、表4に放射性物質に関する暫定規制値等を示しておく。
Discussion: As is clear from the comparison between Table 1 before treatment and Table 2 after treatment, the radiation dose from the soil is reduced to about 26 times. As can be seen from the above, the risk of elution from the treated soil could be judged to be a negligible amount that can be substantially ignored.
In addition, the measurement of Table 1-Table 3 was performed by requesting the Kanto environmental technology center in Japan and overseas Technos of Chiba-shi, Chiba.
For reference, Table 4 shows provisional regulation values for radioactive substances.

Figure 0005911716
Figure 0005911716

Figure 0005911716
Figure 0005911716

Figure 0005911716
Figure 0005911716

Figure 0005911716
Figure 0005911716

(実施例2)洗浄機能剤による放射性核種汚染飛灰の浄化処理
処理対象物として、実施例1の土壌に代えて、千葉県柏市で採取した飛灰及び溶融飛灰を用いた。
処理対象物を変更した以外は、先の実施例1と同じ処理を施したものであり、その結果を表5に示す。
(Example 2) As an object of purification treatment of radionuclide-contaminated fly ash with a cleaning function agent, fly ash and molten fly ash collected in Sakai City, Chiba Prefecture were used in place of the soil of Example 1.
Except for changing the object to be processed, the same processing as in Example 1 was performed, and the results are shown in Table 5.

Figure 0005911716
Figure 0005911716

(実施例3)洗浄機能剤による重金属汚染土壌の浄化処理
処理対象物として、実施例1の土壌に代えて、重金属を含まない土壌に鉛とベンゼンとを混合して作成した試験用土壌を用いた。
処理対象物を変更した以外は、先の実施例1と同じ処理を施したものであり、その結果を表6に示す。
(Example 3) As an object of purification treatment of heavy metal-contaminated soil with a cleaning function agent, a test soil prepared by mixing lead and benzene in soil not containing heavy metal is used instead of the soil of Example 1. It was.
Except for changing the object to be processed, the same processing as in Example 1 was performed, and the results are shown in Table 6.

Figure 0005911716
Figure 0005911716

(実施例4)洗浄機能剤による重金属汚染土壌の浄化処理
処理対象物として、実施例1の土壌に代えて、仙台市地下鉄掘削土を用いた。
処理対象物を変更した以外は、先の実施例1と同じ処理を施したものであり、その結果を表7に示す。
(Example 4) Sendai Subway excavation soil was used in place of the soil of Example 1 as an object of purification treatment of heavy metal-contaminated soil with a cleaning function agent.
Except for changing the object to be processed, the same processing as in Example 1 was performed, and the results are shown in Table 7.

Figure 0005911716
Figure 0005911716

(実施例5)洗浄機能剤による重金属汚染土壌の浄化処理
処理対象物として、実施例1の土壌に代えて、千葉県袖ヶ浦市の海泥砂と農水池の土壌を用いた。
処理対象物を変更した以外は、先の実施例1と同じ処理を施したものであり、その結果を表8に示す。
(Example 5) As an object of purification treatment of heavy metal-contaminated soil by a cleaning function agent, instead of the soil of Example 1, the sea mud sand of Sodegaura City, Chiba Prefecture and the soil of a farm pond were used.
Except for changing the object to be processed, the same processing as in Example 1 was performed, and the results are shown in Table 8.

Figure 0005911716
Figure 0005911716

(実施例6)放射性核種汚染地の処理方法
浄化用処理剤(B)
(2a)ポリ硫酸第二鉄…39.4質量部
(2b)硝酸第二鉄…14.8質量部
(2c)硫酸…1.5質量部(即ち、硫酸75%水溶液…2.0質量部)
(2d)硝酸ソーダ…8.61質量部(即ち、硝酸ソーダ70%水溶液…12.3質量部)
(2e)水…31.5質量部
を混合して1液の浄化用処理剤(B)を作成した。
バインダー水溶液(C)
(3a)ポリアクリル酸ナトリウム(好適には0.4質量部)
(3b)珪酸ナトリウム(好適には30質量部)
(3c)水(好適には69.6質量部)
を混合して1液のバインダー水溶液(C)を作成した。
(Example 6) Treatment method for radioactive nuclide-contaminated land Purification agent (B)
(2a) Polyferric sulfate ... 39.4 parts by mass (2b) Ferric nitrate ... 14.8 parts by mass (2c) Sulfuric acid ... 1.5 parts by mass (ie 75% sulfuric acid aqueous solution ... 2.0 parts by mass) )
(2d) Sodium nitrate: 8.61 parts by mass (ie, sodium nitrate 70% aqueous solution: 12.3 parts by mass)
(2e) 31.5 parts by mass of water was mixed to prepare one liquid purification treatment agent (B).
Binder aqueous solution (C)
(3a) Sodium polyacrylate (preferably 0.4 parts by mass)
(3b) Sodium silicate (preferably 30 parts by mass)
(3c) Water (preferably 69.6 parts by mass)
Were mixed to prepare a binder aqueous solution (C).

実験装置:山の傾斜面を想定した45度の斜面板11を作成し、福島県飯館村公民館の敷地土を約2cm厚に練り付けた実験装置(イ)(ロ)を製作した。斜面板11の下端には、噴霧水を受けるための容器12を配置した。 Experimental device: A 45-degree slope plate 11 was created assuming an inclined surface of a mountain, and an experimental device (i) (b) was prepared by kneading the site soil of the Iidate Village Public Hall in Fukushima Prefecture to a thickness of about 2 cm. A container 12 for receiving spray water is disposed at the lower end of the slope plate 11.

実験方法:実験装置(イ)には、浄化用処理剤(B)500gを噴霧し、その後、バインダー水溶液(C)500gを噴霧した。実験装置(ロ)は、対照区として、何も噴霧しなかった。実験装置(イ)(ロ)に対して、河川水を、1日3回、間歇的に噴霧した。噴霧量は毎回100ccとした。実験期間中に容器12に溜まった水について、放射線量を測定した。 Experimental method: In the experimental apparatus (A), 500 g of the purification treatment agent (B) was sprayed, and then 500 g of the aqueous binder solution (C) was sprayed. The experimental apparatus (b) did not spray anything as a control. River water was sprayed intermittently three times a day on the experimental devices (a) and (b). The spray amount was 100 cc each time. The radiation dose was measured for the water accumulated in the container 12 during the experiment.

測定結果:
原土の汚染濃度…平均3.716μSv(練り付けた敷地土の表面に対する接触測定を7回行い、最上値と最小値とを除外した5回の測定値の平均)
実験装置(イ)…0.080μSv(実験装置(イ)の容器12に溜まった水に対する間接接触測定(測定子を合成樹脂フィルムで被覆して水に接触させた)を1回行なった。)
実験装置(ロ)…2.916μSv(実験装置(ロ)の容器12に溜まった水に対する間接接触測定(測定子を合成樹脂フィルムで被覆して水に接触させた)を1回行なった。)
測定器:米国製SEREALNER51324
測定単位:μSv
Measurement result:
Contamination concentration of raw soil ... Average 3.716 μSv (Measurement of contact with surface of kneaded ground soil is performed 7 times, average of 5 measurements excluding top and minimum values)
Experimental apparatus (I): 0.080 μSv (Indirect contact measurement with respect to water accumulated in the container 12 of the experimental apparatus (I) (measurement element was covered with a synthetic resin film and contacted with water) was performed once.)
Experimental device (b) 2.916 μSv (Measurement of indirect contact with water accumulated in the container 12 of the experimental device (b) was performed once (the probe was covered with a synthetic resin film and contacted with water).)
Measuring instrument: US made SEREALNER 51324
Unit of measurement: μSv

以上の測定結果により、本発明に係る放射性核種汚染地の処理方法は、阿武隈川汚染水等々の雨水による水系汚染を防止するために有益な処理方法を提供したものであると考える。 From the above measurement results, it is considered that the radionuclide-contaminated land treatment method according to the present invention provides a useful treatment method for preventing water system contamination by rainwater such as Abukuma River contaminated water.

Claims (9)

ポリ硫酸第二鉄と塩化第二鉄との少なくとも何れか一方と、硝酸ソーダと硝酸カルシウムとの少なくとも何れか一方と、硝酸第二鉄と、強酸と、
を含有する放射性核種汚染土壌、放射線各種汚染飛灰及び重金属汚染土壌に対する浄化用処理剤。
At least one of polyferric sulfate and ferric chloride, at least one of sodium nitrate and calcium nitrate, ferric nitrate, strong acid,
Treatment agent for radioactive nuclide-contaminated soil, various radioactive contaminated fly ash and heavy metal-contaminated soil .
ポリ硫酸第二鉄と塩化第二鉄との少なくとも何れか一方を35〜50質量部と、
硝酸第二鉄を11〜30質量部と、
硫酸を0.75〜3質量部と、
硝酸ソーダ5.6〜11.2質量部と硝酸カルシウム5.6〜11.2質量部との少なくとも何れか一方と、
を含有する放射性核種汚染土壌、放射線各種汚染飛灰及び重金属汚染土壌に対する浄化用処理剤。
35-50 parts by mass of at least one of polyferric sulfate and ferric chloride;
11-30 parts by mass of ferric nitrate,
0.75-3 parts by mass of sulfuric acid,
At least one of sodium nitrate 5.6 to 11.2 parts by mass and calcium nitrate 5.6 to 11.2 parts by mass ;
Treatment agent for radioactive nuclide-contaminated soil, various radioactive contaminated fly ash and heavy metal-contaminated soil .
硝酸第二鉄と硝酸ソーダとの少なくとも何れか一方と、強酸と、を含有する前処理剤と、
請求項1又は2に記載の前記浄化用処理剤と、
を組み合わせたことを特徴とする放射性核種汚染土壌、放射線各種汚染飛灰及び重金属汚染土壌に対する2液性の洗浄機能剤。
A pretreatment agent containing at least one of ferric nitrate and sodium nitrate, and a strong acid ;
The purification treatment agent according to claim 1 or 2 ,
A two-component cleaning function agent for radionuclide-contaminated soil, radiation-contaminated fly ash, and heavy metal-contaminated soil .
硝酸第二鉄8〜20質量部と硝酸ソーダ5.6〜11.2質量部との少なくとも何れか一方と、硫酸30〜37.5質量部と、
を含有する前処理剤と、
請求項2に記載の前記浄化用処理剤と、
を組み合わせたことを特徴とする放射性核種汚染土壌、放射線各種汚染飛灰及び重金属汚染土壌に対する2液性の洗浄機能剤。
At least one of 8-20 parts by mass of ferric nitrate and 5.6-11.2 parts by mass of sodium nitrate, 30-37.5 parts by mass of sulfuric acid,
A pretreatment agent containing
The purification treatment agent according to claim 2 ,
A two-component cleaning function agent for radionuclide-contaminated soil, radiation-contaminated fly ash, and heavy metal-contaminated soil .
請求項4に記載の洗浄機能剤を用いて放射性核種汚染土壌を洗浄する方法であって、
前記硫酸と前記硝酸第二鉄とを必須に含む前記前処理剤と放射性核種汚染された土壌と水とを一次被処理物として混合攪拌する第一攪拌工程と、
前記第一攪拌工程を経た前記一次被処理物を固相と液相とに実質的に固液分離する第一固液分離工程と、
前記ポリ硫酸第二鉄を必須に含む前記浄化用処理剤と前記固相と水とを二次被処理物として混合攪拌する第二攪拌工程と、
前記第一攪拌工程を経た前記二次被処理物を固相と液相とに実質的に固液分離する第二固液分離工程とを行い、
前記第二固液分離工程により得られた前記固相を洗浄済みの土壌とすることを特徴とする放射性核種汚染土壌を洗浄する方法。
A method for cleaning radionuclide contaminated soil using the cleaning functional agent according to claim 4 ,
A first stirring step of mixing and stirring the pretreatment agent essentially containing the sulfuric acid and the ferric nitrate, soil and water contaminated with radionuclides as primary objects to be treated;
A first solid-liquid separation step for substantially solid-liquid separation of the primary workpiece subjected to the first stirring step into a solid phase and a liquid phase;
A second stirring step of mixing and stirring the processing agent for purification containing the ferric polysulfate essential, the solid phase, and water as a secondary object to be treated;
Performing a second solid-liquid separation step for substantially solid-liquid separation of the secondary workpiece after the first stirring step into a solid phase and a liquid phase;
A method for washing radionuclide-contaminated soil, wherein the solid phase obtained by the second solid-liquid separation step is used as washed soil.
ポリアクリル酸ナトリウムと珪酸ナトリウムとを含有する無機系のバインダー水溶液と、
請求項1又は2に記載の前記浄化用処理剤であって前記ポリ硫酸第二鉄を含むものと、
を組み合わせたことを特徴とする放射性核種汚染土壌、放射線各種汚染飛灰及び重金属汚染土壌に対する2液性の飛散流出防止剤。
An inorganic binder aqueous solution containing sodium polyacrylate and sodium silicate;
The purifying treatment agent according to claim 1 or 2 , comprising the polyferric sulfate,
A two-component anti-scattering agent for radioactive nuclides contaminated soil, various radioactive contaminated fly ash and heavy metal contaminated soil .
ポリアクリル酸ナトリウム0.2〜0.5質量部と珪酸ナトリウム20〜40質量部とを含有する無機系のバインダー水溶液と、
請求項2記載の前記浄化用処理剤であって前記ポリ硫酸第二鉄を含むものと、
を組み合わせたことを特徴とする放射性核種汚染土壌、放射線各種汚染飛灰及び重金属汚染土壌に対する2液性の飛散流出防止剤。
An inorganic binder aqueous solution containing 0.2 to 0.5 parts by mass of sodium polyacrylate and 20 to 40 parts by mass of sodium silicate;
The purifying treatment agent according to claim 2 , comprising the polyferric sulfate.
A two-component anti-scattering agent for radioactive nuclides contaminated soil, various radioactive contaminated fly ash and heavy metal contaminated soil .
ポリ硫酸第二鉄と硝酸第二鉄と、強酸とを含有する浄化用処理剤と、
ポリアクリル酸ナトリウムと珪酸ナトリウムとを含有する無機系のバインダー水溶液とを組み合わせた2液性の飛散流出防止剤を用いて放射性核種汚染地を処理する方法であって、
前記バインダー水溶液を放射性核種汚染地に散布する第一散布工程と、
前記第一噴霧工程を経た前記放射性核種汚染地に前記前記浄化用処理剤を散布する第二散布工程とを行うことを特徴とする放射性核種汚染地の処理方法。
Ferric polysulfate, a ferric nitrate, and purifying treatment agent containing a strong acid,
A method for treating a radionuclide-contaminated site using a two-part splash spill inhibitor combined with an inorganic binder aqueous solution containing sodium polyacrylate and sodium silicate,
A first spraying step of spraying the binder aqueous solution to a radionuclide contaminated area;
A method for treating a radionuclide-contaminated site, comprising: performing a second spraying step of spraying the purification agent on the radionuclide-contaminated site that has undergone the first spraying step.
ポリ硫酸第二鉄を35〜50質量部と、
硝酸第二鉄を11〜30質量部と、
硫酸を0.75〜3質量部と、
を含有する浄化用処理剤と、
ポリアクリル酸ナトリウムと珪酸ナトリウムとを含有する無機系のバインダー水溶液とを組み合わせた2液性の飛散流出防止剤を用いて放射性核種汚染地を処理する方法であって、
前記バインダー水溶液を放射性核種汚染地に散布する第一散布工程と、
前記第一噴霧工程を経た前記放射性核種汚染地に前記前記浄化用処理剤を散布する第二散布工程とを行うことを特徴とする放射性核種汚染地の処理方法。


