JP2004041827A - Fluid convection nozzle device - Google Patents

Fluid convection nozzle device Download PDF

Info

Publication number
JP2004041827A
JP2004041827A JP2002199104A JP2002199104A JP2004041827A JP 2004041827 A JP2004041827 A JP 2004041827A JP 2002199104 A JP2002199104 A JP 2002199104A JP 2002199104 A JP2002199104 A JP 2002199104A JP 2004041827 A JP2004041827 A JP 2004041827A
Authority
JP
Japan
Prior art keywords
fluid
port
nozzle device
cylindrical body
ejection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002199104A
Other languages
Japanese (ja)
Other versions
JP3936635B2 (en
Inventor
Daisuke Hayashi
林 大輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIKO KENNETSU KK
Original Assignee
DAIKO KENNETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIKO KENNETSU KK filed Critical DAIKO KENNETSU KK
Priority to JP2002199104A priority Critical patent/JP3936635B2/en
Publication of JP2004041827A publication Critical patent/JP2004041827A/en
Application granted granted Critical
Publication of JP3936635B2 publication Critical patent/JP3936635B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid convection nozzle device which can be constituted compact and can favorably circulate water in a water reservoir such as a pond and a moat. <P>SOLUTION: A fluid convection nozzle device 10 has: a hollow cylinder 11 having a square cross section and having at one end an opening serving as a sucking port 12 and at the other end an opening serving as an injection port 13; and consists of a spray means 20 which has a fluid spray port 22 disposed on the inner wall 14 of the cylinder 11 and directing to the injection port 13 and which sprays a fluid at a high speed from the fluid spray port 22 to the injection port 13. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は流体対流ノズル装置に係り、主として流体の攪拌、渦流の形成、強制対流、任意速度の流れ場の形成、液体又は浮遊する固体・粉体の吸引回収と噴出除去、流れの加速と増量等の用途を目的としている。
【0002】
【従来の技術】
流体での対流の形成においては、ポンプにパイプやホースによる配管を施し、汲み上げポンプの力で取水口から流体を吸引し、吸引した流体を池、プール、水槽等に戻して対流を形成していた。
また、流体内部に電動式プロペラ型の攪拌スクリューを回転させる方法や、養殖池等で見られる水車方式及び多翼ファン型の羽根車を水面に接触させ、これを回転させる攪拌及び空気(空気中の酸素)の混合方式等がある。
【0003】
化学反応等の効果を目的とする物質、薬剤、微生物、飼料等の注入を伴う混合、攪拌等の作業においては、ポンプの噴出側に貯水タンクを設け、その内部にプロペラ型の電動攪拌扇により渦流を形成させる形が多く見られ、そのタンク内に混合する材料を添加し、攪拌、混合が完了した段階で噴出し、池、水槽等に戻している。
【0004】
また、池、湖沼等においては、薬品、栄養剤、殺菌剤、微生物、飼料を人手による散布や、ホースの口からの水流(水道圧、ポンプ圧による)を利用して散布する方法や、高圧ポンプやコンプレッサーの流体圧によって霧状に散布する(流体ガンによる)方法が一般的である。
【0005】
【発明が解決しようとする課題】
上記した従来の対流装置は、例えば池全体に対流を行き渡らせる方式ではなく、ポンプや攪拌用タンクからの噴出量により、池の水を置換するものである。したがって、狭い範囲や局所的な対流しか形成できない設備となり、置換速度を速めるためには大噴出量のポンプや大きなタンク等の処理設備が必要となっている。
また、置換効率を確保するため、注水口設備位置から最も離れた位置に取水口を設ける必要があるため、太い配管を長く設置しなければならないという問題点もあった。
【0006】
従来の設備では、対流速度が遅い定常流であるため、複雑な形状の池等の隅々まで流れが行き渡らず、均等な処理ができないという問題が生じていた。例えば、流れの無い箇所での有害な汚れや菌類の発生、また有害物質の集合、停滞などがある。
さらに、電動式プロペラ型の攪拌スクリューや多翼ファンを水面付近、あるいは水中に設置するには電気配線等も含め高い絶縁性能が求められるが、設備としてコストがかかる上、漏電、感電、プロペラやスクリューに接触する等の事故のリスクも高かった。また汚れなどが付着しやすいという欠点もあった。
また、薬剤等の注入作業においては、処理済みの液を池に戻す方式であるため、多量の未処理水の中へ戻すことになり、完全に処理を終了するためには長時間を要し、甚だ効率が悪いものであったし、対流が良好な状態で形成されないため、殺菌剤による処理等では、高濃度の領域が長時間生じることがあり、池の中の生物に悪影響を及ぼすことがあった。
【0007】
本発明は、全体をコンパクトに構成することができ、かつ設置場所に存在する水等の流体を好適に対流させることができる流体対流ノズル装置を提供して、上述の全ての問題点を解消しようとするものである。
【0008】
また本発明において、流体とは液体のみならず、気体をも含む概念である。
液体として使用する例としては、タンク、水槽、人工池、水泳・遊泳プール、汚水等の処理場、浴場、河川、海(湾、入り江、漁場など)、湖沼がある。
気体として使用する例としては、対流による炉内、室内の温度の均一化、ガス濃度の混合・均一化、液体の噴霧・加湿、気体の増幅機構(エジェクター)がある。
【0009】
【課題を解決するための手段】
上記目的を達成するために請求項1は、一端の開口を吸込口とするとともに他端の開口を噴出口とする断面矩形状で中空状の筒体であって、この筒体の内壁面に噴出口に臨む流体噴射口を設け、この流体噴射口から噴出口に向けて流体を高速噴射する噴射手段を設け、前記筒体の吸込部を吸込口側から噴出口側に向かって順次小さくなるテーパ面に形成したことを特徴とする流体対流ノズル装置である。
【0010】
上記した本発明に係る流体対流ノズル装置は、断面矩形状で中空状の筒体の内壁面に流体噴射口を備え、この流体噴射口を噴出口に臨ませただけの簡素な構成であるから、全体をコンパクトに形成することができる。
よって、この流体対流ノズル装置を所望の場所に容易にセットすることができ、かつ使用後は簡単に引き上げることができ、設置時には設置面積を大きくとることもない。
【0011】
また、流体噴射口から筒体の噴出口に向けて流体を高速度で噴射することにより、本装置の後部からの誘導流の作用で筒体内の水を噴出口から多量に噴出することができ、結果的に筒体の吸込口から筒体内に水を吸い込み、この吸い込んだ水を高速の噴射流で噴出口から強制噴出することができるので、水を好適に対流させることができるようになる。
【0012】
さらに前記筒体の吸込口側に、吸込口から前記噴出口へ向けて開口が順次小さくなるテーパ状の吸込部を備えたので、筒体内に比較的多量の水を効率よく吸い込むことが可能になる。
【0013】
請求項2は、前記筒体を左右壁及び上下壁で断面略矩形状に形成し、筒体の四隅に近接した位置に前記流体噴射口を設けたことを特徴とする。
【0014】
このように、断面略矩形状の筒体の四隅に近接した位置に流体噴射口を設けることで、筒体内の中心部を流れる水の流れが受ける水の抵抗を小さくできるので、本装置の後方からの水を一層好適に通過させることができる。
【0015】
請求項3は、前記筒体を左右壁及び上下壁で断面略矩形状に形成し、筒体の対角位置に存する二隅に近接した位置に前記流体噴射口を設けたことを特徴とする。
【0016】
このように、断面略矩形状の筒体の対角位置の二隅に近接した位置に流体噴射口を設けることで、請求項2と同様の効果が得られるものを簡単に製造できるようにした。
【0017】
請求項4は、前記流体噴射口を形成する流体噴射部は、吸込口側端部から噴出口側端部に向けて、かつ筒体の中央に向けて順次突出するようにテーパ状に形成され、流体噴射部の噴出口側端部に流体噴射口が設けられるようになっていることを特徴とする。
【0018】
流体噴射部を吸込口側端部から噴出口側端部に向けてテーパ状に形成することで、筒体内を流れる水の流れを流体噴射部で遮らないようにできるので、多量の水を一層好適に通過させることができる。
【0019】
請求項5は、前記筒体の噴出口側で左右壁近傍に、左右壁に沿わせてそれぞれ断面円形のロッドを設け、このロッドの下流側に臨む部位を平坦部としたことを特徴とする。
【0020】
このように、筒体の噴出口側に断面円形のロッドを設け、このロッドの下流側に臨む部位を平坦部としたので、筒体の噴出口から噴出した水の流れをロッドで制御し、このロッドで水の流れを制御することにより、噴出口から噴出する水にカルマン渦を発生させることができる。
【0021】
請求項6は、前記平坦部に、凹溝型のノッチが前記上下壁に対して平行に形成されたことを特徴とする。
【0022】
このように、平坦部に凹溝型、例えば断面略ロ字状、U字状、V字状のノッチを形成することで、噴出口から噴出する水にさらに強い力のカルマン渦を発生させることを目的としている。
【0023】
上記の請求項5及び6において、ノッチ部分が発生した渦を引きつけ、この部分の回転力が強くなる。この効果により、ノッチが無いロッドに比べて、長い時間(耐久性のある)渦が形成される。
【0024】
請求項7は、前記ノッチが前記平坦部に単数又は複数形成されたことを特徴とする。
【0025】
平坦部に形成するノッチの数を単数又は複数にすることで、噴出口から噴出する水に、一層良好にカルマン渦を発生させることができる。
【0026】
請求項8は、筒体の上下壁及び/又は左右壁の一部を切り欠くように構成したことを特徴とする。
【0027】
筒体の上下壁及び/又は左右壁の一部を切り欠くことで、切り欠いた筒体の面が開放され、切り欠いた側の対流を強く構成できるようになる。
【0028】
【発明の実施の形態】
以下添付図面に基づいて、本発明に係る流体対流ノズル装置の一実施の形態を詳説する。
図1は本発明に係る流体対流ノズル装置の第1実施の形態を示す斜視図、図2は同要部を示す斜視図、図3は同作用を示す平面図、図4〜図5は同装置を貯水場の略中央に配置した状態の作用を示す説明図、図6は同装置を貯水場の略中央からずらせた位置に配置した状態の作用を示す説明図である。
【0029】
図1に示す第1実施の形態の流体対流ノズル装置10は、一端の開口を吸込口12とするとともに他端の開口を噴出口13とする中空状の筒体11と、この筒体11の内壁面14に噴出口13に臨む流体噴射口22(一例として4個)を備え、これらの流体噴射口22から噴出口13に向けて流体を高速度で噴射するための噴射手段20とで構成される。
【0030】
筒体11は、筒体11を左右壁11a,11b及び上下壁11c,11dで断面略矩形状に形成し、吸込口12側に、吸込口12から噴出口13へ向けて開口が順次小さくなるテーパ状の吸込部15を備える。
【0031】
筒体11の四隅16に近接した位置には、それぞれ流体噴射口22が形成された流体噴射部21が設けられている。
図2に示すように、この流体噴射部21は、吸込口12側の端部21aから噴出口13側の端部21bに向けて、表面21cが筒体11の内側に向けて順次突出するようにテーパ状に形成され、噴出口13側の端部21bに流体噴射口22が設けられている。
【0032】
図1に示すように、筒体11の四隅16に近傍した位置には、それぞれ流体供給口24(奥側の1個は図示せず)が外側に突出した状態で設けられ、これらの流体供給口24は流体噴射部21内の流路(図示せず)を経て流体噴射口22に連通されている。
それぞれの流体供給口24には、図示しないチューブやホース等の流体供給流路の一端が接続され、この流体供給流路の他端が流体供給源(図示せず)に接続される。なお、流体供給口24及び流体噴射口22は、筒体の対角位置に存する二隅に近接した位置に設けるようにすることもでき、これによれば構成を簡素にして誘導流の効果を確保することができる。
【0033】
このため、流体供給源を駆動することにより、流体供給流路を経て各流体供給口24まで流体を導き、それぞれの流体供給口24から流体噴射部21の流路を経て、図3に示すように4個の流体噴射口22から流体を矢印A方向に高速度で噴射することができる。
【0034】
ここで図3に示すように、流体噴射部21の噴出口13側の端部21bは、角度αに傾斜されている。よって、流体噴射口22からの流体を、矢印Aで示すように筒体11の中心軸に向けて角度α分傾斜させて高速度で噴射することができる。
このように、流体の噴射方向を筒体11の中心軸に向けて角度α分傾斜させることで、流体を筒体11の内壁面14(図1参照)から離すことができ、噴出口13に向けて効率よく流体を噴射することができ、かつ装置の後方に吸引力が働くため、誘導流を得ることができる。
【0035】
つぎに、流体対流ノズル装置10の作用を図3〜図6に基づいて説明する。
まず、図3に示す流体対流ノズル装置10の流体供給口24に、図示しない流体供給流路を接続して、流体供給口24に高圧小型ポンプのような流体供給源(図示せず)を接続する。この状態で、流体対流ノズル装置10を所望の設置場所にセットする。
【0036】
ここで、本発明の流体対流ノズル装置10は、中空状の筒体11の内壁面14(図1参照)に流体噴射口22を備えただけのコンパクトな構成とすることができるので、流体対流ノズル装置10を設置場所に容易にセットすることができる。
また、流体対流ノズル装置10の使用後は、設置場所から流体対流ノズル装置10を簡単に引き上げることもできる。
【0037】
流体対流ノズル装置10をセットした後、流体供給源を駆動することにより、流体供給口24を経て流体噴射部21内に流体を供給し、この流体を流体噴射部21内の流路(図示せず)を通して流体噴射口22まで導き、図3に示すように流体噴射口22から筒体11の噴出口13に向けて流体を矢印A方向に高速度で噴射する。
【0038】
流体噴射口22から傾斜角度をもって高速噴射される流れAと、この流れAの力により吸引される装置後方からの誘導流Bが吸込口12から筒体11の内部に入り込み、加速しながら流れAと合流する。この流路に筒体11の吸引口12側にテーパ状の吸込部15を備えたことにより、低い摩擦抵抗で多量の水を吸い込むことが可能となる。
【0039】
噴出口13もテーパ状に広がっているが、同様に低圧力損失と放出流Cがやや拡散し、外部誘導流Dを強く引き込むことができるようになっている。
【0040】
ついで図1に示すように、筒体11の四隅16に近接した位置に流体噴射部21を設けるとともに、図2に示すように流体噴射部21の表面21cをテーパ状に形成することで、流体噴射部21の構成を水の流れを妨げない構造のものとすることができ、筒体11内に取り込んだ水を筒体11内で円滑に流すことができるようになる。
【0041】
このように、筒体11内に比較的多量の水を吸い込み、かつ筒体11内に取り込んだ水を筒体11内で円滑に流すことで、筒体11の吸込口12から水を連続的に効率よく筒体11内に吸い込むことができ、吸い込んだ水を噴出口13から矢印C(図3参照)のように連続的に効率よく噴出することができる。
この際、筒体11の周囲に存在する水を矢印Dのように流すことができるので、この部分にも誘導流による対流効果を及ぼすことが可能となる。
【0042】
図4は、流体対流ノズル装置10を、筒体11の上下壁11c,11d(11dは図1参照)を上下に配置して貯水場30の略中央にセットし、流体対流ノズル装置10を作動させて、筒体11の吸込口12から水を矢印Bのように筒体11内に吸い込み、吸い込んだ水を噴出口13から矢印Cのように効率よく噴出させることにより、筒体11の左右壁11a,11b側のエリアの水を矢印Dのように好適に対流させた状態を示している。
【0043】
また図5は、流体対流ノズル装置10を、筒体11の左右壁11a,11b(11bは図1参照)を上下に配置して貯水場30の略中央にセットすることで、筒体11の上下壁11c,11d側のエリアの水を矢印Dのように好適に対流させた状態を示している。
【0044】
このように、本発明の流体対流ノズル装置10によれば、筒体11の左右壁11a,11b側のエリアの水を矢印Dのように好適に対流させるとともに、筒体11の上下壁11c,11d側のエリアの水も矢印Dのように好適に対流させることができる。
【0045】
以上で説明した矢印Dの対流は、いずれも流体による誘導流の作用で、筒対の外部に存在する水であるにもかかわらず、噴出流Cにより効果的な誘導流Bを発生させることができた結果によるものである。
【0046】
図4及び図5においては、流体対流ノズル装置10を貯水場30の略中央にセットした例について説明したが、図6に示すように流体対流ノズル装置10を貯水場30の中央からずらせてセットすることも可能である。
【0047】
この場合でも、図4及び図5と同様に、筒体11の左右壁11a,11b側のエリアの水や、筒体11の上下壁11c,11d側のエリアの水を矢印Dのように好適に対流させることができる。
このため、本発明の流体対流ノズル装置10を比較的ルーズにセットしたとしても、十分効果的な対流発生効果を得ることができるので、取り扱いを容易にできるという特徴がる。
【0048】
ここで対流の強さを、筒体11の左右、又は上下で変化をもたせたいような場合には、強くしたいと希望する側の筒体11の壁面を切り欠くことで対応することができ、設置場所の要望により自由にその調整を行うことが可能である。
【0049】
つぎに、第2実施の形態について説明する。なお、第2実施の形態において、第1実施の形態と同一構成部材については同一符号を付して説明を省略する。
【0050】
図7に示す第2実施の形態の流体対流ノズル装置40は、一端の開口を吸込口12とするとともに他端の開口を噴出口13とする中空状の筒体11と、この筒体11の内壁面14に噴出口13に臨む流体噴射口22を備え、この流体噴射口22から噴出口13に向けて流体を高速度で噴射する噴射手段20と、筒体11の噴出口13側で左右壁11a,11b近傍に、左右壁11a,11bに沿わせて設けられた一対のロッド41とからなる。
【0051】
すなわち、第2実施の形態の流体対流ノズル装置40は、筒体11の噴出口13側で左右壁11a,11b近傍に、左右壁11a,11bに沿わせて一対のロッド41をビス43で取り付けた点で第1実施の形態と異なるだけで、その他の構成は第1実施の形態と同様である。
【0052】
ロッド41は、図8に示すように略断面円形に形成されるとともに、上端から下端に貫通するねじ孔44が形成され、ロッド41の外周面41aのうち下流側に臨む部位が平坦部42に形成されている。
ねじ孔44に、図7に示すビス43をねじ結合することにより、ロッド41を筒体11に取り付けることができる。
【0053】
また、ロッド41に平坦部42を備えることで、筒体11の噴出口13から噴出した水の流れを、ロッド41で制御することができる。
ロッド41で水の流れを制御することで、図9に示すように噴出口13から噴出される水に効率的にカルマン渦45を発生させることができる。
【0054】
これにより、図10に示すように流体噴射口22から流体を矢印A方向に噴射して、噴出口13から噴出した噴出流Bにカルマン渦45を発生させることができる。
【0055】
つぎに、第3〜第4実施の形態を図11〜図12に基づいて説明する。
なお、第3〜第4実施の形態において、第2実施の形態と同一部材については同一符号を付して説明を省略する。
図11に示す第3実施の形態の流体対流ノズル装置は、ロッド51の外周面41aのうち下流側に臨む部位が平坦部42に形成され、平坦部42の略中央に断面略V字形のノッチ52が上下壁に対して平行に形成されている。
【0056】
このように、平坦部42にノッチ52を備えることで、筒体11の噴出口13(図7参照)から噴出した水(噴出流B)にカルマン渦45(図10参照)を効率よく発生することができる。
なお、平坦部42に形成するノッチ52を一本にすることで、ノッチ52の加工が簡単にできる。
【0057】
図12に示す第4実施の形態の流体対流ノズル装置は、ロッド61の平坦部42にノッチ52が複数(一例として3本)形成された点で第3実施の形態と異なるだけで、その他の構成は第3実施の形態と同様である。
平坦部42にノッチ52を3本備えることで、筒体11の噴出口13(図7参照)から噴出した水にカルマン渦45(図10参照)を複雑な形に発生させることができ、攪拌性能を上げることができる。
【0058】
なお、前記実施の形態では、筒体11の四隅16に近接した位置にそれぞれ流体噴射口22を設けた例について説明したが、流体噴射口22の配設位置はこれに限られることなく、任意に決めることができる。
また、前記実施の形態では、本発明の流体対流ノズル装置を使用して貯水場内の水を対流させる例について説明したが、これに限らないで、水以外の流体を対流させることも、もちろん可能である。
【0059】
【発明の効果】
以上述べたように、請求項1による流体対流ノズル装置によれば、断面矩形状で中空状の筒体の内壁面に流体噴射口を備え、この流体噴射口を噴出口に臨ませただけの簡素な構成としたため、コンパクト化を図ることができる。
よって、流体対流ノズル装置を貯水場内に容易にセットすることができ、かつ使用後は貯水場内から簡単に引き上げることができるので、取扱い性の向上を図ることができる。
【0060】
また、流体噴射口から筒体の噴出口に向けて流体を高速度で噴射することにより誘導流を形成し、この誘導流の作用により筒体内の水を噴出口から多量に噴出することができるので、筒体の吸込口から水を多量に吸い込み、吸い込んだ水を噴出口から効果的に噴出して対流を発生させることができる。
【0061】
さらに、筒体の吸込口側にテーパ状の吸込部を備えることで、筒体内に比較的多量の水を効率よく吸い込むことができるので、貯水場内の水を一層好適に対流させることができる。
【0062】
請求項2は、断面略矩形状の筒体の四隅に近接した位置に流体噴射口を設けることで、筒体内を流れる水の流れが受ける抵抗を小さくすることができるので、筒体内に取り込んだ水を、筒体内で円滑に通過させることができる。
【0063】
請求項3は、断面略矩形状の筒体の対角位置の二隅に近接した位置に流体噴射口を設けることで、請求項2と同様の効果が得られるものを簡単に製造できるという効果がある。
【0064】
請求項4は、流体噴射部を吸込口側端部から噴出口側端部に向けてテーパ状に形成することで、筒体内を流れる水の流れが受ける抵抗を小さくすることができるので、筒体内に取り込んだ水を、筒体内で円滑に通過させることができる。
【0065】
請求項5は、筒体の噴出口側に断面円形のロッドを設け、このロッドの下流側に臨む部位を平坦部としたので、筒体の噴出口から噴出した水の流れを、ロッドで制御することができ、噴出口から噴出する水にカルマン渦を発生させることができる。
【0066】
請求項6は、平坦部に凹溝状のノッチを形成することで、噴出口から噴出する水に強力なカルマン渦を発生させることができる。
【0067】
請求項7は、平坦部に形成するノッチを単数又は複数にすることで、噴出口から噴出する水に強力なカルマン渦を一層良好に発生させることができる。
【0068】
請求項8は、筒体の上下壁及び/又は左右壁の一部を切り欠くことで、切り欠いた筒体の面が開放され、切り欠いた側の対流を強く構成できるという効果がある。
【図面の簡単な説明】
【図1】本発明に係る流体対流ノズル装置の第1実施の形態を示す斜視図である。
【図2】同第1実施の形態の要部を示す斜視図である。
【図3】同第1実施の形態の作用を示す平面図である。
【図4】同第1実施の形態を貯水場の略中央に配置した状態の作用を示す説明図である。
【図5】同第1実施の形態を貯水場の略中央に配置した状態の作用を示す説明図である。
【図6】同第1実施の形態を貯水場の略中央からずらせた位置に配置した状態の作用を示す説明図である。
【図7】本発明に係る流体対流ノズル装置の第2実施の形態を示す斜視図である。
【図8】同第2実施の形態のロッドを示す斜視図である。
【図9】同第2実施の形態のロッドの作用を示す平面図である。
【図10】同第2実施の形態の作用を示す平面図である。
【図11】本発明に係る第3実施の形態のロッドを示す斜視図である。
【図12】本発明に係る第4実施の形態のロッドを示す斜視図である。
【符号の説明】
10、40…流体対流ノズル装置
11…筒体
11a…左壁
11b…右壁
11c…上壁
11d…下壁
12…吸込口
13…噴出口
14…内壁面
15…テーパ状の吸込部
16…四隅
20…噴射手段
21…流体噴射部
21a…吸込口側の端部
21b…噴出口側の端部
21c…表面
22…流体噴射口
24…流体供給口
30…池や堀等の貯水場
41、51、61…ロッド
41a…外周面
42…平坦部
43…ビス
44…ねじ孔
45…カルマン渦
52…ノッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluid convection nozzle device, which mainly includes agitation of a fluid, formation of a vortex, forced convection, formation of a flow field at an arbitrary speed, suction and collection and removal of a liquid or a floating solid or powder, acceleration and increase of a flow. It is intended for such uses.
[0002]
[Prior art]
In the formation of convection with fluid, pipes are provided with pipes or hoses to the pump, the fluid is sucked from the intake by the power of the pump, and the sucked fluid is returned to the pond, pool, water tank, etc. to form convection. Was.
In addition, a method of rotating an electric propeller type stirring screw inside the fluid, a method of bringing a water wheel type or a multi-blade fan type impeller found in a culture pond or the like into contact with the water surface, and stirring and rotating the air (in air) Of oxygen).
[0003]
For operations such as mixing and stirring involving the injection of substances, drugs, microorganisms, feeds, etc. aimed at the effects of chemical reactions, etc., a water storage tank is provided on the ejection side of the pump, and a propeller-type electric stirring fan is used inside the tank. In many cases, a vortex is formed, and the material to be mixed is added to the tank, and when the stirring and mixing are completed, the mixture is ejected and returned to a pond, a water tank, or the like.
[0004]
In ponds, lakes and marshes, chemicals, nutrients, bactericides, microorganisms, and feeds are sprayed by hand, or by using a water flow (by tap water or pump pressure) from the mouth of a hose, A method of spraying in a mist state (with a fluid gun) by the fluid pressure of a pump or a compressor is generally used.
[0005]
[Problems to be solved by the invention]
The above-mentioned conventional convection apparatus replaces water in the pond with the amount of jet from a pump or a stirring tank, instead of, for example, a method in which convection spreads over the entire pond. Therefore, the equipment is capable of forming only a narrow range or local convection, and processing equipment such as a pump with a large ejection amount and a large tank is required to increase the replacement speed.
Further, in order to secure the replacement efficiency, it is necessary to provide an intake port at a position farthest from the position of the water inlet facility, so that there is a problem that a long thick pipe must be installed.
[0006]
In the conventional equipment, since the convection velocity is a steady flow, the flow does not reach every corner of a pond or the like having a complicated shape, so that there has been a problem that uniform processing cannot be performed. For example, generation of harmful dirt or fungi in a place where there is no flow, collection of harmful substances, stagnation, etc.
Furthermore, installing an electric propeller type stirring screw or multi-blade fan near the surface of the water or underwater requires high insulation performance including electric wiring, but it is costly as equipment, and it is costly as a facility. The risk of accidents such as contact with the screw was also high. There is also a drawback that dirt and the like easily adhere.
In addition, in the injection of chemicals, etc., since the treated liquid is returned to the pond, it must be returned to a large amount of untreated water, and it takes a long time to complete the treatment. Since the efficiency was extremely low, and the convection was not formed in a good condition, treatment with a disinfectant, etc., could cause a high concentration area for a long time, adversely affecting organisms in the pond. was there.
[0007]
SUMMARY OF THE INVENTION The present invention provides a fluid convection nozzle device that can be made compact as a whole and that can suitably convect a fluid such as water existing at an installation location, and to solve all the problems described above. It is assumed that.
[0008]
In the present invention, a fluid is a concept including not only a liquid but also a gas.
Examples of use as a liquid include tanks, aquariums, artificial ponds, swimming / swimming pools, sewage treatment plants, baths, rivers, seas (bays, bays, fishing grounds, etc.), lakes and marshes.
Examples of the use as a gas include uniformity of the temperature inside the furnace and room by convection, mixing and equalization of gas concentration, spraying and humidification of liquid, and a gas amplification mechanism (ejector).
[0009]
[Means for Solving the Problems]
In order to achieve the above object, claim 1 is a hollow cylindrical body having a rectangular cross section having an opening at one end serving as a suction port and an opening at the other end serving as a spout. A fluid ejection port facing the ejection port is provided, and ejection means for ejecting the fluid at a high speed from the fluid ejection port toward the ejection port is provided, and the suction portion of the cylindrical body is gradually reduced from the suction port side toward the ejection port side. A fluid convection nozzle device formed on a tapered surface.
[0010]
The above-described fluid convection nozzle device according to the present invention has a simple configuration in which a fluid injection port is provided on the inner wall surface of a hollow cylindrical body having a rectangular cross section, and this fluid injection port faces the injection port. , Can be made compact as a whole.
Therefore, the fluid convection nozzle device can be easily set at a desired place, can be easily pulled up after use, and does not require a large installation area at the time of installation.
[0011]
In addition, by ejecting the fluid at a high speed from the fluid ejection port toward the ejection port of the cylinder, a large amount of water in the cylinder can be ejected from the ejection port by the action of the induced flow from the rear of the device. As a result, water can be sucked into the cylinder from the suction port of the cylinder, and the sucked water can be forcibly ejected from the ejection port with a high-speed jet flow, so that the water can be suitably convected. .
[0012]
Further, since a tapered suction portion whose opening is gradually reduced from the suction port toward the jet port is provided on the suction port side of the cylinder, a relatively large amount of water can be efficiently sucked into the cylinder. Become.
[0013]
A second aspect of the present invention is characterized in that the tubular body is formed in a substantially rectangular cross section by the left and right walls and the upper and lower walls, and the fluid ejection port is provided at a position close to four corners of the tubular body.
[0014]
In this way, by providing the fluid injection ports at positions close to the four corners of the cylindrical body having a substantially rectangular cross section, the resistance of the water flowing through the center of the cylindrical body to the water can be reduced. Can be more suitably passed through.
[0015]
Claim 3 is characterized in that the cylindrical body is formed in a substantially rectangular cross section by the left and right walls and the upper and lower walls, and the fluid ejection port is provided at a position close to two corners at diagonal positions of the cylindrical body. .
[0016]
As described above, by providing the fluid ejection ports at positions close to the two corners of the diagonal position of the cylindrical body having a substantially rectangular cross section, it is possible to easily manufacture a cylinder having the same effect as that of the second aspect. .
[0017]
According to a fourth aspect of the present invention, the fluid ejection portion forming the fluid ejection port is formed in a tapered shape so as to sequentially project from the suction port side end toward the ejection port side end and toward the center of the cylindrical body. A fluid ejection port is provided at an ejection port side end of the fluid ejection section.
[0018]
By forming the fluid ejecting portion in a tapered shape from the end on the suction port side to the end on the ejection port side, the flow of water flowing in the cylinder can be prevented from being interrupted by the fluid ejecting portion, so that a large amount of water can be further reduced. It can be suitably passed.
[0019]
According to a fifth aspect of the present invention, a rod having a circular cross section is provided along the left and right walls near the left and right walls on the side of the ejection port of the cylindrical body, and a portion facing the downstream side of the rod is a flat portion. .
[0020]
In this manner, a rod having a circular cross section is provided on the jet port side of the cylindrical body, and a portion facing the downstream side of the rod is flat, so that the flow of water jetted from the jet port of the cylindrical body is controlled by the rod, By controlling the flow of water with this rod, Karman vortices can be generated in the water spouting from the spout.
[0021]
According to a sixth aspect of the present invention, a notch of a groove type is formed in the flat portion in parallel with the upper and lower walls.
[0022]
As described above, by forming a notch having a concave groove shape in a flat portion, for example, a substantially U-shaped, V-shaped cross section, a Karman vortex having a stronger force is generated in water jetted from the jet port. It is an object.
[0023]
In the fifth and sixth aspects, the notch portion attracts the generated vortex, and the rotational force of this portion is increased. This effect creates a longer (durable) vortex than a rod without a notch.
[0024]
Claim 7 is characterized in that one or more notches are formed in the flat portion.
[0025]
By setting the number of notches formed in the flat portion to one or more, Karman vortices can be more favorably generated in the water spouted from the spout.
[0026]
Claim 8 is characterized in that the upper and lower walls and / or the left and right walls of the cylindrical body are partially cut away.
[0027]
By notching a part of the upper and lower walls and / or the left and right walls of the cylinder, the surface of the notched cylinder is opened, so that convection on the notched side can be strongly configured.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a fluid convection nozzle device according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a perspective view showing a first embodiment of a fluid convection nozzle device according to the present invention, FIG. 2 is a perspective view showing the essential parts, FIG. 3 is a plan view showing the same operation, and FIGS. FIG. 6 is an explanatory diagram showing an operation in a state where the device is disposed substantially at the center of the water storage basin, and FIG. 6 is an explanatory diagram showing an operation in a state where the device is disposed at a position shifted from substantially the center of the water storage basin.
[0029]
A fluid convection nozzle device 10 according to the first embodiment shown in FIG. 1 has a hollow cylindrical body 11 having an opening at one end serving as a suction port 12 and an opening at the other end serving as a jet port 13. The inner wall surface 14 is provided with fluid ejection ports 22 (four as an example) facing the ejection ports 13, and an ejection unit 20 for ejecting a fluid from these fluid ejection ports 22 toward the ejection ports 13 at a high speed. Is done.
[0030]
The cylindrical body 11 is formed in a substantially rectangular cross section by the left and right walls 11a and 11b and the upper and lower walls 11c and 11d, and the opening is gradually reduced toward the suction port 12 from the suction port 12 to the jet port 13. A suction portion 15 having a tapered shape is provided.
[0031]
At positions near the four corners 16 of the cylindrical body 11, fluid ejecting portions 21 each having a fluid ejecting port 22 are provided.
As shown in FIG. 2, the fluid ejecting section 21 has a surface 21 c that sequentially projects from the end 21 a on the suction port 12 side to the end 21 b on the ejection port 13 side toward the inside of the cylindrical body 11. A fluid ejection port 22 is provided at an end 21b on the ejection port 13 side.
[0032]
As shown in FIG. 1, at positions near the four corners 16 of the cylindrical body 11, fluid supply ports 24 (one at the back side are not shown) are provided in a state protruding outward, and these fluid supply ports 24 are provided. The port 24 communicates with the fluid ejection port 22 via a flow path (not shown) in the fluid ejection unit 21.
One end of a fluid supply channel such as a tube or a hose (not shown) is connected to each fluid supply port 24, and the other end of the fluid supply channel is connected to a fluid supply source (not shown). In addition, the fluid supply port 24 and the fluid ejection port 22 can be provided at positions close to two corners existing at diagonal positions of the cylindrical body. According to this, the configuration is simplified and the effect of the induced flow is reduced. Can be secured.
[0033]
For this reason, by driving the fluid supply source, the fluid is guided to each fluid supply port 24 via the fluid supply flow path, and from each fluid supply port 24 via the flow path of the fluid ejection unit 21 as shown in FIG. The fluid can be ejected from the four fluid ejection ports 22 at a high speed in the direction of arrow A.
[0034]
Here, as shown in FIG. 3, the end 21b of the fluid ejection unit 21 on the ejection port 13 side is inclined at an angle α. Therefore, the fluid from the fluid ejection port 22 can be ejected at a high speed while being inclined by the angle α toward the central axis of the cylinder 11 as shown by the arrow A.
In this way, by inclining the jet direction of the fluid toward the central axis of the cylinder 11 by the angle α, the fluid can be separated from the inner wall surface 14 of the cylinder 11 (see FIG. 1). Fluid can be efficiently ejected toward the device, and a suction force acts behind the device, so that a guided flow can be obtained.
[0035]
Next, the operation of the fluid convection nozzle device 10 will be described with reference to FIGS.
First, a fluid supply channel (not shown) is connected to the fluid supply port 24 of the fluid convection nozzle device 10 shown in FIG. 3, and a fluid supply source (not shown) such as a high-pressure small pump is connected to the fluid supply port 24. I do. In this state, the fluid convection nozzle device 10 is set at a desired installation location.
[0036]
Here, the fluid convection nozzle device 10 of the present invention can have a compact configuration in which only the fluid ejection port 22 is provided on the inner wall surface 14 (see FIG. 1) of the hollow cylindrical body 11. The nozzle device 10 can be easily set at the installation location.
After the use of the fluid convection nozzle device 10, the fluid convection nozzle device 10 can be easily lifted from the installation location.
[0037]
After the fluid convection nozzle device 10 is set, the fluid supply source is driven to supply a fluid into the fluid ejection unit 21 via the fluid supply port 24, and the fluid is supplied to a flow path (not shown) in the fluid ejection unit 21. 3), the fluid is guided to the fluid ejection port 22, and the fluid is ejected from the fluid ejection port 22 toward the ejection port 13 of the cylinder 11 at a high speed in the direction of arrow A as shown in FIG.
[0038]
The flow A, which is injected at a high speed from the fluid injection port 22 at an inclined angle, and the induced flow B from the rear of the device, which is sucked by the force of the flow A, enter the inside of the cylinder 11 from the suction port 12 and accelerate the flow A To join. By providing the flow path with the tapered suction portion 15 on the suction port 12 side of the cylindrical body 11, a large amount of water can be sucked in with low frictional resistance.
[0039]
Although the jet port 13 also expands in a tapered shape, similarly, the low pressure loss and the discharge flow C are slightly diffused, so that the external induction flow D can be strongly drawn.
[0040]
Next, as shown in FIG. 1, the fluid ejecting portion 21 is provided at a position close to the four corners 16 of the cylindrical body 11, and the surface 21 c of the fluid ejecting portion 21 is formed in a tapered shape as shown in FIG. The structure of the injection unit 21 can be a structure that does not hinder the flow of water, and the water taken into the cylinder 11 can flow smoothly in the cylinder 11.
[0041]
As described above, a relatively large amount of water is sucked into the cylindrical body 11 and the water taken into the cylindrical body 11 flows smoothly in the cylindrical body 11, so that water is continuously discharged from the suction port 12 of the cylindrical body 11. Thus, the sucked water can be continuously and efficiently ejected from the ejection port 13 as shown by an arrow C (see FIG. 3).
At this time, since the water existing around the cylindrical body 11 can flow as shown by the arrow D, it is possible to exert a convection effect by the induced flow also in this portion.
[0042]
FIG. 4 shows a state in which the fluid convection nozzle device 10 is set at substantially the center of the water reservoir 30 with the upper and lower walls 11c and 11d (see FIG. 1 for 11d) of the cylindrical body 11 arranged vertically, and the fluid convection nozzle device 10 is operated. Then, water is sucked into the cylindrical body 11 from the suction port 12 of the cylindrical body 11 as shown by the arrow B, and the sucked water is efficiently ejected from the jet port 13 as shown by the arrow C. A state in which water in the area on the side of the walls 11a and 11b is suitably convected as indicated by an arrow D is shown.
[0043]
FIG. 5 shows that the fluid convection nozzle device 10 is set at the approximate center of the water storage 30 by arranging the left and right walls 11a and 11b (see FIG. 1 for 11b) of the cylinder 11 up and down. This shows a state in which water in the areas on the upper and lower walls 11c and 11d is suitably convected as indicated by an arrow D.
[0044]
As described above, according to the fluid convection nozzle device 10 of the present invention, the water in the area on the left and right walls 11a and 11b side of the cylindrical body 11 is suitably convected as shown by the arrow D, and the upper and lower walls 11c and The water in the area on the 11d side can also be suitably convected as indicated by arrow D.
[0045]
The convection of the arrow D described above is a function of the induced flow by the fluid, and it is possible to generate the effective induced flow B by the jet flow C despite the water existing outside the cylinder pair. This is due to the results obtained.
[0046]
4 and 5, an example in which the fluid convection nozzle device 10 is set substantially at the center of the water storage 30 has been described. However, the fluid convection nozzle device 10 is set off from the center of the water storage 30 as shown in FIG. It is also possible.
[0047]
Also in this case, as in the case of FIGS. 4 and 5, water in the area on the left and right walls 11 a and 11 b of the cylindrical body 11 and water in the area on the upper and lower walls 11 c and 11 d of the cylindrical body 11 are suitable as shown by the arrow D. Convection.
For this reason, even if the fluid convection nozzle device 10 of the present invention is set relatively loosely, a sufficiently effective convection generation effect can be obtained, so that handling is easy.
[0048]
Here, when it is desired to change the strength of convection between the left and right or up and down of the cylindrical body 11, it can be dealt with by cutting out the wall surface of the cylindrical body 11 on the side desired to be strengthened. It can be adjusted freely according to the request of the place.
[0049]
Next, a second embodiment will be described. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0050]
A fluid convection nozzle device 40 according to the second embodiment shown in FIG. 7 includes a hollow cylindrical body 11 having an opening at one end serving as a suction port 12 and an opening at the other end serving as a jet port 13. The inner wall surface 14 is provided with a fluid ejection port 22 facing the ejection port 13, and ejection means 20 for ejecting a fluid from the fluid ejection port 22 toward the ejection port 13 at a high speed. It consists of a pair of rods 41 provided near the walls 11a, 11b along the left and right walls 11a, 11b.
[0051]
That is, in the fluid convection nozzle device 40 of the second embodiment, a pair of rods 41 are attached by screws 43 along the left and right walls 11a and 11b near the left and right walls 11a and 11b on the side of the ejection port 13 of the cylindrical body 11. Only the difference from the first embodiment is that the other configuration is the same as that of the first embodiment.
[0052]
The rod 41 has a substantially circular cross section as shown in FIG. 8, and is formed with a screw hole 44 penetrating from the upper end to the lower end, and a portion facing the downstream side of the outer peripheral surface 41 a of the rod 41 is formed in the flat portion 42. Is formed.
By screwing a screw 43 shown in FIG. 7 into the screw hole 44, the rod 41 can be attached to the cylindrical body 11.
[0053]
In addition, by providing the rod 41 with the flat portion 42, the flow of water spouted from the spout 13 of the cylinder 11 can be controlled by the rod 41.
By controlling the flow of water with the rod 41, the Karman vortex 45 can be efficiently generated in the water jetted from the jet port 13 as shown in FIG.
[0054]
Thereby, as shown in FIG. 10, the fluid can be ejected from the fluid ejection port 22 in the direction of the arrow A, and the Karman vortex 45 can be generated in the ejection flow B ejected from the ejection port 13.
[0055]
Next, third and fourth embodiments will be described with reference to FIGS.
In the third and fourth embodiments, the same members as those in the second embodiment are denoted by the same reference numerals, and description thereof will be omitted.
In the fluid convection nozzle device according to the third embodiment shown in FIG. 11, a portion facing the downstream side of the outer peripheral surface 41a of the rod 51 is formed in the flat portion 42, and a notch having a substantially V-shaped cross section is formed substantially in the center of the flat portion 42. 52 are formed parallel to the upper and lower walls.
[0056]
As described above, by providing the notch 52 in the flat portion 42, the Karman vortex 45 (see FIG. 10) is efficiently generated in the water (jet flow B) jetted from the jet port 13 (see FIG. 7) of the cylindrical body 11. be able to.
By forming the notch 52 formed in the flat portion 42 as a single piece, the notch 52 can be easily processed.
[0057]
The fluid convection nozzle device according to the fourth embodiment shown in FIG. 12 differs from the third embodiment only in that a plurality of (for example, three) notches 52 are formed in the flat portion 42 of the rod 61, and the other points are the same. The configuration is similar to that of the third embodiment.
By providing three notches 52 in the flat portion 42, the Karman vortex 45 (see FIG. 10) can be generated in a complicated shape in the water jetted from the jet port 13 (see FIG. 7) of the cylindrical body 11, and the stirring is performed. Performance can be improved.
[0058]
In the above-described embodiment, an example in which the fluid ejection ports 22 are provided at positions close to the four corners 16 of the cylindrical body 11 has been described. However, the arrangement position of the fluid ejection ports 22 is not limited to this, and is arbitrary. You can decide.
Further, in the above-described embodiment, the example in which the water in the reservoir is convected using the fluid convection nozzle device of the present invention is described. However, the present invention is not limited to this, and it is of course possible to convect a fluid other than water. It is.
[0059]
【The invention's effect】
As described above, according to the fluid convection nozzle device according to the first aspect, a fluid injection port is provided on the inner wall surface of a hollow cylindrical body having a rectangular cross section, and this fluid injection port is simply made to face the injection port. Since the configuration is simple, the size can be reduced.
Therefore, the fluid convection nozzle device can be easily set in the water reservoir, and can be easily pulled out of the water reservoir after use, so that the handleability can be improved.
[0060]
In addition, a guided flow is formed by injecting a fluid at a high speed from the fluid ejection port toward the ejection port of the cylinder, and a large amount of water in the cylinder can be ejected from the ejection port by the action of the induced flow. Therefore, a large amount of water can be sucked from the suction port of the cylindrical body, and the sucked water can be effectively jetted from the jet port to generate convection.
[0061]
Further, by providing the tapered suction portion on the suction port side of the cylinder, a relatively large amount of water can be efficiently sucked into the cylinder, so that the water in the water storage can be more appropriately convected.
[0062]
According to the second aspect of the present invention, since the fluid injection ports are provided at positions near the four corners of the cylindrical body having a substantially rectangular cross section, the resistance of the flow of water flowing through the cylindrical body can be reduced. Water can be smoothly passed through the cylinder.
[0063]
According to a third aspect of the present invention, a fluid injection port is provided at a position close to two diagonal positions of a cylindrical body having a substantially rectangular cross section, so that a product having the same effect as the second aspect can be easily manufactured. There is.
[0064]
According to a fourth aspect of the present invention, the resistance of the flow of water flowing through the cylinder can be reduced by forming the fluid ejecting portion in a tapered shape from the suction port end to the ejection port end. Water taken into the body can be smoothly passed through the cylinder.
[0065]
According to a fifth aspect of the present invention, a rod having a circular cross section is provided on the outlet side of the cylindrical body, and a portion facing the downstream side of the rod is a flat portion, so that the flow of water jetted from the outlet of the cylindrical body is controlled by the rod. And Karman vortices can be generated in the water spouting from the spout.
[0066]
According to the sixth aspect of the present invention, a strong Karman vortex can be generated in the water jetted from the jet port by forming a concave notch in the flat portion.
[0067]
According to a seventh aspect of the present invention, a strong Karman vortex can be generated more satisfactorily in the water spouted from the spout by forming one or more notches in the flat portion.
[0068]
According to the eighth aspect, by cutting out a part of the upper and lower walls and / or the left and right walls of the cylindrical body, the cutout surface of the cylindrical body is opened, and the convection on the cutout side can be strongly configured.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first embodiment of a fluid convection nozzle device according to the present invention.
FIG. 2 is a perspective view showing a main part of the first embodiment.
FIG. 3 is a plan view showing the operation of the first embodiment.
FIG. 4 is an explanatory diagram showing an operation in a state where the first embodiment is disposed substantially at the center of a water storage basin.
FIG. 5 is an explanatory diagram showing an operation in a state where the first embodiment is arranged substantially at the center of a water storage basin.
FIG. 6 is an explanatory diagram showing an operation in a state where the first embodiment is arranged at a position shifted from substantially the center of the water storage basin.
FIG. 7 is a perspective view showing a second embodiment of the fluid convection nozzle device according to the present invention.
FIG. 8 is a perspective view showing a rod according to the second embodiment.
FIG. 9 is a plan view showing the operation of the rod according to the second embodiment.
FIG. 10 is a plan view showing the operation of the second embodiment.
FIG. 11 is a perspective view showing a rod according to a third embodiment of the present invention.
FIG. 12 is a perspective view showing a rod according to a fourth embodiment of the present invention.
[Explanation of symbols]
10, 40 ... fluid convection nozzle device 11 ... cylindrical body 11a ... left wall 11b ... right wall 11c ... upper wall 11d ... lower wall 12 ... suction port 13 ... jet port 14 ... inner wall surface 15 ... tapered suction section 16 ... four corners Reference Signs List 20 injection means 21 fluid injection part 21a suction end 21b injection end 21c surface 22 fluid injection 24 fluid supply 30 water reservoirs 41, 51 such as ponds and moats Reference numerals 61, rod 41a, outer peripheral surface 42, flat portion 43, screw 44, screw hole 45, Karman vortex 52, notch

Claims (8)

一端の開口を吸込口とするとともに他端の開口を噴出口とする断面矩形状で中空状の筒体であって、この筒体の内壁面に噴出口に臨む流体噴射口を設け、この流体噴射口から噴出口に向けて流体を高速噴射する噴射手段を設け、前記筒体の吸込部を吸込口側から噴出口側に向かって順次小さくなるテーパ面に形成したことを特徴とする流体対流ノズル装置。A hollow cylindrical body having a rectangular cross section having an opening at one end as a suction port and an opening at the other end as an ejection port, and a fluid ejection port facing the ejection port provided on an inner wall surface of the cylinder. Fluid convection characterized by providing an injection means for injecting a fluid at a high speed from an injection port toward an injection port, and forming a suction portion of the cylindrical body on a tapered surface that gradually decreases from the suction port side toward the injection port side. Nozzle device. 前記筒体を左右壁及び上下壁で断面略矩形状に形成し、筒体の四隅に近接した位置に前記流体噴射口を設けたことを特徴とする請求項1記載の流体対流ノズル装置。2. The fluid convection nozzle device according to claim 1, wherein the tubular body is formed in a substantially rectangular cross section by left and right walls and upper and lower walls, and the fluid ejection port is provided at a position close to four corners of the tubular body. 前記筒体を左右壁及び上下壁で断面略矩形状に形成し、筒体の対角位置に存する二隅に近接した位置に前記流体噴射口を設けたことを特徴とする請求項1記載の流体対流ノズル装置。2. The fluid injection port according to claim 1, wherein the tubular body is formed in a substantially rectangular shape in cross section by the left and right walls and the upper and lower walls, and the fluid ejection port is provided at a position close to two diagonal positions of the tubular body. Fluid convection nozzle device. 前記流体噴射口を形成する流体噴射部は、吸込口側端部から噴出口側端部に向けて、かつ筒体の中央に向けて順次突出するようにテーパ状に形成され、流体噴射部の噴出口側端部に流体噴射口が設けられるようになっていることを特徴とする請求項1乃至3の何れかに記載の流体対流ノズル装置。The fluid ejecting portion forming the fluid ejecting port is formed in a tapered shape so as to sequentially project from the suction port side end portion toward the ejection port side end portion and toward the center of the cylindrical body. The fluid convection nozzle device according to any one of claims 1 to 3, wherein a fluid ejection port is provided at an end of the ejection port side. 前記筒体の噴出口側で左右壁近傍に、左右壁に沿わせてそれぞれ断面円形のロッドを設け、このロッドの下流側に臨む部位を平坦部としたことを特徴とする請求項1乃至4の何れかに記載の流体対流ノズル装置。5. A rod having a circular cross section is provided along the left and right walls near the left and right walls on the side of the ejection port of the cylindrical body, and a portion facing the downstream side of the rod is a flat portion. The fluid convection nozzle device according to any one of the above. 前記平坦部に、凹溝型のノッチが前記上下壁に対して平行に形成されたことを特徴とする請求項5記載の流体対流ノズル装置。The fluid convection nozzle device according to claim 5, wherein a concave notch is formed in the flat portion in parallel with the upper and lower walls. 前記ノッチが前記平坦部に単数又は複数形成されたことを特徴とする請求項6記載の流体対流ノズル装置。The fluid convection nozzle device according to claim 6, wherein one or more notches are formed in the flat portion. 筒体の上下壁及び/又は左右壁の一部を切り欠くように構成したことを特徴とする請求項1乃至7の何れかに記載の流体対流ノズル装置。The fluid convection nozzle device according to any one of claims 1 to 7, wherein a part of upper and lower walls and / or left and right walls of the cylindrical body is cut out.
JP2002199104A 2002-07-08 2002-07-08 Fluid convection nozzle device Expired - Lifetime JP3936635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199104A JP3936635B2 (en) 2002-07-08 2002-07-08 Fluid convection nozzle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199104A JP3936635B2 (en) 2002-07-08 2002-07-08 Fluid convection nozzle device

Publications (2)

Publication Number Publication Date
JP2004041827A true JP2004041827A (en) 2004-02-12
JP3936635B2 JP3936635B2 (en) 2007-06-27

Family

ID=31706371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199104A Expired - Lifetime JP3936635B2 (en) 2002-07-08 2002-07-08 Fluid convection nozzle device

Country Status (1)

Country Link
JP (1) JP3936635B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989607A (en) * 2012-11-20 2013-03-27 宁波富斯乐机械制造有限公司 High-pressure water outlet pipe head for cleaner
JP2013095631A (en) * 2011-10-31 2013-05-20 Seiko Instruments Inc Hydrogen generator and fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095631A (en) * 2011-10-31 2013-05-20 Seiko Instruments Inc Hydrogen generator and fuel cell
CN102989607A (en) * 2012-11-20 2013-03-27 宁波富斯乐机械制造有限公司 High-pressure water outlet pipe head for cleaner

Also Published As

Publication number Publication date
JP3936635B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP3015350B1 (en) Suction aerator
TWI295276B (en) An aeration apparatus kit
JP2003145190A (en) Aerator
GB2495678A (en) Microbubble-generating device
US7661660B2 (en) Method and apparatus for aeration of a fluid
CN103102021B (en) High oxygen ejector
CN111348740A (en) Aeration system based on venturi tube cavitation effect
JP5652758B2 (en) Pump aeration device
US7267325B2 (en) Aeration method of pool water and apparatus thereof
CN202492409U (en) Venturi-type radial jet aerator
JP2012125690A (en) Through-flow pump aeration apparatus
JP2012005947A5 (en)
JP2002059186A (en) Water-jet type fine bubble generator
JP4124956B2 (en) Fine bubble supply method and fine bubble supply device
CN202099127U (en) Efficient circulating oxygen supply device
RU2593605C1 (en) Device for aeration of water
JP3936635B2 (en) Fluid convection nozzle device
JP2008100225A (en) Air/liquid mixer
KR20090087371A (en) Apparatus for dissolving oxygen
JPS60114331A (en) Gas liquid mixing apparatus
KR101573181B1 (en) Agitating device using injecting nozzle and guide tube
CN205575766U (en) Octopus is revolved and mixes biological processor
JPH0239301B2 (en)
JP2011177693A (en) Gas-liquid mixing apparatus
WO2017124128A1 (en) Jet aeration and mixing nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

R150 Certificate of patent or registration of utility model

Ref document number: 3936635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term