JP2004041908A - Coating method - Google Patents

Coating method Download PDF

Info

Publication number
JP2004041908A
JP2004041908A JP2002202299A JP2002202299A JP2004041908A JP 2004041908 A JP2004041908 A JP 2004041908A JP 2002202299 A JP2002202299 A JP 2002202299A JP 2002202299 A JP2002202299 A JP 2002202299A JP 2004041908 A JP2004041908 A JP 2004041908A
Authority
JP
Japan
Prior art keywords
coating
coating method
coating layer
coating liquid
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002202299A
Other languages
Japanese (ja)
Other versions
JP4314790B2 (en
Inventor
Fumiyuki Yoshida
吉田 史志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002202299A priority Critical patent/JP4314790B2/en
Publication of JP2004041908A publication Critical patent/JP2004041908A/en
Application granted granted Critical
Publication of JP4314790B2 publication Critical patent/JP4314790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating method constituted so that the thickness of the coating layer applied to a substrate actually in the width direction of the substrate becomes uniform in consideration of a change in a state of being discharged from a die head according to the physical values of a coating liquid, and a coating method enabling a uniform coating even if the thickness of the coating layer is not more than 10 μm. <P>SOLUTION: In the coating method for forming the coating layer on a substrate, a Bingham fluid, wherein a strain velocity is 0-5,000 (1/sec) and a ratio of plastic viscosity and a yield stress value is constant, is used as the coating liquid for forming the coating layer on the substrate. Further, in this coating method, a ratio of the plastic viscosity and the yield stress value is set to 0.14 or more. Furthermore, the coating liquid is a particle dispersion type coating liquid. In this coating method, the thickness of the coating layer is set to 10 μm or less. Further, a means for forming the coating layer is a die coating method. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス、プラスチック等の基板に塗布液を均一な厚さに塗布する塗布方法に関するもので、特に、粒子分散型の塗布液を均一な厚さに塗布する塗布方法に関する。
【0002】
【従来の技術】
一般に、ガラス、プラスチック等の基板に塗布液を均一に塗布した塗布層を形成することは、従来からいろいろな手法が試みられている。そして、塗布方法の一つとして、一定の間隙を有するダイヘッドを用いて塗布する、ダイコート法が、広い幅を1度に塗布形成できるので、多く用いられている。
【0003】
このダイコート法は、図1に示すように、ダイヘッド1の供給口3から塗布液4が供給され、マニホールド5内に溜められる。次に、マニホールド5からスリット6を通って、基材2に塗布し、塗布層7を形成する方法である。そして、塗布するに際し、ダイヘッド1または基材2のどちらか一方を相対的に移動させることで、基材2上に均一な塗布層7を形成する。
【0004】
しかし、このダイコート法により、均一な塗布層を形成する場合、塗布層の塗布方向の均一性、およびダイヘッドの幅方向の均一性、この両方を満足しなければならない。
特に、ダイヘッドの幅方向、幅が広い場合、更に、10μm以下の均一性を維持することが技術的に困難であった。
【0005】
この問題は、塗布液の物性値により、ダイヘッドから吐出される状態が変化するため、実際に基板に塗布された塗布層は、基板幅方向の厚みが均一にならなくなっていまっていた。特に、塗布液が粒子分散型の場合、この傾向が大きい問題があった。
【0006】
この問題を解決するために、ダイヘッドの表面の平滑性を向上させたり、ダイヘッドの流路の形状を変更することが試みられているが、満足した結果が得られていないのが、現状である。
【0007】
【発明が解決しようとする課題】
本発明は、塗布液の物性値により、ダイヘッドから吐出される状態が変化を考慮して、実際に基板に塗布された塗布層が、基板幅方向の厚みが均一となるようにした塗布方法を提供することを目的とする。
また、塗布層の厚みが10μm以下であっても、均一に塗布することができる塗布方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、 基材上に、塗布層を形成するに際し、前記塗布層を形成する塗布液として、歪速度が0〜5000(1/sec)の範囲で、塑性粘度と降伏応力値の比が一定であるビンガム流体を用いたことを特徴とする塗布方法である。
【0009】
請求項2に記載の発明は、前記塑性粘度と降伏応力値の比が0.14以上であることを特徴とする請求項1記載の塗布方法である。
【0010】
請求項3に記載の発明は、前記塗布液が、粒子分散型の塗布液であることを特徴とする請求項1または2記載の塗布方法である。
【0011】
請求項4に記載の発明は、前記塗布層が、10μm以下の厚さとすることを特徴とする、請求項1ないし3のいずれかに記載の塗布方法である。
【0012】
請求項5に記載の発明は、前記塗布層を形成する手段が、ダイコート法であることを特徴とする請求項1ないし4のいずれかに記載の塗布方法である。
【0013】
このように、塗布する塗布液を、塑性粘度と降伏応力値の比が一定であるビンガム流体を用いること、特に、この比が0.14以上とすることで、均一な塗布層を形成することができる。
【0014】
【発明の実施の形態】
図1に示すように、ダイヘッド1の供給口3から塗布液4が供給され、マニホールド5内に溜められる。次に、マニホールド5からスリット6を通って、基材2に塗布し、塗布層7を形成する方法である。そして、塗布するに際し、ダイヘッド1または基材2のどちらか一方を相対的に移動させることで、基材2上に均一な塗布層7を形成する。
【0015】
ここで、塗布層を形成する塗布液は、歪速度が0〜5000(1/sec)の範囲で、塑性粘度と降伏応力値の比が一定であるビンガム流体を用いることが好ましい。
また、前記塗布液の塑性粘度と降伏応力値の比が0.14以上とすることがより好ましい。
【0016】
このような塑性粘度と降伏応力値の比とすることで、塗布層の厚みが制御しにくい粒子分散型の塗布液であっても、均一な厚さの塗布膜を形成することが可能となった。
【0017】
【実施例】
図1のダイヘッド1のマニホールドは、断面が半円のストレートダイヘッドを用い、塑性粘度と降伏応力値を表1に示すように、それぞれ変化させたビンガム流体からなる塗布液を基板に塗布し、ダイヘッドのスリット出口の幅方向における吐出量を測定し、10μmの塗布層を形成し、厚みの均一性を確認した。
なお、用いたダイヘッドは、スリットの長さが680mm、スリットの幅が30μm、マニホールドの断面半円の半径が4mmのものを用いた。ここで、以下の試験例では、図1の対称平面をダイ対称中心として測定した。
【0018】
【表1】

Figure 2004041908
【0019】
(試験例1)
塗布液として、歪速度が0〜5000(1/sec)の範囲で、塑性粘度を7mP・Sと一定にし、降伏応力値を0.005Pa、0.05Pa、0.10Paの3種類を用い、ダイヘッドのスリット出口の幅方向における吐出量をそれぞれ測定した。
その結果、図2に示すように、降伏応力値が小さい程、均一な塗布が可能であることが解った。
【0020】
(試験例2)
塗布液として、 降伏応力値を0.05Paと一定にし、塑性粘度を3.5mP・S、7mP・S、14mP・Sの3種類を用い、ダイヘッドのスリット出口の幅方向における吐出量をそれぞれ測定した。
その結果、図3に示すように、塑性粘度が大きい程、均一な塗布が可能であることが解った。
【0021】
(試験例3)
塗布液として、 塑性粘度と降伏応力値をそれぞれ変えるが、塑性粘度と降伏応力値の比を0.14とを一定にし、ダイヘッドのスリット出口の幅方向における吐出量をそれぞれ測定した。
その結果、図4に示すように、塑性粘度と降伏応力値がそれぞれ変わっても、その比が一定であれば、厚みが均一な塗布が可能であることが解った。
【0022】
【発明の効果】
本発明の塗布方法のように、塗布する塗布液を、歪速度が0〜5000(1/sec)の範囲で、塑性粘度と降伏応力値の比が一定とすること、さらにビンガム流体を用いること、さらに、塑性粘度と降伏応力値の比が0.14以上とすることで、10μm以下の厚みの塗布層であっても、幅方向に均一な厚みとすることができる。
【0023】
また、顔料等の粒子が入った粒子分散型の塗布液であっても、均一な薄い塗布層を形成することが可能となる。
【図面の簡単な説明】
【図1】本発明の塗布方法の一例を示す説明図である。
【図2】本発明の塗布方法の測定結果を示すグラフである。
【図3】本発明の塗布方法の他の測定結果を示すグラフである。
【図4】本発明の塗布方法の他の測定結果を示すグラフである。
【符号の説明】
1・・・ダイヘッド
2・・・基板
3・・・供給口
4・・・塗布液
5・・・マニホールド
6・・・スリット
7・・・塗布層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coating method for applying a coating liquid to a substrate such as glass or plastic to a uniform thickness, and more particularly to a coating method for coating a coating liquid of a particle dispersion type to a uniform thickness.
[0002]
[Prior art]
In general, various methods have been attempted to form a coating layer in which a coating solution is uniformly applied to a substrate such as glass or plastic. As one of the coating methods, a die coating method in which coating is performed using a die head having a fixed gap is widely used because a wide width can be formed at a time.
[0003]
In this die coating method, a coating liquid 4 is supplied from a supply port 3 of a die head 1 and stored in a manifold 5 as shown in FIG. Next, a method is used in which a coating layer 7 is formed by coating the base material 2 from the manifold 5 through the slit 6. When applying, either the die head 1 or the base material 2 is relatively moved to form a uniform coating layer 7 on the base material 2.
[0004]
However, when a uniform coating layer is formed by this die coating method, both of the uniformity in the coating direction of the coating layer and the uniformity in the width direction of the die head must be satisfied.
In particular, when the width and width of the die head are large, it is technically difficult to maintain uniformity of 10 μm or less.
[0005]
The problem is that the state of discharge from the die head changes depending on the physical properties of the coating solution, and thus the thickness of the coating layer actually applied to the substrate in the substrate width direction is not uniform. Particularly, when the coating liquid is of a particle dispersion type, there is a problem that this tendency is large.
[0006]
In order to solve this problem, attempts have been made to improve the smoothness of the surface of the die head or to change the shape of the flow path of the die head, but at present, satisfactory results have not been obtained. .
[0007]
[Problems to be solved by the invention]
The present invention provides a coating method in which a coating layer actually coated on a substrate has a uniform thickness in a substrate width direction in consideration of a change in a state discharged from a die head according to a property value of a coating liquid. The purpose is to provide.
Another object of the present invention is to provide a coating method capable of uniformly coating even if the thickness of the coating layer is 10 μm or less.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is a method for forming a coating layer on a substrate, wherein the coating liquid for forming the coating layer has a plastic viscosity and a yield within a range of 0 to 5000 (1 / sec). A coating method using a Bingham fluid having a constant stress value ratio.
[0009]
The invention according to claim 2 is the coating method according to claim 1, wherein the ratio between the plastic viscosity and the yield stress value is 0.14 or more.
[0010]
The invention according to claim 3 is the coating method according to claim 1 or 2, wherein the coating liquid is a particle dispersion type coating liquid.
[0011]
The invention according to claim 4 is the coating method according to any one of claims 1 to 3, wherein the coating layer has a thickness of 10 µm or less.
[0012]
The invention according to claim 5 is the coating method according to any one of claims 1 to 4, wherein the means for forming the coating layer is a die coating method.
[0013]
As described above, the coating liquid to be applied is to use a Bingham fluid in which the ratio between the plastic viscosity and the yield stress value is constant, and in particular, to form a uniform coating layer by setting the ratio to 0.14 or more. Can be.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, a coating liquid 4 is supplied from a supply port 3 of a die head 1 and stored in a manifold 5. Next, a method is used in which a coating layer 7 is formed by coating the base material 2 from the manifold 5 through the slit 6. When applying, either the die head 1 or the base material 2 is relatively moved to form a uniform coating layer 7 on the base material 2.
[0015]
Here, as the coating liquid for forming the coating layer, it is preferable to use a Bingham fluid in which the ratio between the plastic viscosity and the yield stress value is constant and the strain rate is in the range of 0 to 5000 (1 / sec).
More preferably, the ratio between the plastic viscosity of the coating liquid and the yield stress value is 0.14 or more.
[0016]
By setting such a ratio between the plastic viscosity and the yield stress value, it is possible to form a coating film having a uniform thickness even with a particle-dispersed coating liquid in which the thickness of the coating layer is difficult to control. Was.
[0017]
【Example】
The manifold of the die head 1 shown in FIG. 1 uses a straight die head having a semicircular cross section, and applies a coating liquid composed of a Bingham fluid having different plastic viscosities and yield stress values to the substrate as shown in Table 1; The discharge amount in the width direction of the slit outlet was measured to form a coating layer of 10 μm, and the uniformity of the thickness was confirmed.
The die head used had a slit length of 680 mm, a slit width of 30 μm, and a radius of a semicircular cross section of the manifold of 4 mm. Here, in the following test examples, measurement was performed with the symmetry plane of FIG.
[0018]
[Table 1]
Figure 2004041908
[0019]
(Test Example 1)
As the coating liquid, the strain rate is in the range of 0 to 5000 (1 / sec), the plastic viscosity is kept constant at 7 mP · S, and the yield stress values are 0.005 Pa, 0.05 Pa, and 0.10 Pa. The discharge amount in the width direction of the slit outlet of the die head was measured.
As a result, as shown in FIG. 2, it was found that the smaller the yield stress value, the more uniform the coating.
[0020]
(Test Example 2)
Using a coating liquid with a constant yield stress of 0.05 Pa and a plastic viscosity of 3.5 mP · S, 7 mP · S, and 14 mP · S, the discharge amount in the width direction of the slit outlet of the die head was measured. did.
As a result, as shown in FIG. 3, it was found that the higher the plastic viscosity, the more uniform the coating was possible.
[0021]
(Test Example 3)
As the coating liquid, the plastic viscosity and the yield stress value were respectively changed. The ratio of the plastic viscosity to the yield stress value was kept constant at 0.14, and the discharge amount in the width direction of the slit outlet of the die head was measured.
As a result, as shown in FIG. 4, it was found that even if the plastic viscosity and the yield stress value respectively changed, if the ratio was constant, it was possible to apply a uniform thickness.
[0022]
【The invention's effect】
As in the coating method of the present invention, the coating liquid to be coated must have a constant plastic viscosity and yield stress value within a strain rate of 0 to 5000 (1 / sec), and further use a Bingham fluid. Furthermore, by setting the ratio between the plastic viscosity and the yield stress value to be 0.14 or more, even a coating layer having a thickness of 10 μm or less can have a uniform thickness in the width direction.
[0023]
Further, even with a particle-dispersed coating liquid containing particles such as pigments, a uniform thin coating layer can be formed.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing one example of a coating method of the present invention.
FIG. 2 is a graph showing measurement results of the coating method of the present invention.
FIG. 3 is a graph showing another measurement result of the coating method of the present invention.
FIG. 4 is a graph showing another measurement result of the coating method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Die head 2 ... Substrate 3 ... Supply port 4 ... Coating liquid 5 ... Manifold 6 ... Slit 7 ... Coating layer

Claims (5)

基材上に、塗布層を形成するに際し、前記塗布層を形成する塗布液として、歪速度が0〜5000(1/sec)の範囲で、塑性粘度と降伏応力値の比が一定であるビンガム流体を用いたことを特徴とする塗布方法。When forming a coating layer on a base material, as a coating liquid for forming the coating layer, a Bingham having a constant ratio of plastic viscosity to yield stress value within a strain rate of 0 to 5000 (1 / sec). A coating method using a fluid. 前記塑性粘度と降伏応力値の比が0.14以上であることを特徴とする請求項1記載の塗布方法。The coating method according to claim 1, wherein a ratio between the plastic viscosity and the yield stress value is 0.14 or more. 前記塗布液が、粒子分散型の塗布液であることを特徴とする請求項1または2記載の塗布方法。The coating method according to claim 1, wherein the coating liquid is a particle dispersion type coating liquid. 前記塗布層が、10μm以下の厚さとすることを特徴とする、請求項1ないし3のいずれかに記載の塗布方法。The coating method according to any one of claims 1 to 3, wherein the coating layer has a thickness of 10 µm or less. 前記塗布層を形成する手段が、ダイコート法であることを特徴とする請求項1ないし4のいずれかに記載の塗布方法。The coating method according to any one of claims 1 to 4, wherein the means for forming the coating layer is a die coating method.
JP2002202299A 2002-07-11 2002-07-11 Application method Expired - Fee Related JP4314790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202299A JP4314790B2 (en) 2002-07-11 2002-07-11 Application method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202299A JP4314790B2 (en) 2002-07-11 2002-07-11 Application method

Publications (2)

Publication Number Publication Date
JP2004041908A true JP2004041908A (en) 2004-02-12
JP4314790B2 JP4314790B2 (en) 2009-08-19

Family

ID=31708520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202299A Expired - Fee Related JP4314790B2 (en) 2002-07-11 2002-07-11 Application method

Country Status (1)

Country Link
JP (1) JP4314790B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100996003B1 (en) 2006-10-31 2010-11-22 가부시끼가이샤 도시바 Method of preparation of the electrode and method of preparation of the non-aqueous electrolytic cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100996003B1 (en) 2006-10-31 2010-11-22 가부시끼가이샤 도시바 Method of preparation of the electrode and method of preparation of the non-aqueous electrolytic cell

Also Published As

Publication number Publication date
JP4314790B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP5588442B2 (en) Coating device for applying a fluid film on a substrate
JPS60238179A (en) Coating apparatus
Felts et al. Nanometer-scale flow of molten polyethylene from a heated atomic force microscope tip
Luu et al. Giant drag reduction in complex fluid drops on rough hydrophobic surfaces
JP5085046B2 (en) Coating liquid coating method, coating apparatus used therefor, and design method thereof
JP2007330900A (en) Die head
JPH03296464A (en) Coating apparatus
CN105983511B (en) Apparatus for coating and coating method
JP2520751B2 (en) Coating device
JP4314790B2 (en) Application method
JPH01236968A (en) Coating
JPH01231969A (en) Coating method
JP2006305548A (en) Coating applicator and method for applying coating liquid
Chen et al. Co-shaft in-situ rolling-imprinting technique for printing of silver micro-nanowire array
JP2004160274A (en) Coating film forming method, coating film forming apparatus and manufacturing method for sheetlike article with laminated film
JPH038471A (en) Coating method
JPH0550004A (en) Coating method for coating liquid and coating device therefor
CN103974783B (en) The method that base material is coated
JP2002370057A (en) Extrusion type nozzle and coating device
JPH08243476A (en) Method for coating of glass substrate by die coater
JP2004033965A (en) Die head and die coater
JP2010005616A (en) Coating apparatus and coating method
JPH0235959A (en) Coating apparatus
CN108262217A (en) Method and system for coating non-Newtonian fluid material
JP2004148228A (en) Method of designing die for coating device, and coating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees