JP2004041888A - 逆浸透膜装置及びその運転方法 - Google Patents

逆浸透膜装置及びその運転方法 Download PDF

Info

Publication number
JP2004041888A
JP2004041888A JP2002201236A JP2002201236A JP2004041888A JP 2004041888 A JP2004041888 A JP 2004041888A JP 2002201236 A JP2002201236 A JP 2002201236A JP 2002201236 A JP2002201236 A JP 2002201236A JP 2004041888 A JP2004041888 A JP 2004041888A
Authority
JP
Japan
Prior art keywords
pressure
supply water
power
pressurizing
reverse osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002201236A
Other languages
English (en)
Inventor
Masahiko Nagai
永井 正彦
Yuichi Fujioka
藤岡 祐一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002201236A priority Critical patent/JP2004041888A/ja
Publication of JP2004041888A publication Critical patent/JP2004041888A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】自然エネルギ源による電力で運転する場合に、逆浸透膜装置の負荷変動の低減が可能な逆浸透膜装置及びその運転方法を提供する。
【解決手段】自然エネルギ源により発電する発電手段10、12と、発電手段からの発電電力により、逆浸透膜(RO)モジュール8への供給水を加圧する加圧手段(高圧ポンプ)6と、蓄圧手段(アキュムレータ)8と、加圧手段と蓄圧手段とに接続され、加圧手段により加圧される供給水の圧力エネルギが所定値を超えた場合、余剰の圧力エネルギに相当する供給水を蓄圧手段へ分流させるとともに、加圧手段の圧力エネルギが所定値より少ない場合、不足の圧力エネルギに相当する供給水を蓄圧手段から放流させる供給水分配手段とを備えた逆浸透膜装置20である。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
本発明は、海水やかん水の淡水化に用いる逆浸透膜装置及びその運転方法に関する。
【0002】
【従来の技術】
従来、海水やかん水等を脱塩して淡水を得る方法として逆浸透(RO:Reverse Osmosis)法が知られている。逆浸透法は、逆浸透膜を介して溶液の浸透圧より高い圧力を溶液側から加え、溶液中の水分子を水側へ移行させる技術である。この逆浸透法は、例えば逆浸透膜を耐圧容器に収容したモジュールを多数備えた逆浸透膜装置により実用規模で操業されている。
【0003】
ところで、近年、逆浸透膜装置の運転コスト、ひいては淡水化コストを低減するため、逆浸透膜モジュールの濃縮水の圧力エネルギを回収することが行われている。この回収方法としては、濃縮水の圧力でタービンを回転させて発電する方法、あるいは、圧力回収タンク内で逆浸透膜モジュールの供給水を濃縮水で直接押出して加圧する方法がある。
【0004】
一方、最近では種々の自然エネルギ源による発電が行われており、例えば太陽電池発電、風力発電等が普及しており、この自然エネルギを逆浸透膜装置の運転に用いることができれば、より一層の運転コスト低減が図られる。特に、人口が少なく送電設備等のインフラが整っていない過疎地域や乾燥地域等において、外部電力に頼らず、自然エネルギ源により逆浸透膜装置の運転ができれば、離島等の様々な地域に逆浸透膜装置を容易に普及させることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記自然エネルギ源は、発電電力の変動が大きく、逆浸透膜装置に適用することが困難であるという問題がある。つまり、自然エネルギ源を用いた場合、発電時と非発電時とで逆浸透膜装置の運転負荷が変動するので、設備規模の設計が難しくなるとともに、負荷変動に伴って装置の起動・停止が必要になり、膜や設備に悪影響を与える虞がある。また、装置の停止時間が長くなると、設備の構成材料が腐食し易くなるので、より高価な耐食材料を採用する必要が生じる。これは、海水が流動している場合に比べ、海水が滞留すると腐食環境が厳しくなることに起因する。このようなことから、逆浸透膜装置を定常運転させることができる技術が要求されている。
【0006】
本発明は上記の課題を解決するためになされたものであり、自然エネルギ源による電力で運転する場合に、逆浸透膜装置の負荷変動の低減が可能な逆浸透膜装置の提供を目的とする。
【0007】
【課題を解決するための手段】
上記した目的を達成するために、本発明の逆浸透膜装置は、自然エネルギ源により発電する発電手段と、前記発電手段からの発電電力により、逆浸透膜モジュールへの供給水を加圧する加圧手段と、蓄圧手段と、前記加圧手段と前記蓄圧手段とに接続され、前記加圧手段により加圧される供給水の圧力エネルギが所定値を超えた場合、余剰の圧力エネルギに相当する供給水を前記蓄圧手段へ分流させるとともに、前記加圧手段の圧力エネルギが前記所定値より少ない場合、不足の圧力エネルギに相当する供給水を前記蓄圧手段から放流させる供給水分配手段とを備えたことを特徴とする。
このような構成によれば、発電電力の変動が大きい自然エネルギ源による電力で逆浸透膜装置の加圧手段を運転させた場合でも、発電電力が余剰な場合は供給水を加圧して圧力エネルギとして蓄圧手段に貯蔵し、発電電力が不足の場合は蓄圧手段から加圧された供給水を取出せばよいので、加圧手段の負荷変動を低減でき、逆浸透膜装置の使用電力を削減し、かつ安定的に運転することができる。
【0008】
請求項2記載の逆浸透膜装置は、自然エネルギ源により発電する発電手段と、逆浸透膜モジュールへの供給水を加圧する加圧手段と、供給水を収容する蓄圧手段と、前記蓄圧手段内の供給水を加圧する第2加圧手段と、前記発電手段からの発電電力を前記加圧手段に供給するとともに、該発電電力のうち前記加圧手段の負荷電力以外の余剰電力を前記第2加圧手段へ供給する電力分配手段と、前記加圧手段と前記蓄圧手段とに接続され、前記加圧手段により加圧される供給水の圧力エネルギが所定値より少ない場合、不足の圧力エネルギに相当する供給水を前記蓄圧手段から放流させる供給水分配手段とを備えたことを特徴とする。
このような構成によれば、発電電力の変動が大きい自然エネルギ源による電力で逆浸透膜装置の加圧手段を運転させた場合でも、発電電力が余剰な場合は供給水を加圧して圧力エネルギとして蓄圧手段に貯蔵し、発電電力が不足の場合は蓄圧手段から加圧された供給水を取出せばよいので、加圧手段の負荷変動を低減でき、逆浸透膜装置の使用電力を削減し、かつ安定的に運転することができる。
【0009】
請求項3記載の逆浸透膜装置は加圧された気体を収容する第2蓄圧手段をさらに備え、前記第2加圧手段は前記第2蓄圧手段内の気体を加圧し、前記蓄圧手段内の供給水は該気体によって加圧されることを特徴とする。
このような構成によれば、加圧気体を貯えるために高圧限界が高く、余剰電力を蓄圧する際の制御が簡便になる。
【0010】
本発明の逆浸透膜装置の運転方法は、自然エネルギ源により発電する発電手段と、前記発電手段からの発電電力により、逆浸透膜モジュールへの供給水を加圧する加圧手段と、蓄圧手段とを備えた逆浸透膜装置の運転方法であって、前記加圧手段により加圧される供給水の圧力エネルギが所定値を超えた場合、余剰の圧力エネルギに相当する供給水を前記蓄圧手段へ分流させるとともに、前記加圧手段の圧力エネルギが前記所定値より少ない場合、不足の圧力エネルギに相当する供給水を前記蓄圧手段から放流させることを特徴とする。
【0011】
請求項5記載の逆浸透膜装置の運転方法は、自然エネルギ源により発電する発電手段と、逆浸透膜モジュールへの供給水を加圧する加圧手段と、供給水を収容する蓄圧手段と、前記蓄圧手段内の供給水を加圧する第2加圧手段とを備えた逆浸透膜装置の運転方法であって、前記発電手段からの発電電力を前記加圧手段に供給するとともに、該発電電力のうち前記加圧手段により加圧される供給水の圧力エネルギが所定値より少ない場合、不足の圧力エネルギに相当する供給水を前記蓄圧手段から放流させることを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明に係る逆浸透膜装置を各図に基づいて説明する。
【0013】
図1は本発明の第1の実施形態に係る逆浸透膜装置20の構成を示す。この図において、逆浸透膜装置20は、圧力回収装置4、高圧ポンプ(加圧手段)6、逆浸透膜(RO)モジュール8をこの順で直列に接続して構成されている。また、圧力回収装置4の塔頂には風力発電機(発電手段)10が設置され、ROモジュールの上方には日除けを兼用する太陽電池パネル(発電手段)12が設置されている。そして、風力発電機10、太陽電池パネル12で発電された電力は、高圧ポンプ6に供給される。
【0014】
高圧ポンプ6とROモジュール8間には、流路16aを介して蓄圧手段(アキュムレータ)2が設けられている。アキュムレータ2は、必要により所定の隔壁を介して気体と液体を分離するものであり、隔壁上側の空気室2a、隔壁下側の液室2b、及び空気室2aの圧力を測定する圧力計2cを備え、各室の液体と気体の圧力エネルギを相互に変換して蓄える。そして、高圧ポンプ6からの供給水は流路16aを介してアキュムレータ2に出入りする。
【0015】
高圧ポンプ6の出側には逆止弁14が、ROモジュール8の入側には圧力調整弁16b及び圧力計16cが、ROモジュール8の濃縮海水側の出側には流量計16d及び流量調整弁16eがそれぞれ設けられている。そして、圧力計2c、16c、流量計16dの値に応じて、圧力調整弁16bや流量調整弁16eを制御する制御装置16fが設けられている。
【0016】
流路16a、圧力調整弁16b、圧力計16c、流量計16d、流量調整弁16e、制御装置16fとによって供給水分配手段が構成される。
【0017】
海水は所定の前処理装置に供給されて濁質成分を除去された後、圧力回収装置4を通って高圧ポンプ6で加圧されてROモジュール8に導入される。ROモジュール8では、海水が生産水(淡水)と濃縮海水に分離される。濃縮海水は圧力回収装置4に導入され、ここで、ROモジュール8に導入される海水(前処理海水)を加圧することにより、高圧ポンプ6の負荷を低減させ、圧力エネルギを回収するようになっている。
【0018】
なお、圧力回収の方法としては、濃縮水の圧力でタービンを回転させて発電し、この発電電力を高圧ポンプ6へ供給する方法でもよい。また、前処理としては、公知の砂濾過装置や、UF(限外濾過)あるいはMF(精密濾過)による膜濾過装置、あるいはDMF(Dual Media Filter)を用いることができる。又、前処理は、被処理水中のSS濃度を1ppm以下に濾過し、ROモジュール8の目詰りを防止する。
【0019】
次に、逆浸透膜装置20の動作について説明する。この実施形態においては、高圧ポンプ6を風力発電機10、太陽電池パネル12の発電電力で作動させている。そのため、高圧ポンプ6の動作、すなわち加圧される供給水の圧力エネルギは変動することとなる。そこで、自然エネルギ源による電力で運転しても逆浸透膜装置の負荷が変動しないよう、ROモジュール8に導入される供給水の圧力エネルギを一定に保つ制御を行う。
【0020】
なお、供給水の圧力エネルギは、例えば供給水の圧力と流量の積で決まる。従って、上記した実施形態では、圧力調整弁16b及び流量調整弁16eを制御することで、ROモジュール8に導入される供給水の圧力エネルギが一定となる。つまり、ROモジュール8に導入される供給水の圧力や流量は、圧力調整弁16bや流量調整弁16eの設定圧力や設定流量よりも高くなることはないので、これらの弁の作動条件を制御することで圧力エネルギを一定とすることができる。なお、この一定値を「設定圧力エネルギ値」と称する。
【0021】
1)高圧ポンプで加圧後の供給水の圧力エネルギが設定圧力エネルギ値と同一の場合
例えば、太陽電池が中程度の効率で動作する午前中等が相当する。この場合、高圧ポンプ6で加圧された供給水は、全量が圧力調整弁16bを通ってROモジュール8に導入される。なお、アキュムレータ2の液室2b内の供給水の圧力が高圧ポンプより高い場合、高圧ポンプの吐出圧が上がり流量が少なくなる。
【0022】
2)高圧ポンプで加圧後の供給水の圧力エネルギが設定圧力エネルギ値を超えた場合
例えば、太陽電池が高効率で動作する日中等が相当する。この場合、高圧ポンプ6で加圧された供給水のうち、圧力調整弁16bの圧力設定値と同じ圧力で、かつ流量調整弁16eの設定流量の供給水が、圧力調整弁16bを通ってROモジュール8に導入される。一方、圧力設定値より高い圧力の供給水はアキュムレータ2の液室2bへ分流し、液室2b内の供給水圧力を上昇させる。これにより、高圧ポンプの動作による余剰の圧力エネルギがアキュムレータ2に貯えられる。
【0023】
3)高圧ポンプで加圧後の供給水の圧力エネルギが設定圧力エネルギ値より少ない場合
例えば、太陽電池が低効率で動作する朝夕、あるいは完全に動作しない夜間等が相当する。この場合、高圧ポンプ6で加圧された供給水の圧力エネルギは設定圧力エネルギ値より低い。従って、加圧された供給水の圧力はアキュムレータ2の液室2b内の供給水の圧力より低くなるので、液室2b内の供給水が流路16aを介して放流され、高圧ポンプ6出側の供給水の圧力を高め、この圧力が圧力調整弁16bの設定値を超えた時点で、供給水が圧力調整弁16bを通ってROモジュール8に導入される。なお、逆止弁14は高圧ポンプ6への戻り流を防止するので、液室2b内の供給水が高圧ポンプ6側へ逆流することはない。これにより、高圧ポンプによる圧力エネルギの不足分がアキュムレータ2から補充される。
【0024】
以上のようにして、自然エネルギ源による電力で運転することで高圧ポンプ6自体の負荷が変動しても、アキュムレータ2で供給水の圧力エネルギを貯えたり放出することができるので、ROモジュール8に導入される供給水の圧力エネルギは一定となり、逆浸透膜装置の負荷が変動しない。また、本発明においては、逆浸透膜装置では供給水の加圧に要するエネルギが大きいことに着目し、この加圧エネルギを低減すべく、発電電力を圧力エネルギに変換して貯蔵し、発電電力不足の場合は圧力エネルギのまま利用する。従って、例えば発電電力を電力貯蔵する場合に比べ、他のエネルギとの間の変換等がなく、エネルギ利用効率が高くなる。
【0025】
次に、本発明の第2の実施形態に係る逆浸透膜装置30の構成について、図2を参照して説明する。この図において、逆浸透膜装置20と同一の構成部分については、同一記号を付してその説明を省略する。この実施形態においては、風力発電機10、太陽電池パネル12で発電された電力は、一旦電力分配装置(手段)18に供給され、ここから高圧ポンプ6に供給される。この電力分配装置18は、複数のスイッチング素子(例えば、サイリスタ、IGBT、パワーMOS FET等)から構成されており、このスイッチング素子を所定のタイミングでスイッチング駆動することによりインバータとして機能する。
また、この実施形態において、逆浸透膜装置30は、電力分配装置18から電力供給される第2加圧手段(コンプレッサ)22、コンプレッサ22で加圧された空気を貯蔵する第2蓄圧手段(エアタンク)24、及びエアタンク24の加圧空気をアキュムレータ2の空気室2aに導入する弁26をさらに備えている。従って、この実施形態においては、アキュムレータ2の液室2b内の供給水は、コンプレッサ22(で加圧された空気)により間接的に加圧される。
【0026】
次に、逆浸透膜装置30の動作について説明する。この実施形態では、風力発電機10と太陽電池パネル12の発電電力は、電力分配装置18で高圧ポンプ6とコンプレッサ22とに分配され、これによりROモジュール8に導入される供給水の圧力エネルギが一定に保たれる。また、高圧ポンプ6の負荷電力が所定の値に決められており、この負荷電力で供給水を加圧したときの圧力エネルギが設定圧力エネルギ値と等しくなるようになっている。そして、発電電力が負荷電力を超えた場合、電力分配装置18は余剰電力をコンプレッサ22へ供給する。なお、供給水の圧力エネルギ、及び設定圧力エネルギ値については前記した第1の実施形態の場合と同様である。
【0027】
1)発電電力が負荷電力と同一の場合
例えば、太陽電池が中程度の効率で動作する午前中等が相当する。この場合、発電電力は電力分配装置18を介してすべて高圧ポンプに供給され、供給水は設定圧力エネルギ値に等しい圧力エネルギを与えられる。従って、高圧ポンプ6で加圧された供給水は、全量が圧力調整弁16bを通ってROモジュール8に導入される。
【0028】
2)発電電力が負荷電力を超えた場合
例えば、太陽電池が高効率で動作する日中等が相当する。この場合、発電電力のうち負荷電力分が電力分配装置18を介して高圧ポンプに供給され、供給水は設定圧力エネルギ値に等しい圧力エネルギを与えられる。従って、高圧ポンプ6で加圧された供給水は、全量が圧力調整弁16bを通ってROモジュール8に導入される。一方、発電電力のうち負荷電力以外の余剰電力は、電力分配装置18を介してコンプレッサ22へ供給され、コンプレッサ22はエアタンク24の空気を加圧する。このようにして余剰電力が空気の圧力エネルギとして変換されて蓄積される。
【0029】
3)発電電力が負荷電力より少ない場合
例えば、太陽電池が低効率で動作する朝夕、あるいは完全に動作しない夜間等が相当する。この場合、高圧ポンプ6で加圧される供給水の圧力エネルギは設定圧力エネルギ値より低く、ROモジュール8に導入される供給水の圧力エネルギが不足する。そこで、制御装置16fの制御により、エアタンク24内の加圧空気を弁26を介してアキュムレータ2の空気室2aに導入し、空気室の圧力を高めると、隔壁を介して液室2b内の供給水も加圧される。そして、この液室2b内の供給水の圧力が、高圧ポンプ6で加圧される供給水の圧力より高くなると、液室2b内の供給水が流路16aを介して放流され、高圧ポンプ6出側の供給水の圧力を高める。さらに、この圧力が圧力調整弁16bの設定値を超えた時点で、供給水が圧力調整弁16bを通ってROモジュール8に導入される。なお、逆止弁14は高圧ポンプ6への戻り流を防止するので、液室2b内の供給水が高圧ポンプ6側へ逆流することはない。これにより、高圧ポンプによる圧力エネルギの不足分がアキュムレータ2から補充される。
【0030】
以上のようにして、第1の実施形態と同様、自然エネルギ源による発電電力が変動しても、アキュムレータ2で供給水の圧力エネルギを貯えたり放出することができるので、ROモジュール8に導入される供給水の圧力エネルギは一定となり、逆浸透膜装置の負荷が変動しない。なお、第2の実施形態においては、自然エネルギ源による余剰の発電電力を用いて加圧した空気をエアタンクに蓄積する。このように加圧空気を貯える場合、高圧限界が高いので、余剰電力をそのままコンプレッサの動作に用いればよく、制御が簡便になるという利点がある。一方、アキュムレータの場合は、高圧限界がそれほど高くないので、余剰電力が多い場合に蓄圧できないこともある。
【0031】
本発明において、風力発電機10や太陽電池パネル12の発電電力が小さい場合は、別の外部電源の電力も併用して加圧ポンプ6を運転してもよいが、外部電源を用いずに風力発電機10や太陽電池パネル12のみで加圧ポンプ6を運転させる場合には、風力発電機10や太陽電池パネル12による発電電力の平均値と等しくなるよう加圧ポンプ6の負荷電力を設定する必要がある。
【0032】
【発明の効果】
以上述べたように、本発明によれば、発電電力の変動が大きい自然エネルギ源による電力で逆浸透膜装置の加圧手段を運転させた場合でも、発電電力が余剰な場合は供給水を加圧して圧力エネルギとして蓄圧手段に貯蔵し、発電電力が不足の場合は蓄圧手段から加圧された供給水を取出せばよいので、加圧手段の負荷変動を低減でき、逆浸透膜装置の使用電力を削減し、かつ安定的に運転することができる。
【0033】
また、発電電力は圧力エネルギに変換されて貯蔵され、発電電力不足の場合は圧力エネルギのまま利用されるので、他のエネルギとの間の変換等がなく、エネルギ利用効率が高くなる。
【図面の簡単な説明】
【図1】本発明に係る逆浸透膜装置の第1の実施形態の構成を示す図である。
【図2】本発明に係る逆浸透膜装置の第2の実施形態の構成を示す図である。
【符号の説明】
2           蓄圧手段(アキュムレータ)
6           加圧手段(高圧ポンプ)
10、12       発電手段
16a         流路(供給水分配手段)
16b         圧力調整弁(供給水分配手段)
16c         圧力計(供給水分配手段)
16d         流量計(供給水分配手段)
16e         流量調整弁(供給水分配手段)
16f         制御装置
20、30       逆浸透膜装置

Claims (5)

  1. 自然エネルギ源により発電する発電手段と、
    前記発電手段からの発電電力により、逆浸透膜モジュールへの供給水を加圧する加圧手段と、
    蓄圧手段と、
    前記加圧手段と前記蓄圧手段とに接続され、前記加圧手段により加圧される供給水の圧力エネルギが所定値を超えた場合、余剰の圧力エネルギに相当する供給水を前記蓄圧手段へ分流させるとともに、前記加圧手段の圧力エネルギが前記所定値より少ない場合、不足の圧力エネルギに相当する供給水を前記蓄圧手段から放流させる供給水分配手段と
    を備えたことを特徴とする逆浸透膜装置。
  2. 自然エネルギ源により発電する発電手段と、
    逆浸透膜モジュールへの供給水を加圧する加圧手段と、
    供給水を収容する蓄圧手段と、
    前記蓄圧手段内の供給水を加圧する第2加圧手段と、
    前記発電手段からの発電電力を前記加圧手段に供給するとともに、該発電電力のうち前記加圧手段の負荷電力以外の余剰電力を前記第2加圧手段へ供給する電力分配手段と、
    前記加圧手段と前記蓄圧手段とに接続され、前記加圧手段により加圧される供給水の圧力エネルギが所定値より少ない場合、不足の圧力エネルギに相当する供給水を前記蓄圧手段から放流させる供給水分配手段と
    を備えたことを特徴とする逆浸透膜装置。
  3. 加圧された気体を収容する第2蓄圧手段をさらに備え、
    前記第2加圧手段は前記第2蓄圧手段内の気体を加圧し、前記蓄圧手段内の供給水は該気体によって加圧されることを特徴とする請求項2に記載の逆浸透膜装置。
  4. 自然エネルギ源により発電する発電手段と、前記発電手段からの発電電力により、逆浸透膜モジュールへの供給水を加圧する加圧手段と、蓄圧手段とを備えた逆浸透膜装置の運転方法であって、
    前記加圧手段により加圧される供給水の圧力エネルギが所定値を超えた場合、余剰の圧力エネルギに相当する供給水を前記蓄圧手段へ分流させるとともに、前記加圧手段の圧力エネルギが前記所定値より少ない場合、不足の圧力エネルギに相当する供給水を前記蓄圧手段から放流させることを特徴とする逆浸透膜装置の運転方法。
  5. 自然エネルギ源により発電する発電手段と、逆浸透膜モジュールへの供給水を加圧する加圧手段と、供給水を収容する蓄圧手段と、前記蓄圧手段内の供給水を加圧する第2加圧手段とを備えた逆浸透膜装置の運転方法であって、
    前記発電手段からの発電電力を前記加圧手段に供給するとともに、該発電電力のうち前記加圧手段の負荷電力以外の余剰電力を前記第2加圧手段へ供給し、
    前記加圧手段により加圧される供給水の圧力エネルギが所定値より少ない場合、不足の圧力エネルギに相当する供給水を前記蓄圧手段から放流させることを特徴とする逆浸透膜装置の運転方法。
JP2002201236A 2002-07-10 2002-07-10 逆浸透膜装置及びその運転方法 Withdrawn JP2004041888A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201236A JP2004041888A (ja) 2002-07-10 2002-07-10 逆浸透膜装置及びその運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201236A JP2004041888A (ja) 2002-07-10 2002-07-10 逆浸透膜装置及びその運転方法

Publications (1)

Publication Number Publication Date
JP2004041888A true JP2004041888A (ja) 2004-02-12

Family

ID=31707835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201236A Withdrawn JP2004041888A (ja) 2002-07-10 2002-07-10 逆浸透膜装置及びその運転方法

Country Status (1)

Country Link
JP (1) JP2004041888A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519158A (ja) * 2015-07-02 2018-07-19 マスカラ ヌーベル テクノロジー 再生可能エネルギー源を動力源とする脱塩プラントを制御する方法及び関連プラント
US11492275B2 (en) 2019-11-15 2022-11-08 Kabushiki Kaisha Toshiba Water treatment device and water treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519158A (ja) * 2015-07-02 2018-07-19 マスカラ ヌーベル テクノロジー 再生可能エネルギー源を動力源とする脱塩プラントを制御する方法及び関連プラント
US11492275B2 (en) 2019-11-15 2022-11-08 Kabushiki Kaisha Toshiba Water treatment device and water treatment method

Similar Documents

Publication Publication Date Title
RU2363663C2 (ru) Установка для непрерывного обессоливания воды в замкнутом контуре при переменном давлении в одном контейнере
RU2613768C2 (ru) Устройство и способ выработки электроэнергии посредством ограниченного давлением осмоса (варианты)
WO2016050781A1 (en) Desalination plant powered by renewable energy
AU2012231976A1 (en) Seawater desalination system implementing reverse osmosis, and method for controlling a seawater desalination system
JP2004041887A (ja) 逆浸透膜装置及びその運転方法
AU2016286651A1 (en) Method for controlling a desalination plant fed by a source of renewable energy and associated plant
CN113015702B (zh) 纯水制造装置及其运转方法
JP2004041888A (ja) 逆浸透膜装置及びその運転方法
JP2001104954A (ja) 海水淡水化システム
WO2014133101A1 (ja) 脱塩水の製造方法
Singh Sustainable fuel cell integrated membrane desalination systems
JP2001137848A (ja) 水処理装置および造水方法
JP2001236981A (ja) 燃料電池発電装置用水処理システム
WO2021038056A1 (en) System and method for processing hydrogen offshore
JP2015182009A (ja) 太陽光発電を利用した飲用水製造システム
JP2001149932A (ja) 膜処理装置および造水方法
JP2015163383A (ja) 造水システム
WO2014057892A1 (ja) 造水方法
WO2019051588A1 (en) ADAPTIVE MEMBRANE SYSTEMS
JP2021079315A (ja) 水処理装置及び水処理方法
US20230068493A1 (en) Using Capacitive Deionization to Desalinate Water and Manage Power for a Hydrogen Electrolyzer System
JP5883754B2 (ja) 運転計画支援システム
US20230271854A1 (en) Large scale desalination process
JP6720428B1 (ja) 純水製造装置およびその運転方法
Drak et al. Retrofitting and enlargement of the Palmahim SWRO desalination plant (150,000 m3 d− 1)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004