JP2004041965A - System for removing nitrogen oxide - Google Patents

System for removing nitrogen oxide Download PDF

Info

Publication number
JP2004041965A
JP2004041965A JP2002204318A JP2002204318A JP2004041965A JP 2004041965 A JP2004041965 A JP 2004041965A JP 2002204318 A JP2002204318 A JP 2002204318A JP 2002204318 A JP2002204318 A JP 2002204318A JP 2004041965 A JP2004041965 A JP 2004041965A
Authority
JP
Japan
Prior art keywords
nitrogen oxide
nitrogen
electrochemical cell
exhaust gas
nitrogen oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002204318A
Other languages
Japanese (ja)
Other versions
JP4318281B2 (en
Inventor
Masanobu Tanno
淡野 正信
Yoshinobu Fujishiro
藤代 芳伸
Shingo Katayama
片山 真吾
Takuya Hiramatsu
平松 拓也
Osamu Shiono
塩野 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fine Ceramics Research Association
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fine Ceramics Research Association
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fine Ceramics Research Association, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fine Ceramics Research Association
Priority to JP2002204318A priority Critical patent/JP4318281B2/en
Priority to AU2003227181A priority patent/AU2003227181A1/en
Priority to PCT/JP2003/003178 priority patent/WO2003078031A1/en
Priority to US10/506,620 priority patent/US20050167286A1/en
Publication of JP2004041965A publication Critical patent/JP2004041965A/en
Application granted granted Critical
Publication of JP4318281B2 publication Critical patent/JP4318281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a system for decomposing or removing nitrogen oxide contained in the exhaust gas from a combustion equipment with an electrochemical cell using a solid electrolytic membrane from the start-up of a combustion equipment. <P>SOLUTION: In the method and the system for decomposing or removing nitrogen oxide, the exhaust gas from the combustion equipment is pretreated by using a nitrogen oxide adsorbing material for adsorbing nitrogen oxide in a low temperature region until the temperature of the exhaust gas rises and releasing the adsorbed nitrogen oxide in a high temperature region after the temperature of the exhaust gas is risen. The pretreated exhaust gas is treated by the electrochemical cell. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、窒素酸化物の浄化を行う窒素酸化物の除去方法及びその除去システムに関するものであり、更に詳しくは、例えば、起動、停止を頻繁に行うリーンエンジン、ディーゼルエンジン等の燃焼器からの排気ガス中の窒素酸化物を、燃焼器の始動直後の排ガスが低温の時から確実に除去することを可能とする窒素酸化物の除去方法及びその除去システムに関するものである。
【0002】
【従来の技術】
一般に、ガソリンエンジンから発生する窒素酸化物を浄化する方法は、現在、三元系触媒による方法が主流となっている。しかし、燃費向上を可能とするリーンバーンエンジンやディーゼルエンジンにおいては、燃焼排ガス中に酸素が過剰に存在するため、三元系触媒への酸素吸着による触媒活性の激減が問題となり、窒素酸化物を浄化することができない。一方、酸素イオン伝導性を有する固体電解質膜を用いて、そこへ電流を流すことにより、排ガス中の酸素を触媒表面に吸着させることなく除去することも行われている。また、触媒反応器として提案されているものとして、例えば、電極に両面を挟まれた固体電解質に電圧を印加することにより、表面酸素を除去すると同時に窒素酸化物を酸素と窒素に分解するシステムが知られている。
【0003】
ここで、先行技術文献をいくつか提示すると、J.Electrochemical Soc.,122,869(1975)には、酸化スカンジウムで安定化したジルコニアの両面に白金電極を形成し、電圧を印加することにより、窒素酸化物と酸素に分解することが示されている。また、J.Chem.Soc.Faraday Trans.,91,1995(1995)には、酸化イットリウムで安定化したジルコニアの両面に、パラジウム電極を形成し、電圧を印加することにより、窒素酸化物と炭化水素、酸素の混合ガス中において、窒素と酸素に分解することが示されている。
【0004】
しかし、固体電解質膜を利用した電気化学セルでは、電圧を印加するだけで窒素酸化物を分解あるいは除去できるが、固体電解質のイオン伝導性を上げるためには、400℃以上の高温にしなければならないという問題がある。また、特に、燃焼器の始動直後の排ガスが低温時には、前記電気化学セルは、十分な能力を発揮せず、窒素酸化物を一時的に除去できないという問題があり、特に、起動、停止を頻繁に行うリーンエンジン、ディーゼルエンジン等では、このことが重要な問題となる。
【0005】
【発明が解決しようとする課題】
このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術における諸問題を抜本的に解決して、燃焼器の始動直後の排ガスが低温の時から当該排ガス中の窒素酸化物を確実に除去することが可能な新しい窒素酸化物の除去方法及びその除去システムを開発することを目標として鋭意研究を進める過程で、室温から400℃までの低温域で窒素酸化物を吸着し、400℃を超える高温域で窒素酸化物を放出する窒素酸化物吸着材からなる窒素酸化物吸着部を電気化学セルの上流部に設けることにより所期の目的を達成し得ることを見出し、更に研究を重ねて、本発明を完成するに至った。
すなわち、本発明は、上記の電気化学セルによる排ガス中の窒素酸化物の除去技術における問題点を改善することを技術的課題としてなされたものであり、燃焼器の始動直後の排ガスが低温の時から当該排ガス中の窒素酸化物を確実に除去する方法及びその除去システムを提供することを目的とするものである。
【0006】
【課題を解決するための手段】
前記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)窒素酸化物を分解あるいは除去する電気化学セルにより排ガス中の窒素酸化物を除去する方法であって、
(a)燃焼器からの排ガスを、予め、当該排ガスの温度が上昇するまでの低温域で窒素酸化物を吸着し、排ガスの温度が上昇した後の高温域で窒素酸化物を放出する窒素酸化物吸着材を用いて前処理する、
(b)上記前処理した排ガスを、電気化学セルで処理する、
ことを特徴とする窒素酸化物の除去方法。
(2)室温から電気化学セルの動作温度までの低温域で窒素酸化物を吸着し、当該動作温度以上の高温域で窒素酸化物を放出する窒素酸化物吸着材を用いて前処理する、前記(1)記載の窒素酸化物の除去方法。
(3)室温から400℃までの低温域で窒素酸化物を吸着し、400℃を越える高温域で窒素酸化物を放出する窒素酸化物吸着材を用いて前処理する、前記(2)記載の窒素酸化物の除去方法。
(4)窒素酸化物を分解あるいは除去する電気化学セルからなる電気化学セル部において、当該電気化学セルの上流部に窒素酸化物吸着材からなる窒素酸化物吸着部を設けたことを特徴とする窒素酸化物除去システム。
(5)少なくとも、酸素イオン導電体の固体電解質、カソード、及びアノードの3層で構成される電気化学セルを用いて窒素酸化物を分解あるいは除去する装置であって、当該装置のガス流入前部に窒素酸化物吸着部を設けたことを特徴とする前記(4)記載の窒素酸化物除去システム。
(6)窒素酸化物吸着部が、室温から電気化学セルの動作温度までの低温域で窒素酸化物を吸着し、当該動作温度以上の高温域で窒素酸化物を放出する窒素酸化物吸着材からなることを特徴とする前記(4)又は(5)記載の窒素酸化物除去システム。
(7)窒素酸化物吸着部が、室温から400℃までの低温域で窒素酸化物を吸着し、400℃を越える高温域で窒素酸化物を放出する窒素酸化物吸着材料からなることを特徴とする前記(6)記載の窒素酸化物除去システム。
【0007】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明の方法は、窒素酸化物を分解あるいは除去する電気化学セルにより排ガス中の窒素酸化物を除去する方法であって、燃焼器からの排ガスを、予め、当該排ガスの温度が上昇するまでの低温域で窒素酸化物を吸着し、排ガスの温度が上昇した後の高温域で窒素酸化物を放出する窒素酸化物吸着材を用いて前処理すること、上記前処理した排ガスを、電気化学セルで処理すること、を特徴とする窒素酸化物の除去方法、である。また、本発明のシステムは、窒素酸化物を分解あるいは除去する電気化学セルからなる電気化学セル部において、当該電気化学セルの上流部に窒素酸化物吸着材からなる窒素酸化物吸着部を設けたことを特徴とする窒素酸化物除去システム、である。
【0008】
上記窒素酸化物吸着材料としては、室温から電気化学セルの動作温度までの低温域で窒素酸化物を吸着し、当該動作温度以上の高温域で窒素酸化物を放出する機能を有する窒素酸化物吸着材、好適には、例えば、室温から400℃までの低温域で窒素酸化物を吸着し、400℃を越える高温域で窒素酸化物を放出する窒素酸化物吸着材を用いることが好ましい。すなわち、燃焼器の始動直後の排ガスの温度が室温から400℃までは、電気化学セルの固体電解質の温度が低いために、そのイオン伝導度が小さい状態にある。そこで、本発明では、室温から400℃までの低温域で前記窒素酸化物吸着材によって排気ガス中の窒素酸化物が吸着され、排気ガスの温度が上昇して400℃を越える高温域で前記窒素酸化物吸着材に吸着した窒素酸化物が放出されるようにすることで、その間に、その熱によって電気化学セルの固体電解質の温度も上昇し、そのイオン伝導度が高くなり、窒素酸化物を分解できるようになるので、その段階で、前記窒素酸化物吸着材から放出された窒素酸化物は、電気化学セルで分解される。
【0009】
本発明において、上記窒素酸化物吸着部に使用される窒素酸化物吸着材としては、好適には、例えば、活性炭、ゼオライト、シリカゲル、アルカリ金属含有シリカあるいはアルミナ、アルカリ土類金属含有シリカあるいはアルミナ、塩基性珪藻土、アルカリ土類金属含有の酸化銅及び酸化鉄、遷移金属含有ジルコニア、酸化マンガン化合物等が例示される。しかし、本発明では、上記窒素酸化物吸着材は、これらに制限されるものではなく、所定の温度で窒素酸化物を吸着し、所定の温度で窒素酸化物を放出するものであれば、これらと同様に使用することができる。また、本発明では、これらの材料を適宜組み合わせて任意の吸着及び放出特性を有する窒素酸化物吸着材を構築し、使用することができる。
【0010】
本発明において、上記窒素酸化物吸着部に使用される窒素酸化物吸着材の形態としては、好適には、粉末、多孔体、発泡体、あるいはハニカムが例示されるが、これらに制限されない。粉末の場合には、吸着材は、例えば、セラミックスハニカムあるいは金属ハニカムに担持して使用することができる。同様に、多孔体あるいは発泡体の場合には、これらを粉砕してハニカムに担持し使用することができるが、それらの使用形態は特に制限されない。本発明において、上記電気化学セルは、少なくとも、酸素イオン導伝体の固体電解質、カソード、及びアノード電極の3層で構成され、これらの電極間に電圧を印加することにより、窒素酸化物を電気化学的に窒素と酸素に還元する機能を有するものであれば適宜のものが用いられる。当該電気化学セルによる窒素酸化物の分解は、使用されている固体電解質の酸素イオン伝導度に依存し、上記電気化学セルでは、例えば、400℃を越えると酸素イオン伝導度が高くなり、窒素酸化物を十分に分解することができる。しかしながら、燃焼器の始動直後の排ガスが低温時の400℃以下の低温域では固体電解質の酸素イオン伝導度が低く、窒素酸化物を十分に分解することができない。尚、本発明では、窒素酸化物吸着材は、使用する電気化学セルの動作温度を考慮して、当該動作温度に整合して、排ガス中の窒素酸化物を吸着/放出する機能を有するものを適宜選択して、使用することが望ましい。
【0011】
本発明において、上記電気化学セル部に使用される酸素イオン導伝体の固体電解質材料としては、酸素イオン導伝性を有するものであればよく、特に制限されないが、好適には、例えば、酸化イットリウム又は酸化スカンジウムで安定化したジルコニア、酸化ガドリニウム又は酸化サマリウムで安定化したセリア、ランタンガレイト等が例示される。また、本発明において、上記電気化学セル部に使用されるカソード材料としては、電子伝導性を有するものであればよく、特に制限されないが、好適には、例えば、金、銀、白金、パラジウム、ニッケル等の金属、酸化コバルト、酸化ニッケル、酸化銅、ランタンクロマイト、ランタンマンガナイト、ランタンコバルタイト等の金属酸化物が例示される。また、これらを電子伝導性物質とイオン導電性物質の混合、あるいは積層構造にして使用してもよい。
【0012】
更に、本発明において、上記電気化学セル部に使用されるアノード材料としては、電子伝導性を有するものであればよく、特に制限されないが、好適には、例えば、金、銀、白金、パラジウム、ニッケル等の金属、酸化コバルト、酸化ニッケル、酸化銅、ランタンクロマイト、ランタンマンガナイト、ランタンコバルタイト等の金属酸化物が例示される。また、これらを電子伝導性物質とイオン導電性物質の混合、あるいは積層構造にして使用してもよい。
【0013】
本発明の窒素酸化物除去システムを構成する窒素酸化物吸着部と電気化学セル部は、好適には、例えば、排気管で連結する。この場合、排気ガスの温度分布に合わせて、窒素酸化物吸着部と電気化学セル部を当該排気管で連結する間隔を任意に調整することができる。また、排気ガスの温度によっては、窒素酸化物吸着部と電気化学セル部を同室のユニット内に納めて一体的に形成してもよく、これらの構造は特に制限されない。また、これらの具体的な構成は、特に制限されるものではなく、その使用目的に応じて任意に設計することができる。
【0014】
【作用】
本発明は、燃焼器からの排ガスを、予め、当該排ガスの温度が上昇するまでの低温域で窒素酸化物を吸着し、排ガスの温度が上昇した後の高温域で窒素酸化物を放出する窒素酸化物吸着材を用いて前処理した後、当該前処理した排ガスを電気化学セルで処理することを特徴としている。本発明では、このような構成を採用することにより、燃焼器の始動直後の排ガスが低温時には排ガス中の窒素酸化物を上記窒素酸化物吸着材に吸着させ、排ガスの温度が上昇して電気化学セルの動作温度に達した段階で上記窒素酸化物を上記吸着材から放出させ、それにより、排ガス中の窒素酸化物を燃焼器の始動直後から確実に除去することができる。本発明は、所定の窒素酸化物吸着/放出特性を有する窒素酸化物吸着材を適宜選択し、使用することにより、燃焼器の始動直後の排ガスが低温の時から、燃焼器からの排気ガス中の窒素酸化物を高い精度で、高効率で除去することが可能となるので、燃焼器の始動時から窒素酸化物の放出を抑えることができる。
【0015】
【実施例】
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。
実施例1
(1)窒素酸化物除去システムの構成
図1に、本発明の一実施形態に係わる窒素酸化物吸着部と電気化学セル部からなる窒素酸化物除去システムのシステム構成図を示す。燃焼器から出た排ガスは、窒素酸化物吸着部1を通り、電気化学セル部2に供給される。電気化学セル部2では、固体電解質のイオン伝導度が高い高温域では、導入された排ガス中の窒素酸化物を分解して浄化ガスとして排出する。燃焼器の始動時などの電気化学セル部の固体電解質の温度が低くてイオン伝導性が小さい間は、燃焼器から出た排ガス中の窒素酸化物は、窒素酸化物吸着部1で吸収され、窒素酸化物の排出を押さえる。窒素酸化物吸着部1で吸収された窒素酸化物は、排ガス温度が上昇し、電気化学セル部2の作動温度に達すると、窒素酸化物吸着部1から放出される。放出された窒素酸化物は、排ガス中の窒素酸化物とともに電気化学セル部2に供給され、当該電気化学セル部2で分解されて浄化ガスとして排出される。
【0016】
(2)窒素酸化物の除去方法
窒素酸化物吸着部1の窒素酸化物吸着材を、リチウムシリケート発泡体とし、電気化学セル部2の固体電解質を、酸化イットリウムで安定化したジルコニアとし、カソードを酸化ニッケル、ニッケル、白金、酸化イットリウムで安定化したジルコニアの複合体とし、アノードを白金と酸化イットリウムで安定化したジルコニアとして、窒素酸化物の浄化実験を行った。一酸化窒素1000ppm、酸素3%を含んだヘリウムバランスのモデル排ガスを流量50ml/minで流した。電気化学セル部2は、上記の条件で600℃では90%以上の窒素酸化物浄化能を有する。電気化学セルに電圧を印加しながら、システムの温度を600℃まで10分間で昇温しながら、出口ガスの窒素酸化物濃度を化学発光式NOx計で測定した。
【0017】
(3)結果
上記構成を採用することにより、常温から400℃以下の低温域においても、90%以上の窒素酸化物の浄化率が得られた。一方、比較例として、窒素酸化物吸着部1を通さず、直接、電気化学セル部2にガスを供給し、同様の実験を行った結果、常温から400℃までは窒素酸化物の浄化率は0%であり、それ以上の高温域では浄化率が徐々に上昇し、600℃に達して、窒素酸化物の浄化率は90%を越えた。これらの結果は、本発明の方法及びシステムが、特に燃焼器の始動直後の排ガスが低温時の排ガス中の窒素酸化物の処理技術として有用であることを示すものである。
【0018】
【発明の効果】
以上詳述したように、本発明は、窒素酸化物の除去方法及びその除去システムに係るものであり、本発明により、以下のような効果が奏される。
(1)燃焼器からの排ガス中の窒素酸化物を確実に除去することができる。
(2)燃焼器の始動直後の排ガスが低温の時から当該排ガス中の窒素酸化物を処理することができる。
(3)本発明の窒素酸化物の除去方法及び除去システムでは、起動、停止を頻繁に行うリンエンジン、ディーゼルエンジン等の燃焼器からの排気ガス中の窒素酸化物をその起動時から除去することができる。
(4)そのために、定常運転のみならず、非定常運転中でも燃焼器からの窒素酸化物の放出を確実に押さえることができ、それにより、環境負荷を顕著に低減することができる。
【図面の簡単な説明】
【図1】本発明の窒素酸化物吸着部と電気化学セル部からなる窒素酸化物除去システムのシステム構成図の一例である。
【符号の説明】
1  窒素酸化物吸着部
2  電気化学セル部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for removing nitrogen oxides for purifying nitrogen oxides and a system for removing the same. More specifically, for example, the present invention relates to, for example, a combustion engine such as a lean engine or a diesel engine that frequently starts and stops. The present invention relates to a nitrogen oxide removal method and a nitrogen oxide removal method capable of reliably removing nitrogen oxides in exhaust gas immediately after starting a combustor at a low temperature of an exhaust gas.
[0002]
[Prior art]
In general, the method of purifying nitrogen oxides generated from a gasoline engine is mainly a method using a three-way catalyst. However, in lean-burn engines and diesel engines that can improve fuel efficiency, the excess amount of oxygen in the combustion exhaust gas causes a problem of a sharp decrease in catalytic activity due to the adsorption of oxygen to the three-way catalyst. It cannot be purified. On the other hand, using a solid electrolyte membrane having oxygen ion conductivity and passing a current therethrough, oxygen in exhaust gas is removed without being adsorbed on the catalyst surface. Further, as a catalyst reactor proposed, for example, a system that removes surface oxygen by simultaneously applying a voltage to a solid electrolyte sandwiched between electrodes on both sides to simultaneously decompose nitrogen oxides into oxygen and nitrogen. Are known.
[0003]
Here, some prior art documents are presented. Electrochemical Soc. , 122, 869 (1975) show that platinum electrodes are formed on both surfaces of zirconia stabilized with scandium oxide and decomposed into nitrogen oxides and oxygen by applying a voltage. Also, J.I. Chem. Soc. Faraday Trans. , 91, 1995 (1995), a palladium electrode is formed on both surfaces of zirconia stabilized with yttrium oxide, and by applying a voltage, nitrogen and nitrogen are mixed in a mixed gas of nitrogen oxide, hydrocarbon and oxygen. It has been shown to decompose into oxygen.
[0004]
However, in an electrochemical cell using a solid electrolyte membrane, nitrogen oxides can be decomposed or removed only by applying a voltage, but in order to increase the ionic conductivity of the solid electrolyte, the temperature must be raised to 400 ° C. or higher. There is a problem. In addition, particularly when the temperature of the exhaust gas is low immediately after the start of the combustor, the electrochemical cell does not exhibit sufficient performance and has a problem that nitrogen oxides cannot be temporarily removed. This is an important issue for lean engines, diesel engines, etc.
[0005]
[Problems to be solved by the invention]
In such a situation, the present inventors, in view of the above prior art, have drastically solved the problems in the above conventional art, In the course of intensive research with the aim of developing a new nitrogen oxide removal method and a removal system capable of reliably removing nitrogen oxides, nitrogen oxides are kept at a low temperature range from room temperature to 400 ° C. That the intended purpose can be achieved by providing a nitrogen oxide adsorbing section comprising a nitrogen oxide adsorbing material that adsorbs nitrogen and releases nitrogen oxide in a high temperature region exceeding 400 ° C. in an upstream portion of the electrochemical cell. After further heading and further research, the present invention was completed.
That is, the present invention has been made as a technical problem to improve the problem in the technology for removing nitrogen oxides in exhaust gas by the above-described electrochemical cell, and it is intended that when the exhaust gas immediately after the start of the combustor has a low temperature. It is an object of the present invention to provide a method for reliably removing nitrogen oxides from the exhaust gas from the exhaust gas and a system for removing the same.
[0006]
[Means for Solving the Problems]
The present invention for solving the above problems is constituted by the following technical means.
(1) A method for removing nitrogen oxides in exhaust gas by an electrochemical cell for decomposing or removing nitrogen oxides,
(A) Nitrogen oxidation that adsorbs nitrogen oxide in the exhaust gas from the combustor in a low temperature region before the temperature of the exhaust gas rises and releases nitrogen oxide in a high temperature region after the temperature of the exhaust gas rises Pretreatment using a material adsorbent,
(B) treating the pretreated exhaust gas in an electrochemical cell;
A method for removing nitrogen oxides.
(2) pretreating with a nitrogen oxide adsorbent that adsorbs nitrogen oxides in a low temperature range from room temperature to the operating temperature of the electrochemical cell and releases nitrogen oxides in a high temperature range equal to or higher than the operating temperature; The method for removing nitrogen oxides according to (1).
(3) The pretreatment according to the above (2), wherein the nitrogen oxide is adsorbed in a low temperature range from room temperature to 400 ° C., and the pretreatment is performed using a nitrogen oxide adsorbent which releases nitrogen oxide in a high temperature range exceeding 400 ° C. A method for removing nitrogen oxides.
(4) In an electrochemical cell section composed of an electrochemical cell for decomposing or removing nitrogen oxides, a nitrogen oxide adsorbing section composed of a nitrogen oxide adsorbing material is provided upstream of the electrochemical cell. Nitrogen oxide removal system.
(5) A device for decomposing or removing nitrogen oxides by using an electrochemical cell composed of at least three layers of a solid electrolyte of an oxygen ion conductor, a cathode, and an anode, wherein a gas inlet portion of the device is used. The nitrogen oxide removing system according to the above (4), wherein a nitrogen oxide adsorbing section is provided in the system.
(6) a nitrogen oxide adsorbing section that adsorbs nitrogen oxides in a low temperature range from room temperature to the operating temperature of the electrochemical cell and releases nitrogen oxides in a high temperature range above the operating temperature; The nitrogen oxide removing system according to the above (4) or (5), wherein
(7) The nitrogen oxide adsorbing portion is made of a nitrogen oxide adsorbing material that adsorbs nitrogen oxide in a low temperature range from room temperature to 400 ° C. and releases nitrogen oxide in a high temperature range exceeding 400 ° C. The nitrogen oxide removing system according to the above (6).
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail.
The method of the present invention is a method of removing nitrogen oxides in exhaust gas by an electrochemical cell that decomposes or removes nitrogen oxides.The exhaust gas from the combustor is used in advance until the temperature of the exhaust gas increases. Nitrogen oxides are adsorbed in a low temperature range, and the pretreatment is performed using a nitrogen oxide adsorbent that releases nitrogen oxides in a high temperature range after the temperature of the exhaust gas is increased. A method for removing nitrogen oxides. Further, in the system of the present invention, in the electrochemical cell section composed of an electrochemical cell for decomposing or removing nitrogen oxides, a nitrogen oxide adsorbing section composed of a nitrogen oxide adsorbing material is provided upstream of the electrochemical cell. A nitrogen oxide removing system.
[0008]
As the nitrogen oxide adsorbing material, nitrogen oxide adsorbing has a function of adsorbing nitrogen oxide in a low temperature range from room temperature to an operating temperature of an electrochemical cell and releasing nitrogen oxide in a high temperature range not lower than the operating temperature. For example, it is preferable to use a nitrogen oxide adsorbent that adsorbs nitrogen oxides in a low temperature range from room temperature to 400 ° C. and releases nitrogen oxides in a high temperature range exceeding 400 ° C. That is, when the temperature of the exhaust gas immediately after the start of the combustor is from room temperature to 400 ° C., the ion conductivity of the electrochemical cell is low because the temperature of the solid electrolyte of the electrochemical cell is low. Therefore, in the present invention, the nitrogen oxides in the exhaust gas are adsorbed by the nitrogen oxide adsorbent in a low temperature range from room temperature to 400 ° C., and the temperature of the exhaust gas rises and the nitrogen oxides in the high temperature range exceeding 400 ° C. By releasing the nitrogen oxides adsorbed on the oxide adsorbent, during that time, the heat also raises the temperature of the solid electrolyte of the electrochemical cell, increasing its ionic conductivity and reducing the nitrogen oxides. At this stage, the nitrogen oxides released from the nitrogen oxide adsorbent are decomposed in the electrochemical cell.
[0009]
In the present invention, the nitrogen oxide adsorbent used in the nitrogen oxide adsorbing section is preferably, for example, activated carbon, zeolite, silica gel, silica or alumina containing an alkali metal, silica or alumina containing an alkaline earth metal, Examples include basic diatomaceous earth, alkaline earth metal-containing copper oxide and iron oxide, transition metal-containing zirconia, and manganese oxide compounds. However, in the present invention, the nitrogen oxide adsorbing material is not limited to these, as long as it adsorbs nitrogen oxide at a predetermined temperature and releases nitrogen oxide at a predetermined temperature. Can be used as well. Further, in the present invention, these materials can be appropriately combined to construct and use a nitrogen oxide adsorbent having arbitrary adsorption and release characteristics.
[0010]
In the present invention, the form of the nitrogen oxide adsorbent used in the nitrogen oxide adsorbing section is preferably, but not limited to, a powder, a porous body, a foam, or a honeycomb. In the case of powder, the adsorbent can be used, for example, carried on a ceramic honeycomb or a metal honeycomb. Similarly, in the case of a porous body or a foamed body, these can be pulverized and supported on a honeycomb for use, but their use form is not particularly limited. In the present invention, the electrochemical cell includes at least three layers of a solid electrolyte of an oxygen ion conductor, a cathode, and an anode electrode, and applies a voltage between these electrodes to convert nitrogen oxides into electricity. As long as it has a function of chemically reducing to nitrogen and oxygen, an appropriate one is used. The decomposition of nitrogen oxides by the electrochemical cell depends on the oxygen ion conductivity of the solid electrolyte used. In the electrochemical cell, for example, when the temperature exceeds 400 ° C., the oxygen ion conductivity increases, The object can be sufficiently decomposed. However, in the low temperature range of 400 ° C. or lower when the exhaust gas immediately after the start of the combustor is low, the oxygen ion conductivity of the solid electrolyte is low and nitrogen oxides cannot be sufficiently decomposed. In the present invention, the nitrogen oxide adsorbent has a function of adsorbing / releasing nitrogen oxides in exhaust gas in consideration of the operating temperature of the electrochemical cell to be used and matching the operating temperature. It is desirable to select and use as appropriate.
[0011]
In the present invention, the solid electrolyte material of the oxygen ion conductor used in the electrochemical cell unit is not particularly limited as long as it has oxygen ion conductivity, but is preferably, for example, oxidized. Examples include zirconia stabilized with yttrium or scandium oxide, ceria and lanthanum gallate stabilized with gadolinium oxide or samarium oxide. Further, in the present invention, the cathode material used in the electrochemical cell section is not particularly limited as long as it has electron conductivity, but preferably, for example, gold, silver, platinum, palladium, Examples thereof include metals such as nickel, and metal oxides such as cobalt oxide, nickel oxide, copper oxide, lanthanum chromite, lanthanum manganite, and lanthanum cobaltite. Further, these may be used as a mixture of an electron conductive material and an ion conductive material, or a laminated structure.
[0012]
Further, in the present invention, the anode material used in the electrochemical cell portion is not particularly limited as long as it has electron conductivity, but preferably, for example, gold, silver, platinum, palladium, Examples thereof include metals such as nickel, and metal oxides such as cobalt oxide, nickel oxide, copper oxide, lanthanum chromite, lanthanum manganite, and lanthanum cobaltite. Further, these may be used as a mixture of an electron conductive material and an ion conductive material, or a laminated structure.
[0013]
The nitrogen oxide adsorption part and the electrochemical cell part which constitute the nitrogen oxide removal system of the present invention are preferably connected by, for example, an exhaust pipe. In this case, the interval at which the nitrogen oxide adsorption section and the electrochemical cell section are connected by the exhaust pipe can be arbitrarily adjusted according to the temperature distribution of the exhaust gas. Further, depending on the temperature of the exhaust gas, the nitrogen oxide adsorbing section and the electrochemical cell section may be housed in a unit in the same chamber and may be integrally formed, and these structures are not particularly limited. Further, these specific configurations are not particularly limited, and can be arbitrarily designed according to the purpose of use.
[0014]
[Action]
The present invention provides a method for adsorbing nitrogen oxides in advance in a low temperature region until the temperature of the exhaust gas rises, and releasing nitrogen oxides in a high temperature region after the temperature of the exhaust gas rises. After pretreatment using an oxide adsorbent, the pretreated exhaust gas is treated in an electrochemical cell. In the present invention, by adopting such a configuration, when the exhaust gas immediately after the start of the combustor is at a low temperature, the nitrogen oxides in the exhaust gas are adsorbed by the nitrogen oxide adsorbent, and the temperature of the exhaust gas rises and the electrochemical When the operating temperature of the cell has been reached, the nitrogen oxides are released from the adsorbent, whereby the nitrogen oxides in the exhaust gas can be reliably removed immediately after the start of the combustor. According to the present invention, by appropriately selecting and using a nitrogen oxide adsorbent having a predetermined nitrogen oxide adsorption / desorption characteristic, the exhaust gas immediately after the start of the combustor is cooled to a low temperature in the exhaust gas from the combustor. It is possible to remove nitrogen oxides with high accuracy and high efficiency, so that the emission of nitrogen oxides can be suppressed from the start of the combustor.
[0015]
【Example】
Next, the present invention will be specifically described based on examples, but the present invention is not limited to only these examples.
Example 1
(1) Configuration of Nitrogen Oxide Removal System FIG. 1 shows a system configuration diagram of a nitrogen oxide removal system including a nitrogen oxide adsorption section and an electrochemical cell section according to an embodiment of the present invention. Exhaust gas discharged from the combustor passes through the nitrogen oxide adsorption section 1 and is supplied to the electrochemical cell section 2. In the electrochemical cell section 2, in a high temperature region where the ionic conductivity of the solid electrolyte is high, nitrogen oxides in the introduced exhaust gas are decomposed and discharged as purified gas. While the temperature of the solid electrolyte in the electrochemical cell is low and the ionic conductivity is low, such as when the combustor is started, nitrogen oxides in the exhaust gas discharged from the combustor are absorbed by the nitrogen oxide adsorbing section 1, Reduces nitrogen oxide emissions. The nitrogen oxides absorbed by the nitrogen oxide adsorption unit 1 are released from the nitrogen oxide adsorption unit 1 when the temperature of the exhaust gas rises and reaches the operating temperature of the electrochemical cell unit 2. The released nitrogen oxides are supplied to the electrochemical cell unit 2 together with the nitrogen oxides in the exhaust gas, decomposed in the electrochemical cell unit 2, and discharged as purified gas.
[0016]
(2) Method for Removing Nitrogen Oxide The nitrogen oxide adsorbent of the nitrogen oxide adsorbing section 1 is a lithium silicate foam, the solid electrolyte of the electrochemical cell section 2 is zirconia stabilized with yttrium oxide, and the cathode is Nitrogen oxide purification experiments were performed using a composite of nickel oxide, nickel, platinum, and zirconia stabilized with yttrium oxide, and the anode as zirconia stabilized with platinum and yttrium oxide. Helium-balanced model exhaust gas containing 1000 ppm of nitric oxide and 3% of oxygen was flowed at a flow rate of 50 ml / min. The electrochemical cell section 2 has a nitrogen oxide purifying ability of 90% or more at 600 ° C. under the above conditions. While applying a voltage to the electrochemical cell, the temperature of the system was raised to 600 ° C. in 10 minutes, and the nitrogen oxide concentration of the outlet gas was measured with a chemiluminescence NOx meter.
[0017]
(3) Results By adopting the above configuration, a nitrogen oxide purification rate of 90% or more was obtained even in a low temperature range from normal temperature to 400 ° C. or less. On the other hand, as a comparative example, a gas was directly supplied to the electrochemical cell unit 2 without passing through the nitrogen oxide adsorption unit 1 and a similar experiment was performed. The purification rate gradually increased at a high temperature range of 0% or more, and reached 600 ° C., and the purification rate of nitrogen oxides exceeded 90%. These results indicate that the method and system of the present invention is useful as a technology for treating nitrogen oxides in exhaust gas, especially when the exhaust gas immediately after the start of the combustor is at a low temperature.
[0018]
【The invention's effect】
As described above in detail, the present invention relates to a method for removing nitrogen oxides and a system for removing the same, and the present invention has the following effects.
(1) Nitrogen oxides in exhaust gas from a combustor can be reliably removed.
(2) Nitrogen oxides in the exhaust gas can be treated immediately after the start of the combustor when the temperature of the exhaust gas is low.
(3) In the method and system for removing nitrogen oxides of the present invention, nitrogen oxides in exhaust gas from combustors such as phosphorus engines and diesel engines that frequently start and stop are removed from the time of startup. Can be.
(4) Therefore, the emission of nitrogen oxides from the combustor can be reliably suppressed not only in the steady operation but also in the non-steady operation, whereby the environmental load can be significantly reduced.
[Brief description of the drawings]
FIG. 1 is an example of a system configuration diagram of a nitrogen oxide removing system including a nitrogen oxide adsorbing section and an electrochemical cell section of the present invention.
[Explanation of symbols]
1 Nitrogen oxide adsorption section 2 Electrochemical cell section

Claims (7)

窒素酸化物を分解あるいは除去する電気化学セルにより排ガス中の窒素酸化物を除去する方法であって、
(1)燃焼器からの排ガスを、予め、当該排ガスの温度が上昇するまでの低温域で窒素酸化物を吸着し、排ガスの温度が上昇した後の高温域で窒素酸化物を放出する窒素酸化物吸着材を用いて前処理する、
(2)上記前処理した排ガスを、電気化学セルで処理する、
ことを特徴とする窒素酸化物の除去方法。
A method for removing nitrogen oxides in exhaust gas by an electrochemical cell that decomposes or removes nitrogen oxides,
(1) Nitrogen oxidation in which exhaust gas from a combustor is adsorbed in advance in a low temperature region until the temperature of the exhaust gas rises, and is released in a high temperature region after the exhaust gas temperature rises. Pretreatment using a material adsorbent,
(2) treating the pretreated exhaust gas in an electrochemical cell,
A method for removing nitrogen oxides.
室温から電気化学セルの動作温度までの低温域で窒素酸化物を吸着し、当該動作温度以上の高温域で窒素酸化物を放出する窒素酸化物吸着材を用いて前処理する、請求項1記載の窒素酸化物の除去方法。The pretreatment is performed using a nitrogen oxide adsorbent that adsorbs nitrogen oxides in a low temperature range from room temperature to an operating temperature of an electrochemical cell and releases nitrogen oxides in a high temperature range not less than the operating temperature. Method for removing nitrogen oxides. 室温から400℃までの低温域で窒素酸化物を吸着し、400℃を越える高温域で窒素酸化物を放出する窒素酸化物吸着材を用いて前処理する、請求項2記載の窒素酸化物の除去方法。The nitrogen oxide according to claim 2, wherein the nitrogen oxide is adsorbed in a low temperature range from room temperature to 400 ° C and is pretreated using a nitrogen oxide adsorbent that releases nitrogen oxide in a high temperature range exceeding 400 ° C. Removal method. 窒素酸化物を分解あるいは除去する電気化学セルからなる電気化学セル部において、当該電気化学セルの上流部に窒素酸化物吸着材からなる窒素酸化物吸着部を設けたことを特徴とする窒素酸化物除去システム。In an electrochemical cell section comprising an electrochemical cell for decomposing or removing nitrogen oxides, a nitrogen oxide adsorbing section comprising a nitrogen oxide adsorbing material is provided upstream of the electrochemical cell. Removal system. 少なくとも、酸素イオン導電体の固体電解質、カソード、及びアノードの3層で構成される電気化学セルを用いて窒素酸化物を分解あるいは除去する装置であって、当該装置のガス流入前部に窒素酸化物吸着部を設けたことを特徴とする請求項4記載の窒素酸化物除去システム。An apparatus for decomposing or removing nitrogen oxides using an electrochemical cell composed of at least three layers of a solid electrolyte of an oxygen ion conductor, a cathode, and an anode. The nitrogen oxide removal system according to claim 4, further comprising a substance adsorbing section. 窒素酸化物吸着部が、室温から電気化学セルの動作温度までの低温域で窒素酸化物を吸着し、当該動作温度以上の高温域で窒素酸化物を放出する窒素酸化物吸着材からなることを特徴とする請求項4又は5記載の窒素酸化物除去システム。The nitrogen oxide adsorbing section is composed of a nitrogen oxide adsorbent that adsorbs nitrogen oxides in a low temperature range from room temperature to the operating temperature of the electrochemical cell and releases nitrogen oxides in a high temperature range above the operating temperature. The nitrogen oxide removing system according to claim 4 or 5, wherein: 窒素酸化物吸着部が、室温から400℃までの低温域で窒素酸化物を吸着し、400℃を越える高温域で窒素酸化物を放出する窒素酸化物吸着材料からなることを特徴とする請求項6記載の窒素酸化物除去システム。The nitrogen oxide adsorbing part is made of a nitrogen oxide adsorbing material that adsorbs nitrogen oxide in a low temperature range from room temperature to 400 ° C. and releases nitrogen oxide in a high temperature range exceeding 400 ° C. 7. The nitrogen oxide removal system according to 6.
JP2002204318A 2002-03-15 2002-07-12 Nitrogen oxide removal system Expired - Lifetime JP4318281B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002204318A JP4318281B2 (en) 2002-07-12 2002-07-12 Nitrogen oxide removal system
AU2003227181A AU2003227181A1 (en) 2002-03-15 2003-03-17 Chemical reactor for nitrogen oxide removal and method of removing nitrogen oxide
PCT/JP2003/003178 WO2003078031A1 (en) 2002-03-15 2003-03-17 Chemical reactor for nitrogen oxide removal and method of removing nitrogen oxide
US10/506,620 US20050167286A1 (en) 2002-03-15 2003-03-17 Chemical reactor for nitrogen oxide removal and method of removing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204318A JP4318281B2 (en) 2002-07-12 2002-07-12 Nitrogen oxide removal system

Publications (2)

Publication Number Publication Date
JP2004041965A true JP2004041965A (en) 2004-02-12
JP4318281B2 JP4318281B2 (en) 2009-08-19

Family

ID=31709955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204318A Expired - Lifetime JP4318281B2 (en) 2002-03-15 2002-07-12 Nitrogen oxide removal system

Country Status (1)

Country Link
JP (1) JP4318281B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162526A (en) * 2005-12-12 2007-06-28 Toyota Motor Corp Method for regenerating normal temperature nox adsorption material
WO2008001806A1 (en) 2006-06-30 2008-01-03 National Institute Of Advanced Industrial Science And Technology Electrochemical cell system gas sensor
JP2012157848A (en) * 2011-02-03 2012-08-23 Sumitomo Electric Ind Ltd Gas decomposing apparatus, power generator, and method of decomposing gas
JP2019196748A (en) * 2018-05-10 2019-11-14 トヨタ自動車株式会社 Internal combustion engine having electrochemical reactor and vehicle mounted with internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162526A (en) * 2005-12-12 2007-06-28 Toyota Motor Corp Method for regenerating normal temperature nox adsorption material
WO2008001806A1 (en) 2006-06-30 2008-01-03 National Institute Of Advanced Industrial Science And Technology Electrochemical cell system gas sensor
JP2012157848A (en) * 2011-02-03 2012-08-23 Sumitomo Electric Ind Ltd Gas decomposing apparatus, power generator, and method of decomposing gas
JP2019196748A (en) * 2018-05-10 2019-11-14 トヨタ自動車株式会社 Internal combustion engine having electrochemical reactor and vehicle mounted with internal combustion engine
DE102019206505B4 (en) 2018-05-10 2023-09-21 Toyota Jidosha Kabushiki Kaisha COMBUSTION ENGINE WITH ELECTROCHEMICAL REACTOR AND VEHICLE IN WHICH THE COMBUSTION ENGINE IS BUILT IN

Also Published As

Publication number Publication date
JP4318281B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
WO2006078017A1 (en) Ceramic chemical reaction device capable of decomposing solid carbon
JP2010540247A (en) Purification structure incorporating a bias electrochemical catalyst system
KR20120047752A (en) Electrochemical-catalytic converter for exhaust emission control
JP2013100980A (en) Electrocatalytic tube for exhaust emission control
Hamamoto et al. Low temperature NOx Decomposition using electrochemical reactor
JP3657542B2 (en) Chemical reactor
Huang et al. Lean-burn NOx emission control via simulated stack of solid oxide fuel cells with Cu-added (LaSr) MnO3 cathodes
JP3626971B2 (en) Chemical reactor
JP2009022929A (en) Nitrous oxide decomposition catalyst, nitrous oxide decomposition apparatus provided with the same, and nitrous oxide decomposition method using the same
JP4395567B2 (en) Electrochemical element and exhaust gas purification method
JP4318281B2 (en) Nitrogen oxide removal system
JP4057823B2 (en) Nitrogen oxide purification chemical reactor and nitrogen oxide purification method
EP1479431A2 (en) An exhaust gas purifying apparatus and method of using the same
JP2008307493A (en) Self-organizing porous thin film type electrochemical reactor
JP4193929B2 (en) Energy saving electrochemical reaction system and activation method thereof
US20050167286A1 (en) Chemical reactor for nitrogen oxide removal and method of removing nitrogen oxide
JP4877574B2 (en) Exhaust gas purification device for internal combustion engine
JP2001146407A (en) Apparatus for purifying carbon monoxide, method for operating the same and method for stopping the same
JP2004058028A (en) Electrochemical cell type chemical reaction system
JP4521515B2 (en) Catalytic electrochemical reactor
JP4132893B2 (en) Electrode material for chemical reactor
JP4317683B2 (en) Nitrogen oxide purification chemical reactor
JP2002143647A (en) Nitrogen oxides removing element
JP4822494B2 (en) Electrochemical cell type chemical reactor
JP2008110277A (en) Low-temperature operation type electrochemical reactor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041018

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4318281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term