JP2004041909A - Oxidation catalyst, manufacturing method for oxol compound using the same, oxolane compound and manufacturing method for diol compound - Google Patents

Oxidation catalyst, manufacturing method for oxol compound using the same, oxolane compound and manufacturing method for diol compound Download PDF

Info

Publication number
JP2004041909A
JP2004041909A JP2002202361A JP2002202361A JP2004041909A JP 2004041909 A JP2004041909 A JP 2004041909A JP 2002202361 A JP2002202361 A JP 2002202361A JP 2002202361 A JP2002202361 A JP 2002202361A JP 2004041909 A JP2004041909 A JP 2004041909A
Authority
JP
Japan
Prior art keywords
compound
catalyst
solution
general formula
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002202361A
Other languages
Japanese (ja)
Inventor
Masumi Ito
伊藤 ますみ
Hide Terada
寺田 秀
Yasuko Nakajima
中嶋 泰子
Yukio Koyasu
小安 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002202361A priority Critical patent/JP2004041909A/en
Publication of JP2004041909A publication Critical patent/JP2004041909A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To efficientry obtain an oxol compound at a high yield with high selectivity without requiring high cost operation such that steam is contained in a raw material gas when the oxol compound is manufactured by oxidizing a hydrocarbon. <P>SOLUTION: In an oxidation catalyst having a silicious carrier and at least a molybdenum-containing catalyst component, the content of the silicous carrier is set to 60 wt.% or more. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、炭化水素を酸化してオキソール化合物を製造する際に好適に使用される酸化触媒、及びこの触媒を用いたオキソール化合物の製造方法、更にはこの方法により得られたオキソール化合物を用いたオキソラン化合物及びジオール化合物の製造方法の製造方法に関する。
【0002】
【従来の技術】
オキソール化合物、中でも特にフラン類は、水素化条件下又は水の存在する水素化条件下で容易にテトラヒドロフラン又は1,4ブタンジオールに変化する。
これらは高分子原料を始めとする様々な製品原料として重要な中間体であることから、その原料となるフラン類の需要も極めて高い。
【0003】
フラン類を製造する方法としては、ブタジエン等の炭素数4の炭化水素を触媒の存在下で気相接触酸化する方法が挙げられるが、この酸化反応用の触媒としては、従来、ケイ素質担体とモリブデン等の触媒成分とを含有するものが用いられている。例えば、米国特許第4,322,358号には、ビスマス、モリブデン及び酸素を含有する複合酸化物を約50重量%のシリカゲルに担持させた触媒が記載されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記文献記載の技術を含む従来の酸化触媒では、炭素数4の炭化水素の転化率が工業的に採用可能な値となる様な条件で使用した場合、フラン類の選択率及び収率が不十分である。ここで、フラン類の選択率を上げるために、原料ガス中に水を含めて供給する方法もあるが、水蒸気のコストがかかり経済的ではない。
【0005】
以上の背景から、フラン類等のオキソール化合物を効率よく製造するために、原料ガス中に水蒸気を含める等のコストのかかる作業を必要とせず、高い選択率及び収率で炭化水素からオキソール化合物を製造することが可能な酸化触媒が望まれていた。
【0006】
本発明は、上述の課題に鑑みてなされたものである。すなわち、本発明の目的は、炭化水素を酸化してオキソール化合物を製造する際に、原料ガス中に水蒸気を含める等のコストのかかる作業を必要とせず、高い選択率及び収率でオキソール化合物を効率よく製造することが可能な、酸化触媒を提供することに存する。
【0007】
【課題を解決するための手段】
本発明者らは、上記の実情に鑑み鋭意検討を進めた結果、モリブデンを触媒成分として含む触媒において、ケイ素質担体の含有率を従来技術に比べて高い値(60重量%以上)とすることによって、オキソール化合物の選択率及び収率を向上させることが可能であることを見出した。更に、この様な触媒は、調製法や触媒成分の組み合わせ方を工夫することによって容易に得られることを見いだし、本発明を完成するに至った。
【0008】
本発明の要旨は、炭化水素からオキソール化合物を製造するための酸化触媒であって、ケイ素質担体と、少なくともモリブデンを含む触媒成分とを有するとともに、触媒中における前記ケイ素質担体の含有率が60重量%以上であることを特徴とする酸化触媒に存する。
【0009】
また、本発明の別の要旨は、上記酸化触媒を用いて炭化水素を酸化することを特徴とするオキソール化合物の製造方法、及び、前記方法により得られたオキソール化合物を水素化反応させることを特徴とする、オキソラン化合物及びジオール化合物の製造方法に存する。
【0010】
【発明の実施の形態】
以下、本発明につき詳細に説明する。
【0011】
[I.酸化触媒]
本発明に係る酸化触媒は、ケイ素質の担体と、モリブデンを含む触媒成分とを有するものである。
【0012】
(担体)
担体は、ケイ素質であれば特に制限されず、公知の種々のものが選択できる。具体的には、酸化ケイ素(以下「シリカ」と呼ぶ。)、窒化ケイ素、炭化ケイ素、ゼオライトなどが挙げられるが、好ましくはシリカが用いられる。なお、後述する理由から、ゾル状のものよりも固体状のものを用いることが好ましい。
【0013】
シリカとしては、クオーツ、トリジマイト、クリストバライト等の結晶性シリカ及び無定型シリカを用いることができるが、好ましくは無定型シリカが用いられる。無定型シリカとしては、シリカゾル、各種市販の触媒担体用に予め成形されたシリカゲル、フュームドシリカ、市販のシリカゾルを噴霧乾燥して得られる造粒品などを用いることができる。
【0014】
なお、シリカに含まれる不純物を除去する目的で、塩酸、硝酸、硫酸などの酸を用いて予備洗浄を行なっても良い。酸洗を行った場合には、その後純水を用いて洗液が中性になるまで洗浄を行なうことが好ましい。
【0015】
後述する含浸担持法により本発明の酸化触媒を製造する場合、用いるシリカの比表面積や細孔分布などの物性は、触媒性能に大きな影響を与える。本発明において、シリカの比表面積は、通常0.1m/g以上、好ましくは1m/g以上、更に好ましくは10m/g以上であり、通常1000m/g以下、好ましくは800m/g以下、更に好ましくは600m/g以下である。また、シリカの平均細孔径(直径)は、通常1nm以上、好ましくは2nm以上、更に好ましくは6nm以上であり、通常100nm以下、好ましくは50nm以下、更に好ましくは30nm以下である。これらの物性値は、日本工業規格JIS K 1150−1994に定められた方法によって測定される。
【0016】
また、用いるシリカの酸強度も、触媒性能に大きな影響を与える。本発明において、シリカの酸強度Hは、通常−5.6<H≦+4.8、好ましくは−3.0<H≦+4.8、更に好ましくは+4.0<H≦+4.8である。
【0017】
(担体量)
触媒中における担体の含有率は、本発明の酸化触媒の特徴の一つである。本発明では、触媒中におけるケイ素質担体の含有率が、60重量%以上であることを特徴としている。
【0018】
担体自体は触媒能を持たないため、通常は担体量を多くすると、触媒としての性能は低下する。貴金属系の触媒では、金属を微粒子化して担体に担持させることで、触媒成分が少なくても性能を維持又は向上させることができるケースが知られているが、複合酸化物系や多成分の酸化物系では、極端に担体量の多い触媒で実用レベルに達している例は少ない。特に、気相酸化触媒では、上述の米国特許第4,322,358号公報でも示されているように、担体量が0〜50重量%程度までが良好であると言われている。
【0019】
こうした従来の知見を踏まえると、ケイ素質担体の含有率を60重量%以上とすることでオキソール化合物の選択率が向上するという本発明者らの知見は、驚くべきものである。選択率が向上する理由は明らかではないが、ケイ素質担体の含有率を前記範囲とすることによって、触媒成分を含む活性サイトが孤立化して過剰な酸化反応が抑制され、その結果としてオキソール化合物の選択率が向上するものと推測される。
【0020】
触媒中におけるシリカ質担体の含有率は、通常60重量%以上、好ましくは70重量%以上、更に好ましくは80重量%以上である。ただし、あまりに多過ぎると十分な量の触媒成分を含有させることができず、十分な触媒能が得られないので、通常99重量%以下、好ましくは98%以下、更に好ましくは97%以下である。なお、後述する含浸担持法の様に製造の際に焼成を行なう場合には、最終的に焼成して得られた触媒中のシリカ質担体の含有率が、上記範囲となる様にする。
【0021】
(触媒成分)
触媒成分は、少なくともモリブデンを含むものであれば特に制限されず、各種の公知の触媒成分を使用することが可能である。
【0022】
モリブデンは中心的な成分であり、微量でも効果がある。単位触媒重量あたりのモリブデン含有量としては、通常1×10−5mol/g−cat.以上、好ましくは5×10−5mol/g−cat.以上、更に好ましくは1×10−4mol/g−cat.以上、通常2×10−3mol/g−cat.以下、好ましくは1×10−3mol/g−cat.以下、更に好ましくは5×10−4mol/g−cat.以下が用いられる。
【0023】
触媒成分としては、モリブデンを含む各種の化合物、例えばモリブデンの酸化物等が使用される。この場合、モリブデンの価数は6以下であれば任意であるが、好ましくは4以上6以下である。中でも、モリブデンに加えて他の一又は二以上の金属元素とを含む複合酸化物が好ましい。具体的には、以下の一般式(5)で表わされる複合酸化物が好ましい。
Mo(Aa1(Aa2(Aa3 ・・・一般式(5)
【0024】
上記一般式(5)において、Aは、モリブデンと化合してモリブデン酸塩を形成する元素であり、モリブデンの分散性を高め、活性サイトを孤立分散化させ、過剰な酸化反応を抑制する効果がある。Aの元素として使用可能なものとしては、例えば、Bi、Pb、Cd、La、Ce、Sn、Cr、Mn、Fe、Co、Ni、Zn、Zr、Mg、Ca、Srから選ばれる1種以上の元素が挙げられる。なかでも好ましくは、Bi、Pb、Cd、La、Cr、Fe、Co、Ni、Zn、Zr、Sr、更に好ましくは、Bi、Pb、Cd、La、Fe、Co、Ni、Znである。
【0025】
Moを1とした場合のAの原子比aは、通常0以上、好ましくは0.05以上、更に好ましくは0.1以上であり、通常10以下、好ましくは5以下、更に好ましくは3以下である。
【0026】
は、B、P、Sbから選ばれる1種以上の元素である。完全酸化反応の抑制に効果がある。好ましくはB又はSbである。
【0027】
Moを1とした場合のAの原子比aは、通常0以上であり、また、通常5以下、好ましくは3以下、更に好ましくは1以下である。
【0028】
は、Vである。活性向上の効果があり、特に多成分系にした時に選択率を犠牲にせずに活性を向上させることができる。
【0029】
Moを1とした場合のAの原子比aは、通常0以上、好ましくは0.01以上、更に好ましくは0.05以上であり、通常3以下、好ましくは2以下、更に好ましくは1.5以下である。
【0030】
(触媒製造法)
本発明の酸化触媒を製造する方法は特に制限されず、公知のものも含め様々な方法を用いることが可能である。公知の方法としては、例えば、米国特許第4,322,358号公報に開示されている、各金属原料化合物の水溶液とシリカゾルとを予め混合し、得られたスラリーを乾燥し、次いで焼成する方法が挙げられる。
【0031】
しかし、本発明では、上述の様に高濃度のケイ素質担体の中で活性サイトを孤立化し、少ない触媒成分でも活性が発現されるようにするために、ケイ素質担体として固体状のものを使用することが好ましい。そして、以下に説明する含浸担持法を用いて、モリブデンを含む原料化合物の溶液又はスラリーを、この固体のケイ素質担体に含浸させて担持させ、乾燥、焼成して製造することが好ましい。
こうした方法を用いることで、固体のケイ素質担体の内部に原料化合物の溶液等が満遍なく浸透して担持され、モリブデン等の触媒成分を含む活性サイトが均一に、且つ孤立化した状態で形成されるので、得られる触媒において過剰な酸化反応が抑制され、オキソール化合物の選択率が向上するものと推測される。
【0032】
(含浸担持法)
まず、モリブデンを含む原料化合物(以下、モリブデン化合物と呼ぶ場合もある。)を、溶剤を用いて溶液状又はスラリー状とする。
モリブデンを含む原料化合物としては特に制限はないが、例えば、各種のオキソ酸、水酸化物、無機酸塩、無機酸アンモニウム、有機酸塩、金属アルコキシド等が使用される。中でも、パラモリブデン酸アンモニウム、メタモリブデン酸アンモニウム等が好ましい。
【0033】
また、所望の触媒成分の種類によっては、必要に応じて更にその他の原料化合物を使用しても良い。例えば、上記一般式(4)で表わされる化合物を触媒成分とする場合には、上述の元素A、A、Aをそれぞれ含む原料化合物を添加する。
【0034】
を含む原料化合物としては、特に制限はないが、例えば各種のオキソ酸、水酸化物、無機酸塩、無機酸アンモニウム、有機酸塩、有機酸アンモニウム、金属アルコキシド、酸化物及び酸化物ゾル等が使用される。中でも硝酸塩等が好ましい。
【0035】
を含む原料化合物も、Aを含む原料化合物と同様、特に制限はないが、例えば各種のオキソ酸、水酸化物、無機酸塩、無機酸アンモニウム、有機酸塩、有機酸アンモニウム、金属アルコキシド、酸化物及び酸化物ゾル等が使用される。
中でも、B源としてはホウ酸、P源としてはリン酸、Sb源としては三酸化アンチモンゾル、酒石酸アンチモニルアンモン等が好ましい。
【0036】
、すなわちVを含む原料化合物も、特に制限はない。例えば各種の無機酸塩、無機酸アンモニウム、有機酸塩、有機酸アンモニウム、金属アルコキシド、酸化物及び酸化物ゾル等が使用される。中でも、メタバナジン酸アンモニウム等が好ましい。
【0037】
溶剤としては、上述のモリブデンを含む原料化合物及び必要に応じて用いられるその他の原料化合物を好適に分散又は溶解できるものであれば特に制限はないが、例えば常温で液体であるメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ターシャリーブタノール、アセトン等の有機化合物、水、又はそれらの混合物などが挙げられる。中でも水が好ましい。
【0038】
なお、原料化合物を溶剤に溶解する際に硝酸などの酸を必要以上に加えることは、触媒の性能に大きな影響を与えるので好ましくない。例えば、硝酸ビスマスは水に溶解すると沈殿が生じるため、硝酸を添加してこれを溶解させる必要があるが、その際用いる硝酸の量には注意が必要である。
【0039】
また、モリブデンを含む原料化合物としてモリブデン酸アンモニウムを、その溶剤として水を使用する場合において、モリブデン酸アンモニウム水溶液と混合すると容易に沈殿を形成する元素を含む化合物を更に添加する場合には、適切な処理を施すことによりモリブデンと所望の添加元素を含む均一な混合溶液とし、これを後述の含浸担持に用いることができる。適切な処理としては、例えばパラモリブデン酸アンモニウムの水溶液を陽イオン交換樹脂カラムに通して[HMo24 型のイオンに変換後、所望の元素を含む溶液と混合する方法、パラモリブデン酸アンモニウム水溶液と所望の元素を含む化合物を過酸化水素水を加えた溶液中で加熱する方法などがある。
【0040】
こうして得られた原料化合物を含む溶液を、ケイ素質担体に含浸させて担持させる。なお、この含浸担持に用いる溶液は、完全に溶液でなくてもよく、沈殿が生じたスラリー状でもよい。ここで、モリブデンを含む原料化合物の他にも原料化合物を使用する場合には、これらの原料化合物を単一の溶剤に溶解又は分散させて混合溶液(又はスラリー)とし、この単一の混合溶液(又はスラリー)をケイ素質担体に含浸担持させてもよいが、各々の原料化合物を含む混合溶液(又はスラリー)を個別に用意して、これらを逐次、ケイ素質担体に含浸担持させることもできる。
【0041】
(担持)
次いで、原料化合物を含む溶液(又はスラリー)を、ケイ素質担体に含浸させて担持させる。
【0042】
含浸担持の方法としては特に制限がなく、Pore−filling法、Incipient wetness法、平衡吸着法、強制担持法、Spray法などの公知の方法で行なうことができる。中でも、Pore−filling法、Incipient wetness法、Spray法が好ましい。
【0043】
触媒成分の含浸溶液は、1回の含浸で所望の量を担持させることができるような濃度に調製するのが普通であるが、溶解度などの理由から含浸溶液の濃度を上げられない場合には、2回又は3回に分けて繰り返し含浸を行ってもよい。その場合には1回含浸する毎に後述の乾燥を行なう。
【0044】
(乾燥)
次いで、これを十分に乾燥することにより触媒の前駆体が得られ乾燥を行なうが、その手法としては特に制限が無く、恒温乾燥器や真空乾燥器を用いた静置乾燥や流動乾燥などの公知の方法で行なうことができる。但し、モリブデンとシリカの相互作用は比較的弱いので、高温で急激に乾燥すると触媒成分の偏析が起こりやすく注意が必要である。特に、噴霧乾燥等の手法は、偏析を避けることが難しいため好ましくない。乾燥温度は、通常30℃以上、好ましくは50℃以上、更に好ましくは70℃以上であり、通常300℃以下、好ましくは200℃以下、更に好ましくは150℃以下である。乾燥時間は、通常30分以上、好ましくは1時間以上であり、通常72時間以下、好ましくは48時間以下である。
【0045】
(焼成)
次いで、得られた触媒前駆体を空気流通下又は窒素流通下で焼成し、触媒を得る。焼成については、シリカゾルを用いた従来の調製法と同様の方法で行なうことができる。具体的には、焼成温度は通常200℃以上、好ましくは400℃以上、通常1000℃以下、好ましくは800℃以下の範囲であり、焼成時間は、通常30分以上、好ましくは1時間以上、通常12時間以下、好ましくは6時間以下の範囲である。
【0046】
なお、上述した様に多元素成分を逐次、含浸して担持させる方法の場合は、乾燥は含浸担持させた成分が溶出しないようにその都度行なう。焼成はその都度行なってもよいし、全ての元素の含浸担持及び乾燥の操作が終了した後に、まとめて行なってもよい。
【0047】
こうして得られる触媒の形状は特に制限されず、タブレット、リング、球、微小球、円柱状など公知の各種形状の中から、触媒を使用する際の反応方法に応じて適宜選択することができる。なお、所望の形状への成形は、焼成の前に行なってもよく、焼成の後に行なってもよい。触媒の成形の手法としては、打錠成形、押し出し成形など、公知の各種手法を用いることができる。
【0048】
以上説明した本発明の酸化触媒は、各種の酸化反応に使用することが可能であるが、特に炭化水素を酸化反応させてオキソール化合物を製造する際の触媒として使用した場合に、従来の酸化触媒と比べて高い選択率及び収率でオキソール化合物を得ることができる。しかも、充分な選択率及び収率を得るために、従来技術の様に原料ガス中に水蒸気を含める等の作業は不要であり、コストや効率の面でも優れている。したがって、オキソール化合物の製造のための酸化触媒として好適に使用でき、その工業的な利用価値は高い。
【0049】
[II.オキソール化合物等の製造方法]
本発明に係るオキソール化合物の製造方法は、上述した本発明の酸化触媒を用いて炭化水素を酸化するものである。
【0050】
(反応基質及び反応生成物)
反応基質たる炭化水素としては特に制限されないが、炭素間の二重結合又は三重結合を一又は二以上有する不飽和炭化水素が好ましい。具体的にはアルケン類やアルカジエン類等が挙げられるが、中でも下記一般式(2)で表されるアルカジエン類が好ましい。
【0051】
【化5】

Figure 2004041909
【0052】
上記一般式(1)中、R〜Rは、各々独立に、水素、炭素数1〜6のアルキルラジカル、アルデヒド基、カルボキシル基からなる群から選ばれる置換基である。中でも、R〜Rが各々独立に、水素、メチル基、アルデヒド基の群から選ばれる置換基であることが好ましく、水素であることが最も好ましい。
【0053】
アルカジエン類の具体例としては、n−ブテン−1、ブテン−2、n−ペンテン−1、イソペンテン、ヘキセン−1、ヘプテン−2、オクテン−1、デセン−1、2−メチルブテン−1、ヘキセン−3、2−エチルブテン−1、2−メチルペンテン−3、3−エチルヘキセン−2、ブタジエン−1,3、ペンタジエン−1,3、イソプレン、ヘキサジエン−1,3、デカジエン−1,3等が挙げられ、これらの混合物を用いてもよい。中でも、炭素数4のアルカジエン類が好ましく、ブタジエン−1,3を用いるのが特に好ましい。
【0054】
一方、反応生成物たるオキソール化合物は、炭素4、酸素1からなる5員環化合物であればよいが、具体的には下記一般式(2)で表される化合物が挙げられる。なお、下記一般式(2)中のR〜Rは、上記一般式(1)中のR〜Rと同義である。
【0055】
【化6】
Figure 2004041909
【0056】
オキソール化合物の具体例としては、フラン、2−メチルフラン、3−メチルフラン、2,5−ジエチルフラン、2−n−ヘキシルフラン、2−イソプロピルー3−メチルフラン、3−n−プロピルフラン、3−メチル−4−n−ブチルフラン、フルフラール、フリル酸等が挙げられるが、中でもフランが最も好ましい。
【0057】
(酸化反応の方式)
本発明の酸化反応は気相中、液相中、気液混合相のいずれでもよいが、気相中で行なうのが好ましく、特に気相接触酸化反応で行なうのが好ましい。
【0058】
気相接触酸化反応の場合、反応原料ガスの組成としては、原料の炭化水素が通常0.1〜30体積%の範囲、酸素が通常0.1〜30体積%の範囲であり、残余は、窒素、二酸化炭素、水蒸気等の反応に不活性なガスを使用することが出来る。原料炭化水素の濃度が濃いと触媒にとっては負荷が高く、触媒寿命の面から好ましくなく、逆に薄すぎると生産性の面からこの好ましくない。よって、更に好ましい原料ガス組成としては、炭化水素が1〜10体積%の範囲、酸素が1〜10体積%の範囲、残余は不活性なガスである。不活性ガスとしては、前述の窒素、二酸化炭素、水蒸気等が使用できるが、水蒸気は活性成分のモリブデンの揮散を促進するため好ましくない。好ましくは、窒素、二酸化炭素である。反応に使用する酸素は、経済上有利であるので、通常は空気を使用するが、純酸素ガスを用いてもよい。炭化水素と酸素との比率は、通常10:1〜1:5であり、好ましくは2:1〜1:2である。
【0059】
原料ガスの空間速度(GHSV)は、通常300〜10,000hr−1の範囲、好ましくは500〜8,000hr−1の範囲である。反応圧力は、通常、常圧もしくは0.05〜10kg/cmGの加圧下で実施される。反応温度は、通常200〜800℃、好ましくは300〜600℃である。接触時間は、通常0.2〜12sec、好ましくは0.4〜8secである。
【0060】
反応床としては、固定床、流動床、輸送床のいずれでもよいが、中でも接触時間の値を短く設定できるという点で固定床が好ましい。
反応方式としては、
(1)酸素の供給量が炭化水素の供給量よりも多い条件で原料炭化水素を出来るだけ転化させる押し切り型反応方式、
(2)酸素の供給量が炭化水素の供給量よりも少ない条件で原料炭化水素の転化率を低く押さえ、生成物の選択率を高く保ち、反応器出口から流出する未反応原料炭化水素を回収して再び反応器へ導入するリサイクル型反応方式、
の何れでもよい。
【0061】
各原料の反応器への供給方法は、炭化水素、酸素及び不活性ガスを予め混合した後に供給してもよく、それぞれの原料成分を別個に分割して供給してもよい。また、反応生成物であるオキソール化合物は通常気体で得られ、例えばエチレングリコール、N−メチルピロリドン等の吸収溶媒により回収することができる。
【0062】
なお、本発明の製造方法により得られたオキソール化合物は、様々な用途に使用することが可能であるが、例えば、ニッケル触媒等を用いて公知の方法により水素化反応させることにより、オキソラン化合物やジオール化合物を製造することが可能である。
【0063】
具体的には、上記一般式(2)のオキソール化合物の場合、これを水素化反応させることによって、下記一般式(3)で表わされるオキソラン化合物、または下記一般式(4)で表わされるジオール化合物を製造することが可能である。なお、下記一般式(3)及び(4)中のR〜Rは、上記一般式(1)中のR〜Rと同義である。
【0064】
【化7】
Figure 2004041909
【0065】
【化8】
Figure 2004041909
【0066】
特に、本発明の製造方法により得られるオキソール化合物の中でも、フランは、更にニッケル触媒等を用いて公知の方法により水素化反応させることにより、工業的に有用なテトロヒドロフランや1,4−ブタンジオールを製造することができる。例えば、WO96/29322号公報によれば、フランを水及び水素の存在下、元素周期表のI,V,VI,VII,VIII族の何れかに属する元素のうち少なくとも1つの元素を含む触媒を用いて水素化反応させることにより、それぞれ1,4−ブタンジオール及びテトラヒドロフランが得られることが記載されている。
【0067】
ここで、オキソラン化合物を製造する場合の水素化反応の条件について説明すると、反応圧力としては、通常常圧以上、好ましくは5atm以上であり、また、通常500atm以下、好ましくは300atm以下、更に好ましくは200atm以下である。また、反応温度としては、通常30℃以上、好ましくは50℃以上、更に好ましくは100℃以上であり、また、通常400℃以下、好ましくは300℃以下、更に好ましくは250℃以下である。
【0068】
また、ジオール化合物を製造する場合の水素化反応の条件も、上述のジオール化合物を製造する場合の水素化反応の条件と同様であるが、更に反応時に水を供給する。水の供給量は、原料となるオキソール化合物に対する水のモル比で、通常0.5以上、好ましくは1以上、更に好ましくは2以上であり、また、通常50以下、好ましくは20以下、更に好ましくは10以下である。
【0069】
【実施例】
以下、本発明の触媒及びそれを用いた反応例を実施例及び比較例により具体的に説明するが、本発明はこの実施例に限定されるものではない。
【0070】
実施例中の転化率、選択率は次式により算出される。
転化率=(反応した炭素数4の炭化水素(mol))/(供給した炭素数4の炭化水素(mol))×100
選択率=(生成したフラン(mol))/(転化した炭素数4の炭化水素(mol))×100
【0071】
(担体の酸洗浄)
300gの5N塩酸中に、富士シリシア社の球状シリカCARiACT Q−15を75g加えて、80℃、2時間加熱撹拌した。室温まで冷却後、濾過し、イオン交換水で洗浄し、再度、5N塩酸中、同様の操作を繰り返した。室温まで冷却後、濾過とイオン交換水での洗浄を5回繰り返した。
【0072】
5回目の洗浄液は中性となった。得られたシリカを恒温乾燥機で120℃、12時間以上乾燥させたものを、ケイ素質の担体として使用した。
【0073】
(担体の細孔容量測定)
酸洗浄を行った担体の細孔容量を、日本ベル株式会社製のBELSORPを用い、窒素吸着法により求めた。
【0074】
(乾燥)
実施例1〜9の乾燥操作は以下のように行った。
乾燥:サンプルを磁製皿に移し、80℃の恒温乾燥機中で1時間乾燥した。乾燥中2〜3回サンプルの撹拌を行なった(この操作を以下、乾燥処理と表記する。)。
【0075】
(焼成)
実施例、比較例中の焼成操作は以下のように行なった。
焼成:空気下、600℃で2時間焼成を行なった。(この操作を以下、焼成と表記する。)
【0076】
(触媒中SiOの重量分析)
試料500mgをあらかじめ1000℃で1時間空焼きして恒量とした白金皿に精秤し、濃硫酸5ml、水2〜3mlを加えてホットプレート上180℃で加熱した。水が完全に蒸発した後、硫酸白煙が生じるまで昇温、加熱した。放冷後、5C濾紙で酸不溶分を炉別し、(1+10)希硫酸と水で不溶分を充分に洗浄した。濾紙ごと白金皿上直火で予備灰化し、電気炉内1000℃で1時間灰化した。30min放冷後の重量(A)を精秤し、フッ化水素酸5mlと硫酸100μlを加えてホットプレート上180℃で加熱、灰分中のSiOをSiFとして蒸発除去した。昇温、加熱して硫酸を完全に蒸発させた後、再び電気炉内1000℃で1時間灰化した。30min放冷後の重量(B)を精秤し、先の秤量値(A)との差分を試料中SiO重量とした。以下の式から、試料中SiO含有率を求めた。
【0077】
SiO含有率/重量%=(重量(A)−重量(B))/試料重量×100
【0078】
なお、実施例3に示したように、本分析法により求めたシリカ量と仕込みから計算したシリカ量の値とは非常によく一致する。
【0079】
(Bi−Pb−Mo均一溶液(a)の調製)
2.12gのパラモリブデン酸アンモン((NHMo24・4HO)を15.05gの水に加熱溶解した後、室温まで冷却した水溶液をA液とする。別に硝酸ビスマス5水和物(Bi(NO・5HO)0.97gを10重量%硝酸溶液6.16gに溶解し、更に60重量%硝酸溶液4.98gと硝酸鉛Pb(NO)22.98gを加え、加熱溶解後室温まで冷却した水溶液をB液とする。A液をイオン交換樹脂(DOWEX HCR−W2 20〜50mesh H FORM)30mlを充填したカラムに流し、カラム内を湿潤させていた数mlの初期流出液(中性)は除き酸性を呈する流出液から、撹拌されているB液へ30分かけて滴下した。更に洗液として純水35mlをカラムに流しB液への滴下を続け、合計の液量を57ml(62.61g)とした。
【0080】
(Bi−Pb−Mo均一溶液(b)の調製)
2.12gのパラモリブデン酸アンモン((NH)6Mo24・4HO)を20.0gの水に加熱溶解した後、室温まで冷却した水溶液をA液とする。別に硝酸ビスマス5水和物(Bi(NO・5HO)0.97gを10重量%硝酸溶液6gに溶解し、更に60重量%硝酸溶液5gと硝酸鉛Pb(NO)22.98g、水20gを加え、加熱溶解後室温まで冷却した水溶液をB液とする。A液をイオン交換樹脂(DOWEX HCR−W2 20〜50mesh H FORM)30mlを充填したカラムに流し、カラム内を湿潤させていた数mlの初期流出液(中性)は除き酸性を呈する流出液から、撹拌されているB液へ30分かけて滴下した。更に洗液として純水20mlをカラムに流しB液への滴下を続け、合計の液量を60ml(60.2g)とした。
【0081】
(Bi−Pb−Mo均一溶液(c)の調製)
2.12gのパラモリブデン酸アンモン((NHMo24・4HO)を20.0gの水に加熱溶解した後、室温まで冷却した水溶液をA液とする。別に硝酸ビスマス5水和物(Bi(NO・5HO)0.97gを10重量%硝酸溶液6gに溶解し、更に60重量%硝酸溶液5gと硝酸鉛Pb(NO)22.98g、水30gを加え、加熱溶解後室温まで冷却した水溶液をB液とする。A液をイオン交換樹脂(DOWEX HCR−W2 20〜50mesh H FORM)30mlを充填したカラムに流し、カラム内を湿潤させていた数mlの初期流出液(中性)は除き酸性を呈する流出液から、撹拌されているB液へ30分かけて滴下した。更に洗液として純水20mlをカラムに流しB液への滴下を続け、合計の液量を70ml(76.6g)とした。
【0082】
(Bi−Pb−Mo均一溶液(d)の調製)
2.12gのパラモリブデン酸アンモン((NH)6Mo24・4HO)を14.91gの水に加熱溶解した後、室温まで冷却した水溶液をA液とする。別に硝酸ビスマス5水和物(Bi(NO・5HO)0.97gを10重量%硝酸溶液6gに溶解し、更に60重量%硝酸溶液5gと硝酸鉛Pb(NO)22.98gを加え、加熱溶解後室温まで冷却した水溶液をB液とする。A液をイオン交換樹脂(DOWEX HCR−W2 20〜50mesh H FORM)30mlを充填したカラムに流し、カラム内を湿潤させていた数mlの初期流出液(中性)は除き酸性を呈する流出液から、撹拌されているB液へ30分かけて滴下した。更に洗液として純水35mlをカラムに流しB液への滴下を続け、合計の液量を67ml(73.21g)とした。
【0083】
(酒石酸アンチモニルアンモン溶液の調製)
特開昭62−176543に開示されている方法に従い、以下のようにして酒石酸アンチモニルアンモン溶液の調製を行なった。
500mlビーカーに水60gと酒石酸22.51gを入れ、加熱撹拌して溶解した。この溶液に三酸化アンチモン14.75gを加え、28%アンモニア水12mlを2回に分けて加えた。全量が500gとなるように水を加えて、アンチモン原子濃度として0.2mol/Kgの酒石酸アンチモニルアンモン溶液500gを得た。
【0084】
(実施例1)
メタバナジン酸アンモン0.100gを純水5.0gに加熱溶解した後室温まで冷却した。富士シリシア社製のCARiACT Q−15塩酸処理品(細孔容量0.77ml/g)1.00gを20mlガラスバイアルに入れ、メタバナジン酸アンモン水溶液0.77gを加えてよく振り混ぜた。得られた固形物を乾燥処理した。この乾燥品を20mlガラスバイアルに入れ、Bi−Pb−Mo均一溶液(a)1.66gのうち半量を加えてよく振り混ぜ、得られた固形物を乾燥処理した。この乾燥品を再度20mlガラスバイアルに入れ、残りのBi−Pb−Mo均一溶液を加えてよく振り混ぜ、得られた固形物を乾燥処理した。乾燥品を1.11g採取し、焼成を行ない白黄色固体0.97gを得た。
【0085】
(実施例2)
富士シリシア社製のCARiACT Q−15塩酸処理品(細孔容量0.77ml/g)3.0gを磁製皿に入れ、Bi−Pb−Mo均一溶液4.78gのうち半量を加えてよく混ぜ、得られた固形物を乾燥処理した。この乾燥品に残りのBi−Pb−Mo均一溶液(b)を加えてよく混ぜ、得られた固形物を乾燥処理した。この乾燥品2.22gを磁製皿に分取し、メタバナジン酸アンモン0.0062gを純水1.5gに加熱溶解した後室温まで冷却した溶液を加えてよく混ぜた。得られた固形物を乾燥処理した。この乾燥品1gを磁製皿に分取し、メタバナジン酸アンモン0.0025gを純水0.8gに加熱溶解した後室温まで冷却した溶液を加えてよく混ぜた。得られた固形物を乾燥処理し、焼成を行ないクリーム色固体を得た。
【0086】
(実施例3)
富士シリシア社製のCARiACT Q−15塩酸処理品(細孔容量0.77ml/g)2.0gを磁製皿に入れ、メタバナジン酸アンモニウム0.0279gを純水2.0gに加熱溶解した後室温まで冷却した溶液を加えてよく混ぜ、得られた固形物を乾燥処理し、焼成を行なった。この焼成品を磁製皿に移し、Bi−Pb−Mo均一溶液(c)4.0gを加えてよく混ぜ、得られた固形物を乾燥処理し、焼成を行ない黄橙色固体を得た。焼成後の触媒中のシリカの含有量を上記の分析法により求めたところ、89.9重量%であった。この値は、仕込み量から計算した値90重量%とよく一致した。
【0087】
(実施例4)
富士シリシア社製のCARiACT Q−15塩酸処理品(細孔容量1.21ml/g)18.68gを100ml三角フラスコに入れ、Bi−Pb−Mo均一溶液(d)18.17gに10重量%硝酸水溶液5.83g加えた溶液を加えてよく振り混ぜた。得られた固形物を一夜乾燥処理した。この乾燥品4.29gを50ml三角フラスコに入れ、メタバナジン酸アンモン0.031gを純水4.67gに加熱溶解した後室温まで冷却した溶液を加えてよく振り混ぜた。得られた固形物を乾燥処理した。この乾燥品1.07gを20mlガラスバイアルに分取し、0.0041gのホウ酸を純水1.16gに加熱溶解した後室温まで冷却した溶液を加えよく振り混ぜた。得られた固形物を乾燥処理した。乾燥品を1.06g採取し、焼成を行ない淡黄色固体0.96gを得た。
【0088】
(実施例5)
富士シリシア社製のCARiACT Q−15塩酸処理品(細孔容量1.21ml/g)18.68gを100ml三角フラスコに入れ、Bi−Pb−Mo均一溶液(d)18.17gに10重量%硝酸水溶液5.83g加えた溶液を加えてよく振り混ぜた。得られた固形物を一夜乾燥処理した。この乾燥品4.29gを50ml三角フラスコに入れ、メタバナジン酸アンモン0.031gを純水4.67gに加熱溶解した後室温まで冷却した溶液を加えてよく振り混ぜた。得られた固形物を乾燥処理した。この乾燥品1.07gを20mlガラスバイアルに分取し、0.2mol/Kg濃度の酒石酸アンチモニルアンモン溶液0.133gに純水1.04gを加えた溶液を加えよく振り混ぜた。得られた固形物を乾燥処理した。乾燥品を1.08g採取し、焼成を行ない淡黄色固体1.02gを得た。
【0089】
(実施例6)
パラモリブデン酸アンモン0.127gを5.83gの純水に加熱溶解した後、室温まで冷却した。富士シリシア社製のCARiACT Q−15塩酸処理品(細孔容量1.21ml/g)5gを50ml三角フラスコに入れ、パラモリブデン酸アンモン水溶液を加えてよく振り混ぜた。得られた固形物を乾燥処理した。乾燥後再び三角フラスコに入れ、硝酸鉛0.238gを純水5.78gに溶解した溶液を加えてよく振り混ぜた。得られた固形物を乾燥処理した。メタバナジン酸アンモン0.0084gを純水1.15gに加熱溶解した後、室温まで冷却した。モリブデンと鉛を担持した乾燥品1.07gを20mlガラスバイアルに分取し、メタバナジン酸アンモン水溶液を加えてよく振り混ぜた後、得られた固形物を乾燥処理した。乾燥品を1.07g採取し焼成を行ない、淡ベージュ色固体1.00gを得た。
【0090】
(実施例7)
パラモリブデン酸アンモン0.26gを5.82gの純水に加熱溶解した後、室温まで冷却した。富士シリシア社製のCARiACT Q−15塩酸処理品(細孔容量1.21ml/g)5gを50ml三角フラスコに入れ、パラモリブデン酸アンモン水溶液を加えてよく振り混ぜた。得られた固形物を乾燥処理した。
乾燥後再び三角フラスコに入れ、硝酸亜鉛0.438gを純水5.69gに溶解した溶液を加えてよく振り混ぜた。得られた固形物を乾燥処理した。メタバナジン酸アンモン0.0172gを純水2.27gに加熱溶解した後、室温まで冷却した。モリブデンと亜鉛を担持した乾燥品2.2gを30mlガラスバイアルに分取し、メタバナジン酸アンモン水溶液を加えてよく振り混ぜた後、得られた固形物を乾燥処理した。乾燥品を1.01g採取し焼成を行ない、白黄色固体0.85gを得た。
【0091】
(実施例8)
パラモリブデン酸アンモン1.85gを22.23gの純水に加熱溶解した後、室温まで冷却した。富士シリシア社製のCARiACT Q−15塩酸処理品(細孔容量1.21ml/g)20gを100ml三角フラスコに入れ、パラモリブデン酸アンモン水溶液を加えてよく振り混ぜた。得られた固形物を乾燥処理した。メタバナジン酸アンモン0.102gを純水11.40gに加熱溶解した後、室温まで冷却した。モリブデンを担持した乾燥品10.95gを50ml三角フラスコに分取し、メタバナジン酸アンモン水溶液を加えてよく振り混ぜた後、得られた固形物を乾燥処理した。乾燥品を3.00g採取し焼成を行い、黄色固体2.85gを得た。
【0092】
(実施例9)
パラモリブデン酸アンモン0.156gを3.50gの純水に加熱溶解した後、室温まで冷却した。富士シリシア社製のCARiACT Q−15塩酸処理品(細孔容量1.21ml/g)3.00gを30mlガラスバイアルに入れ、パラモリブデン酸アンモン水溶液を加えてよく振り混ぜた。得られた固形物を乾燥処理した。乾燥品を1.02g採取し焼成を行い、淡黄色と淡青色の混合固体0.94gを得た。
【0093】
(実施例10)
硝酸ビスマス5水和物8.36gを10重量%硝酸溶液15.30gに溶解し、硝酸ビスマス溶液を調製した。パラモリブデン酸アンモン1.60gを6.20gの純水に溶解し、磁製皿に入れた。磁製皿内に攪拌しながら、メタバナジン酸アンモン1.30gを純水10.70gに懸濁させて加え、加熱溶解した。そこに、先の硝酸ビスマス溶液、触媒化成工業製シリカゾルS−20L(20重量%)125.68gを順次加えた。磁製皿内のスラリーを加熱攪拌し、水分がなくなるまで蒸発乾固し、33.06gの固体を得た。乾固品2.96gを採取して焼成を行ない、濃黄色固体2.80gを得た。
【0094】
(実施例11)
硝酸ビスマス5水和物4.18gを10重量%硝酸溶液7.73gに溶解し、硝酸ビスマス溶液を調製したメタバナジン酸アンモン0.64gを9.99gの純水に加熱溶解した後、室温まで冷却した。パラモリブデン酸アンモン0.82gを3.05gの純水に溶解した水溶液を調製した。磁製皿に純水151.4gと日本アエロジル製シリカAerosil−200、12.51gとを入れた。
磁製皿内に攪拌しながら、先の硝酸ビスマス溶液、メタバナジン酸アンモン水溶液、パラモリブデン酸アンモン水溶液を順次加えた。磁製皿内のスラリーを加熱攪拌し、水分がなくなるまで蒸発乾固し、15.72gの固体を得た。乾固品8.02gを採取して焼成を行ない、濃黄色固体7.54gを得た。
【0095】
(比較例1)
パラモリブデン酸アンモン3.56gを13.16gの純水に溶解した水溶液を調製した。硝酸ビスマス5水和物19.65gを10重量%硝酸溶液36.02gに溶解し、磁製皿に入れた。磁製皿内に撹拌しながら、パラモリブデン酸アンモン水溶液を加えた。磁製皿内のスラリーを加熱撹拌し、水分がなくなるまで蒸発乾固して、9.8gの固体を得た。乾固品8.06gを採取し焼成を行ない、黄色固体7.55gを得た。
【0096】
(比較例2)
パラモリブデン酸アンモン10.69gを40.26gの純水に溶解した水溶液を調製した。硝酸ビスマス5水和物9.67gを10重量%硝酸溶液17.76gに溶解し、磁製皿に入れた。磁製皿内に撹拌しながらパラモリブデン酸アンモン水溶液を加えた。磁製皿内のスラリーを加熱撹拌し、水分がなくなるまで蒸発乾固し、13.16gの固体を得た。乾固品を打錠成形した後、3.60gを採取して焼成を行ない、淡黄白色固体3.48gを得た。
【0097】
(比較例3)
パラモリブデン酸アンモン1.79gを6.97gの純水に溶解した水溶液を調製した。硝酸ビスマス5水和物9.71gを10重量%硝酸溶液18.00gに溶解し、磁製皿に入れた。磁製皿内に撹拌しながら、パラモリブデン酸アンモン水溶液、触媒化成工業製シリカゾルS−20L(20重量%)94.94gを順次加えた。磁製皿内のスラリーを加熱撹拌し、水分がなくなるまで蒸発乾固して、30.59gの固体を得た。乾固品8.05gを採取し焼成を行ない、黄色固体8.20gを得た。
【0098】
(比較例4)
パラモリブデン酸アンモン4.23gを15.98gの純水に溶解した水溶液を調製した。0.8M/kgの硝酸ビスマスの10重量%硝酸溶液5.04gを磁製皿に入れた。磁製皿内に撹拌しながら、硝酸鉛6.03gを10.06gの純水に溶解した水溶液、ホウ酸0.16gを5.14gの純水に溶解した水溶液、パラモリブデン酸アンモン水溶液、触媒化成工業製シリカゾルS−20L(20重量%)42.55gを順次加えた。磁製皿内のスラリーを加熱撹拌し、水分がなくなるまで蒸発乾固して、17.53gの固体を得た。乾固品8.01gを採取し焼成を行ない、黄色固体7.60gを得た。
【0099】
(反応試験例)
実施例1〜11、比較例1〜4にて得られた触媒0.5mlを、石英製反応管に充填し、1,3−ブダジエン 5体積%、酸素 5体積%、窒素 90体積%の組成の原料ガスを空間速度(GHSV)4000hr−1で通過させることにより触媒活性試験を行なった。
【0100】
シリカゾルを使用し蒸発乾固、焼成して得られた触媒は22〜60メッシュ(JIS規格)で篩分して反応試験を行なった。焼成前に打錠成形を行なった触媒は破砕後、同様に篩分して反応試験を行なった。
【0101】
反応管の温度を250〜550℃の範囲で調整し、反応管出口ガスをサンプリングして、ガスクロマトグラフにより生成物の分析を行なった。反応管の温度が500℃の時に得られた結果を以下の表−1に示す。
【表1】
Figure 2004041909
【0102】
上記表−1の結果より、実施例の触媒は比較例の触媒と比較してフラン選択率及びフラン収率が高いことが判る。
【0103】
【発明の効果】
本発明によれば、モリブデンを触媒成分として含む触媒中のケイ素質担体を、従来技術に比べて高い値(60重量%以上)とすることによって、炭化水素を酸化してオキソール化合物を製造する反応に用いた場合に、原料ガス中に水蒸気を含める等のコストのかかる作業を必要とせず、高い選択率及び収率でオキソール化合物を効率よく製造することが可能となる。[0001]
[Industrial applications]
The present invention uses an oxidation catalyst suitably used for producing an oxol compound by oxidizing a hydrocarbon, a method for producing an oxol compound using this catalyst, and further using an oxol compound obtained by this method. The present invention relates to a method for producing an oxolane compound and a diol compound.
[0002]
[Prior art]
Oxole compounds, especially furans, readily convert to tetrahydrofuran or 1,4 butanediol under hydrogenation conditions or under hydrogenation conditions in the presence of water.
Since these are important intermediates as raw materials for various products including polymer raw materials, the demand for furans as raw materials is extremely high.
[0003]
Examples of the method for producing furans include a method in which a hydrocarbon having 4 carbon atoms such as butadiene is subjected to gas-phase catalytic oxidation in the presence of a catalyst. Those containing a catalyst component such as molybdenum are used. For example, U.S. Pat. No. 4,322,358 describes a catalyst in which a complex oxide containing bismuth, molybdenum and oxygen is supported on about 50% by weight of silica gel.
[0004]
[Problems to be solved by the invention]
However, in the conventional oxidation catalyst including the technology described in the above-mentioned literature, when the conversion of hydrocarbons having 4 carbon atoms is used under such conditions that the conversion can be industrially adopted, the selectivity and the yield of furans are reduced. Is inadequate. Here, in order to increase the selectivity of furans, there is a method of supplying water in which the raw material gas contains water, but the cost of steam is high and it is not economical.
[0005]
From the above background, in order to efficiently produce oxole compounds such as furans, costly work such as including steam in the raw material gas is not required, and the oxol compounds are converted from hydrocarbons with high selectivity and yield. An oxidation catalyst that can be produced has been desired.
[0006]
The present invention has been made in view of the above problems. That is, an object of the present invention is to produce an oxol compound by oxidizing a hydrocarbon, without requiring a costly operation such as including water vapor in a raw material gas, and providing an oxol compound with a high selectivity and a high yield. An object of the present invention is to provide an oxidation catalyst that can be manufactured efficiently.
[0007]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies in view of the above-mentioned circumstances, and as a result, have set the content of the silicon-based carrier in a catalyst containing molybdenum as a catalyst component to a higher value (60% by weight or more) as compared with the prior art. As a result, it has been found that the selectivity and the yield of the oxol compound can be improved. Further, they have found that such a catalyst can be easily obtained by devising a preparation method and a method of combining catalyst components, and have completed the present invention.
[0008]
The gist of the present invention is an oxidation catalyst for producing an oxole compound from a hydrocarbon, which has a siliceous carrier and a catalyst component containing at least molybdenum, and the content of the siliceous carrier in the catalyst is 60%. % By weight or more.
[0009]
Further, another gist of the present invention is a method for producing an oxol compound, which comprises oxidizing a hydrocarbon using the above-described oxidation catalyst, and a step of hydrogenating the oxol compound obtained by the method. In the method for producing an oxolane compound and a diol compound.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0011]
[I. Oxidation catalyst]
The oxidation catalyst according to the present invention has a silicon support and a catalyst component containing molybdenum.
[0012]
(Carrier)
The carrier is not particularly limited as long as it is silicon-based, and various known carriers can be selected. Specific examples include silicon oxide (hereinafter, referred to as “silica”), silicon nitride, silicon carbide, zeolite, and the like. Preferably, silica is used. Note that it is preferable to use a solid material rather than a sol material for the reason described later.
[0013]
As silica, crystalline silica such as quartz, tridymite, cristobalite and amorphous silica can be used, but amorphous silica is preferably used. As the amorphous silica, silica sol, silica gel preformed for various commercially available catalyst carriers, fumed silica, granulated products obtained by spray drying a commercially available silica sol, and the like can be used.
[0014]
Note that preliminary cleaning may be performed using an acid such as hydrochloric acid, nitric acid, or sulfuric acid for the purpose of removing impurities contained in silica. When pickling is performed, it is preferable that the cleaning be performed thereafter using pure water until the cleaning liquid becomes neutral.
[0015]
When the oxidation catalyst of the present invention is produced by the impregnation-supporting method described below, physical properties such as the specific surface area and pore distribution of the silica used have a great influence on the catalyst performance. In the present invention, the specific surface area of silica is usually 0.1 m2/ G or more, preferably 1 m2/ G or more, more preferably 10 m2/ G or more, usually 1000 m2/ G or less, preferably 800 m2/ G or less, more preferably 600 m2/ G or less. The average pore diameter (diameter) of silica is usually at least 1 nm, preferably at least 2 nm, more preferably at least 6 nm, usually at most 100 nm, preferably at most 50 nm, more preferably at most 30 nm. These physical property values are measured by the method specified in Japanese Industrial Standard JIS K1150-1994.
[0016]
The acid strength of the silica used also has a significant effect on catalyst performance. In the present invention, the acid strength H of silica0Is usually −5.6 <H0≤ + 4.8, preferably -3.0 <H0≤ + 4.8, more preferably +4.0 <H0≤ +4.8.
[0017]
(Carrier amount)
The content of the carrier in the catalyst is one of the features of the oxidation catalyst of the present invention. The present invention is characterized in that the content of the siliceous carrier in the catalyst is 60% by weight or more.
[0018]
Since the carrier itself does not have a catalytic activity, the performance as a catalyst usually decreases when the amount of the carrier is increased. In the case of noble metal-based catalysts, it is known that the performance can be maintained or improved even with a small amount of catalyst components by making the metal finer and supported on a carrier. In physical systems, there are few examples of catalysts having extremely large amounts of carriers reaching practical levels. In particular, it is said that a gaseous phase oxidation catalyst has a good carrier content of about 0 to 50% by weight, as shown in the above-mentioned US Pat. No. 4,322,358.
[0019]
Based on these conventional findings, the findings of the present inventors that the selectivity of the oxol compound is improved by setting the content of the siliceous carrier to 60% by weight or more are surprising. Although the reason why the selectivity is improved is not clear, by setting the content of the silicon-based carrier in the above range, active sites containing the catalyst component are isolated, and excessive oxidation reaction is suppressed, and as a result, the oxol compound It is assumed that the selectivity is improved.
[0020]
The content of the siliceous carrier in the catalyst is usually at least 60% by weight, preferably at least 70% by weight, more preferably at least 80% by weight. However, if the content is too large, a sufficient amount of the catalyst component cannot be contained, and sufficient catalytic activity cannot be obtained. Therefore, the content is usually 99% by weight or less, preferably 98% or less, and more preferably 97% or less. . When calcination is performed during the production as in the impregnation-supporting method described below, the content of the siliceous carrier in the catalyst finally obtained by calcination is adjusted to fall within the above range.
[0021]
(Catalyst component)
The catalyst component is not particularly limited as long as it contains at least molybdenum, and various known catalyst components can be used.
[0022]
Molybdenum is a central component and is effective even in trace amounts. The molybdenum content per unit catalyst weight is usually 1 × 10-5mol / g-cat. Above, preferably 5 × 10-5mol / g-cat. Above, more preferably 1 × 10-4mol / g-cat. Above, usually 2 × 10-3mol / g-cat. Below, preferably 1 × 10-3mol / g-cat. Hereinafter, more preferably 5 × 10-4mol / g-cat. The following are used:
[0023]
As the catalyst component, various compounds containing molybdenum, for example, oxides of molybdenum and the like are used. In this case, the valence of molybdenum is arbitrary as long as it is 6 or less, but is preferably 4 or more and 6 or less. Among them, a composite oxide containing one or more metal elements in addition to molybdenum is preferable. Specifically, a composite oxide represented by the following general formula (5) is preferable.
Mo (A1)a1(A2)a2(A3)a3Ox・ ・ ・ General formula (5)
[0024]
In the general formula (5), A1Is an element that combines with molybdenum to form molybdate, and has the effect of increasing the dispersibility of molybdenum, isolating and dispersing active sites, and suppressing excessive oxidation reaction. A1Examples of the element that can be used as the element include, for example, one or more selected from Bi, Pb, Cd, La, Ce, Sn, Cr, Mn, Fe, Co, Ni, Zn, Zr, Mg, Ca, and Sr. Element. Among them, Bi, Pb, Cd, La, Cr, Fe, Co, Ni, Zn, Zr, and Sr are more preferable, and Bi, Pb, Cd, La, Fe, Co, Ni, and Zn are more preferable.
[0025]
A when Mo is 11Atomic ratio a1Is usually 0 or more, preferably 0.05 or more, more preferably 0.1 or more, and usually 10 or less, preferably 5 or less, and more preferably 3 or less.
[0026]
A2Is one or more elements selected from B, P and Sb. It is effective in suppressing the complete oxidation reaction. Preferably it is B or Sb.
[0027]
A when Mo is 12Atomic ratio a2Is usually 0 or more, and usually 5 or less, preferably 3 or less, and more preferably 1 or less.
[0028]
A3Is V. It has the effect of improving the activity, and can improve the activity without sacrificing the selectivity especially when a multi-component system is used.
[0029]
A when Mo is 13Atomic ratio a3Is usually 0 or more, preferably 0.01 or more, more preferably 0.05 or more, and usually 3 or less, preferably 2 or less, and more preferably 1.5 or less.
[0030]
(Catalyst manufacturing method)
The method for producing the oxidation catalyst of the present invention is not particularly limited, and various methods including known ones can be used. As a known method, for example, a method disclosed in US Pat. No. 4,322,358 in which an aqueous solution of each metal raw material compound and silica sol are mixed in advance, the obtained slurry is dried, and then fired Is mentioned.
[0031]
However, in the present invention, in order to isolate the active site in the high-concentration silicon-based carrier as described above and to enable the activity to be expressed even with a small amount of the catalyst component, a solid-state silicon-based carrier is used. Is preferred. It is preferable that the solid silicon support is impregnated with a solution or slurry of a raw material compound containing molybdenum, supported, dried, and fired using the impregnation support method described below.
By using such a method, the solution or the like of the raw material compound is uniformly permeated and supported inside the solid silicon-based carrier, and active sites including a catalyst component such as molybdenum are formed uniformly and in an isolated state. Therefore, it is presumed that an excessive oxidation reaction is suppressed in the obtained catalyst, and the selectivity of the oxol compound is improved.
[0032]
(Impregnation loading method)
First, a raw material compound containing molybdenum (hereinafter, sometimes referred to as a molybdenum compound) is made into a solution or slurry using a solvent.
The raw material compound containing molybdenum is not particularly limited, and for example, various oxo acids, hydroxides, inorganic acid salts, inorganic ammonium salts, organic acid salts, metal alkoxides, and the like are used. Among them, ammonium paramolybdate, ammonium metamolybdate and the like are preferable.
[0033]
Further, depending on the type of the desired catalyst component, other raw material compounds may be used as needed. For example, when the compound represented by the general formula (4) is used as a catalyst component, the above-described element A1, A2, A3Are added.
[0034]
A1The raw material compound containing is not particularly limited, for example, various oxo acids, hydroxides, inorganic acid salts, inorganic acid ammonium, organic acid salts, organic acid ammonium, metal alkoxides, oxides and oxide sols used. Among them, nitrates and the like are preferable.
[0035]
A2The starting compound containing1Like the raw material compound containing, there is no particular limitation, for example, various oxo acids, hydroxides, inorganic acid salts, inorganic ammonium salts, organic acid salts, organic acid ammonium salts, metal alkoxides, oxides and oxide sols used.
Above all, boric acid is preferred as the B source, phosphoric acid as the P source, antimony trioxide sol, antimony ammonium tartrate, and the like as the Sb source.
[0036]
A3That is, the starting compound containing V is not particularly limited. For example, various inorganic acid salts, inorganic acid ammonium salts, organic acid salts, organic acid ammonium salts, metal alkoxides, oxides and oxide sols are used. Among them, ammonium metavanadate and the like are preferable.
[0037]
The solvent is not particularly limited as long as it can suitably disperse or dissolve the above-mentioned molybdenum-containing raw material compound and other raw material compounds used as needed.For example, methanol, ethanol, and propanol which are liquid at normal temperature And organic compounds such as isopropanol, butanol, isobutanol, tertiary butanol, and acetone; water; and mixtures thereof. Among them, water is preferred.
[0038]
In addition, it is not preferable to add an acid such as nitric acid more than necessary when dissolving the raw material compound in the solvent, since it greatly affects the performance of the catalyst. For example, bismuth nitrate precipitates when dissolved in water, so it is necessary to add nitric acid to dissolve it. At that time, care must be taken in the amount of nitric acid used.
[0039]
When ammonium molybdate is used as a raw material compound containing molybdenum and water is used as a solvent, when a compound containing an element that easily forms a precipitate when mixed with an aqueous solution of ammonium molybdate is further added, an appropriate By performing the treatment, a uniform mixed solution containing molybdenum and a desired additive element can be used for the impregnation support described later. Suitable treatments include, for example, passing an aqueous solution of ammonium paramolybdate through a cation exchange resin column [HMo7O24]5 After conversion into the ion of the type, there is a method of mixing with a solution containing a desired element, a method of heating an aqueous solution of ammonium paramolybdate and a compound containing the desired element in a solution to which a hydrogen peroxide solution is added.
[0040]
The solution containing the raw material compound thus obtained is impregnated and supported on a silicon support. The solution used for the impregnation may not be a complete solution, but may be a slurry having a precipitate. Here, when a raw material compound is used in addition to the raw material compound containing molybdenum, these raw material compounds are dissolved or dispersed in a single solvent to form a mixed solution (or slurry). (Or slurry) may be impregnated and supported on the siliceous carrier. Alternatively, a mixed solution (or slurry) containing each raw material compound may be separately prepared, and these may be sequentially impregnated and supported on the siliceous carrier. .
[0041]
(Supported)
Next, a solution (or slurry) containing the raw material compound is impregnated and supported on the siliceous carrier.
[0042]
The method of impregnation and loading is not particularly limited, and it can be carried out by a known method such as a pore-filling method, an incipient wetness method, an equilibrium adsorption method, a forced loading method, and a spray method. Among them, the pore-filling method, the incipient @ wetness method, and the spray method are preferable.
[0043]
Usually, the impregnating solution of the catalyst component is adjusted to a concentration that can support a desired amount in one impregnation. However, if the concentration of the impregnating solution cannot be increased due to solubility or the like, The impregnation may be repeated twice or three times. In that case, the drying described later is performed each time the impregnation is performed once.
[0044]
(Dry)
Subsequently, the catalyst precursor is obtained by sufficiently drying the catalyst, and drying is performed. The method is not particularly limited, and known methods such as stationary drying using a constant temperature dryer or a vacuum dryer and fluidized drying are used. Can be performed in the following manner. However, since the interaction between molybdenum and silica is relatively weak, segregation of the catalyst component is likely to occur if the material is rapidly dried at a high temperature, and care must be taken. In particular, techniques such as spray drying are not preferred because it is difficult to avoid segregation. The drying temperature is usually 30 ° C. or higher, preferably 50 ° C. or higher, more preferably 70 ° C. or higher, and is usually 300 ° C. or lower, preferably 200 ° C. or lower, more preferably 150 ° C. or lower. The drying time is usually 30 minutes or more, preferably 1 hour or more, and usually 72 hours or less, preferably 48 hours or less.
[0045]
(Fired)
Next, the obtained catalyst precursor is calcined under a flow of air or a flow of nitrogen to obtain a catalyst. The firing can be performed in the same manner as in the conventional preparation method using silica sol. Specifically, the firing temperature is usually in the range of 200 ° C. or higher, preferably 400 ° C. or higher, usually 1000 ° C. or lower, preferably 800 ° C. or lower, and the firing time is usually 30 minutes or longer, preferably 1 hour or longer, usually The range is 12 hours or less, preferably 6 hours or less.
[0046]
In the case of the method of successively impregnating and supporting the multi-element components as described above, drying is performed each time so that the impregnated and supported components do not elute. The firing may be performed each time, or may be performed collectively after the operations of impregnating and supporting all elements and drying are completed.
[0047]
The shape of the catalyst thus obtained is not particularly limited, and can be appropriately selected from various known shapes such as tablets, rings, spheres, microspheres, and cylinders according to the reaction method when the catalyst is used. The shaping into a desired shape may be performed before or after firing. As a method for forming the catalyst, various known methods such as tableting and extrusion can be used.
[0048]
The oxidation catalyst of the present invention described above can be used for various oxidation reactions, and particularly when used as a catalyst for producing an oxol compound by oxidizing a hydrocarbon, a conventional oxidation catalyst can be used. An oxol compound can be obtained with a higher selectivity and a higher yield than in the case of. Moreover, in order to obtain a sufficient selectivity and yield, there is no need to perform an operation such as including steam in the raw material gas as in the prior art, which is excellent in cost and efficiency. Therefore, it can be suitably used as an oxidation catalyst for producing an oxole compound, and its industrial utility value is high.
[0049]
[II. Production method of oxol compound etc.]
The method for producing an oxole compound according to the present invention oxidizes a hydrocarbon using the above-described oxidation catalyst of the present invention.
[0050]
(Reaction substrate and reaction product)
The hydrocarbon as the reaction substrate is not particularly limited, but is preferably an unsaturated hydrocarbon having one or more double bonds or triple bonds between carbon atoms. Specific examples include alkenes and alkadienes, among which alkadienes represented by the following general formula (2) are preferred.
[0051]
Embedded image
Figure 2004041909
[0052]
In the above general formula (1), R1~ R4Are each independently a substituent selected from the group consisting of hydrogen, an alkyl radical having 1 to 6 carbon atoms, an aldehyde group, and a carboxyl group. Above all, R1~ R4Is preferably independently a substituent selected from the group consisting of hydrogen, a methyl group and an aldehyde group, and most preferably hydrogen.
[0053]
Specific examples of alkadienes include n-butene-1, butene-2, n-pentene-1, isopentene, hexene-1, heptene-2, octene-1, decene-1, 2-methylbutene-1, and hexene-. 3,2-ethylbutene-1, 2-methylpentene-3, 3-ethylhexene-2, butadiene-1,3, pentadiene-1,3, isoprene, hexadiene-1,3, decadiene-1,3 and the like. And a mixture thereof may be used. Among them, alkadienes having 4 carbon atoms are preferred, and butadiene-1,3 is particularly preferred.
[0054]
On the other hand, the oxol compound as the reaction product may be a 5-membered ring compound composed of carbon 4 and oxygen 1, and specifically, a compound represented by the following general formula (2) is exemplified. In addition, R in the following general formula (2)1~ R4Is R in the above general formula (1)1~ R4Is synonymous with
[0055]
Embedded image
Figure 2004041909
[0056]
Specific examples of the oxole compound include furan, 2-methylfuran, 3-methylfuran, 2,5-diethylfuran, 2-n-hexylfuran, 2-isopropyl-3-methylfuran, 3-n-propylfuran, Examples thereof include 3-methyl-4-n-butylfuran, furfural, and furic acid, with furan being most preferred.
[0057]
(Method of oxidation reaction)
The oxidation reaction of the present invention may be performed in a gas phase, a liquid phase, or a gas-liquid mixed phase, but is preferably performed in a gas phase, particularly preferably a gas phase catalytic oxidation reaction.
[0058]
In the case of the gas phase catalytic oxidation reaction, the composition of the reaction raw material gas is such that the hydrocarbon of the raw material is usually in the range of 0.1 to 30% by volume, oxygen is usually in the range of 0.1 to 30% by volume, and the balance is An inert gas such as nitrogen, carbon dioxide, water vapor or the like can be used for the reaction. If the concentration of the starting hydrocarbon is high, the load on the catalyst is high, which is not preferable from the viewpoint of the life of the catalyst. Conversely, if the concentration is too low, this is not preferable from the viewpoint of productivity. Therefore, as a more preferable raw material gas composition, hydrocarbon is in the range of 1 to 10% by volume, oxygen is in the range of 1 to 10% by volume, and the rest is an inert gas. As the inert gas, the above-mentioned nitrogen, carbon dioxide, water vapor and the like can be used, but water vapor is not preferable because it promotes volatilization of molybdenum as an active ingredient. Preferably, they are nitrogen and carbon dioxide. Since oxygen used for the reaction is economically advantageous, air is usually used, but pure oxygen gas may be used. The ratio of hydrocarbon to oxygen is usually from 10: 1 to 1: 5, preferably from 2: 1 to 1: 2.
[0059]
The space velocity (GHSV) of the raw material gas is usually 300 to 10,000 hours.-1, Preferably 500 to 8,000 hr-1Range. The reaction pressure is usually normal pressure or 0.05 to 10 kg / cm2Performed under G pressure. The reaction temperature is usually from 200 to 800C, preferably from 300 to 600C. The contact time is usually 0.2 to 12 sec, preferably 0.4 to 8 sec.
[0060]
The reaction bed may be any of a fixed bed, a fluidized bed, and a transport bed. Among them, a fixed bed is preferable because the contact time can be set short.
As a reaction method,
(1) A push-cut type reaction system in which the raw material hydrocarbon is converted as much as possible under the condition that the supply amount of oxygen is larger than the supply amount of hydrocarbon,
(2) Under the condition that the supply amount of oxygen is smaller than the supply amount of hydrocarbon, the conversion rate of the raw material hydrocarbon is kept low, the selectivity of the product is kept high, and the unreacted raw material hydrocarbon flowing out from the reactor outlet is recovered. Recycling type reaction system which is introduced into the reactor
Any of
[0061]
Regarding the method of supplying each raw material to the reactor, the raw material may be supplied after mixing hydrocarbon, oxygen and inert gas in advance, or each raw material component may be separately divided and supplied. The oxol compound, which is a reaction product, is usually obtained as a gas, and can be recovered with an absorbing solvent such as ethylene glycol and N-methylpyrrolidone.
[0062]
The oxol compound obtained by the production method of the present invention can be used for various applications.For example, by performing a hydrogenation reaction by a known method using a nickel catalyst or the like, an oxolan compound or It is possible to produce diol compounds.
[0063]
Specifically, in the case of the oxol compound represented by the general formula (2), the oxol compound represented by the following general formula (3) or the diol compound represented by the following general formula (4) is obtained by hydrogenating the oxol compound. Can be manufactured. In addition, R in the following general formulas (3) and (4)1~ R4Is R in the above general formula (1)1~ R4Is synonymous with
[0064]
Embedded image
Figure 2004041909
[0065]
Embedded image
Figure 2004041909
[0066]
In particular, among the oxole compounds obtained by the production method of the present invention, furan is further subjected to a hydrogenation reaction by a known method using a nickel catalyst or the like, thereby obtaining industrially useful tetrahydrofuran or 1,4-butane. A diol can be produced. For example, according to WO 96/29322, a catalyst containing at least one element selected from the group consisting of I, V, VI, VII, and VIII of the periodic table in the presence of water and hydrogen is used. It is described that 1,4-butanediol and tetrahydrofuran can be respectively obtained by hydrogenation reaction.
[0067]
Here, the conditions of the hydrogenation reaction in the case of producing an oxolane compound will be described. The reaction pressure is usually at least normal pressure, preferably at least 5 atm, and is usually at most 500 atm, preferably at most 300 atm, more preferably It is 200 atm or less. The reaction temperature is usually 30 ° C. or higher, preferably 50 ° C. or higher, more preferably 100 ° C. or higher, and is usually 400 ° C. or lower, preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
[0068]
The conditions for the hydrogenation reaction when producing the diol compound are the same as those for the above-described hydrogenation reaction when producing the diol compound, but water is further supplied during the reaction. The supply amount of water is usually 0.5 or more, preferably 1 or more, more preferably 2 or more, and usually 50 or less, preferably 20 or less, more preferably the molar ratio of water to the oxol compound as a raw material. Is 10 or less.
[0069]
【Example】
Hereinafter, the catalyst of the present invention and a reaction example using the same will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0070]
The conversion and selectivity in the examples are calculated by the following equations.
Conversion = (reacted hydrocarbons having 4 carbon atoms (mol)) / (hydrocarbons supplied with 4 carbon atoms (mol)) × 100
Selectivity = (furan produced (mol)) / (converted hydrocarbon having 4 carbon atoms (mol)) × 100
[0071]
(Acid washing of carrier)
75 g of spherical silica CARiACT @ Q-15 from Fuji Silysia Ltd. was added to 300 g of 5N hydrochloric acid, and the mixture was heated with stirring at 80 ° C. for 2 hours. After cooling to room temperature, the mixture was filtered, washed with ion-exchanged water, and the same operation was repeated again in 5N hydrochloric acid. After cooling to room temperature, filtration and washing with ion exchanged water were repeated 5 times.
[0072]
The fifth wash was neutral. The obtained silica was dried with a thermostatic dryer at 120 ° C. for 12 hours or more, and used as a silicon carrier.
[0073]
(Measurement of pore volume of carrier)
The pore volume of the acid-washed carrier was determined by a nitrogen adsorption method using BELSORP manufactured by Bell Japan.
[0074]
(Dry)
The drying operation of Examples 1 to 9 was performed as follows.
Drying: The sample was transferred to a porcelain dish and dried in an oven at 80 ° C. for 1 hour. The sample was agitated 2-3 times during drying (this operation is hereinafter referred to as a drying process).
[0075]
(Fired)
The firing operation in the examples and comparative examples was performed as follows.
Baking: Baking was performed at 600 ° C. for 2 hours under air. (This operation is hereinafter referred to as firing.)
[0076]
(SiO in catalyst2Weight analysis)
A 500 mg sample was preliminarily baked at 1000 ° C. for 1 hour, weighed accurately in a platinum dish of constant weight, added with 5 ml of concentrated sulfuric acid and 2 to 3 ml of water, and heated at 180 ° C. on a hot plate. After the water was completely evaporated, the mixture was heated and heated until white sulfuric acid smoke was generated. After cooling, the acid-insoluble matter was filtered off with a 5C filter paper, and the insoluble matter was sufficiently washed with (1 + 10) dilute sulfuric acid and water. The filter paper was preliminarily ashed on a platinum dish with a direct fire, and ashed at 1000 ° C. for 1 hour in an electric furnace. The weight (A) after standing to cool for 30 minutes is precisely weighed, 5 ml of hydrofluoric acid and 100 μl of sulfuric acid are added, and the mixture is heated at 180 ° C. on a hot plate, and SiO in ash is added.2To SiF4And removed by evaporation. After heating and heating to completely evaporate the sulfuric acid, it was ashed again at 1000 ° C. for 1 hour in an electric furnace. The weight (B) after standing to cool for 30 min is precisely weighed, and the difference from the previously weighed value (A) is determined by the SiO 2 in the sample.2Weight. From the following equation, the SiO2The content was determined.
[0077]
SiO2Content / weight% = (weight (A) -weight (B)) / sample weight × 100
[0078]
In addition, as shown in Example 3, the value of the silica amount calculated by the present analysis method and the value of the silica amount calculated from the preparation match very well.
[0079]
(Preparation of Bi-Pb-Mo homogeneous solution (a))
2.12 g of ammonium paramolybdate ((NH4)6Mo6O24・ 4H2An aqueous solution obtained by dissolving O) in 15.05 g of water by heating and then cooling to room temperature is referred to as a liquid A. Separately, bismuth nitrate pentahydrate (Bi (NO3)5・ 5H2O) was dissolved in 6.16 g of a 10% by weight nitric acid solution, and 4.98 g of a 60% by weight nitric acid solution and lead nitrate Pb (NO3) 22.98 g was added, and the aqueous solution cooled to room temperature after heating and dissolution was used as solution B. Solution A is allowed to flow through a column filled with 30 ml of ion exchange resin (DOWEX HCR-W2 20-50 mesh H FORM), and from the acid effluent except a few ml of the initial effluent (neutral) that moistened the column. Was added dropwise to the stirred solution B over 30 minutes. Further, 35 ml of pure water was passed through the column as a washing liquid, and continued to be dropped into the liquid B, so that the total liquid amount was 57 ml (62.61 g).
[0080]
(Preparation of Bi-Pb-Mo homogeneous solution (b))
2.12 g of ammonium paramolybdate ((NH4) 6Mo6O24・ 4H2An aqueous solution obtained by heating and dissolving O) in 20.0 g of water and then cooling to room temperature is referred to as a liquid A. Separately, bismuth nitrate pentahydrate (Bi (NO3)5・ 5H2O) 0.97 g was dissolved in 6 g of a 10% by weight nitric acid solution, and 5 g of a 60% by weight nitric acid solution and lead nitrate Pb (NO3) 22.98 g of water and 20 g of water were added, and an aqueous solution cooled to room temperature after heating and dissolution was used as solution B. Solution A is allowed to flow through a column filled with 30 ml of ion exchange resin (DOWEX HCR-W2 20-50 mesh H FORM), and from the acid effluent except a few ml of the initial effluent (neutral) that moistened the column. Was added dropwise to the stirred solution B over 30 minutes. Further, 20 ml of pure water was passed through the column as a washing liquid, and continued to be added dropwise to the liquid B, so that the total liquid amount was 60 ml (60.2 g).
[0081]
(Preparation of Bi-Pb-Mo homogeneous solution (c))
2.12 g of ammonium paramolybdate ((NH4)6Mo6O24・ 4H2An aqueous solution obtained by heating and dissolving O) in 20.0 g of water and then cooling to room temperature is referred to as a liquid A. Separately, bismuth nitrate pentahydrate (Bi (NO3)5・ 5H2O) 0.97 g was dissolved in 6 g of a 10% by weight nitric acid solution, and 5 g of a 60% by weight nitric acid solution and lead nitrate Pb (NO3) 22.98 g and 30 g of water were added, and the aqueous solution cooled to room temperature after heating and dissolving was used as solution B. Solution A is allowed to flow through a column filled with 30 ml of ion exchange resin (DOWEX HCR-W2 20-50 mesh H FORM), and from the acid effluent except a few ml of the initial effluent (neutral) that moistened the column. Was added dropwise to the stirred solution B over 30 minutes. Further, 20 ml of pure water was flowed through the column as a washing liquid, and the dropwise addition to the solution B was continued, so that the total amount of the solution was 70 ml (76.6 g).
[0082]
(Preparation of Bi-Pb-Mo homogeneous solution (d))
2.12 g of ammonium paramolybdate ((NH4) 6Mo6O24・ 4H2An aqueous solution obtained by dissolving O) in 14.91 g of water with heating and then cooling to room temperature is referred to as a liquid A. Separately, bismuth nitrate pentahydrate (Bi (NO3)5・ 5H2O) 0.97 g was dissolved in 6 g of a 10% by weight nitric acid solution, and 5 g of a 60% by weight nitric acid solution and lead nitrate Pb (NO3) 22.98 g was added, and the aqueous solution cooled to room temperature after heating and dissolution was used as solution B. Solution A is allowed to flow through a column filled with 30 ml of ion exchange resin (DOWEX HCR-W2 20-50 mesh H FORM), and from the acid effluent except a few ml of the initial effluent (neutral) that moistened the column. Was added dropwise to the stirred solution B over 30 minutes. Further, 35 ml of pure water was flowed through the column as a washing liquid, and the dropwise addition to the liquid B was continued, so that the total liquid amount was 67 ml (73.21 g).
[0083]
(Preparation of antimony ammonium tartrate solution)
According to the method disclosed in JP-A-62-176543, an antimony ammonium tartrate solution was prepared as follows.
60 g of water and 22.51 g of tartaric acid were placed in a 500 ml beaker, and dissolved by heating and stirring. 14.75 g of antimony trioxide was added to this solution, and 12 ml of 28% aqueous ammonia was added in two portions. Water was added so that the total amount was 500 g, to obtain 500 g of an antimony ammonium tartrate solution having an antimony atom concentration of 0.2 mol / Kg.
[0084]
(Example 1)
0.100 g of ammonium metavanadate was dissolved by heating in 5.0 g of pure water and then cooled to room temperature. 1.00 g of a CARiACT @ Q-15 hydrochloric acid-treated product (pore volume 0.77 ml / g) manufactured by Fuji Silysia Ltd. was placed in a 20-ml glass vial, and 0.77 g of an aqueous solution of ammonium metavanadate was added and shaken well. The obtained solid was dried. The dried product was placed in a 20-ml glass vial, half of 1.66 g of the Bi-Pb-Mo homogeneous solution (a) was added, and the mixture was shaken well, and the obtained solid was dried. The dried product was put again in a 20 ml glass vial, the remaining homogeneous solution of Bi-Pb-Mo was added and shaken well, and the obtained solid was dried. 1.11 g of the dried product was collected and calcined to obtain 0.97 g of a white-yellow solid.
[0085]
(Example 2)
3.0 g of CARiACT @ Q-15 hydrochloric acid treated by Fuji Silysia (pore volume 0.77 ml / g) was placed in a porcelain dish, and half of 4.78 g of the Bi-Pb-Mo homogeneous solution was added and mixed well. The obtained solid was dried. The remaining Bi-Pb-Mo homogeneous solution (b) was added to the dried product, mixed well, and the obtained solid was dried. 2.22 g of the dried product was placed in a porcelain dish, and 0.0062 g of ammonium metavanadate was heated and dissolved in 1.5 g of pure water, and then a solution cooled to room temperature was added and mixed well. The obtained solid was dried. 1 g of the dried product was placed in a porcelain dish, and a solution obtained by heating and dissolving 0.0025 g of ammonium metavanadate in 0.8 g of pure water and then cooling to room temperature was added and mixed well. The obtained solid was dried and baked to obtain a cream solid.
[0086]
(Example 3)
2.0 g of CARiACT @ Q-15 hydrochloric acid-treated product (pore volume 0.77 ml / g) manufactured by Fuji Silysia Ltd. was placed in a porcelain dish, and 0.0279 g of ammonium metavanadate was dissolved by heating in 2.0 g of pure water and then room temperature. The cooled solution was added, mixed well, and the obtained solid was dried and baked. The fired product was transferred to a porcelain dish, and 4.0 g of the Bi-Pb-Mo homogeneous solution (c) was added and mixed well. The obtained solid was dried and fired to obtain a yellow-orange solid. The content of silica in the calcined catalyst was determined by the above analysis method, and was found to be 89.9% by weight. This value was in good agreement with the value calculated from the charged amount of 90% by weight.
[0087]
(Example 4)
18.68 g of CARiACT @ Q-15 hydrochloric acid-treated product (pore volume 1.21 ml / g) manufactured by Fuji Silysia Ltd. was placed in a 100 ml Erlenmeyer flask, and 10% by weight nitric acid was added to 18.17 g of the Bi-Pb-Mo homogeneous solution (d). The solution to which 5.83 g of the aqueous solution was added was added and shaken well. The obtained solid was dried overnight. 4.29 g of the dried product was placed in a 50 ml Erlenmeyer flask, and a solution obtained by heating and dissolving 0.031 g of ammonium metavanadate in 4.67 g of pure water and then cooling to room temperature was added, followed by shaking well. The obtained solid was dried. 1.07 g of the dried product was taken in a 20 ml glass vial, and a solution obtained by heating and dissolving 0.0041 g of boric acid in 1.16 g of pure water was added to the solution, which was cooled to room temperature, and shaken well. The obtained solid was dried. 1.06 g of the dried product was collected and calcined to obtain 0.96 g of a pale yellow solid.
[0088]
(Example 5)
18.68 g of CARiACT @ Q-15 hydrochloric acid-treated product (pore volume 1.21 ml / g) manufactured by Fuji Silysia Ltd. was placed in a 100 ml Erlenmeyer flask, and 10% by weight nitric acid was added to 18.17 g of the Bi-Pb-Mo homogeneous solution (d). The solution to which 5.83 g of the aqueous solution was added was added and shaken well. The obtained solid was dried overnight. 4.29 g of the dried product was placed in a 50 ml Erlenmeyer flask, and a solution obtained by heating and dissolving 0.031 g of ammonium metavanadate in 4.67 g of pure water and then cooling to room temperature was added, followed by shaking well. The obtained solid was dried. 1.07 g of the dried product was collected in a 20 ml glass vial, a solution obtained by adding 1.04 g of pure water to 0.133 g of a 0.2 mol / Kg antimony ammonium tartrate solution was added, and the mixture was shaken well. The obtained solid was dried. 1.08 g of the dried product was collected and calcined to obtain 1.02 g of a pale yellow solid.
[0089]
(Example 6)
0.127 g of ammonium paramolybdate was dissolved by heating in 5.83 g of pure water, and then cooled to room temperature. 5 g of CARiACT @ Q-15 hydrochloric acid-treated product (pore volume: 1.21 ml / g) manufactured by Fuji Silysia Ltd. was placed in a 50-ml Erlenmeyer flask, and an aqueous solution of ammonium paramolybdate was added thereto and shaken well. The obtained solid was dried. After drying, the mixture was placed again in an Erlenmeyer flask, a solution of 0.238 g of lead nitrate dissolved in 5.78 g of pure water was added, and the mixture was shaken well. The obtained solid was dried. After heating and dissolving 0.0084 g of ammonium metavanadate in 1.15 g of pure water, the mixture was cooled to room temperature. 1.07 g of a dried product carrying molybdenum and lead was dispensed into a 20-ml glass vial, an aqueous solution of ammonium metavanadate was added, and the mixture was shaken well. The obtained solid was dried. 1.07 g of the dried product was collected and calcined to obtain 1.00 g of a light beige solid.
[0090]
(Example 7)
After heating and dissolving 0.26 g of ammonium paramolybdate in 5.82 g of pure water, the mixture was cooled to room temperature. 5 g of CARiACT @ Q-15 hydrochloric acid-treated product (pore volume: 1.21 ml / g) manufactured by Fuji Silysia Ltd. was placed in a 50-ml Erlenmeyer flask, and an aqueous solution of ammonium paramolybdate was added thereto and shaken well. The obtained solid was dried.
After drying, the mixture was placed again in an Erlenmeyer flask, a solution of 0.438 g of zinc nitrate dissolved in 5.69 g of pure water was added, and the mixture was shaken well. The obtained solid was dried. After heating and dissolving 0.0172 g of ammonium metavanadate in 2.27 g of pure water, the mixture was cooled to room temperature. 2.2 g of a dried product carrying molybdenum and zinc was taken in a 30 ml glass vial, an aqueous solution of ammonium metavanadate was added, and the mixture was shaken well. The obtained solid was dried. 1.01 g of the dried product was collected and calcined to obtain 0.85 g of a white-yellow solid.
[0091]
(Example 8)
1.85 g of ammonium paramolybdate was dissolved by heating in 22.23 g of pure water, and then cooled to room temperature. 20 g of a CARiACT @ Q-15 hydrochloric acid-treated product (pore volume: 1.21 ml / g) manufactured by Fuji Silysia Ltd. was placed in a 100 ml Erlenmeyer flask, and an aqueous solution of ammonium paramolybdate was added, followed by shaking well. The obtained solid was dried. After heating and dissolving 0.102 g of ammonium metavanadate in 11.40 g of pure water, the solution was cooled to room temperature. After drying 10.95 g of molybdenum-supported product in a 50 ml Erlenmeyer flask, an aqueous solution of ammonium metavanadate was added and shaken well, and the obtained solid was dried. 3.00 g of the dried product was collected and calcined to obtain 2.85 g of a yellow solid.
[0092]
(Example 9)
After 0.156 g of ammonium paramolybdate was dissolved under heating in 3.50 g of pure water, it was cooled to room temperature. 3.00 g of a CARiACT @ Q-15 hydrochloric acid-treated product (pore volume: 1.21 ml / g) manufactured by Fuji Silysia Ltd. was placed in a 30-ml glass vial, and an aqueous solution of ammonium paramolybdate was added and shaken well. The obtained solid was dried. 1.02 g of the dried product was collected and baked to obtain 0.94 g of a mixed solid of pale yellow and pale blue.
[0093]
(Example 10)
8.36 g of bismuth nitrate pentahydrate was dissolved in 15.30 g of a 10% by weight nitric acid solution to prepare a bismuth nitrate solution. 1.60 g of ammonium paramolybdate was dissolved in 6.20 g of pure water and placed in a porcelain dish. While stirring in a porcelain dish, 1.30 g of ammonium metavanadate was suspended in 10.70 g of pure water, and the mixture was heated and dissolved. The bismuth nitrate solution and 125.68 g of silica sol S-20L (20% by weight) manufactured by Catalyst Kasei Kogyo were sequentially added thereto. The slurry in the porcelain dish was heated and stirred, and evaporated to dryness until there was no more water, to obtain 33.06 g of a solid. 2.96 g of the dried product was collected and calcined to obtain 2.80 g of a dark yellow solid.
[0094]
(Example 11)
4.18 g of bismuth nitrate pentahydrate was dissolved in 7.73 g of a 10% by weight nitric acid solution, and 0.64 g of ammonium metavanadate prepared as a bismuth nitrate solution was heated and dissolved in 9.99 g of pure water, and then cooled to room temperature. did. An aqueous solution was prepared by dissolving 0.82 g of ammonium paramolybdate in 3.05 g of pure water. A porcelain dish was charged with 151.4 g of pure water and 12.51 g of silica Aerosil-200 manufactured by Nippon Aerosil.
The bismuth nitrate solution, the aqueous solution of ammonium metavanadate, and the aqueous solution of ammonium paramolybdate were sequentially added to the porcelain dish with stirring. The slurry in the porcelain dish was heated and stirred, and evaporated to dryness until there was no more water, to obtain 15.72 g of a solid. 8.02 g of the dried product was collected and calcined to obtain 7.54 g of a dark yellow solid.
[0095]
(Comparative Example 1)
An aqueous solution was prepared by dissolving 3.56 g of ammonium paramolybdate in 13.16 g of pure water. 19.65 g of bismuth nitrate pentahydrate was dissolved in 36.02 g of a 10% by weight nitric acid solution and placed in a porcelain dish. An aqueous ammonium paramolybdate solution was added to the porcelain dish while stirring. The slurry in the porcelain dish was heated and stirred, and evaporated to dryness until there was no more water, to obtain 9.8 g of a solid. 8.06 g of the dried product was collected and calcined to obtain 7.55 g of a yellow solid.
[0096]
(Comparative Example 2)
An aqueous solution was prepared by dissolving 10.69 g of ammonium paramolybdate in 40.26 g of pure water. 9.67 g of bismuth nitrate pentahydrate was dissolved in 17.76 g of a 10% by weight nitric acid solution and placed in a porcelain dish. An aqueous ammonium paramolybdate solution was added to the porcelain dish while stirring. The slurry in the porcelain dish was heated and stirred, and evaporated to dryness until there was no more water, to obtain 13.16 g of a solid. After tableting of the dried product, 3.60 g was collected and calcined to obtain 3.48 g of a pale yellow-white solid.
[0097]
(Comparative Example 3)
An aqueous solution was prepared by dissolving 1.79 g of ammonium paramolybdate in 6.97 g of pure water. 9.71 g of bismuth nitrate pentahydrate was dissolved in 18.00 g of a 10% by weight nitric acid solution and placed in a porcelain dish. While stirring in a porcelain dish, an aqueous solution of ammonium paramolybdate and 94.94 g of a silica sol S-20L (20% by weight) manufactured by Catalyst Chemical Industry Co., Ltd. were sequentially added. The slurry in the porcelain dish was heated and stirred, and evaporated to dryness until there was no more water, to obtain 30.59 g of a solid. 8.05 g of the dried product was collected and calcined to obtain 8.20 g of a yellow solid.
[0098]
(Comparative Example 4)
An aqueous solution was prepared by dissolving 4.23 g of ammonium paramolybdate in 15.98 g of pure water. 5.04 g of a 10% by weight nitric acid solution of 0.8 M / kg bismuth nitrate was placed in a porcelain dish. While stirring in a porcelain dish, an aqueous solution in which 6.03 g of lead nitrate was dissolved in 10.06 g of pure water, an aqueous solution in which 0.16 g of boric acid was dissolved in 5.14 g of pure water, an aqueous solution of ammonium paramolybdate, and a catalyst 42.55 g of a silica sol S-20L (20% by weight) manufactured by Kasei Kogyo was added sequentially. The slurry in the porcelain dish was heated and stirred, and evaporated to dryness until there was no more water, to obtain 17.53 g of a solid. 8.01 g of the dried product was collected and calcined to obtain 7.60 g of a yellow solid.
[0099]
(Example of reaction test)
0.5 ml of the catalysts obtained in Examples 1 to 11 and Comparative Examples 1 to 4 were filled in a quartz reaction tube, and the composition of 1,3-butadiene 5% by volume, oxygen 5% by volume, and nitrogen 90% by volume was used. Space gas (GHSV) 4000 hr-1A catalyst activity test was performed by passing the mixture through
[0100]
The catalyst obtained by evaporating to dryness and calcining using a silica sol was sieved at 22 to 60 mesh (JIS standard) to conduct a reaction test. The catalyst which had been subjected to tableting before firing was crushed and then sieved in the same manner to conduct a reaction test.
[0101]
The temperature of the reaction tube was adjusted in the range of 250 to 550 ° C., the gas at the outlet of the reaction tube was sampled, and the product was analyzed by gas chromatography. Table 1 below shows the results obtained when the temperature of the reaction tube was 500 ° C.
[Table 1]
Figure 2004041909
[0102]
From the results in Table 1, it can be seen that the catalysts of the examples have higher furan selectivity and furan yield than the catalysts of the comparative examples.
[0103]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the reaction which produces | generates an oxol compound by oxidizing a hydrocarbon by making the siliconaceous support in a catalyst containing a molybdenum as a catalyst component a high value (60 weight% or more) compared with a prior art. When used, the oxol compound can be efficiently produced with a high selectivity and a high yield without requiring a costly operation such as including water vapor in the raw material gas.

Claims (10)

炭化水素からオキソール化合物を製造するための酸化触媒であって、ケイ素質の担体と、少なくともモリブデンを含む触媒成分とを有するとともに、触媒中における前記ケイ素質担体の含有率が60重量%以上であることを特徴とする酸化触媒。An oxidation catalyst for producing an oxole compound from a hydrocarbon, comprising a silicon carrier and a catalyst component containing at least molybdenum, wherein the content of the silicon carrier in the catalyst is 60% by weight or more. An oxidation catalyst characterized by the above-mentioned. 触媒中における前記ケイ素質担体の含有率が80重量%以上であることを特徴とする、請求項1記載の酸化触媒。The oxidation catalyst according to claim 1, wherein the content of the silicon support in the catalyst is 80% by weight or more. 固体のケイ素質の担体に、モリブデン化合物を含む溶液又はスラリーを含浸させて、乾燥後、焼成することにより得られることを特徴とする、請求項1又は請求項2に記載の酸化触媒。The oxidation catalyst according to claim 1, wherein the solid catalyst is obtained by impregnating a solution or slurry containing a molybdenum compound into a solid silicon support, drying the mixture, and then calcining the solution. 前記ケイ素質担体がシリカであることを特徴とする、請求項1〜3の何れか一項に記載の酸化触媒。The oxidation catalyst according to any one of claims 1 to 3, wherein the siliceous carrier is silica. 前記触媒成分として、更に、モリブデンと化合してモリブデン酸塩を形成する1種以上の元素を含むことを特徴とする、請求項1〜4の何れか一項に記載の酸化触媒。The oxidation catalyst according to any one of claims 1 to 4, wherein the catalyst component further includes one or more elements that combine with molybdenum to form a molybdate. 前記触媒成分として、更に、バナジウム、ホウ素、アンチモンのうち1種以上の元素を含むことを特徴とする、請求項1〜5の何れか一項に記載の酸化触媒。The oxidation catalyst according to any one of claims 1 to 5, wherein the catalyst component further contains at least one element of vanadium, boron, and antimony. 請求項1〜6の何れか一項に記載の酸化触媒を用いて炭化水素を酸化することを特徴とする、オキソール化合物の製造方法。A method for producing an oxol compound, comprising oxidizing a hydrocarbon using the oxidation catalyst according to claim 1. 前記炭化水素として下記一般式(1)で表わされる化合物を用い、前記オキソール化合物として下記一般式(2)で表わされる化合物を製造することを特徴とする、請求項7記載のオキソール化合物の製造方法。
Figure 2004041909
(一般式(1)中、R〜Rは各々独立に、水素、炭素数1〜6のアルキル基、アルデヒド基、カルボキシル基からなる群から選ばれる置換基を表わす。)
Figure 2004041909
(一般式(2)中、R〜Rは各々独立に、水素、炭素数1〜6のアルキル基、アルデヒド基、カルボキシル基からなる群から選ばれる置換基を表わす。)
The method for producing an oxole compound according to claim 7, wherein a compound represented by the following general formula (2) is produced as the oxol compound by using a compound represented by the following general formula (1) as the hydrocarbon. .
Figure 2004041909
(In the general formula (1), R 1 to R 4 each independently represent a substituent selected from the group consisting of hydrogen, an alkyl group having 1 to 6 carbon atoms, an aldehyde group, and a carboxyl group.)
Figure 2004041909
(In the general formula (2), R 1 to R 4 each independently represent a substituent selected from the group consisting of hydrogen, an alkyl group having 1 to 6 carbon atoms, an aldehyde group, and a carboxyl group.)
請求項8記載の方法により得られた上記一般式(2)のオキソール化合物を水素化反応させることにより、下記一般式(3)で表わされる化合物を製造することを特徴とする、オキソラン化合物の製造方法。
Figure 2004041909
(一般式(3)中、R〜Rは各々独立に、水素、炭素数1〜6のアルキル基、アルデヒド基、カルボキシル基からなる群から選ばれる置換基を表わす。)
A method for producing an oxolane compound, comprising producing a compound represented by the following general formula (3) by hydrogenating the oxol compound represented by the general formula (2) obtained by the method according to claim 8. Method.
Figure 2004041909
(In the general formula (3), R 1 to R 4 each independently represent a substituent selected from the group consisting of hydrogen, an alkyl group having 1 to 6 carbon atoms, an aldehyde group, and a carboxyl group.)
請求項8記載の方法により得られた上記一般式(2)のオキソール化合物を水素化反応させることにより、下記一般式(4)で表わされる化合物を製造することを特徴とする、ジオール化合物の製造方法。
Figure 2004041909
(一般式(4)中、R〜Rは各々独立に、水素、炭素数1〜6のアルキル基、アルデヒド基、カルボキシル基からなる群から選ばれる置換基を表わす。)
9. Production of a diol compound, characterized by producing a compound represented by the following general formula (4) by hydrogenating the oxole compound of the general formula (2) obtained by the method according to claim 8. Method.
Figure 2004041909
(In the general formula (4), R 1 to R 4 each independently represent a substituent selected from the group consisting of hydrogen, an alkyl group having 1 to 6 carbon atoms, an aldehyde group, and a carboxyl group.)
JP2002202361A 2002-07-11 2002-07-11 Oxidation catalyst, manufacturing method for oxol compound using the same, oxolane compound and manufacturing method for diol compound Pending JP2004041909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202361A JP2004041909A (en) 2002-07-11 2002-07-11 Oxidation catalyst, manufacturing method for oxol compound using the same, oxolane compound and manufacturing method for diol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202361A JP2004041909A (en) 2002-07-11 2002-07-11 Oxidation catalyst, manufacturing method for oxol compound using the same, oxolane compound and manufacturing method for diol compound

Publications (1)

Publication Number Publication Date
JP2004041909A true JP2004041909A (en) 2004-02-12

Family

ID=31708572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202361A Pending JP2004041909A (en) 2002-07-11 2002-07-11 Oxidation catalyst, manufacturing method for oxol compound using the same, oxolane compound and manufacturing method for diol compound

Country Status (1)

Country Link
JP (1) JP2004041909A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297232A (en) * 2005-04-18 2006-11-02 Nippon Shokubai Co Ltd Carrier for vapor phase oxidation catalyst, its manufacturing method, vapor phase oxidation catalyst and manufacturing method of acrylic acid
CN110639615A (en) * 2019-09-05 2020-01-03 广西民族师范学院 Preparation method and application of immobilized phosphotungstic acid catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297232A (en) * 2005-04-18 2006-11-02 Nippon Shokubai Co Ltd Carrier for vapor phase oxidation catalyst, its manufacturing method, vapor phase oxidation catalyst and manufacturing method of acrylic acid
JP4646684B2 (en) * 2005-04-18 2011-03-09 株式会社日本触媒 Gas phase oxidation catalyst and method for producing acrylic acid using the same
CN110639615A (en) * 2019-09-05 2020-01-03 广西民族师范学院 Preparation method and application of immobilized phosphotungstic acid catalyst
CN110639615B (en) * 2019-09-05 2022-11-08 广西民族师范学院 Preparation method and application of immobilized phosphotungstic acid catalyst

Similar Documents

Publication Publication Date Title
JP3696239B2 (en) Method for producing catalytically active composite metal oxide material containing elements V and Mo in the form of oxides as basic components
JPS6112488B2 (en)
JPH0242032A (en) Production of methacrylic acid and/or methacrolein
KR19980032073A (en) Vanadium-phosphorus oxide and its manufacturing method, gas phase oxidation catalyst composed of the oxide and partial gas phase oxidation method of hydrocarbons
JP4715699B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
KR100870790B1 (en) Method for producing molybdenum-bismuth-iron containing composite oxide fluid bed catalyst
JP3465350B2 (en) Method for producing catalyst for methacrylic acid production
EP1663482A1 (en) Niobium-doped vanadium/phosphorus mixed oxide catalyst
US4455388A (en) Catalyst and process for producing diolefins
US4388221A (en) Vanadium-phosphorus-tin-mordenite oxidation catalysts
JP4081824B2 (en) Acrylic acid production method
KR20170015900A (en) Improved selective ammoxidation catalysts
JPS5820944B2 (en) Production method of acrolein by propylene oxidation
JPH11169716A (en) Catalyst for preparing unsaturated nitrile and/or unsaturated carboxylic acid
JPH0134222B2 (en)
JP2004041909A (en) Oxidation catalyst, manufacturing method for oxol compound using the same, oxolane compound and manufacturing method for diol compound
KR20010079700A (en) Method for producing catalysts for synthesising maleic anhydride by means of gas phase oxidation
JP2003220334A (en) Compound oxide catalyst and method for manufacturing the same
JP3710944B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JPH0840969A (en) Production of acrolein and catalyst
JPH04227848A (en) Application to catalyst system and oxidation dehydrogenation of saturated carboxylic acid
JPH031059B2 (en)
US3838067A (en) Catalyst and use thereof
JPH026414A (en) Preparation of isobutylene
US4567314A (en) Process for producing diolefins