JP2004040129A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2004040129A
JP2004040129A JP2003319220A JP2003319220A JP2004040129A JP 2004040129 A JP2004040129 A JP 2004040129A JP 2003319220 A JP2003319220 A JP 2003319220A JP 2003319220 A JP2003319220 A JP 2003319220A JP 2004040129 A JP2004040129 A JP 2004040129A
Authority
JP
Japan
Prior art keywords
semiconductor device
manufacturing
section
cross
removed portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003319220A
Other languages
Japanese (ja)
Inventor
Yuichi Hamamura
濱村 有一
Akira Shimase
嶋瀬 朗
Katsuro Mizukoshi
水越 克郎
Mikio Hongo
本郷 幹雄
Junzo Azuma
東 淳三
Michinobu Mizumura
水村 通伸
Natsuki Yokoyama
横山 夏樹
Toru Ishitani
石谷 亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2003319220A priority Critical patent/JP2004040129A/en
Publication of JP2004040129A publication Critical patent/JP2004040129A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device in which the section of a sample is inspected in a process for manufacturing a semiconductor, the sample is returned to a manufacturing line, and the manufacturing is continued without exerting an influence on the manufacturing of the sample and the manufacturing line. <P>SOLUTION: The method comprises a process for carrying out local machining in order to make the section of a semiconductor wafer exposed after an arbitrary process in the manufacturing of the semiconductor wafer; a process for inspecting the section; a process for analyzing the defect of the semiconductor wafer based on information about the section inspection, information about a manufacturing history in the arbitrary process and its preceding processes, information about the inspection of foreign matter, patterns, etc, in the arbitrary process and its preceding processes, and information of a design when the previous inspection determines that the section is defective, and correcting manufacturing conditions in the arbitrary process and its preceding processes based on the result of the defect analysis; and a process for filling a part removed to make the section of the semiconductor wafer exposed. The semiconductor wafer is returned to a process subsequent to the the arbitrary process and the manufacturing is continued. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、LSI、DRAM等の半導体デバイスの製造方法に関する。また、本発明は半導体のインラインでの断面検査及び配線修正に関するものである。 << The present invention relates to a method for manufacturing a semiconductor device such as an LSI and a DRAM. The present invention also relates to in-line inspection of semiconductors and correction of wiring.

 近年、半導体は微細化、多層化が進み、その製造は非常に困難なものとなっている。LSIを例にとると、多数の工程からなる製造において、この製造工程の途中段階でデバイスの断面を検査して製造プロセスを監視することにより情報を早期に取得することが重要である。しかし、ウエハは大口径化しウエハ一枚あたりの価格が高くなってきているため、断面検査を行ったウエハを廃棄してしまうと損失が大きい。そこで、断面検査を行ったウエハを再び製造ラインに戻して、断面検査を行ったチップ以外のチップを良品として取得する、インライン断面検査技術が必要となってきている。 In recent years, semiconductors have been miniaturized and multilayered, and their manufacture has become extremely difficult. Taking an LSI as an example, in a manufacturing process including a number of processes, it is important to obtain information at an early stage by monitoring a manufacturing process by inspecting a cross section of a device in the middle of the manufacturing process. However, since the diameter of a wafer is increasing and the price per wafer is increasing, discarding the wafer subjected to the cross-sectional inspection causes a large loss. Therefore, an in-line cross-sectional inspection technique for returning the wafer subjected to the cross-section inspection to the production line again and acquiring chips other than the chips subjected to the cross-section inspection as non-defective products has become necessary.

 特開平7−320670号公報では、半導体の電気的特性に影響を及ぼさないイオンを照射して、インライン断面検査、デバイス修正等を行う方法及び装置が開示されている。 Japanese Patent Application Laid-Open No. 7-320670 discloses a method and apparatus for performing in-line cross-section inspection, device correction, and the like by irradiating ions that do not affect the electrical characteristics of a semiconductor.

 また、特開平6−260129号公報では、イオン源としてGaを用いた集束イオンビームを照射した試料を再び製造ラインに戻すために、試料の特性に顕著な影響を及ぼさない気体元素のイオンビームを用いて、Gaの打ち込まれた部分を除去するか、前記気体イオンビーム、もしくはエネルギービームを用いてGaの打ち込まれた部分を被覆するように有機金属膜を析出する方法が開示されている。 In Japanese Patent Application Laid-Open No. 6-260129, in order to return a sample irradiated with a focused ion beam using Ga as an ion source to a production line again, an ion beam of a gas element that does not significantly affect the characteristics of the sample is used. A method of removing an implanted portion of Ga and using the gas ion beam or the energy beam to deposit an organometallic film so as to cover the implanted portion of Ga is disclosed.

 インライン断面検査後、この半導体を次の工程の処理装置に戻して製造プロセスを継続するためには、従来例としてあげた方式では、下記に示すような課題が残されている。例えば、断面検査以降の工程としてエッチング処理を行う場合、下記のような問題が生じる。
(1)エッチング中にスパッタされた粒子や発光種をモニタして終点検出を行うエッチング装置では、集束イオンビーム加工穴部の露出した材質もしくは照射した部分を被覆した有機金属膜の材質と、その周囲の表面の材質とが異なる場合、集束イオンビーム処理部から放出する粒子や発光種が終点判定のノイズとなり、正確な終点判定ができない場合がある。
(2)集束イオンビーム処理部を有機金属膜で保護するような場合で、かつこの有機金属膜のエッチング生成物が通常のエッチングで発生する材質ではない場合、エッチングチャンバ内部に反応生成物が堆積し、異物発生の原因となる。
In order to return the semiconductor to the processing apparatus of the next step after the in-line cross-section inspection and continue the manufacturing process, the following problems remain in the conventional method. For example, when an etching process is performed as a process after the cross-section inspection, the following problem occurs.
(1) In an etching apparatus for monitoring the end point by monitoring particles and luminescent species sputtered during etching, the material of the exposed metal or the material of the organic metal film covering the irradiated portion of the focused ion beam processing hole, and If the material of the surrounding surface is different, particles or luminescent species emitted from the focused ion beam processing unit may become noise in the end point determination, and accurate end point determination may not be performed.
(2) In the case where the focused ion beam processing unit is protected by an organic metal film and the etching product of the organic metal film is not a material generated by normal etching, a reaction product is deposited inside the etching chamber. However, this may cause the generation of foreign matter.

 また、集束イオンビーム処理後の工程が材料塗布工程であるような場合、下記のような問題が生じる。
(3)周囲の表面の高さと集束イオンビーム処理部の高さとに極端な差があるような場合には、その凹凸部が塗布材料の流れの障害となり周囲に材料が塗布されず、パターン欠陥となる。
(4)集束イオンビーム照射領域もしくは照射した部分を被覆した有機金属膜の表面とそのほかの表面とが、塗布材料の塗れ性に差があると塗布むらが発生し、周囲のチップにも波及する。
When the process after the focused ion beam processing is a material application process, the following problem occurs.
(3) If there is an extreme difference between the height of the surrounding surface and the height of the focused ion beam processing unit, the unevenness will hinder the flow of the coating material and the material will not be applied to the surroundings, resulting in a pattern defect. It becomes.
(4) If there is a difference in the wettability of the coating material between the surface of the organometallic film covering the focused ion beam irradiation region or the irradiated portion and the other surface, coating unevenness occurs and spreads to surrounding chips. .