35-50 parts by mass of polyferric sulfate ,
11-30 parts by mass of ferric nitrate,
0.75-3 parts by mass of sulfuric acid,
A treating agent for purification,
A method for treating a radionuclide-contaminated site using a two-part splash spill inhibitor combined with an inorganic binder aqueous solution containing sodium polyacrylate and sodium silicate,
A first spraying step of spraying the binder aqueous solution to a radionuclide contaminated area;
A method for treating a radionuclide-contaminated site, comprising: performing a second spraying step of spraying the purification agent on the radionuclide-contaminated site that has undergone the first spraying step.


JP2011271063A 2011-12-12 2011-12-12 Treatment agent and treatment method for contaminated soil Expired - Fee Related JP5911716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011271063A JP5911716B2 (en) 2011-12-12 2011-12-12 Treatment agent and treatment method for contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011271063A JP5911716B2 (en) 2011-12-12 2011-12-12 Treatment agent and treatment method for contaminated soil

Publications (2)

Publication Number Publication Date
JP2013122010A JP2013122010A (en) 2013-06-20
JP5911716B2 true JP5911716B2 (en) 2016-04-27

Family

ID=48774178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011271063A Expired - Fee Related JP5911716B2 (en) 2011-12-12 2011-12-12 Treatment agent and treatment method for contaminated soil

Country Status (1)

