JP2004039776A - Measuring method of temperature and control method of equipment temperature - Google Patents

Measuring method of temperature and control method of equipment temperature Download PDF

Info

Publication number
JP2004039776A
JP2004039776A JP2002193040A JP2002193040A JP2004039776A JP 2004039776 A JP2004039776 A JP 2004039776A JP 2002193040 A JP2002193040 A JP 2002193040A JP 2002193040 A JP2002193040 A JP 2002193040A JP 2004039776 A JP2004039776 A JP 2004039776A
Authority
JP
Japan
Prior art keywords
temperature
sheet resistance
heat treatment
wafer
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002193040A
Other languages
Japanese (ja)
Inventor
Fumitoshi Kawase
川瀬 文俊
Satoshi Shibata
柴田 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002193040A priority Critical patent/JP2004039776A/en
Publication of JP2004039776A publication Critical patent/JP2004039776A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a correctly measuring method of a temperature utilizing sheet resistance. <P>SOLUTION: A silicon oxide film 12 of 3nm is formed on a silicon crystal substrate 10 of a monitor wafer 1 by oxygen, N<SB>2</SB>O or the like. Next, an impurity implanting region 11 is formed by implanting boron ions into the surface of the wafer. The wafer is installed in a rapid heating device to apply heat treatment. Thereafter, the sheet resistance of the wafer is measured and a relation between a heat treatment temperature and the sheet resistance is obtained. The correct temperature upon heat treatment is obtained from the sheet resistance by obtaining the relation previously. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は温度測定方法に関するものであり、さらに詳しくはシート抵抗を利用した温度測定の方法に関するものである。
【0002】
【従来の技術】
従来の温度測定の方法として、特開2000−208524号公報に示されるものがある。この方法によれば、イオン注入した温度モニタ用の半導体ウェハを用意し、このウェハを熱処理装置に導入する。そしてこのウェハに対して720℃以下で熱処理を行って、このウェハのシート抵抗を測定する。そして、予め求めていたシート抵抗の値と温度との関係から、熱処理工程におけるウェハの温度分布を求めるものである。
【0003】
【発明が解決しようとする課題】
しかしながらこの方法では、正確な温度を測定することが難しい。この従来の温度測定方法ではモニタ用ウェハのシート抵抗と温度との関係を正確に求めておくことが重要であるが、これがすべての温度範囲で正確に求めることが困難だからである。
【0004】
本発明は、イオン注入した不純物により、正確に温度を求められる範囲を明らかにし、その温度範囲においてシート抵抗に基づいて温度を正確に求めることができる温度測定の方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために本発明の方法では、不純物を導入したモニタ用基板を熱処理する工程と、前記モニタ用基板表面の複数箇所のシート抵抗を測定する工程と、得られたシート抵抗と予め求めていたシート抵抗と温度との関係に基づいて熱処理工程におけるモニタ基板の温度(分布)を求める工程とを備え、
前記不純物はボロンであり、熱処理の温度範囲は、900℃〜1050℃である、温度測定方法とするものである。
【0006】
この方法により、所定の温度範囲では、不純物の「活性化率」がほぼ100%となるために、シート抵抗と温度との関係の測定再現性を高くすることができる。つまりシート抵抗の測定ばらつきが小さくなるために、測定再現性が高くなり、シート抵抗と温度との関係を正確に求めることができるものである。
【0007】
【発明の実施の形態】
(実施形態1)
以下、本発明の実施の形態について図面を参照しながら説明する。
【0008】
図1は温度モニタ用ウェハ1の構成を示している。図1に示すように、温度モニタ用ウェハ1は、シリコン結晶基板10の表面に注入による不純物領域11が形成され、さらに注入により形成した不純物領域11の上にはシリコン酸化膜12が形成されている。
【0009】
このモニタ用ウェハ1は、図2(a)、(b)に示すように、シリコン結晶基板10上に、酸素またはNOなどにより3nmのシリコン酸化膜12を形成する。次に、図2(c)に示すように、ウェハ表面にホウ素イオンを注入する。注入条件は、加速電圧5keV、ドーズ量は2×1015cm−2である。これにより不純物注入領域11を形成する。
【0010】
このウェハを急速加熱装置(RTA装置)のウェハ支持台に設置し、以下の条件にて熱処理を行う。その後、ウェハのシート抵抗を測定し、熱処理温度とシート抵抗との関係を求める。なお、熱処理は窒素ガス中で実施する。
【0011】
【表1】

Figure 2004039776
【0012】
熱処理後、不純物領域11上のシリコン酸化膜12を除去し、4深針法により、ウェハの120ヶ所のシート抵抗を測定する。この測定により図3のグラフを作成する。
【0013】
図3の横軸は熱処理時の温度、縦軸はシート抵抗である。このグラフから、熱処理温度が925℃から1050℃の間は、抵抗が297.5から151.8Ωになっており、抵抗と温度との関係は2Ω/℃であることがわかる。このグラフを利用すれば、シート抵抗を求めることにより、正確な温度を求めることができる。
【0014】
このようにボロンを不純物に用いた場合には、温度範囲が900℃から1050℃の範囲においてシート抵抗と温度との関係を正確に求めることができる。
【0015】
ここで不純物がボロンの場合に、シート抵抗と温度との関係を求めるときに温度範囲を900℃以上に設定した理由について説明する。
【0016】
シート抵抗と温度との関係を求めるに際しては不純物の「活性化率」を考慮することが重要である。この温度範囲では、ボロンの活性化率がほぼ100%となっているからである。不純物の活性化率が100%より小さい場合には、ウェハの注入領域には活性化していない領域が存在し、そのような領域を含めてシート抵抗を測定しようとすると、高い抵抗となり、結果的にシート抵抗がばらついてしまい、測定再現性が小さくなる。ボロンの場合、熱処理温度が900℃以上であれば、活性化率は100%となり、ウェハの注入領域は活性化されるために、高抵抗領域は存在せず、シート抵抗の測定再現性は高まり、シート抵抗と温度との関係を正確に求めることができる。
【0017】
図4にはボロンを注入した場合のシート抵抗の変化を示している。(a)はボロンの注入量が2.0×1015cm−2の場合であり、(b)はボロンの注入量が1.0×1015cm−2の場合である。これらのグラフからわかるように注入後の不純物の活性化率が100%である場合は、ウェハの注入領域は活性化されるために、シート抵抗の測定再現性は高まり、シート抵抗と温度との関係を正確に求めることができる。
【0018】
また図6に示すようにモニタウェハ面内での温度分布も求めることができる。図6に示すようにウェハの面内で温度は均一ではなく、周辺部、中心部で温度が異なっていることもこのモニタ用ウェハを用いることで正確に温度分布も把握することができる。
【0019】
図5に不純物にヒ素を用いた場合について説明する。図5の横軸は熱処理温度であり、縦軸はシート抵抗である。図5に示す通り、750℃より小さい場合には、ヒ素の活性化率が100%とはならないために、シート抵抗と温度との関係のエラーバーの範囲が大きくなる。つまり測定の再現性が低くなっている。これでは正しい温度が測定できない。そこで、温度範囲を750℃以上にすることにより、ヒ素の活性化率が100%を越えるために、シート抵抗と温度との間の測定再現性が高まり、温度を正しく測定することができる。
【0020】
この実施形態では、不純物がボロンの場合は、測定温度範囲を900〜1050℃、不純物がヒ素の場合を測定温度範囲が750℃〜900℃としたが、不純物にリンを用いた場合も測定温度範囲は750℃〜900℃が好適である。
【0021】
(実施形態2)
実施形態1で説明した温度測定の方法を用いて、熱処理装置の温度管理をする方法について説明する。
【0022】
熱処理装置A、熱処理装置B、熱処理装置Cを用意する。これらはいずれもRTA装置であるが、メーカもそれぞれ異なっている。半導体プロセスにおいて熱処理をするにあたっては、装置ごとの温度ばらつきをなくすることが必要である。そのため、熱処理装置A、B、Cのいずれの装置においても、装置の設定温度を950℃とすれば、当然ではあるが、実際の温度も950℃となるように設定することが必要である。A〜Cのそれぞれの熱処理装置について、設定温度と実測温度との関係が正確になるように調整すればいいが、それは煩雑であるので、1つの熱処理装置(たとえば熱処理装置A)について設定温度と実測温度との関係が正確になるように調整し、他の装置はその基準とした装置(熱処理装置A)からのずれが無いように調整するという装置の温度管理方法を説明する。
【0023】
まずは、基準となる熱処理装置Aについては装置設定温度と実測温度とが正確に調整されている。次にこの装置Aの熱処理時の「設定温度」と「シート抵抗」との関係を正確に求めておく。その方法としては実施形態1で説明したように、不純物にボロンを用いた温度測定用ウェハを用いてもよいし、ヒ素を用いてもよい。ただし温度範囲によって使い分けることになる。実施形態1で説明したように、ボロンは900〜1050℃で有効であり、ヒ素は750〜900℃で有効である。ここでは不純物にボロンを用いた温度測定用ウェハを用いている。また設定温度が1000℃のときにはシート抵抗は150Ωであった。
【0024】
次に装置の熱処理時の「設定温度」と「正確な温度」との関係を調整していない装置Bについての温度管理方法を説明する。装置Aで用いたのと同じ温度モニタ用ウェハを用い、このウェハを装置Bに設置し、装置の「設定温度」と「シート抵抗」との関係を求める。設定温度を1000℃として、温度モニタ用ウェハを熱処理し、シート抵抗を測定する。このときにシート抵抗は130Ωになったとする。同様に、装置Cについても、装置Aと同じ温度モニタ用ウェハを用い、装置Cでの熱処理により、シート抵抗を測定する。シート抵抗は120Ωになったとする。
【0025】
装置Aは設定温度とシート抵抗との関係が正確に求まっている。したがって、装置Bについては、装置Aでの熱処理よりもシート抵抗が大きくなっているため、実際の温度は低くなっていることがわかり、同様に、装置Cについては、シート抵抗が小さくなっているために、実際の熱処理温度は大きくなっていることがわかる。
【0026】
このように温度モニタ用ウェハを用いることにより、装置間の温度のばらつきを容易に測定でき、調整することができるので、半導体プロセスの熱処理工程を装置間の温度ばらつきなく実施することができるものである。
【0027】
RTA装置(急速加熱装置)について説明したが、これ以外に、ランプ加熱、ヒータ加熱装置であってもよい。
【0028】
【発明の効果】
以上説明したように本発明によれば、注入に用いる不純物により、シート抵抗を正確に求めることのできる温度範囲がわかったため、シート抵抗に基づく温度を正確に求めることができる。
【0029】
またこの方法を用いて、熱処理温度間の熱処理温度のばらつきを調整することができ、熱処理工程を安定して行うことができる。
【図面の簡単な説明】
【図1】実施の形態の温度モニタ用ウェハの構成を示す図
【図2】実施の形態の温度モニタ用ウェハの製造工程断面図
【図3】ボロンを注入した場合のシート抵抗と温度との関係を示す図
【図4】ボロンを注入した場合のシート抵抗と温度との関係を示す図
【図5】ヒ素を注入した場合のシート抵抗と温度との関係を示す図
【図6】温度モニタ用ウェハ内の温度分布を示す図
【符号の説明】
1 温度モニタ用ウェハ
10 シリコン結晶基板
11 不純物領域
12 シリコン酸化膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a temperature measuring method, and more particularly to a temperature measuring method using sheet resistance.
[0002]
[Prior art]
As a conventional temperature measuring method, there is a method disclosed in JP-A-2000-208524. According to this method, an ion-implanted semiconductor wafer for temperature monitoring is prepared, and this wafer is introduced into a heat treatment apparatus. Then, a heat treatment is performed on the wafer at a temperature of 720 ° C. or less, and the sheet resistance of the wafer is measured. Then, the temperature distribution of the wafer in the heat treatment process is obtained from the relationship between the previously determined sheet resistance value and the temperature.
[0003]
[Problems to be solved by the invention]
However, with this method, it is difficult to measure an accurate temperature. In this conventional temperature measurement method, it is important to accurately determine the relationship between the sheet resistance of the monitoring wafer and the temperature, but this is because it is difficult to accurately determine the relationship in the entire temperature range.
[0004]
An object of the present invention is to clarify a range in which a temperature can be accurately obtained by ion-implanted impurities, and to provide a temperature measurement method capable of accurately obtaining a temperature based on sheet resistance in the temperature range. .
[0005]
[Means for Solving the Problems]
In order to achieve the above object, in the method of the present invention, a step of heat-treating a monitor substrate into which impurities are introduced, a step of measuring sheet resistance at a plurality of positions on the surface of the monitor substrate, Obtaining a temperature (distribution) of the monitor substrate in the heat treatment process based on the relationship between the obtained sheet resistance and the temperature,
The impurity is boron, and a temperature range of the heat treatment is 900 ° C. to 1050 ° C., which is a temperature measuring method.
[0006]
According to this method, the "activation rate" of the impurity is almost 100% in a predetermined temperature range, and therefore, the measurement reproducibility of the relationship between the sheet resistance and the temperature can be improved. That is, since the measurement variation of the sheet resistance is reduced, the measurement reproducibility is enhanced, and the relationship between the sheet resistance and the temperature can be accurately obtained.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0008]
FIG. 1 shows the configuration of the temperature monitoring wafer 1. As shown in FIG. 1, the temperature monitoring wafer 1 has an impurity region 11 formed by implantation on the surface of a silicon crystal substrate 10 and a silicon oxide film 12 formed on the impurity region 11 formed by implantation. I have.
[0009]
As shown in FIGS. 2A and 2B, a 3 nm-thick silicon oxide film 12 of oxygen or N 2 O is formed on the silicon crystal substrate 10 of the monitoring wafer 1. Next, as shown in FIG. 2C, boron ions are implanted into the wafer surface. The implantation conditions are an acceleration voltage of 5 keV and a dose of 2 × 10 15 cm −2 . Thereby, the impurity implantation region 11 is formed.
[0010]
This wafer is placed on a wafer support of a rapid heating apparatus (RTA apparatus) and heat-treated under the following conditions. Thereafter, the sheet resistance of the wafer is measured, and the relationship between the heat treatment temperature and the sheet resistance is determined. Note that the heat treatment is performed in a nitrogen gas.
[0011]
[Table 1]
Figure 2004039776
[0012]
After the heat treatment, the silicon oxide film 12 on the impurity region 11 is removed, and the sheet resistance at 120 places on the wafer is measured by the four-deep needle method. The graph of FIG. 3 is created by this measurement.
[0013]
The horizontal axis in FIG. 3 is the temperature during heat treatment, and the vertical axis is the sheet resistance. From this graph, it can be seen that when the heat treatment temperature is between 925 ° C. and 1050 ° C., the resistance is 297.5 to 151.8Ω, and the relationship between the resistance and the temperature is 2Ω / ° C. Using this graph, an accurate temperature can be obtained by obtaining the sheet resistance.
[0014]
When boron is used as the impurity as described above, the relationship between the sheet resistance and the temperature can be accurately obtained in a temperature range of 900 ° C. to 1050 ° C.
[0015]
Here, the reason why the temperature range is set to 900 ° C. or more when obtaining the relationship between the sheet resistance and the temperature when the impurity is boron will be described.
[0016]
In determining the relationship between sheet resistance and temperature, it is important to consider the “activation rate” of impurities. This is because the activation rate of boron is almost 100% in this temperature range. If the activation rate of the impurity is smaller than 100%, there is a non-activated region in the implanted region of the wafer. If the sheet resistance is measured including such a region, the resistance becomes high. The sheet resistance varies, and the measurement reproducibility decreases. In the case of boron, if the heat treatment temperature is 900 ° C. or higher, the activation rate becomes 100%, and the implanted region of the wafer is activated. Therefore, there is no high-resistance region, and the measurement reproducibility of the sheet resistance increases. , The relationship between sheet resistance and temperature can be determined accurately.
[0017]
FIG. 4 shows a change in sheet resistance when boron is implanted. (A) shows the case where the boron implantation amount is 2.0 × 10 15 cm −2 , and (b) shows the case where the boron implantation amount is 1.0 × 10 15 cm −2 . As can be seen from these graphs, when the activation rate of the impurity after the implantation is 100%, the implantation region of the wafer is activated, so that the measurement reproducibility of the sheet resistance is increased, and the difference between the sheet resistance and the temperature is improved. Relationships can be determined accurately.
[0018]
Further, as shown in FIG. 6, the temperature distribution in the monitor wafer surface can also be obtained. As shown in FIG. 6, the temperature is not uniform in the plane of the wafer, and the temperature is different at the peripheral portion and the central portion. By using this monitoring wafer, the temperature distribution can be accurately grasped.
[0019]
FIG. 5 illustrates a case where arsenic is used as an impurity. The horizontal axis in FIG. 5 is the heat treatment temperature, and the vertical axis is the sheet resistance. As shown in FIG. 5, when the temperature is lower than 750 ° C., the activation ratio of arsenic does not become 100%, so that the range of the error bar between the sheet resistance and the temperature becomes large. That is, the reproducibility of the measurement is low. This makes it impossible to measure the correct temperature. Therefore, by setting the temperature range to 750 ° C. or more, the activation rate of arsenic exceeds 100%, so that the measurement reproducibility between the sheet resistance and the temperature is improved, and the temperature can be measured correctly.
[0020]
In this embodiment, the measurement temperature range is 900 to 1050 ° C. when the impurity is boron, and the measurement temperature range is 750 ° C. to 900 ° C. when the impurity is arsenic. The range is preferably from 750 ° C to 900 ° C.
[0021]
(Embodiment 2)
A method for controlling the temperature of the heat treatment apparatus using the temperature measurement method described in the first embodiment will be described.
[0022]
A heat treatment apparatus A, a heat treatment apparatus B, and a heat treatment apparatus C are prepared. These are all RTA devices, but the manufacturers are different from each other. In performing heat treatment in a semiconductor process, it is necessary to eliminate temperature variations among devices. Therefore, in any of the heat treatment apparatuses A, B, and C, if the set temperature of the apparatus is 950 ° C., it is, of course, necessary to set the actual temperature to 950 ° C. What is necessary is just to adjust so that the relationship between the set temperature and the actually measured temperature may be accurate for each of the heat treatment apparatuses A to C. A description will be given of a method of controlling the temperature of an apparatus in which adjustment is performed so that the relationship with the measured temperature becomes accurate, and other apparatuses are adjusted so that there is no deviation from the apparatus (heat treatment apparatus A) used as a reference.
[0023]
First, for the heat treatment apparatus A serving as a reference, the apparatus set temperature and the actually measured temperature are accurately adjusted. Next, the relationship between the "set temperature" and the "sheet resistance" during the heat treatment of the apparatus A is accurately obtained. As described in the first embodiment, a temperature measuring wafer using boron as an impurity may be used, or arsenic may be used. However, they are used properly depending on the temperature range. As described in the first embodiment, boron is effective at 900 to 1050 ° C, and arsenic is effective at 750 to 900 ° C. Here, a temperature measurement wafer using boron as an impurity is used. When the set temperature was 1000 ° C., the sheet resistance was 150Ω.
[0024]
Next, a description will be given of a temperature management method for the device B in which the relationship between the “set temperature” and the “correct temperature” during the heat treatment of the device is not adjusted. The same temperature monitoring wafer as that used in the apparatus A is used, this wafer is set in the apparatus B, and the relationship between the “set temperature” and the “sheet resistance” of the apparatus is obtained. With the set temperature set to 1000 ° C., the temperature monitoring wafer is heat-treated and the sheet resistance is measured. At this time, it is assumed that the sheet resistance becomes 130Ω. Similarly, for the apparatus C, the same sheet for temperature monitoring as the apparatus A is used, and the sheet resistance is measured by the heat treatment in the apparatus C. It is assumed that the sheet resistance becomes 120Ω.
[0025]
In the apparatus A, the relationship between the set temperature and the sheet resistance is accurately determined. Therefore, it can be seen that the actual temperature of the device B is lower because the sheet resistance is higher than that of the heat treatment in the device A, and similarly, the sheet resistance of the device C is lower. Therefore, it can be seen that the actual heat treatment temperature has increased.
[0026]
By using the temperature monitoring wafer in this way, the temperature variation between the devices can be easily measured and adjusted, so that the heat treatment process of the semiconductor process can be performed without the temperature variation between the devices. is there.
[0027]
Although the RTA device (rapid heating device) has been described, a lamp heating device or a heater heating device may be used instead.
[0028]
【The invention's effect】
As described above, according to the present invention, the temperature range in which the sheet resistance can be accurately determined has been found from the impurities used for the implantation, so that the temperature based on the sheet resistance can be accurately determined.
[0029]
Further, by using this method, the variation in the heat treatment temperature between the heat treatment temperatures can be adjusted, and the heat treatment step can be performed stably.
[Brief description of the drawings]
FIG. 1 is a view showing a configuration of a temperature monitoring wafer according to an embodiment; FIG. 2 is a sectional view showing a manufacturing process of the temperature monitoring wafer according to the embodiment; FIG. FIG. 4 is a diagram showing the relationship between sheet resistance and temperature when boron is implanted. FIG. 5 is a diagram showing the relationship between sheet resistance and temperature when arsenic is implanted. FIG. 6 is a temperature monitor. Of temperature distribution inside the wafer
DESCRIPTION OF SYMBOLS 1 Temperature monitoring wafer 10 Silicon crystal substrate 11 Impurity region 12 Silicon oxide film

Claims (4)

不純物を導入したモニタ用基板を熱処理する工程と、前記モニタ用基板表面の複数箇所のシート抵抗を測定する工程と、得られたシート抵抗と予め求めていたシート抵抗と温度との関係に基づいて熱処理工程におけるモニタ基板の温度を求める工程とを備え、
前記不純物はボロンであり、熱処理の温度範囲は、900℃〜1050℃である、温度測定方法。
A step of heat-treating the monitor substrate into which the impurities are introduced, a step of measuring the sheet resistance at a plurality of locations on the surface of the monitor substrate, and based on a relationship between the obtained sheet resistance and a previously determined sheet resistance and temperature. Determining the temperature of the monitor substrate in the heat treatment step,
The temperature measurement method, wherein the impurity is boron, and a temperature range of the heat treatment is 900 ° C to 1050 ° C.
前記不純物はヒ素であり、熱処理温度の範囲は、750℃〜900℃である、請求項1に記載の温度測定方法。The temperature measurement method according to claim 1, wherein the impurity is arsenic, and a heat treatment temperature is in a range of 750C to 900C. 前記不純物はリンであり、熱処理温度の範囲は、750℃〜900℃である、請求項1に記載の温度測定方法。The temperature measurement method according to claim 1, wherein the impurity is phosphorus, and a heat treatment temperature is in a range of 750C to 900C. 設定温度が校正された基準となる熱処理装置の設定温度と、シート抵抗との関係を求めておき、
第1の熱処理装置について、前記第1の熱処理装置の設定温度での熱処理によりモニタ基板のシート抵抗を求め、このシート抵抗と前記基準の熱処理装置との比較を行う、熱処理装置の温度管理方法。
The relationship between the set temperature of the heat treatment apparatus, which is the reference for which the set temperature has been calibrated, and the sheet resistance is determined in advance.
A temperature management method for a first heat treatment apparatus, wherein a sheet resistance of a monitor substrate is obtained by heat treatment at a set temperature of the first heat treatment apparatus, and the sheet resistance is compared with the reference heat treatment apparatus.
JP2002193040A 2002-07-02 2002-07-02 Measuring method of temperature and control method of equipment temperature Pending JP2004039776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002193040A JP2004039776A (en) 2002-07-02 2002-07-02 Measuring method of temperature and control method of equipment temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002193040A JP2004039776A (en) 2002-07-02 2002-07-02 Measuring method of temperature and control method of equipment temperature

Publications (1)

Publication Number Publication Date
JP2004039776A true JP2004039776A (en) 2004-02-05

Family

ID=31702100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002193040A Pending JP2004039776A (en) 2002-07-02 2002-07-02 Measuring method of temperature and control method of equipment temperature

Country Status (1)

Country Link
JP (1) JP2004039776A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335621A (en) * 2003-05-02 2004-11-25 Tokyo Electron Ltd Heat treatment apparatus, temperature control method thereof and heat treatment system
JP2008066643A (en) * 2006-09-11 2008-03-21 Fujitsu Ltd Temperature distribution measurement method and adjusting method for heat treatment equipment
JP2008218612A (en) * 2007-03-02 2008-09-18 Toyota Motor Corp Heat treatment temperature measuring method of semiconductor substrate
KR100922498B1 (en) 2007-12-14 2009-10-20 주식회사 동부하이텍 Manufacturing method of temperature measuring wafer, Temperature measuring wafer and Temperature measuring method of furnace for semiconductor processing
CN102800604A (en) * 2011-05-26 2012-11-28 中芯国际集成电路制造(上海)有限公司 Method for obtaining parameters of ion implantation technology, monitoring wafer and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335621A (en) * 2003-05-02 2004-11-25 Tokyo Electron Ltd Heat treatment apparatus, temperature control method thereof and heat treatment system
JP4586333B2 (en) * 2003-05-02 2010-11-24 東京エレクトロン株式会社 Heat treatment apparatus, heat treatment system, and temperature control method for heat treatment apparatus
JP2008066643A (en) * 2006-09-11 2008-03-21 Fujitsu Ltd Temperature distribution measurement method and adjusting method for heat treatment equipment
JP2008218612A (en) * 2007-03-02 2008-09-18 Toyota Motor Corp Heat treatment temperature measuring method of semiconductor substrate
KR100922498B1 (en) 2007-12-14 2009-10-20 주식회사 동부하이텍 Manufacturing method of temperature measuring wafer, Temperature measuring wafer and Temperature measuring method of furnace for semiconductor processing
CN102800604A (en) * 2011-05-26 2012-11-28 中芯国际集成电路制造(上海)有限公司 Method for obtaining parameters of ion implantation technology, monitoring wafer and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8874254B2 (en) Temperature setting method of heat processing plate, temperature setting apparatus of heat processing plate, program, and computer-readable recording medium recording program thereon
US5831249A (en) Secondary measurement of rapid thermal annealer temperature
US20120275484A1 (en) Temperature measuring device, temperature calibrating device and temperature calibrating method
CN104347441B (en) The monitoring method of ion implanting
CN103605388B (en) By method and the calibrating epitaxial table temperature field method of ion implanting wafer inspection extension table temperature field temperature
TWI241656B (en) Method and system for compensating for anneal non-uniformities
US20060170078A1 (en) Silicon member and method of manufacturing the same
US7397046B2 (en) Method for implanter angle verification and calibration
JP2004039776A (en) Measuring method of temperature and control method of equipment temperature
US6754553B2 (en) Implant monitoring using multiple implanting and annealing steps
JP2000208524A (en) Method for measuring temperature of semiconductor wafer for temperature monitor
JP3269463B2 (en) Correction method for thin film growth temperature
CN103094143A (en) Ion implantation monitoring method
JP2755214B2 (en) Method of forming semiconductor thin film
JP7374682B2 (en) Resistivity measuring instrument, semiconductor device manufacturing method, and resistivity measuring method
CN111829682A (en) Furnace tube temperature calibration method
JP2007281064A (en) Ion implantation amount measurement method
CN117233568B (en) Method and device for calculating carrier mobility
JP2004055694A (en) Manufacturing method for semiconductor substrate including insulated silicon single crystal layer
JP2019106457A (en) Method of manufacturing evaluation wafer
CN116884891B (en) Process matching method of furnace tube equipment
US6844208B2 (en) Method and system for monitoring implantation of ions into semiconductor substrates
JP2008147371A (en) Temperature measuring method and temperature management method for thermal treatment device
JPH0555157A (en) Manufacture of semiconductor device
JPH09232241A (en) Method for calibrating temperature of epitaxy reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040705

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404