 また、集束イオンビーム処理後の工程がCMP(Chemical&Mechanical Polishing)を用いた平坦化工程であるような場合、下記のような問題が生じる。
(5)周囲の表面よりも高く有機金属膜を析出させた場合、凸部に応力集中が発生し、有機金属膜がこぼれ落ち、このこぼれ落ちた材料がCMP砥粒の異物となり、ウエハ表面を傷つけてしまう。
(6)集束イオンビーム照射部がその周囲と比べて著しく凹んでいるような場合、CMP砥粒が断面加工穴に入り込み洗浄を行っても取りきれず、CMP以降の工程の製造装置に搬送した際にこのCMP砥粒が凹部から飛び出して異物となったり、しきい値電圧等の素子特性を変動させる不純物汚染となったりする。
Further, when the step after the focused ion beam processing is a flattening step using CMP (Chemical & Mechanical Polishing), the following problem occurs.
(5) When the organic metal film is deposited higher than the surrounding surface, stress concentration occurs on the convex portion, the organic metal film spills, and the spilled material becomes foreign matter of the CMP abrasive grains, damaging the wafer surface. I will.
(6) When the focused ion beam irradiating part is significantly depressed as compared with its surroundings, the CMP abrasive grains enter the cross-section processing hole and cannot be removed even after cleaning, and are transported to a manufacturing apparatus in a process after the CMP. At this time, the CMP abrasive grains jump out of the concave portions and become foreign matters, or become impurity contamination which fluctuates element characteristics such as a threshold voltage.

 本発明は、半導体ウエハの製造工程の途中で、この半導体ウエハを断面検査した後に、断面加工穴を埋め込んで、再びラインに戻して製造を続行するもの(インライン断面検査)である。 The present invention relates to a method of inspecting a cross section of a semiconductor wafer during a manufacturing process of the semiconductor wafer, filling a cross-section processing hole, returning to a line again, and continuing the manufacturing (in-line cross-sectional inspection).

 また、本発明は、平坦化のための材料塗布工程の前に、試料のインライン断面検査を行い、この平坦化材料塗布工程に戻して、このウエハの断面を平坦化材料で埋め込むものである。 According to the present invention, an in-line cross-sectional inspection of a sample is performed before the step of applying a material for flattening, and the process returns to the step of applying a flattening material to bury the cross section of the wafer with a flattening material.

 試料のインライン断面検査後に、断面加工した穴を埋め込むことにより、断面検査後のエッチング工程での終点判定の安定化が実現でき(断面加工穴を埋め込まないで例えばAlまたはW配線を剥き出しにしておくと、断面加工されていない他の部分の配線を覆うSiO2に対するエッチングにおいて、前記他の部分の配線が露出することによる終点判定以前に断面加工された配線から終点判定の信号が検出されるという不都合が生じる)、また、エッチングチャンバ内部の異物の増加を防ぐことができる(断面加工穴を埋め込まないで例えばAlまたはW配線を剥き出しにしておくと、プラズマによりAlまたはWが飛散してチャンバ内にクリーニング処理で除去できない異物として残存する)。 By embedding the cross-section processed holes after the in-line cross-section inspection of the sample, the end point determination in the etching process after the cross-section inspection can be stabilized (for example, Al or W wiring is exposed without embedding the cross-section processed holes) In the etching of SiO 2 covering the wiring of the other portion that is not processed in cross section, a signal of the end point determination is detected from the wiring processed in cross section before the end point determination due to the exposure of the wiring in the other portion. In addition, it is possible to prevent an increase in foreign substances inside the etching chamber (for example, if the Al or W wiring is exposed without burying the cross-section processing hole, the Al or W is scattered by the plasma and the inside of the chamber is scattered). Remains as foreign matter that cannot be removed by the cleaning process).

 また、試料のインライン断面検査後に、断面加工した穴を埋め込むことにより、断面検査後の材料塗布工程で、材料の流れを阻害せずに塗布することができる。 Furthermore, after the in-line cross-section inspection of the sample, by embedding the cross-section processed holes, it is possible to apply the material in the material application step after the cross-section inspection without obstructing the flow of the material.

 さらに、試料のインライン断面検査後に、断面加工した穴を埋め込むことにより、断面検査後のCMP平坦化工程で、断面加工部が凸状になることによる応力集中や、凹状になることによるCMP砥粒のもぐりこみを防ぐことができる。 In addition, after the in-line cross-section inspection of the sample, the hole subjected to the cross-section processing is buried, so that in the CMP flattening process after the cross-section inspection, stress concentration due to the convexity of the cross-section processing portion and CMP abrasive grains due to the concave shape are obtained. Can be prevented.

 以上のように、断面検査による不良解析をインラインで行うことで、情報を早期に取得して製造条件の最適化を行うことができ、ラインの早期安定化が図れる。特にデバイスの寸法が小さくなり、多層積層化がすすみ、少量多品種生産を行う現在及び将来の半導体製造に極めて有効である。 As described above, by performing in-line failure analysis by cross-sectional inspection, information can be obtained early and manufacturing conditions can be optimized, and the line can be stabilized early. In particular, the size of the device is reduced, the multi-layer stacking is advanced, and it is extremely effective for the present and future semiconductor manufacturing for producing small-quantity multi-products.

 また、従来のような断面観察によるウエハの廃棄といった損失をなくすことができ、高効率、高歩留まり生産が実現できる。 損失 Furthermore, it is possible to eliminate a loss such as discarding a wafer due to cross-sectional observation as in the related art, thereby realizing high efficiency and high yield production.

 以下、図面を用いて本発明の第1の実施形態を示す。図1は、本発明の半導体製造方法のフローチャートである。製造工程の途中の任意の工程(第n工程)の後で、任意の頻度でウエハ2を抜き取り、このウエハの一部分を断面検査する(例えば、電子あるいはイオンのスキャンによる照射で発生した2次粒子を検出して画像取り込みを行い検査する)。この断面検査からは、エッチング残り等によるコンタクトホールやスルーホールでの接触不良、ホトマスクパターンの不良や異物付着による配線形成不良、ゲート酸化膜形成不良、アロイスパイクやマイグレーション、異物等の局所的な部分の元素同定などの不良情報を得ることができる。 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart of the semiconductor manufacturing method of the present invention. After an arbitrary step (n-th step) in the middle of the manufacturing process, the wafer 2 is extracted at an arbitrary frequency and a part of the wafer is subjected to a cross-sectional inspection (for example, secondary particles generated by irradiation by electron or ion scanning). Is detected and an image is captured and inspected). From this cross-sectional inspection, it was found that contact failure in contact holes and through holes due to residual etching, etc., defective wiring pattern due to defective photomask pattern and foreign matter adhesion, poor gate oxide film formation, alloy spikes and migration, and local parts such as foreign matter Defect information such as the element identification of the element can be obtained.

 この断面検査にて不良と判断された場合には、この断面検査情報と、第1工程から第n工程までの製造プロセスモニタから得られる製造来歴情報、任意の工程後のウエハ内の異物の大きさや異物数を異物検査装置により検査した異物検査(例えばゴミ付着)結果、任意の工程後のウエハ上に形成したパターンの検査(例えば配線の欠け、ズレ等)結果、配線パターンや膜厚等の設計データベースから得られるCAD情報の中から、必要な情報を適宜取り出して、それらを統合的に解析し、どの工程で何が原因で発生した不良であるかを解析する。 If the cross-section inspection is determined to be defective, the cross-section inspection information, the manufacturing history information obtained from the manufacturing process monitors from the first step to the n-th step, and the size of the foreign matter in the wafer after any step A foreign matter inspection (for example, adhesion of dust) obtained by inspecting the number of pods by a foreign matter inspection apparatus, an inspection of a pattern formed on a wafer after an arbitrary process (for example, a chipped or misaligned wiring), a wiring pattern, a film thickness, etc. Necessary information is appropriately extracted from the CAD information obtained from the design database, and the necessary information is analyzed in an integrated manner to analyze which process caused the defect in which process.

 この不良解析結果から、第1工程から第n工程までの製造について、製造プロセスレシピ(製造プロセスの条件、処方箋等)の修正、製造プロセス装置のクリーニング、ホトマスクパターンの改良や異物管理の改善などの対策(フィードバック)を講じる。これは、人手により行う以外に、最適な製造条件を自動的に抽出し、製造プロセスレシピの修正を行うこともできる。 From the results of the failure analysis, the manufacturing process recipes (manufacturing process conditions, prescriptions, etc.) are corrected, the manufacturing process device is cleaned, the photomask pattern is improved, and the foreign matter management is improved in the first to nth processes. Take measures (feedback). This can be done not only manually but also by automatically extracting the optimum manufacturing conditions and correcting the manufacturing process recipe.

 最適製造条件の自動抽出の具体的な方法の一例として、製造プロセスレシピとこのレシピによる処理結果との関係について、実験的に行い、またはシミュレーションを行って、この関係を予めデータベース化しておくことで、このデータベースに基づいてCPUが最適な条件を自動的に選定算出する方法があげられる。このデータベースは、上記の断面検査情報、製造来歴情報、異物検査情報、パターン検査情報等の最新情報を逐次記録することで、最適製造条件の自動抽出の精度を上げることができる。 As an example of a specific method of automatic extraction of the optimum manufacturing conditions, the relationship between the manufacturing process recipe and the processing result by this recipe is experimentally performed or simulated, and this relationship is stored in a database in advance. There is a method in which the CPU automatically selects and calculates the optimum condition based on this database. This database can improve the accuracy of automatic extraction of optimal manufacturing conditions by sequentially recording the latest information such as the above-described cross-sectional inspection information, manufacturing history information, foreign matter inspection information, and pattern inspection information.

 断面検査を行った結果、良品と判断された場合については、断面検査を行ったウエハの断面穴部分を穴埋め処理した後で、半導体プロセスラインに再びこのウエハを戻し、引き続く処理を行う。この際、ウエハ内の断面検査を行ったチップは、後述するように、断面の加工態様の違いによってその後使用できるものと使用できないものとに分かれる。ここで、断面検査の結果が不良であった場合にも、穴埋めした後、このウエハの製造を継続することで、第n+1工程以降の製造プロセスのデバッグを早期に行うことが可能である。この穴埋めを行うことで、ウエハの製造及び断面検査以降に処理を行う製造プロセス装置に何ら影響を与えない。 If the result of the cross-sectional inspection is determined to be non-defective, after the cross-sectional hole of the wafer subjected to the cross-sectional inspection is filled, the wafer is returned to the semiconductor process line and the subsequent processing is performed. At this time, the chips subjected to the cross-sectional inspection in the wafer are divided into those that can be used thereafter and those that cannot be used, depending on the difference in the processing mode of the cross-section, as described later. Here, even when the result of the cross-sectional inspection is defective, by continuing to manufacture this wafer after filling the holes, it is possible to debug the manufacturing process in the (n + 1) th step and thereafter at an early stage. By performing this filling, there is no influence on a manufacturing process apparatus that performs processing after wafer manufacturing and cross-sectional inspection.

 ウエハ内のどのチップを断面検査するかついては、種々の態様がある。ウエハ内の面内分布の均一性を調べるために、ウエハ内の複数の適当な位置のチップについて検査するか、もしくは検査対象チップをランダムに選択して断面検査を行う。ウエハ内の面内分布が均一ならば、ウエハ1枚につき1チップでもよい。 There are various modes for inspecting a cross section of any chip in a wafer. In order to check the uniformity of the in-plane distribution in the wafer, a chip is inspected at a plurality of appropriate positions in the wafer, or a chip to be inspected is randomly selected and a cross-sectional inspection is performed. If the in-plane distribution in the wafer is uniform, one chip may be used per wafer.

 チップ内の断面加工の位置は、次ぎのような3つの部分が考えられる。即ち、回路を形成する部分(例えば図7の(a)の加工された断面構造を参照。穴埋め処理した後にはこのチップは使用できない)、断面検査対象のチップを良品として取得すべく断面加工を行ってもデバイスの機能上問題のない部分(例えば、配線の一部を切除加工して検査するが、配線の導通には支障がないような加工断面。穴埋め後このチップは使用可)、例えばチップの周囲のスクライブレーンに形成した実際の配線を模擬したテストパターン部分(スクライブ・レーンのようにチップの外部に限らず、チップの断面検査と同一の検査結果を期待できるダミー配線部分であれば例えチップ内でもよい。穴埋め後チップは当然に使用可)、のいずれかの部分を選択する。 断面 The following three parts can be considered for the position of the cross-section processing in the chip. That is, a section for forming a circuit (for example, refer to the processed cross-sectional structure in FIG. 7A. This chip cannot be used after the filling process), and the cross-section processing is performed to obtain a chip to be cross-sectional inspected as a non-defective product. A portion that does not cause any problem in the function of the device even if it is performed (for example, a part of the wiring is cut out and inspected, but a processed cross section that does not hinder the conduction of the wiring. This chip can be used after filling the hole), for example A test pattern part that simulates the actual wiring formed in the scribe lane around the chip (if it is a dummy wiring part that can expect the same inspection result as the cross section inspection of the chip, not only outside the chip like a scribe lane) For example, the inside of the chip may be used.

 次に、本発明の半導体製造システムの概略について述べる。図2は、本発明の半導体製造システムを表す図である。各種の製造装置1ないし4は、イオン注入装置、熱処理装置、酸化装置、エッチング装置、露光・現像装置、レジスト材料塗布装置、洗浄装置、CMP装置等で構成する。これらの製造プロセス装置は、プロセスレシピデータベース5からのプロセスレシピに基づいて製造を行う。 Next, an outline of the semiconductor manufacturing system of the present invention will be described. FIG. 2 is a diagram showing a semiconductor manufacturing system of the present invention. Each of the manufacturing apparatuses 1 to 4 includes an ion implantation apparatus, a heat treatment apparatus, an oxidation apparatus, an etching apparatus, an exposure / development apparatus, a resist material application apparatus, a cleaning apparatus, a CMP apparatus, and the like. These manufacturing process apparatuses perform manufacturing based on the process recipe from the process recipe database 5.

 また、製造装置1ないし4には、プロセスモニタを内蔵しており、プロセス異常等の製造来歴情報を取得することができる。製造プロセスの任意の工程で、異物検査装置6によるウエハ上の異物の検査工程や、パターン検査装置7によるウエハ上の外観を検査工程を適宜設ける。第n工程後にインライン断面検査を行うために、ウエハを断面加工装置8に搬送し、断面加工を行う。 製造 In addition, the manufacturing apparatuses 1 to 4 have a built-in process monitor, and can acquire manufacturing history information such as process abnormalities. In an arbitrary step of the manufacturing process, a step of inspecting foreign substances on the wafer by the foreign substance inspection device 6 and a step of inspecting the appearance on the wafer by the pattern inspection device 7 are appropriately provided. In order to perform in-line cross-section inspection after the n-th step, the wafer is transferred to the cross-section processing device 8 and cross-section processing is performed.

 次に断面検査装置9により断面検査を行う。この断面検査情報から、プロセスの良否を判定し、不良であった場合には、この断面検査情報と、異物検査装置6やパターン検査装置7からの検査情報、第1工程から第n工程までの製造来歴情報、CADデータベース(図示せず)からの設計情報に基づいて、不良解析を行い、プロセスレシピデータベース5において、これ以降に製造するウエハの第1工程から第n工程までの製造条件(例えば、プラズマ電力、ウエハ温度、プラズマ圧力、エッチング時間、成膜時間等)を人手により更新することで、対策を行う。 Next, a cross-section inspection is performed by the cross-section inspection device 9. From the cross-section inspection information, the quality of the process is determined. If the process is defective, the cross-section inspection information and the inspection information from the foreign substance inspection device 6 and the pattern inspection device 7 and the first to n-th processes Based on the manufacturing history information and the design information from a CAD database (not shown), a failure analysis is performed, and in the process recipe database 5, the manufacturing conditions (for example, from the first step to the n-th step) of a wafer to be manufactured thereafter (for example, , Plasma power, wafer temperature, plasma pressure, etching time, film forming time, etc.) are manually updated to take countermeasures.

 前記人手による微調整、更新の外に、前述したようにCPUによって、不良解析結果から最適な製造条件を自動的に抽出することもできる(予め実験により、またはシミュレーションにより種々の製造条件とその結果の関係をデータベース化して、CPUが最適の製造条件を抽出するもの)。断面検査の結果、良品と判断された場合は、断面穴埋め装置10を用いてこのウエハの断面穴の埋め込みを行った後、このウエハを再び第(n+1)工程に戻し、製造プロセスを継続する
。また、前述したように不良と判断された場合でも、製造プロセスのデバッグを早期に行うために、再びラインに戻してもよい。
In addition to the manual fine adjustment and updating, the CPU can automatically extract the optimum manufacturing conditions from the failure analysis results by the CPU as described above (various manufacturing conditions and their results are determined in advance by experiments or simulations). Is a database for extracting the optimum manufacturing conditions by the CPU). As a result of the cross-section inspection, if it is determined that the wafer is non-defective, the cross-section hole of the wafer is filled using the cross-section hole filling apparatus 10, and the wafer is returned to the (n + 1) th step again to continue the manufacturing process. Further, even if it is determined to be defective as described above, it may be returned to the line again to debug the manufacturing process at an early stage.

 次に、インライン断面検査及び断面穴埋めを行う装置について説明する。断面加工装置8の一例として、図3に本発明の断面加工装置である集束イオンビーム(Focused Ion Beam=FIB)加工装置を表す図である。このFIB加工装置は、10~6ないし10~7Torrに真空排気したイオンビームカラム20内で、イオン源21からイオンビーム22を引き出し、イオンビーム22を加速するための加速電極、イオンビーム22を集束するための静電レンズ、イオンビーム22の非点補正を行うスティグマ電極、イオンビーム22を走査するためのデフレクタ電極とで構成するイオン光学系23を介して、ウエハ24上に照射して、スパッタリングにより所望の領域の除去加工を行う。10~6ないし10~7Torr程度に真空排気した試料室25内では、ウエハ24上の所望の領域にイオンビーム22を照射できるように、試料を搭載するステージ26を設ける。 Next, an apparatus for performing in-line section inspection and section hole filling will be described. FIG. 3 is a diagram illustrating a focused ion beam (FIB) processing device, which is a cross-sectional processing device of the present invention, as an example of the cross-section processing device 8. This FIB processing apparatus extracts an ion beam 22 from an ion source 21 in an ion beam column 20 evacuated to 10 to 6 to 10 to 7 Torr, and supplies an ion beam 22 to an acceleration electrode for accelerating the ion beam 22. Irradiate the wafer 24 via an ion optical system 23 comprising an electrostatic lens for focusing, a stigma electrode for performing astigmatism correction of the ion beam 22, and a deflector electrode for scanning the ion beam 22, A desired region is removed by sputtering. 10 evacuated sample chamber 25 is approximately 1-6 to 10 ~ 7 Torr, so that the ion beam 22 to a desired area on the wafer 24 can be irradiated, providing a stage 26 for mounting a sample.

 また、イオンビーム22の照射により発生した2次粒子を、検出器27により検出してウエハ24の表面の画像を取り込み、加工の位置決めを行う。予め照射時間と加工深さとの関係を調べておき、この関係から、適正な照射時間を算出し、この時間に基づいて照射することで、所望の深さまで加工を行うことができる。イオンビームの照射イオン源21としては、液体金属であるGaを用いたり、製造プロセス装置の汚染やウエハ24に照射したGa拡散によるウエハ汚染の制限が厳しい場合は、不活性ガスや、N2、O2、I2、等のプロセス非汚染型のイオン源を用いたりする。 Further, secondary particles generated by the irradiation of the ion beam 22 are detected by the detector 27, an image of the surface of the wafer 24 is captured, and processing is positioned. The relationship between the irradiation time and the processing depth is checked in advance, an appropriate irradiation time is calculated from this relationship, and irradiation is performed based on this time, whereby the processing can be performed to a desired depth. As the ion source 21 for ion beam irradiation, Ga which is a liquid metal is used. When contamination of the manufacturing process equipment or wafer contamination due to diffusion of Ga irradiated to the wafer 24 is severely restricted, an inert gas, N 2 , For example, an ion source of a non-contamination type such as O 2 , I 2 , etc. may be used.

 断面加工には、これ以外にも、ウエハ24の近傍に配置したノズル(図示せず)から反応性ガスを供給して加工を増速させるFIBアシストエッチング(FIBAE)を用いることもできる。また、イオンビーム22の代わりに、走査型電子ビームを用い、反応性ガスにより加工を行う電子ビームアシストエッチングも適用可能である。 In addition to the cross-section processing, FIB-assisted etching (FIBAE) that supplies a reactive gas from a nozzle (not shown) arranged near the wafer 24 to increase the processing speed may be used. In addition, electron beam assisted etching in which a scanning electron beam is used instead of the ion beam 22 and processing is performed using a reactive gas is also applicable.

 次に断面検査装置9によりウエハ24の断面を観察し、製造プロセスにおいて発生したエッチング不良や、配線形成不良等の検査を行う。断面検査については、比較的分解能の高い画像を得ることができる電子ビームによるSEM(Scannig Electron Microscope)観察を行うか、前述した断面加工装置8のFIBにより観察を行う。また、AES(オージェ電子分光)やIMA(イオンマイクロアナリシス)等を用いて、断面の局所的な元素分析を行うこともできる。 (4) Next, the cross section of the wafer 24 is observed by the cross section inspection device 9 to inspect for an etching defect, a wiring formation defect, and the like generated in the manufacturing process. As for the cross-section inspection, SEM (Scanning Electron Microscope) observation using an electron beam capable of obtaining an image with a relatively high resolution is performed, or observation is performed using the FIB of the cross-section processing device 8 described above. In addition, elemental analysis of a local section can be performed by using AES (Auger electron spectroscopy), IMA (ion microanalysis), or the like.

 次に、このインライン断面検査を行ったウエハ24を断面穴埋め装置10に搬送して、断面穴を埋める。図4は、本発明の断面穴埋め装置であるレーザCVD装置を表す図である。この装置は、化合物材料ガスを供給しながらレーザを照射して熱分解や光分解により成膜するレーザCVD(Chemical Vaper Deposition)を利用するものである。レーザ光源30により発生させたレーザ31を光学系32により集光し、レーザ導入窓33を介して、10~5ないし10~7Torrに真空排気された真空チャンバ34内に導入する。真空チャンバ34内では、所望の位置にレーザが照射できるようウエハ24を搭載したステージ35を駆動させる。 Next, the wafer 24 having undergone the inline cross-sectional inspection is transferred to the cross-section hole filling apparatus 10 to fill the cross-sectional hole. FIG. 4 is a diagram illustrating a laser CVD apparatus which is a cross-sectional filling apparatus according to the present invention. This apparatus uses laser CVD (Chemical Vapor Deposition) in which a film is formed by thermal decomposition or photolysis by irradiating a laser while supplying a compound material gas. A laser 31 generated by a laser light source 30 is condensed by an optical system 32 and introduced into a vacuum chamber 34 evacuated to 10 to 5 to 10 to 7 Torr through a laser introduction window 33. In the vacuum chamber 34, a stage 35 on which the wafer 24 is mounted is driven so that a desired position can be irradiated with a laser.

 試料室全体にガスを導入する方式、もしくは試料近傍のガス圧力を高めるようにガスノズルにより供給する方式のいずれかを用いたガス供給系36でCVDガス39を導入する。ガス導入中あるいは導入後に、ウエハ24にレーザ31を照射させて表面の熱反応もしくは光反応によるガス分子の分解により成膜を行う。断面加工穴37に、レーザ31あるいはステージ35を走査し、適当な走査速度あるいは適当な走査回数でレーザ31を照射して堆積膜38を形成する。予め照射時間と堆積膜厚との関係を調べておき、この関係から、適正な照射時間を算出し、この時間に基づいて照射することで、所望の膜厚で成膜することができる。ここで、レーザ光源としては、Arレーザ、He−Neレーザ、YAGレーザ、エキシマレーザ等を用いる。 (4) The CVD gas 39 is introduced by the gas supply system 36 using either a method of introducing a gas into the entire sample chamber or a method of supplying a gas nozzle so as to increase the gas pressure near the sample. During or after gas introduction, the wafer 31 is irradiated with the laser 31 to form a film by decomposition of gas molecules by a thermal reaction or a photoreaction on the surface. A laser 31 or a stage 35 scans the cross-section processing hole 37, and the laser 31 is irradiated at an appropriate scanning speed or an appropriate number of scans to form a deposited film 38. The relationship between the irradiation time and the deposited film thickness is checked in advance, an appropriate irradiation time is calculated from this relationship, and irradiation is performed based on this time, whereby a film can be formed with a desired film thickness. Here, as a laser light source, an Ar laser, a He—Ne laser, a YAG laser, an excimer laser, or the like is used.

 断面穴埋め装置10は、レーザCVDの他に荷電ビームによるCVDも可能である。この一例として、FIBを用いたFIBCVDについて説明する。図5は、本発明の断面穴埋め装置であるFIBCVD装置を表す図である。基本的な構成は、図3の断面加工装置8と同じであるため、説明は一部省略する。断面加工装置8と異なる部分は、試料室25内にガス供給系を配した点である。断面加工穴にガス供給系36を介してCVDガス39を供給し、イオンビーム22をこの断面加工穴の領域にあわせて照射を行い、イオンビーム22のエネルギによりこのCVDガス39を分解させて、堆積膜38を形成する。 The cross-section filling apparatus 10 can perform CVD by a charged beam in addition to laser CVD. As an example, FIBCVD using FIB will be described. FIG. 5 is a diagram showing a FIBCVD apparatus which is a cross-sectional filling apparatus of the present invention. The basic configuration is the same as that of the cross-section processing device 8 in FIG. The difference from the cross-section processing device 8 is that a gas supply system is provided in the sample chamber 25. A CVD gas 39 is supplied to the cross-section processing hole via a gas supply system 36, the ion beam 22 is irradiated in accordance with the region of the cross-section processing hole, and the CVD gas 39 is decomposed by the energy of the ion beam 22. A deposition film 38 is formed.

 予め照射時間と堆積膜厚との関係を調べておき、この関係から、適正な照射時間を算出し、この時間に基づいてイオンビーム22を繰り返し走査して、照射することで、所望の膜厚で成膜することができる。イオン源にはGaや、製造プロセス装置の汚染やウエハ24に照射したGa拡散によるウエハ汚染の制限が厳しい場合は、不活性ガスや、N2、O2、I2、等のプロセス非汚染型を用いる。また、FIBの代わりに走査型電子ビームを用いた電子ビームCVD(EBCVD)も可能である。 The relationship between the irradiation time and the deposited film thickness is checked in advance, an appropriate irradiation time is calculated from the relationship, and the ion beam 22 is repeatedly scanned and irradiated based on the calculated time to obtain a desired film thickness. Can be formed. When the ion source is severely restricted by Ga or contamination of the manufacturing process equipment or wafer diffusion due to Ga diffusion irradiated to the wafer 24, an inert gas or a process non-contamination type such as N 2 , O 2 , I 2 , etc. Is used. An electron beam CVD (EBCVD) using a scanning electron beam instead of the FIB is also possible.

 また、断面穴埋め装置10として、液体の成膜材料を微量塗布し、レーザ等による加熱、熱分解、光分解のいずれかの作用により成膜を行う液体塗布成膜装置について述べる。図6は本発明の断面穴埋め装置である液体塗布成膜装置を表す図である。大気中でウエハ24を搭載するためのステージ40を設置し、ピペット上下機構41を有するガラスピペット42の先端がウエハ24の上方にくるようにする。予めガラスピペット42の先端に液体材料44を充填しておく。 (5) As the cross-section filling apparatus 10, a liquid coating film forming apparatus that applies a small amount of a liquid film forming material and forms a film by any one of heating, thermal decomposition, and photolysis using a laser or the like will be described. FIG. 6 is a view showing a liquid coating film forming apparatus which is a cross section filling apparatus of the present invention. A stage 40 for mounting the wafer 24 in the atmosphere is set so that the tip of a glass pipette 42 having a pipette up / down mechanism 41 is located above the wafer 24. The tip of the glass pipette 42 is filled with the liquid material 44 in advance.

 ガラスピペット42の後端にはN2導入口43を設け、ステージ40及びピペ
ット上下機構41を駆動してウエハ24の所望の位置にガラスピペット42の先端を接触させた後、N2圧力を印加して液体材料44を吐出させ、表面張力を利用した適量の液溜まりを形成する。
An N 2 inlet 43 is provided at the rear end of the glass pipette 42, and the stage 40 and the pipette up / down mechanism 41 are driven to bring the tip of the glass pipette 42 into contact with a desired position of the wafer 24, and then N 2 pressure is applied. Then, the liquid material 44 is discharged to form an appropriate amount of liquid pool using surface tension.

 その後、レーザ等の光源45を用いて、材料を固化させる。光源からの光を集光させるために、必要に応じて光学系46を設けてもよい。N2の吐出圧力と液体材料の吐出量との関係、及び液体材料と析出膜厚との関係を予め調べておくことで所望の膜厚を得ることができる。また、本実施形態では、液体材料の吐出にN2を用いているが、液体材料を変質させないガスであれば代用可能である。 After that, the material is solidified using a light source 45 such as a laser. An optical system 46 may be provided as needed to collect light from the light source. A desired film thickness can be obtained by previously examining the relationship between the discharge pressure of N 2 and the discharge amount of the liquid material, and the relationship between the liquid material and the deposited film thickness. Further, in this embodiment, N 2 is used for discharging the liquid material, but any gas that does not alter the liquid material can be used.

 次に断面の穴埋め方法と、堆積膜の材質によって決まるCVDガス及び液体材料の選定について説明する。図7は、本発明の断面穴埋め方法と堆積膜材質の選定方法とを説明するための半導体の断面図である。断面検査は垂直断面部の配線状況を観察し易くするためにウエハのステージを傾斜させてその状態で観察を行うため、通常、図7の(a)に示すように、検査される垂直断面部に対向する断面部に階段状の穴を形成する。穴埋めを行うために、まず、断面加工時の荷電ビームの走査領域、ドーズ量、ビーム滞在時間、ドットピッチ、アシストガスの圧力及び流量等の加工条件と予め求めておいたスパッタ率とから加工穴寸法を求める。 Next, a method of filling the cross section and selection of the CVD gas and liquid material determined by the material of the deposited film will be described. FIG. 7 is a cross-sectional view of a semiconductor for explaining a cross-sectional hole filling method and a method of selecting a deposited film material according to the present invention. In the cross-section inspection, the stage of the wafer is inclined and the observation is performed in that state in order to make it easy to observe the wiring state of the vertical cross-section. Therefore, as shown in FIG. A step-shaped hole is formed in the cross section facing. In order to fill holes, first, processing holes such as scanning area of charged beam during cross-section processing, dose amount, beam stay time, dot pitch, pressure and flow rate of assist gas, and sputtering rate obtained in advance are used to form holes. Find the dimensions.

 また、成膜条件と堆積膜厚の関係も予め求めておき、この関係と加工穴寸法に基づいて、周囲の高さと同程度になるように成膜条件を決定し、穴埋めを行う。このとき、穴埋めの高さの許容精度は、配線膜厚や層間膜厚程度が適当であり、およそ±2マイクロメータの範囲であれば問題ないが、製造プロセスによって許容範囲が異なるため、この限りではない。穴埋めの材質については、断面加工部の周囲の表面膜の材質がSiO2ならば、CVDガスとして、TEOS(テトラオルソエチルシリケート)もしくはTEMOS(テトラメチルオルソシリケート)、液体材料としては、ケイ素化合物及び添加剤を有機溶剤に溶解した液体、例えばSOG(Spin on Grass)等を用いて、SiO2で成膜する。 In addition, the relationship between the film forming conditions and the deposited film thickness is also obtained in advance, and based on this relationship and the size of the processed hole, the film forming conditions are determined so as to be approximately equal to the height of the surroundings, and the holes are filled. At this time, the allowable accuracy of the height of the hole filling is appropriately about the wiring film thickness or the interlayer film thickness, and there is no problem as long as it is within a range of about ± 2 micrometers, but the allowable range varies depending on the manufacturing process. is not. Regarding the material for filling the holes, if the material of the surface film around the cross-section processed portion is SiO 2 , TEOS (tetra-ortho-ethyl silicate) or TEMOS (tetra-methyl ortho-silicate) as a CVD gas, and a silicon compound as a liquid material A film is formed from SiO 2 using a liquid in which an additive is dissolved in an organic solvent, for example, SOG (Spin on Glass) or the like.

 図7(b)に示すように、断面加工部の周囲の表面膜の材質がAlならば、CVDガスとして、TIBA(トリイソブチルアルミ)、TMA(トリメチルアルミ)などを用いて、Alを析出させる。このほか、断面加工部の周囲の表面膜の材質がWならば、材料ガスとしてWのハロゲン化合物やW(CO)6(タングステンヘキサカルボニル)などが挙げられる。 As shown in FIG. 7 (b), if the material of the surface film around the cross-section processed portion is Al, Al is deposited using TIBA (triisobutylaluminum), TMA (trimethylaluminum) or the like as a CVD gas. . In addition, when the material of the surface film around the cross-section processed portion is W, the material gas includes a halogen compound of W, W (CO) 6 (tungsten hexacarbonyl), and the like.

 また、断面加工を行ったチップの電気的特性を損なわないように、配線露出による短絡を防ぐためのSiO2等の絶縁膜で穴埋めを行ったり、配線の電気抵抗を回復するためにAl、W、Ti、TiN、Cu等の導体膜で埋め込んだりすることも効果的である。ここでは、加工穴の周囲の表面の材質と同じ材質による成膜について述べたが、構成元素の同じ材質で成膜することも有効である。また、構成元素の主成分が同じ材質で成膜することも有効である。 Further, in order not to impair the electrical characteristics of the processed chip, holes are filled with an insulating film such as SiO 2 for preventing a short circuit due to wiring exposure, and Al, W is used for recovering the electrical resistance of the wiring. , Ti, TiN, Cu or the like is also effective. Here, the film formation using the same material as the surface material around the processing hole has been described, but it is also effective to form the film using the same material as the constituent elements. It is also effective to form a film with the same material as the main components of the constituent elements.

 次に、本発明の第2の実施形態について述べる。多層積層の半導体の製造において、層間絶縁膜により平坦化を行うことがある。このような平坦化膜を積層する直前に断面観察を行い、平坦化膜により断面加工穴を埋め込む方式について説明する。図8は、本発明の第2の実施形態の半導体製造方法のフローチャートである。図8では、平坦化の工程が、SiO2析出用の材料であるSOG(Spin on Grass)塗布工程の場合について記載してある。第n+1工程がSOG塗布工程であるとすると、第n工程の終了後に、断面検査を行い、前述したとおり不良解析を行い、必要に応じて第1工程から第n工程までについて対策を講じる。良品であった場合、第n+1工程に戻すと、第n+1工程でSOG塗布により断面加工穴が埋め込まれるため、前記加工穴を埋め込む工程を特段設けるが必要ないといったメリットがある。 Next, a second embodiment of the present invention will be described. In the manufacture of a multi-layer semiconductor, planarization may be performed using an interlayer insulating film. A method of observing a cross section immediately before stacking such a flattening film and filling a cross-section processing hole with the flattening film will be described. FIG. 8 is a flowchart of the semiconductor manufacturing method according to the second embodiment of the present invention. FIG. 8 illustrates a case where the flattening process is a SOG (Spin on Glass) coating process which is a material for depositing SiO 2 . Assuming that the (n + 1) th step is the SOG coating step, after the completion of the nth step, a cross-sectional inspection is performed, the failure analysis is performed as described above, and countermeasures are taken as necessary from the first step to the nth step. In the case of a non-defective product, returning to the (n + 1) th step has the advantage that the cross-section processing hole is buried by SOG application in the (n + 1) th step, so that there is no need to provide a special step of burying the processing hole.

 図9は、SOG塗布による断面穴埋め処理前後の半導体ウエハの断面図である。図に示すようにSOGが断面穴に入り込み結果的に穴埋めを行うことになる。 FIG. 9 is a cross-sectional view of the semiconductor wafer before and after filling the cross-section with SOG. As shown in the figure, the SOG enters the cross-sectional hole, and as a result, the hole is filled.

 以上、第1及び第2の実施形態において、インライン断面検査について述べたが、これ以外にもインラインで配線修正する技術にも応用可能である。 Although the in-line cross-section inspection has been described in the first and second embodiments, the present invention can also be applied to a technique for correcting wiring in-line in addition to this.

本発明の第1の実施形態の半導体製造方法のフローチャートである。1 is a flowchart of a semiconductor manufacturing method according to a first embodiment of the present invention. 本発明の第1の実施形態実施の形態1の半導体製造システムを表す図である。FIG. 1 is a diagram illustrating a semiconductor manufacturing system according to a first embodiment of the present invention. 本発明の第1の実施形態実施の形態1の断面加工装置である集束イオンビーム加工装置を表す図である。FIG. 1 is a diagram illustrating a focused ion beam processing apparatus which is a cross-section processing apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態の断面穴埋め装置であるレーザCVD装置を表す図である。It is a figure showing the laser CVD apparatus which is a section filling device of a 1st embodiment of the present invention. 本発明の第1の実施形態の断面穴埋め装置であるFIBCVD装置を表す図である。It is a figure showing the FIBCVD apparatus which is a section filling device of a 1st embodiment of the present invention. 本発明の第1の実施形態の断面穴埋め装置である液体塗布成膜装置を表す図である。It is a figure showing the liquid application film-forming device which is a section filling device of a 1st embodiment of the present invention. 本発明の第1の実施形態の断面穴埋め方法と堆積膜材質の選定方法とを説明する図である。FIG. 3 is a diagram illustrating a method for filling a cross section and a method for selecting a material of a deposited film according to the first embodiment of the present invention. 本発明の第2の実施形態の半導体製造方法のフローチャートである。6 is a flowchart of a semiconductor manufacturing method according to a second embodiment of the present invention. 本発明の第2の実施形態のSOG塗布による断面穴埋め処理前後の半導体ウエハの断面図である。FIG. 7 is a cross-sectional view of a semiconductor wafer before and after filling a cross-section with SOG according to a second embodiment of the present invention.

符号の説明Explanation of reference numerals

 5…プロセスレシピデータベース  6…異物検査装置  7…パターン検査装置
 8…断面加工装置   9…断面検査公知  10…断面穴埋め装置 
 20…イオンビームカラム   21…イオン源   22…イオンビーム
 24…ウエハ   26…ステージ   27…検出器   30…レーザ光源
 36…ガス供給系   37…断面加工穴   38…堆積膜   39…CVDガス
 42…ガラスピペット  43…N2導入口   44…液体材   45…光源
 46・・・光学系
5 Process recipe database 6 Foreign matter inspection device 7 Pattern inspection device 8 Cross section processing device 9 Cross section inspection known 10 Cross section hole filling device
DESCRIPTION OF SYMBOLS 20 ... Ion beam column 21 ... Ion source 22 ... Ion beam 24 ... Wafer 26 ... Stage 27 ... Detector 30 ... Laser light source 36 ... Gas supply system 37 ... Cross section processing hole 38 ... Deposited film 39 ... CVD gas 42 ... Glass pipette 43 ... N 2 inlet 44 ... liquid material 45 ... light source 46 ... optical system

Claims (13)

 半導体デバイスの製造方法であって、
 半導体デバイスの製造工程の途中の工程までの処理を施した半導体デバイスに集束イオンビームを照射し走査して該半導体デバイスの一部を局所的に除去加工し、
 該一部を局所的に除去加工した半導体デバイスの該除去加工した箇所の断面を観察し、
 該断面を観察した前記半導体デバイスの前記局所的に除去加工した箇所を埋め込み、
 該局所的に除去加工した箇所を埋め込んだ半導体デバイスを前記半導体デバイスの製造工程に戻して前記途中の工程以降の処理を行う
ことを特徴とする半導体デバイスの製造方法。
A method for manufacturing a semiconductor device, comprising:
A part of the semiconductor device is locally removed by irradiating a focused ion beam to the semiconductor device that has been subjected to the processing up to the middle of the manufacturing process of the semiconductor device and scanning it,
Observing a cross section of the removed portion of the semiconductor device in which the part is locally removed,
Embedding the locally removed portion of the semiconductor device whose cross section is observed,
A method of manufacturing a semiconductor device, comprising: returning a semiconductor device in which the locally removed portion has been buried to a manufacturing process of the semiconductor device, and performing processes after the halfway process.
 前記局所的に除去加工した箇所を埋め込むことを、材料ガスを供給しながら前記局所的に除去加工した箇所に収束させたイオンビームを照射し走査して局所的に成膜することにより行うことを特徴とする請求項1記載の半導体デバイスの製造方法。 Embedding the locally removed portion may be performed by irradiating the locally removed portion with a focused ion beam while supplying the material gas and scanning to locally form a film. 2. The method for manufacturing a semiconductor device according to claim 1, wherein:  前記局所的に除去加工した箇所を埋め込むことを、材料ガスを供給しながら前記局所的に除去加工した箇所にレーザビームを照射し走査して前記除去加工した箇所に局所的に成膜することにより行うことを特徴とする請求項1記載の半導体デバイスの製造方法。 Embedding the locally removed portion is performed by irradiating a laser beam to the locally removed portion while supplying a material gas and scanning to locally form a film on the removed portion. 2. The method according to claim 1, wherein the method is performed.  前記局所的に除去加工した箇所を埋め込むことを、前記局所的に除去加工した箇所に液体の成膜材料を供給し、該供給した液体の成膜材料にレーザビームを照射して前記除去加工した箇所に局所的に成膜することにより行うことを特徴とする請求項1記載の半導体デバイスの製造方法。 The embedding of the locally removed portion is performed by supplying a liquid film forming material to the locally removed portion and irradiating the supplied liquid film forming material with a laser beam to perform the removing process. 2. The method for manufacturing a semiconductor device according to claim 1, wherein the method is performed by locally forming a film at a location.   半導体デバイスの製造方法であって、
 半導体デバイスの製造工程の途中の工程までの処理を施した半導体デバイスに集束イオンビームを照射し走査して該半導体デバイスの一部を局所的に除去加工し、
 該一部を局所的に除去加工した半導体デバイスの該除去加工した箇所の断面を観察し、
 該断面を観察した前記半導体デバイスの前記局所的に除去加工した箇所の近傍に局所的に材料ガスを供給しながら前記集束イオンビームを照射し走査して局所的に絶縁膜を成膜することにより前記除去加工した箇所を絶縁膜で埋め込み、
 該局所的に除去加工した箇所を絶縁膜で埋め込んだ半導体デバイスを前記半導体デバイスの製造工程に戻して前記途中の工程工の処理を行う
ことを特徴とする半導体デバイスの製造方法。
A method for manufacturing a semiconductor device, comprising:
A part of the semiconductor device is locally removed by irradiating a focused ion beam to the semiconductor device that has been subjected to the processing up to the middle of the manufacturing process of the semiconductor device and scanning it,
Observing a cross section of the removed portion of the semiconductor device in which the part is locally removed,
By irradiating and scanning the focused ion beam while locally supplying a material gas to the vicinity of the locally removed portion of the semiconductor device whose cross section has been observed, an insulating film is locally formed. Fill the removed portion with an insulating film,
A method for manufacturing a semiconductor device, comprising: returning a semiconductor device in which the locally removed portion is buried with an insulating film to a manufacturing process of the semiconductor device, and performing a process of the intermediate process.
 前記除去加工した箇所の断面の観察を、SEMを用いて行うことを特徴とする請求項1または5に記載の半導体デバイスの製造方法。 6. The method for manufacturing a semiconductor device according to claim 1, wherein the cross section of the removed portion is observed using an SEM.  前記除去加工した箇所の断面の観察を、前記集束イオンビームを用いて行うことを特徴とする請求項1または5に記載の半導体デバイスの製造方法。 6. The method of manufacturing a semiconductor device according to claim 1, wherein the section of the removed portion is observed using the focused ion beam. 7.  前記除去加工した箇所の断面を観察して検査を行い、該検査により不良が検出されたときには不良解析を行い、該不良解析の結果に基いて前記製造工程の製造条件を変更することを特徴とする請求項1または5に記載の半導体デバイスの製造方法。 Inspecting by observing a cross section of the removed portion, performing defect analysis when a defect is detected by the inspection, and changing the manufacturing conditions of the manufacturing process based on the result of the defect analysis. The method of manufacturing a semiconductor device according to claim 1.  前記集束イオンビームを照射し走査して局所的に除去加工する箇所が、前記半導体デバイスに形成されたテストパターンの領域であることを特徴とする請求項1または5に記載の半導体デバイスの製造方法。 6. The method of manufacturing a semiconductor device according to claim 1, wherein a portion where the focused ion beam is irradiated and scanned to be locally removed is a region of a test pattern formed in the semiconductor device. .  半導体デバイスの製造方法であって、
 半導体デバイスの製造工程の途中の工程までの処理を施した半導体デバイスを集束イオンビーム加工装置の内部にセットし、
 該内部にセットした半導体デバイスに前記集束イオンビーム加工装置により集束イオンビームを照射し走査して前記半導体デバイスから発生した2次粒子を検出することにより前記半導体デバイスの表面の画像を取得し、
 該取得した画像を用いて前記半導体デバイスの加工位置を決め、
 該決めた加工位置に前記集束イオンビーム加工装置により集束イオンビームを照射し走査して前記半導体デバイスの加工位置を局所的に除去加工し、
 前記半導体デバイスの除去加工した箇所の断面を観察し、
 前記集束イオンビーム加工装置の内部に材料ガスを供給しながら前記半導体デバイスの前記局所的に除去加工した箇所に前記集束イオンビームを照射し走査して前記局所的に除去加工した箇所に成膜して該除去加工した箇所を埋め込み、
 該除去加工した箇所を埋め込んだ半導体デバイスを前記半導体デバイスの製造工程に戻して前記途中の工程以降の処理を行う
ことを特徴とする半導体デバイスの製造方法。
A method for manufacturing a semiconductor device, comprising:
A semiconductor device that has been subjected to processing up to the middle of the semiconductor device manufacturing process is set inside the focused ion beam processing apparatus,
An image of the surface of the semiconductor device is obtained by irradiating a focused ion beam with the focused ion beam processing apparatus to the semiconductor device set therein and scanning to detect secondary particles generated from the semiconductor device,
Determine the processing position of the semiconductor device using the obtained image,
The determined processing position is irradiated with a focused ion beam by the focused ion beam processing apparatus and scanned to locally remove and process the processing position of the semiconductor device,
Observing the cross section of the removed portion of the semiconductor device,
While supplying the material gas into the focused ion beam processing apparatus, the locally removed portion of the semiconductor device is irradiated with the focused ion beam and scanned to form a film on the locally removed portion. And embed the removed portion,
A method of manufacturing a semiconductor device, comprising: returning a semiconductor device in which the removed portion is embedded to a manufacturing process of the semiconductor device, and performing processes after the halfway process.
 前記除去加工した箇所の断面の観察を、SEM観察により行うことを特徴とする請求項10記載の半導体デバイスの製造方法。 11. The method for manufacturing a semiconductor device according to claim 10, wherein the cross section of the removed portion is observed by SEM observation.  前記除去加工した箇所の断面の観察を、前記集束イオンビームを用いて行うことを特徴とする請求項10記載の半導体デバイスの製造方法。 11. The method for manufacturing a semiconductor device according to claim 10, wherein the cross section of the removed portion is observed using the focused ion beam.  前記集束イオンビーム加工装置の内部に供給する材料ガスが絶縁膜を形成するための材料ガスであって、該材料ガスを供給しながら前記集束イオンビームを照射し走査して前記前記局所的に除去加工した箇所に絶縁膜を形成することにより該除去加工した箇所を絶縁膜で埋めることを特徴とする請求項10記載の半導体デバイスの製造方法。
The material gas supplied to the inside of the focused ion beam processing apparatus is a material gas for forming an insulating film, and the focused ion beam is irradiated and scanned while supplying the material gas to remove the locally. 11. The method for manufacturing a semiconductor device according to claim 10, wherein an insulating film is formed at the processed portion to fill the removed portion with an insulating film.
JP2003319220A 2003-09-11 2003-09-11 Method for manufacturing semiconductor device Pending JP2004040129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319220A JP2004040129A (en) 2003-09-11 2003-09-11 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319220A JP2004040129A (en) 2003-09-11 2003-09-11 Method for manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26727396A Division JP3942213B2 (en) 1996-10-08 1996-10-08 Semiconductor manufacturing method and inspection method and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2004040129A true JP2004040129A (en) 2004-02-05

Family

ID=31712698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319220A Pending JP2004040129A (en) 2003-09-11 2003-09-11 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2004040129A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245150A (en) * 2005-03-01 2006-09-14 Kyoto Univ Semiconductor device for evaluation and its manufacturing method, and evaluation method thereof
DE102008020145A1 (en) 2007-04-23 2008-11-13 Hitachi High-Technologies Corp. Ion source e.g. duoplasmatron, for manufacturing e.g. microprocessor, has gas volume-control valve provided in position to determine gas pressure conditions in vacuum chamber, and gas supply mechanism for guiding gases into chamber
JP2009266930A (en) * 2008-04-23 2009-11-12 Dainippon Printing Co Ltd Method of preparing sample substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245150A (en) * 2005-03-01 2006-09-14 Kyoto Univ Semiconductor device for evaluation and its manufacturing method, and evaluation method thereof
DE102008020145A1 (en) 2007-04-23 2008-11-13 Hitachi High-Technologies Corp. Ion source e.g. duoplasmatron, for manufacturing e.g. microprocessor, has gas volume-control valve provided in position to determine gas pressure conditions in vacuum chamber, and gas supply mechanism for guiding gases into chamber
DE102008020145B4 (en) * 2007-04-23 2012-11-08 Hitachi High-Technologies Corporation An ion beam processing and viewing device and method for processing and viewing a sample
US8481980B2 (en) 2007-04-23 2013-07-09 Hitachi High-Technologies Corporation Ion source, ion beam processing/observation apparatus, charged particle beam apparatus, and method for observing cross section of sample
US8779400B2 (en) 2007-04-23 2014-07-15 Hitachi High-Technologies Corporation Ion source, ion beam processing/observation apparatus, charged particle beam apparatus, and method for observing cross section of sample
DE102008064781B3 (en) * 2007-04-23 2016-01-07 Hitachi High-Technologies Corporation lonenstrahlbearbeitungs- / viewing device
JP2009266930A (en) * 2008-04-23 2009-11-12 Dainippon Printing Co Ltd Method of preparing sample substrate

Similar Documents

Publication Publication Date Title
US7368729B2 (en) Method, apparatus and system for specimen fabrication by using an ion beam
US6211527B1 (en) Method for device editing
US9941096B2 (en) Glancing angle mill
TWI359455B (en) Electron induced chemical etching and deposition f
US7220604B2 (en) Method and apparatus for repairing shape, and method for manufacturing semiconductor device using those
US9761467B2 (en) Gas injection system with precursor for planar deprocessing of semiconductor devices using a focused ion beam
TWI628702B (en) High aspect ratio structure analysis
US10903044B1 (en) Filling empty structures with deposition under high-energy SEM for uniform DE layering
TW200814160A (en) Electron induced chemical etching/deposition for enhanced detection of surface defects
US6943350B2 (en) Methods and apparatus for electron beam inspection of samples
JP3942213B2 (en) Semiconductor manufacturing method and inspection method and apparatus therefor
US7709062B2 (en) Refilling method by ion beam, instrument for fabrication and observation by ion beam, and manufacturing method of electronic device
EP1048071B1 (en) Integrated circuit rewiring using gas-assisted focused ion beam (fib) etching
US6723650B1 (en) TEM sample preparation using transparent defect protective coating
US6645781B1 (en) Method to determine a complete etch in integrated devices
US6881955B2 (en) Metrology process for enhancing image contrast
US6677586B1 (en) Methods and apparatus for electron beam inspection of samples
JP2001345360A (en) Inspecting and analyzing method and sample manufacturing apparatus
JP2004040129A (en) Method for manufacturing semiconductor device
US8334701B2 (en) Repairing defects
JP2007142453A (en) Cross section observation method and cross section observation device of semiconductor device
US20040132287A1 (en) Dry etch process for copper
JP4877318B2 (en) Inspection / analysis method and sample preparation apparatus
JPH06252233A (en) Processing method and apparatus by focused ion beam
US6894294B2 (en) System and method for reducing charged particle contamination

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424