Country Link
JP (1) JP5911716B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019209250A (en) * 2018-06-04 2019-12-12 山岡 弘 Treatment agent for incineration ash, and treatment method of incineration ash

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234954A (en) * 2012-05-10 2013-11-21 Makino:Kk Decontamination plant and decontamination method for contaminated soil
JP6754628B2 (en) * 2016-06-21 2020-09-16 住友化学株式会社 Laminate
JP7093964B2 (en) * 2017-09-06 2022-07-01 国立大学法人金沢大学 How to treat contaminated soil
CN115318826B (en) * 2022-06-23 2023-07-21 北京晋荣农业科技有限公司 Conditioner for purifying heavy metal contaminated soil and preparation method and application thereof
CN115193906B (en) * 2022-07-22 2023-12-08 环保桥(湖南)生态环境工程股份有限公司 Method for repairing soil polluted by various heavy metals such as arsenic, lead and chromium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322999A (en) * 1977-09-12 1978-03-02 Daiichi Radioisotope Lab Agent for processing radioactive material containing urea
JP3402535B2 (en) * 1995-01-13 2003-05-06 株式会社荏原製作所 Treatment of alkaline fly ash
JPH1194993A (en) * 1997-09-24 1999-04-09 Nuclear Fuel Ind Ltd Method for treating radioactive material containing waste liquid
FR2795352B1 (en) * 1999-06-25 2001-09-14 Inertec BINDER FOR THE STABILIZATION OF ARSENIA WASTE AND METHOD USING THE SAME
WO2004037453A1 (en) * 2002-10-24 2004-05-06 Teijin Fibers Limited Method for clarifying soil
JP4083090B2 (en) * 2003-08-01 2008-04-30 栗田工業株式会社 Heavy metal fixing agent and method for improving stability of heavy metal fixing agent
JP4958400B2 (en) * 2005-02-25 2012-06-20 佳代彦 谷元 Inorganic electrolytic coagulant capable of detoxifying heavy metal ions and detoxification treatment method
JP5666832B2 (en) * 2010-05-31 2015-02-12 株式会社Adeka Organic substance decomposition treatment method and organic substance decomposition treatment agent kit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019209250A (en) * 2018-06-04 2019-12-12 山岡 弘 Treatment agent for incineration ash, and treatment method of incineration ash

Also Published As

Publication number Publication date
JP2013122010A (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5911716B2 (en) Treatment agent and treatment method for contaminated soil
JP4235688B2 (en) Purification method for contaminated soil
CN101423278B (en) Multiple element composite metal oxidate arsenic removal settling agent and use method thereof
EP1718566B1 (en) Process for preparing a soluble crystalline biogenic silica and applications using the same
US11524907B2 (en) Granular filter media
JP5950562B2 (en) Volume reduction method for cesium-containing soil using powder treatment agent and volume reduction treatment system for cesium-containing soil
JP2013088278A (en) Radiation contamination wastewater treatment method, treatment system and mobile processor
JP2015123393A (en) Method and system for extracting and removing heavy metals in soil
JP2015229124A (en) Detoxification treatment method for contaminated soil
JP2009136812A (en) Recovering clarification method of incineration ash, soil or the like containing harmful substance
JP6327782B2 (en) Method for removing radioactive cesium from wastewater containing radioactive cesium
JP2012242254A (en) Original position purification method of contaminated soil
JP6719758B2 (en) Incineration ash treatment agent and incineration ash treatment method
JP2013148569A (en) Specific element removal method
JP2012237658A (en) Method for purifying contaminated soil
KR20160091477A (en) Method for stabilization of heavy metals in contaminated marine sediment using bentonite
KR101579795B1 (en) Method of Removing Cesium from Wastewater by the Solidified Sericite
JP2013174544A (en) Radioactive material remover and radioactive material separation method
JP2014010144A (en) Method for purifying water containing radioactive cesium
JP2013117498A (en) Radioactive substance separation method
JP7102221B2 (en) Radioactive wastewater treatment equipment and radioactive wastewater treatment method
JP6010286B2 (en) Purification method of radioactively contaminated soil
JP3387038B2 (en) Water purification device
AU2005212382B2 (en) Soluble biogenic silica and applications using same
JP2010207675A (en) Method of cleaning heavy metal-contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160330

R150 Certificate of patent or registration of utility model

Ref document number: 5911716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees