JP2004039288A - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP2004039288A
JP2004039288A JP2002190875A JP2002190875A JP2004039288A JP 2004039288 A JP2004039288 A JP 2004039288A JP 2002190875 A JP2002190875 A JP 2002190875A JP 2002190875 A JP2002190875 A JP 2002190875A JP 2004039288 A JP2004039288 A JP 2004039288A
Authority
JP
Japan
Prior art keywords
voltage
led
circuit
leds
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002190875A
Other languages
Japanese (ja)
Other versions
JP4007096B2 (en
Inventor
Yasunori Kawase
河瀬 靖憲
Hiroyuki Nishino
西野 博之
Toru Niwa
丹羽 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002190875A priority Critical patent/JP4007096B2/en
Publication of JP2004039288A publication Critical patent/JP2004039288A/en
Application granted granted Critical
Publication of JP4007096B2 publication Critical patent/JP4007096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • H05B45/397Current mirror circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a light output fluctuation due to power supply fluctuation and an imbalance of light output due to fluctuation of the forward direction voltage in a lighting device that lights a plurality of LEDs with a DC power source such as a battery, and realize a function of lighting off all the LEDs at the disconnection of one LED lamp with a simple structure. <P>SOLUTION: This is the lighting device in which a choke coil L1 and a switch element Tr1 are connected in series to the DC power source Vdc and has a diode D1 and a capacitor C1 for rectifying and smoothing the voltage at both ends of the switching element Tr1 and a boosting circuit constructed of a control circuit 1 and a driving circuit that operate the above switching element Tr1 by high frequency, and the LED unit, in which a plurality of LEDs is connected in series to the output of this boosting circuit, is connected through a resistor R2. The LEDs are connected in series so that the sum of the forward direction voltage of the LEDs may become a voltage or more of the DC power source Vdc, and feed-back control is carried out so that the current flowing to the LEDs may become constant. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は車載用のテールランプ/ストップランプとして利用できる照明装置に関するものである。
【0002】
【従来の技術】
従来例を図30〜図33に示す。図30は複数のLEDを用いた車載用テール/ストップランプの回路図を示す。図31はこのようなテール/ストップランプの配置される箇所を図示したものである。図30において、LED1は第1のLEDユニット、LED2は第2のLEDユニット、D1,D2はダイオード、R1〜R4は抵抗である。GNDはグランド端子であり、Stopはブレーキを踏んだストップランプ点灯状態で通電される端子、Tailはテールランプ点灯状態で通電される端子である。
【0003】
テールランプ点灯状態ではLEDの光出力を低く抑え、ブレーキを踏んだストップランプ点灯状態ではLEDの光出力を増大させて使用される。このような方式は安価なためによく使われるが、光量確保のために複数のLEDを接続する場合には、LEDの順方向電圧Vfの和が少なくとも電源電圧以下となるようにLEDを直列に接続したLEDユニットを並列に接続しないと必要数のLEDが接続できない。例えば電源が車で使われるようなバッテリーでは定格が12V、電源変動が9V〜16Vの範囲なので、LEDの順方向電圧Vfが3Vであれば、LEDは直列に3個しか接続できないことになる。従って、LEDを6個点灯させたい場合には図30のように並列に接続して使用する必要がある。
【0004】
以下、図30の回路の動作について簡単に説明する。まず、テールランプ点灯状態では図のTail端子とGND端子間にバッテリーが接続され、ダイオードD2と抵抗R1を介して複数個直列に接続された第1のLEDユニット(LED1)が、またダイオードD2と抵抗R4を介して複数個直列に接続された第2のLEDユニット(LED2)が点灯し、抵抗R1とR4の抵抗値を等しく設定すれば、LED1とLED2は略等しく発光する。
【0005】
次に、ストップランプ点灯状態では、図のStop端子とGND端子間にバッテリーが接続され、ダイオードD1と抵抗R2を介してLED1が、またダイオードD1と抵抗R3を介してLED2が点灯し、抵抗R2とR3の抵抗値を等しく且つ抵抗R1,R4に対して十分小さく設定すれば、LED1とLED2は略等しく高出力で発光する。
【0006】
【発明が解決しようとする課題】
(課題1)
このような従来例における課題として、上記のような電池などを電源とした時の電源変動による光出力の変化や、LEDの順方向電圧Vfのばらつきによる並列回路の光出力のばらつきが挙げられる。電池電圧をVdc、ダイオードD1,D2の順方向電圧をVf0、抵抗値をR、LED1の各順方向電圧をVf11,Vf12,Vf13、LED2の各順方向電圧をVf21,Vf22,Vf23とすれば、LED1及びLED2の電流は下式のように表される。
I(LED1)=[Vdc−Vf0−(Vf11+Vf12+Vf13)]/RI(LED2)=[Vdc−Vf0−(Vf21+Vf22+Vf23)]/R
【0007】
すなわち、電池電圧Vdcが変動するとI(LED1),I(LED2)は同じように変動するので、最低の電源電圧の時に必要な光出力が得られるようにすると、電源が変動して高くなったときにLEDに過電流が流れ、LED自身が発熱し、寿命に影響を与えたり、限流用の抵抗の消費電力が大きくなり、定格電力の大きい抵抗を使う必要が生じる。また、各LEDの順方向電圧がばらつくと、特に順方向電圧の総和と電池電圧の差が少ない場合にLED1及びLED2の電流I(LED1),I(LED2)は大きく異なることが予想され、各並列回路の光出力にアンバランスを生じる。
【0008】
(課題2)
更に車載用特有の課題として、LED断線時に必要最低限の光出力が得られない事態が予想されることから、断線時には全灯とも消灯して識別を容易にする機能が要求される。ところが、上述したようにLEDの数が増えると電源との関係上、並列にせざるをえず、LED回路が並列に接続されていると、LEDが1灯断線しても全部のLEDを消灯させることはできない。
【0009】
図32は前者の課題1に対する一つの解決手段を示すものである。抵抗R4、コレクタとべースを短絡したトランジスタTr3、抵抗R3を直列に接続した基準電流回路、LED1と直列に接続されベースが上記トランジスタTr3のベースに接続されたトランジスタTr1と抵抗R1の直列回路、同様にLED2と直列に接続されベースが上記トランジスタTr3のベースに接続されたトランジスタTr2と抵抗R2の直列回路はカレントミラー回路を構成し、LED1及びLED2の回路電流を上記の基準電流に略等しくなるように制御される。このような方策によって、LEDの順方向電圧がばらついても並列回路の電流を概ね合わせることが可能となり、光出力への影響を回避できる。
【0010】
図33は後者の課題2に対する一つの解決手段を示したものである。LED1,LED2には各々電流制限抵抗R2,R3が直列に接続され、トータルの電流は抵抗R1でバイアスされたトランジスタTr1を介して流れる。LED1及びLED2が全て正常であればLED電流が流れて抵抗R2,R3には一定の電圧降下を生じ、コンパレータCOMPの−端子は基準電源の電圧を抵抗R4とR7で分圧した電位に保たれ、抵抗R5とR8の分圧で決まるコンパレータCOMPの+端子の電位を上記−端子の電位以下に設定すれば、コンパレータCOMPの出力はLowの状態となり、トランジスタTr1のベース・エミッタ間に接続されたトランジスタTr2はオフ、トランジスタTr1はオンを持続してLED1,LED2を点灯する。
【0011】
LED1,LED2の何れかのLEDが断線すれば、抵抗R2或いはR3の電圧降下が消滅するので、コンパレータCOMPの−端子電位はダイオードD1或いはD2を介して接続される抵抗R2或いはR3によって低下し、コンパレータCOMPの+端子電位以下となればその出力はHighに反転し、抵抗R6及びダイオードD3を介して+端子をHighに固定して自己ラッチし、以降コンパレータCOMPの出力はHighに固定される。従って抵抗R9を介してトランジスタTr2のベース電流が供給され、トランジスタTr2がオン、トランジスタTr1がオフとなってLED1,LED2とも全て消灯する。
【0012】
上記従来例における2つの課題に対して図32,図33で示したような方策を組み合わせる必要があるため、回路構成が複雑となってコスト的な課題を生じたり、LEDが正常であるにも関わらず、外来ノイズ等による誤動作で全灯消灯するような事態も起こりやすくなって、信頼性の面での課題も生まれる。
【0013】
(課題3)
また、車載用ではイグニッションを切った時やロードダンプ時や他の機器を電源ON/FFしたときなどに電源に過渡的なサージ電圧が発生することがある。例えば車載機器の規格である自動車規格(JASO)では一例としてピーク電圧70V、減衰定数200ms(最大値の36.8%まで減衰する時間)等のサージが規定されている。
【0014】
このようなサージが印加されると図30の回路ではLEDに過電流が流れ、LEDが破壊する可能性が考えられる。このようなサージの対策として入力部にパワーツェナーやバリスタ等のサージ対策部品を設けることで対策は可能であるが、前記部品は形状も大きく高価であるという問題がある。
【0015】
本発明は上述のような従来例の欠点に鑑みてなされたもので、電池などの変動範囲の大きな電源を用いて複数のLEDを点灯する照明装置のLED点灯回路において、電源変動による光出力の変動やLED光出力のアンバランスを抑制することが可能であり、またLEDが1灯でも断線に至った場合だけ全てのLEDを消灯でき、外乱等による誤動作の可能性を除去できる照明装置を提供することを課題とする。
【0016】
【課題を解決するための手段】
請求項1の照明装置によれば、上記の課題を解決するために、図1に示すように、直流電源VdcにチョークコイルL1とスイッチング素子Tr1を直列接続し、スイッチング素子Tr1の両端の電圧を整流平滑するダイオードD1及びコンデンサC1と、上記スイッチング素子Tr1を高周波で動作させる制御回路1及び駆動回路で構成された昇圧回路を備え、この昇圧回路の出力に複数個のLEDが直列に接続されたLEDユニットが抵抗R2を介して接続された照明装置において、LEDの順方向電圧の和が直流電源Vdcの電圧以上となるようにLEDを直列に接続し、LEDに流れる電流が一定となるようにフィードバック制御したことを特徴とするものである。
【0017】
請求項2の発明によれば、請求項1において、LEDの断線時には昇圧回路の出力電圧が一定となるように制御する定電圧制御に切り替えることを特徴とする。
請求項3の発明によれば、請求項1または2において、LEDユニットに流れる電流を低出力と高出力に切り替える場合に、低出力時には抵抗両端の電圧とLEDの順方向電圧の和が直流電源の電圧以上となるようにLEDを直列に接続し、高出力時には昇圧回路の出力電圧を高くしたことを特徴とする。
【0018】
請求項4の発明によれば、請求項3において、低出力時に抵抗両端の電圧とLEDの順方向電圧の和が直流電源の電圧以上となるようにLEDを直列に接続し、LEDユニットと直列に接続された抵抗値を変化させることで高出力と低出力を切り替えることを特徴とする。
請求項5の発明によれば、請求項4において、高出力時に入力電圧範囲を超える異常電圧が入力された時には低出力時の動作に切り替えることを特徴とする。
【0019】
請求項6の発明によれば、図8に示すように、直流電源Vdcにスイッチング素子Tr1とチョークコイルL1及びコンデンサC1を直列接続し、直流電源Vdcの負極側からスイッチング素子Tr1とチョークコイルL1の接続点に向けて回生電流を流すようにダイオードD1を接続し、上記スイッチング素子Tr1を高周波で動作させる制御回路1及び駆動回路を有する降圧回路を備え、この降圧回路の出力に複数個のLEDが直列に接続されたLEDユニットが抵抗R2を介して接続された照明装置において、降圧回路の出力に、前記抵抗R2の両端の電圧とLEDの順方向電圧の和が直流電源Vdcの電圧以下となるようにLEDを直列に接続し、LEDに流れる電流が一定となるようにフィードバック制御したことを特徴とする。
【0020】
請求項7の発明によれば、請求項6において、LEDユニットに流れる電流を低出力と高出力に切り替える場合に、高出力時に抵抗両端の電圧とLEDの順方向電圧の和が直流電源の電圧以下となるようにLEDを直列に接続し、高出力時には降圧回路の出力電圧を高くしたことを特徴とする。
請求項8の発明によれば、請求項7において、高出力時に抵抗両端の電圧とLEDの順方向電圧の和が直流電源の電圧以下となるようにLEDを接続し、LEDと直列に接続された抵抗値を変化させることで低出力と高出力を切り替えること特徴とする。
【0021】
請求項9の発明によれば、請求項1〜8のいずれかにおいて、LEDユニットが複数個並列に接続され、それらのLEDユニットがそれぞれ一定周期で点灯するように制御され、各LEDユニットを切り替える時に複数のLEDユニットが同時に点灯する重複期間を設けたことを特徴とする。
請求項10の発明によれば、請求項1〜8のいずれかにおいて、負荷として第1及び第2のLEDユニットを並列に接続され、第1のLEDユニットの回路電流で第2のLEDユニットの回路電流を制御する第1のカレントミラー回路と、第2のLEDユニットの回路電流で第1のLEDユニットの回路電流を制御する第2のカレントミラー回路を備えることを特徴とする。
【0022】
【発明の実施の形態】
(実施形態1)
図1に本発明の第1の実施形態を示す。直流電源Vdcと直列にチョークコイルL1とスイッチング素子Tr1が接続され、スイッチング素子Tr1の両端には整流用のダイオードD1と平滑用コンデンサC1が接続されているいわゆる昇圧チョッパー回路の構成である。コンデンサC1の両端には複数個のLEDからなるLEDユニット(以後LEDと記載する)と、LEDに流れる電流を検出する抵抗R2が直列に接続されている。制御回路1は図2のようなエラーアンプ(E/A)1aと発振器1bと比較器1cとからなるいわゆるPWM制御回路となっており、制御回路1のIN端子の電圧が一定となるように図1のスイッチング素子Tr1を高周波(数十〜数百kHz)でスイッチングしている。
【0023】
直流電源Vdcに電池などが使われた場合、例えば自動車用の電池の場合では電圧変動範囲が9〜16Vと広範囲に変動する。従って、LEDの順方向電圧が仮に3V/個であると、出力側のLEDは順方向電圧の和が16V以上、すなわち最低限6個を直列に接続することで、昇圧回路の出力電圧は電源の変動範囲以上とすることが可能となり、電源が変動した場合でもLEDに流れる電流は一定にすることが可能である。
【0024】
図3に一変形例を示す。基本構成は図1と同様であり、昇圧回路の出力からツェナーダイオードZD1と抵抗R5を介してフィードバックループとなる制御回路1のIN端子へ接続する。LEDが断線した場合には電流が流れないので、IN端子は略0Vとなるため、制御回路1は出力を上げるように、スイッチング素子Tr1のONデューティを大きくする。そのため出力電圧は上昇するが、出力電圧がツェナー電圧以上となるとツェナーダイオードZD1がオンするので、出力電圧は略ツェナー電圧に制限される。
【0025】
このように本実施形態では、LEDを順方向電圧の和が電源電圧以上となるように直列に接続し、昇圧回路を用いてLEDに一定電流が流れるように制御することで、LEDの順方向電圧のばらつきや従来のような並列回路でのばらつきや電源変動等による光出力のばらつきをなくすことが可能であり、また、LED1灯が断線した時には複雑な回路を必要とせずに全灯を消灯させることが可能であると共に、簡単な構成でLEDが断線した時に回路電圧が異常に上昇することや、スイッチング素子が過負荷状態になることを防止することができる。
【0026】
(実施形態2)
自動車用のテールランプ/ストップランプのように光出力を切り替える必要が有る場合の実施形態を図4に示す。自動車用のテールランプ/ストップランプでは、テールランプ点灯時には低出力、ストップランプ点灯時には高出力の光出力に切り替える必要がある。Tail端子から電源が入力されているときは、抵抗R2の両端に発生する電圧は抵抗R3,R4で分圧されて制御回路1のIN端子に入力されており、この電圧が内部の基準電圧Vrefと同じになるようにLEDに流れる電流が制御されて動作している。Stop端子から電源が入力されたときには、抵抗R6を介してトランジスタTr2がオンすることで制御回路1のIN端子の電圧は抵抗R4と、抵抗R3,R5からなる並列回路の分圧に変わるためにIN端子の電圧が低下する。従って、同様に基準電圧Vrefと同じ電圧になるためにはLEDに流れる電流はテールランプ点灯時に比べて大きくなる。すなわち昇圧回路の出力電圧はテールランプ点灯時に比べて高くなる。
【0027】
他の回路例を図5に示す。Tail端子から電源が入力されているときは、抵抗R2の両端に発生する電圧は抵抗R3,R4で分圧されて制御回路1のIN端子に入力されており、この電圧が内部の基準電圧Vrefと同じになるようにLEDに流れる電流が制御されて動作している。Stop端子から電源が入力されたときには、抵抗R6を介してトランジスタTr2がオンすることでLEDの電流を制限している抵抗R2に並列に抵抗R5が接続され、抵抗値が小さくなるのでLEDに流れる電流は大きくなり、光出力は増大する。制限抵抗が小さくなるので出力電圧が低下するが、LEDのV−I特性上、LED電流が増加することでLEDの順方向電圧が増加するので、出力電圧は電源電圧に対して高くすることが可能であり、電源電圧変動に対しても確実に制御が可能である。
【0028】
その他の回路例を図6に示す。Stop端子から電源が入力されたときには、抵抗R6を介してトランジスタTr2がオンすることでLEDの電流を制限している抵抗R2に並列に抵抗R5が接続され、抵抗値を切り替えると共に、Tail端子から電源が入力されているときは、抵抗R7を介してトランジスタTr3がオンすることで制御回路1のIN端子の電圧の分圧比を切り替える例である。ストップランプ点灯時とテールランプ点灯時の調光比が大きい場合に、LED電流が低下するテールランプ点灯時に、LEDの順方向電圧がLEDの特性上低くなるので、昇圧回路の出力電圧が低下してしまい、電源変動に対して電源電圧以下となり、制御が出来なくなる、また、抵抗R2の抵抗値を高くすると、抵抗R3,R4の分圧比が高くなり過ぎ、制御回路1が制御できなくなり、電源変動に対して昇圧回路の出力電圧が低下してしまうという可能性がある。これらを防止するためには出力電圧をLEDの順方向電圧の和よりも非常に高く設定する必要があり、電流制限抵抗での損失が大きくなってしまうという問題が生じる。
【0029】
図6の回路では、Stop端子から電源が入力されたときには、トランジスタTr2がオンするので、制限抵抗値が下がるから電流が増加し、Tail端子から電源が入力されているときには、トランジスタTr3がオンして、抵抗R3とR4の分圧比を変えることで昇圧回路の二次側電圧を必要以上に高くする必要はなく、出力が安定するように制御を行うことができる。
【0030】
その他の回路例を図7に示す。ダイオードD2,D3のカソードからツェナーダイオードZD1と抵抗R7、トランジスタTr3からなる過電圧保護回路を設ける。ツェナーダイオードZD1のツェナー電圧は電源電圧範囲以上の電圧、例えば電源電圧が9〜16Vの範囲で変動する電源であれば24Vなどの電圧とする。Stop端子から電源入力されている高出力状態でLEDが点灯している時に、入力電源にサージなどにより過電圧が発生し、その過電圧がツェナー電圧以上の電圧であれば、ツェナーダイオードZD1がオンしてトランジスタTr3がオンするので、トランジスタTr2がオフしてLEDユニットの直列抵抗がR2のみとなるので、テールランプ点灯時の低い電流に切り替わるから、過電圧に対してもLEDに過電流が流れることは無い。
【0031】
このように本実施形態では光出力を変化させた時においても低出力時の順方向電圧の和が電源電圧以上となるようにLEDを直列に接続し、昇圧回路の出力を低出力と高出力に変化させ、LEDに一定電流が流れるように制御することで、光出力が異なる状態においてもLEDの順方向電圧のばらつきや従来のような並列回路でのばらつきや電源変動等による光出力のばらつきをなくすことが可能であり、またLED1灯が断線した時には複雑な回路を必要とせずに全灯を消灯させることが可能である。
【0032】
さらに、図6のような回路では高出力時にも昇圧回路の出力電圧を高くする必要が無いので、部品の耐圧を低くすることが出来、また、制限抵抗での損失を小さくすることができるというメリットが有る。
また、図7のような回路では入力電圧にイグニッション時等のサージ的な過電圧が生じた場合においてもLEDに過電流が流れることが無い。
【0033】
(実施形態3)
図8に本発明の実施形態3を示す。直流電源Vdcと直列にスイッチング素子Tr1とチョークコイルL1が接続され、スイッチング素子Tr1のコレクタとチョークコイルL1の接続点に回生用ダイオードD1のカソードが接続され、ダイオードD1のアノードはグランドに接続され、チョークコイルL1の他端に平滑用のコンデンサC1が接続された、いわゆる降圧チョッパー回路の構成である。コンデンサC1の両端には複数個のLEDからなるLEDユニット(以後LEDと記載する)とLEDに流れる電流を検出する抵抗R2が直列に接続されている。制御回路1は図2と同じようないわゆるPWM制御を行っており、抵抗R2の両端電圧が一定となるようにスイッチング素子Tr1を高周波(数十〜数百kHz)でスイッチングしている。
【0034】
直流電源Vdcに電池などが使われた場合、例えば自動車用の電池の場合では電圧変動範囲が9〜16Vと広範囲に変動する。従って、LEDの順方向電圧が仮に3V/個であると出力側のLEDは順方向電圧の和が9V以下、すなわち最大限3個を直列に接続することで、降圧回路の出力電圧は電源の変動範囲以下とすることが可能となり、電源が変動した場合でもLEDに流れる電流は一定にすることが可能である。
【0035】
このように本実施形態ではLEDを順方向電圧の和が電源電圧以下となるように直列に接続し、降圧回路を用いてLEDに一定電流が流れるように制御することで、LEDの順方向電圧のばらつきや電源変動等による光出力のばらつきを無くすことが可能であり、またLED1灯が断線した時には複雑な回路を必要とせずに全灯を消灯させることが可能である。本実施形態は電池電圧が例えば48V等のように、高い場合に特に有効となる。
【0036】
(実施形態4)
図9に本発明の実施形態4を示す。自動車用のテールランプのように光出力を切り替える必要が有る場合の例を示す。Tail端子から電源が入力されているときはトランジスタTr2はオフしており、抵抗R2の両端に発生する電圧は抵抗R3,R4で分圧されて制御回路1のIN端子に入力されており、この電圧が内部の基準電圧Vrefと同じになるようにLEDに流れる電流が制御されて動作している。Stop端子から電源が入力されたときには抵抗R6を介してトランジスタTr2がオンすることで制御回路のIN端子の電圧は抵抗R4と、抵抗R3,R5からなる並列回路の分圧に変わるためにIN端子の電圧が低下する。従って、IN端子の電圧が基準電圧Vrefと同じ電圧になるためにはLEDに流れる電流はTail端子から電源が入力されているときに比べて大きくなる。
【0037】
図10に他の例を示す。Tail端子から電源が入力されているときは抵抗R2の両端に発生する電圧は抵抗R3,R4で分圧されて制御回路1のIN端子に入力されており、この電圧が内部の基準電圧Vrefと同じになるようにLEDに流れる電流が制御されて動作している。Stop端子から電源が入力されたときには抵抗R6を介してトランジスタTr2がオンすることでLEDの電流を制限している抵抗R2に並列に抵抗R5が接続され、制限抵抗が小さくなるのでLEDに流れる電流は大きくなり、光出力は増大する。電流が増加するとLEDの順方向電圧が高くなるので、抵抗値を小さくすることで出力電圧は電源電圧以下にすることが可能であり、電源変動に対しても確実に制御が可能である。
【0038】
このように本実施形態では光出力を変化させた場合においても高出力時の順方向電圧の和が電源電圧以下となるようにLEDを直列に接続し、降圧回路の出力を低出力と高出力に変化させ、LEDに一定電流が流れるように制御することで、光出力が異なる状態においてもLEDの順方向電圧のばらつきや従来のような並列回路でのばらつきや電源変動等による光出力のばらつきを無くすことが可能であり、またLED1灯が断線した場合には複雑な回路を必要とせずに全灯を消灯させることが可能である。
【0039】
(実施形態5)
図11に本発明の実施形態5の回路構成を示す。複数のLEDユニットを点灯する例であり、チョークコイルL1、ダイオードD1、スイッチング素子Tr5、コンデンサC1、制御回路1からなる昇圧回路の出力に、PNP型トランジスタTr1,Tr2及びエミッタ抵抗R1,R2から成る第1のカレントミラー回路(一方のトランジスタ例えばTr2のベース・コレクタ間は短絡される)を構成し、PNP型トランジスタTr1及びTr2のコレクタ側にLEDユニット(LED1,LED2)のアノード側が接続され、夫々のカソード側にNPN型トランジスタTr3,Tr4及びエミッタ抵抗R3,R4からなる第2のカレントミラー回路(LEDのアノード側のPNP型トランジスタのベース・コレクタ間が短絡されていない方のトランジスタ、ここではTr3のベース・コレクタ間が短絡される)が接続され、抵抗R3またはR4のどちらかの電圧降下を検出し、この電圧即ち回路電流が一定となるように昇圧回路は定電流制御されている。
【0040】
上記の2つのカレントミラー回路は、相互に回路電流をミラーし合う関係にあり、双方のLED回路電流のバランスをとると同時に、どちらかの電流が無くなれば他方の電流も遮断されることになり、従来例における各回路のLED光出力のアンバランスを抑制すると共に、LEDが1灯でも断線に至った場合に全灯消灯が可能であり、しかも全灯消灯モードを設けていないので外乱等によってそのモードに固定されることも無く、上述の2つの課題を簡単な構成で解決することができる。
【0041】
図12にLEDユニットが3つの場合の例を示す。端子A,B,Cが図11の端子A,B,Cに接続される。このように本実施形態では複数個のLEDユニットを並列に接続した場合でも、LEDの順方向電圧Vfのばらつきによる光出力のアンバランスを無くすことが出来、またLEDが1灯でも断線すれば全てのLEDを消灯させる機能もそのまま発揮できる。また3つ以上の並列回路にも同様に展開できる。
【0042】
(実施形態6)
図13に本発明の実施形態6の回路構成を示す。定電流制御を行っている昇圧回路の出力部にトランジスタTr2,Tr3を介して複数のLEDからなるLEDユニットLED1,LED2が接続されている。トランジスタTr2,Tr3のベースはそれぞれ抵抗R5,R6を介してトランジスタTr4,Tr5のコレクタに接続されており、トランジスタTr4,Tr5はそれぞれ制御回路2からの信号S1,S2により駆動される。
【0043】
図14に示すように信号S1がHighの時はトランジスタTr4,Tr2がオンして、LED1が点灯する。信号S2がHighの時にはトランジスタTr5,Tr3がオンして、LED2が点灯するいわゆる時分割制御を行っている。信号S1とS2は同時にHighとなる重複期間T1を設け、この期間では二つのLEDユニットLED1,LED2が同時に点灯するように制御されている。
【0044】
このように複数のLEDユニットを並列に点灯させる場合、それぞれの順方向電圧のばらつきによりLEDユニットの光出力がアンバランスになる可能性があったが、時分割制御を行うことでLEDは1ユニット毎しか点灯しないので、順方向電圧のばらつきによる光出力のアンバランスが生じない。また、トランジスタTr2,Tr3を切り替える信号S1,S2には信号が同時にHighとなる瞬間T1が設けられており、LED1,LED2を切り替えるときには必ず両方のLEDが点灯する瞬間を設けることで、定電流回路が無負荷となり切替時に異常昇圧が生じることもない。
【0045】
(実施形態7)
図15に本発明の実施形態7の回路構成を示す。昇圧回路の出力に複数のLEDを直列に接続し、光出力を変化させる時は複数のLEDの一部を短絡して点灯させないことで光出力を低減させることが出来る。具体的にはチョークコイルL1、スイッチング素子Tr1、ダイオードD1、コンデンサC1、制御回路1からなる昇圧回路構成の定電流回路の出力部に複数のLEDからなるLEDユニットが接続され、LEDには定格電流以下の電流で定電流制御されている。光出力の高いストップランプ点灯時にはStop側の端子に電源が接続されるので、トランジスタTr2,Tr3がオフしているために出力側のLEDは全灯が点灯している。光出力の低いテールランプ点灯時にはTail側の端子に電源が接続されることでトランジスタTr2,Tr3がオンするためにLEDの一部が短絡状態となって発光せず、LEDの一部のみが点灯することになり、結果的に光出力は低下する。
【0046】
図16に他の例を示す。昇圧回路の出力部に複数のLEDが直列に接続されたLEDユニットが並列に接続されている。図15と同様にストップランプ点灯時にはトランジスタTr3がオンするので、LED1,LED2共に点灯するが、テールランプ点灯時にはトランジスタTr3がオフしているので、LED1しか点灯しない。
【0047】
このように本実施形態では、複数のLEDからなる照明装置で高い光出力を必要とする場合にもLEDに流れる電流を変える必要が無いから、LEDの温度を上昇させることなく、容易に光出力を変えることが出来るので、LEDの長寿命化も期待できる。
【0048】
(実施形態8)
図17に本発明の実施形態8の回路構成を示す。本実施形態はLEDの近傍に点灯/不点灯を検出するためのセンサを実装したものである。図18,図19に本実施形態の実装構造の一例を示す。図19のようにLEDの近傍に受光素子3が同一基板上に実装され、受光素子3とLEDの一部を覆う形で弧状の遮光板4が設けられており、図19のような基板5上に構成されている。図18に示すようにLEDから出た光は遮光板4に当たり受光素子3に当たることで、LEDが点灯していることが判別でき、外光は遮光板4により、受光素子3に入ることはないので、LEDが点灯していることだけを検出することが可能である。
【0049】
図17に上記構成を用いた回路例を示す。LEDに電流が流れるとLEDが発光し、個別に設けられた受光素子(ここではフォトトランジスタ)がオンする。全てのLEDが点灯すると全てのフォトトランジスタがオンするのでトランジスタTr2,Tr3は共にオンする。NOR回路IC1の入力は<Low,Low>となるので、出力はHighとなり点灯を維持する。
【0050】
次に仮にLED1−1が点灯しなくなったとすると、LED1−1に対応するフォトトランジスタがオフとなり、トランジスタTr2はオフする。そうすると、NOR回路IC1の入力は<High,Low>となるので、出力はLowとなり、トランジスタTr4がオフして、トランジスタTr5がオフするからLEDは全て消灯する。なお、電源を入れたときには各LEDは消灯しているのでフォトトランジスタがオフしているから、NOR回路IC1の出力には遅延回路DLを設けて、電源が入った初期は一定時間Highを維持して、LEDが点灯するようにしている。
【0051】
実装構造の他の例を図20,図21に示す。受光素子3が同一パッケージ6内に設けられた例で、LEDのチップが基板5上にダイボンディング7等により設けられており、チップ上面からワイヤー8で内部電極に接続されている。内部電極は外部電極A,Bにそれぞれに接続されている。受光素子3は同様にもう一方の電極C,Dにワイヤーで接続されている。受光素子3としてはフォトダイオードやフォトトランジスタ等、光により動作する素子であればよい。受光素子3は受光面がLEDのチップ側に向いており、LEDが発光すると受光面で受光し素子が動作する。
【0052】
図22,図23に他の実施形態を示す。図23のようにLEDの近傍に温度検出素子9(例えばNTCサーミスタ)などを設け、LEDの温度を検出して、LEDが点灯しているかを判断する。LEDが点灯すると、LEDにはほぼ同じ電流が流れるので、LEDの温度は上昇する。LEDの温度が上昇するとLED近傍に設けられたサーミスタの抵抗値が変化するので、LED1のサーミスタ群と抵抗R7、同様にLED2のサーミスタ群と抵抗R8の分圧比が変わり、IC1のA/D変換入力端子A/D1、A/D2の電圧が変わる。抵抗R7とR8は同じ定数とする。A/D変換入力端子A/D1、A/D2の電圧値は本来同じであるが、点灯していなければ、温度が上昇しないLEDがあるので、サーミスタの抵抗値が変化しない。このため、分圧比が点灯していないLEDユニットとは異なる値になるので、点灯していないLEDがあると判断してIC1のOUT端子はLowとなり、トランジスタTr4,Tr5がオフして消灯する。IC1はマイコンなどで構成され、電源が入った初期は一定時間Highを出力する遅延機能を有している。
【0053】
このように本実施形態ではLED個別にLEDの光や温度を検出することで、LEDが断線ではなく短絡不良となって点灯しない場合でも点灯しないことを検出することが可能である。
【0054】
図24に実施形態1〜8の照明装置を用いたテールランプの器具の例を示す。図26のように、表面にLEDが実装され、裏面にLED点灯回路の電子部品9が実装された照明装置が導光板11の一端に設けられ、導光板11の一面には反射板12を設け、他面が発光するようになっている。図25のような導光板ユニット10を構成し、この導光板ユニット10が図28のようなケース13と透過性のある表面パネル14に組み込まれ、自動車の後部のテールランプを構成している。
【0055】
その他の例として、図27のように表面にLEDおよびLED点灯回路の電子部品9を実装したような照明装置や、図29のような表面パネルが無く、ケース13に導光板ユニット10が組み込まれたようなテールランプ等も考えられる。
【0056】
【発明の効果】
本発明によれば、バッテリー等の直流電源で複数のLEDを点灯する照明装置、特に自動車用のテールランプ/ストップランプに用いられる照明装置において課題となる各LED回路の電源変動による光出力変動や順方向電圧のばらつきによる光出力アンバランス及びLEDが1灯でも断線に至った場合にすべてのLEDを消灯する機能を簡単な構成で実現することが可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の回路図である。
【図2】本発明の第1の実施形態に用いる制御回路の回路図である。
【図3】本発明の第1の実施形態の一変形例の回路図である。
【図4】本発明の第2の実施形態の回路図である。
【図5】本発明の第2の実施形態の一変形例の回路図である。
【図6】本発明の第2の実施形態の他の変形例の回路図である。
【図7】本発明の第2の実施形態の別の変形例の回路図である。
【図8】本発明の第3の実施形態の回路図である。
【図9】本発明の第4の実施形態の回路図である。
【図10】本発明の第4の実施形態の一変形例の回路図である。
【図11】本発明の第5の実施形態の回路図である。
【図12】本発明の第5の実施形態の一変形例の回路図である。
【図13】本発明の第6の実施形態の回路図である。
【図14】本発明の第6の実施形態の動作説明図である。
【図15】本発明の第7の実施形態の回路図である。
【図16】本発明の第7の実施形態の一変形例の回路図である。
【図17】本発明の第8の実施形態の回路図である。
【図18】本発明の第8の実施形態の実装構造の一例を示す図であり、(a)は平面図、(b)は断面図である。
【図19】本発明の第8の実施形態の実装構造の一例を示す斜視図である。
【図20】本発明の第8の実施形態の実装構造の他の例を示す斜視図である。
【図21】本発明の第8の実施形態の実装構造の他の例を示す断面図である。
【図22】本発明の第8の実施形態の一変形例の回路図である。
【図23】本発明の第8の実施形態の一変形例の実装構造の一例を示す斜視図である。
【図24】本発明の照明装置を用いたテールランプの実装構造の一例を示す分解斜視図である。
【図25】本発明の照明装置を用いたテールランプの半完成品の外観を示す斜視図である。
【図26】本発明の照明装置を用いたテールランプの基板上の実装構造の一例を示す図であり、(a)は平面図、(b)は側面図、(c)は底面図である。
【図27】本発明の照明装置を用いたテールランプの基板上の実装構造の他の一例を示す図であり、(a)は平面図、(b)は側面図、(c)は底面図である。
【図28】本発明の照明装置を用いたテールランプの完成品の外観の一例を示す斜視図である。
【図29】本発明の照明装置を用いたテールランプの完成品の外観の他の一例を示す斜視図である。
【図30】複数のLEDを用いた従来の照明装置の回路図である。
【図31】自動車のテールランプ/ストップランプの装着箇所を示す斜視図である。
【図32】複数のLEDを用いた従来の照明装置に光出力のばらつきを抑制する機能を付加した例を示す回路図である。
【図33】複数のLEDを用いた従来の照明装置に断線時の全消灯機能を付加した例を示す回路図である。
【符号の説明】
LED  LED直列回路
Vdc  直流電源
L1   チョークコイル
Tr1  スイッチング素子
D1   ダイオード
C1   平滑用コンデンサ
R2   電流制限抵抗
1    制御回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lighting device that can be used as a tail lamp / stop lamp for a vehicle.
[0002]
[Prior art]
Conventional examples are shown in FIGS. FIG. 30 shows a circuit diagram of an on-vehicle tail / stop lamp using a plurality of LEDs. FIG. 31 illustrates a place where such a tail / stop lamp is arranged. In FIG. 30, LED1 is a first LED unit, LED2 is a second LED unit, D1 and D2 are diodes, and R1 to R4 are resistors. GND is a ground terminal, Stop is a terminal that is energized in a stop lamp lighting state with a brake depressed, and Tail is a terminal that is energized in a tail lamp lighting state.
[0003]
When the tail lamp is lit, the light output of the LED is kept low, and when the stop lamp is lit with the brake depressed, the light output of the LED is increased. Such a method is often used because it is inexpensive, but when connecting a plurality of LEDs to secure the light amount, the LEDs are connected in series so that the sum of the forward voltage Vf of the LEDs is at least equal to or less than the power supply voltage. Unless the connected LED units are connected in parallel, the required number of LEDs cannot be connected. For example, a battery whose power supply is used in a car has a rating of 12 V and a power supply fluctuation of 9 V to 16 V. Therefore, if the forward voltage Vf of the LED is 3 V, only three LEDs can be connected in series. Therefore, when it is desired to light up six LEDs, it is necessary to connect them in parallel as shown in FIG.
[0004]
Hereinafter, the operation of the circuit of FIG. 30 will be briefly described. First, in the tail lamp lighting state, a battery is connected between the Tail terminal and the GND terminal shown in the figure, a plurality of first LED units (LED1) connected in series via a diode D2 and a resistor R1, and a diode D2 and a resistor. When a plurality of second LED units (LED2) connected in series via R4 are turned on and the resistances of the resistors R1 and R4 are set to be equal, the LEDs 1 and 2 emit light substantially equally.
[0005]
Next, in the stop lamp lighting state, a battery is connected between the Stop terminal and the GND terminal in the figure, and LED1 lights up through the diode D1 and the resistor R2, and LED2 lights up through the diode D1 and the resistor R3. If the resistance values of R1 and R3 are equal to each other and are set sufficiently small with respect to the resistances R1 and R4, LED1 and LED2 emit light at substantially the same high output.
[0006]
[Problems to be solved by the invention]
(Issue 1)
Problems in such a conventional example include a change in light output due to power supply fluctuation when a battery or the like is used as a power supply as described above, and a variation in light output of a parallel circuit due to a variation in LED forward voltage Vf. If the battery voltage is Vdc, the forward voltages of the diodes D1 and D2 are Vf0, the resistance value is R, the forward voltages of LED1 are Vf11, Vf12 and Vf13, and the forward voltages of LED2 are Vf21, Vf22 and Vf23, The currents of LED1 and LED2 are represented by the following equations.
I (LED1) = [Vdc-Vf0- (Vf11 + Vf12 + Vf13)] / RI (LED2) = [Vdc-Vf0- (Vf21 + Vf22 + Vf23)] / R
[0007]
That is, when the battery voltage Vdc fluctuates, I (LED1) and I (LED2) fluctuate in the same manner. Therefore, when the required light output is obtained at the lowest power supply voltage, the power supply fluctuates and becomes higher. Occasionally, an overcurrent flows through the LED, causing the LED itself to generate heat, affecting its life, increasing the power consumption of the current limiting resistor, and necessitating the use of a resistor with a large rated power. Also, when the forward voltage of each LED varies, it is expected that the currents I (LED1) and I (LED2) of the LEDs 1 and 2 greatly differ particularly when the difference between the sum of the forward voltages and the battery voltage is small. Unbalance occurs in the optical output of the parallel circuit.
[0008]
(Issue 2)
Further, as a problem specific to the on-vehicle use, since it is expected that a minimum required light output cannot be obtained when the LED is disconnected, a function to facilitate the identification by turning off all the lights when the LED is disconnected is required. However, as described above, if the number of LEDs increases, they must be connected in parallel due to the power supply. If the LED circuits are connected in parallel, all the LEDs are turned off even if one LED is disconnected. It is not possible.
[0009]
FIG. 32 shows one solution to the former problem 1. A resistor R4, a transistor Tr3 having a collector and a base short-circuited, a reference current circuit having a resistor R3 connected in series, a series circuit of a transistor Tr1 and a resistor R1 connected in series with an LED1 and having a base connected to the base of the transistor Tr3; Similarly, a series circuit of the transistor R2 and the resistor R2, which is connected in series with the LED2 and whose base is connected to the base of the transistor Tr3, forms a current mirror circuit, and makes the circuit current of the LED1 and the LED2 substantially equal to the reference current. Is controlled as follows. By such a measure, even if the forward voltage of the LED fluctuates, the current of the parallel circuit can be approximately adjusted, and the influence on the light output can be avoided.
[0010]
FIG. 33 shows one solution to the latter problem 2. Current limiting resistors R2 and R3 are connected in series to LED1 and LED2, respectively, and the total current flows through the transistor Tr1 biased by the resistor R1. If all of LED1 and LED2 are normal, LED current flows, causing a constant voltage drop across resistors R2 and R3, and the negative terminal of comparator COMP is kept at a potential obtained by dividing the voltage of the reference power supply by resistors R4 and R7. If the potential of the + terminal of the comparator COMP determined by the voltage division of the resistors R5 and R8 is set to be equal to or lower than the potential of the-terminal, the output of the comparator COMP becomes a low state, and is connected between the base and the emitter of the transistor Tr1. The transistor Tr2 is kept off, the transistor Tr1 is kept on, and the LEDs 1 and 2 are turned on.
[0011]
If any one of the LEDs LED1 and LED2 is disconnected, the voltage drop of the resistor R2 or R3 disappears, and the negative terminal potential of the comparator COMP is reduced by the resistor R2 or R3 connected via the diode D1 or D2, When the potential becomes equal to or lower than the potential of the + terminal of the comparator COMP, the output is inverted to High, the + terminal is fixed to High via the resistor R6 and the diode D3 and self-latched, and thereafter the output of the comparator COMP is fixed to High. Therefore, the base current of the transistor Tr2 is supplied via the resistor R9, the transistor Tr2 is turned on, the transistor Tr1 is turned off, and both LED1 and LED2 are turned off.
[0012]
Since it is necessary to combine the measures shown in FIGS. 32 and 33 with respect to the two problems in the above-described conventional example, the circuit configuration becomes complicated, causing a cost problem, and even if the LED is normal. Regardless, a situation in which all lights are turned off due to a malfunction due to extraneous noise or the like is likely to occur, and a problem in terms of reliability also arises.
[0013]
(Issue 3)
Also, in the case of a vehicle, a transient surge voltage may be generated in the power supply when the ignition is turned off, when the load is dumped, or when the power of another device is turned ON / FF. For example, in the automotive standard (JASO), which is a standard for in-vehicle equipment, a surge such as a peak voltage of 70 V and a damping constant of 200 ms (time to decay to 36.8% of the maximum value) is specified as an example.
[0014]
When such a surge is applied, in the circuit of FIG. 30, an overcurrent flows through the LED, and it is conceivable that the LED may be destroyed. As a countermeasure against such a surge, a countermeasure can be provided by providing a surge countermeasure component such as a power zener or a varistor in the input portion. However, there is a problem that the component has a large shape and is expensive.
[0015]
The present invention has been made in view of the above-described drawbacks of the conventional example. In an LED lighting circuit of a lighting device that lights a plurality of LEDs using a power supply having a large fluctuation range such as a battery, the light output due to the power fluctuation is reduced. Provided is a lighting device that can suppress fluctuations and unbalance of LED light output, and can turn off all LEDs only when even one LED is disconnected, thereby eliminating the possibility of malfunction due to disturbance or the like. The task is to
[0016]
[Means for Solving the Problems]
According to the lighting device of claim 1, in order to solve the above problem, as shown in FIG. 1, a choke coil L1 and a switching element Tr1 are connected in series to a DC power supply Vdc, and the voltage across the switching element Tr1 is reduced. A booster circuit including a diode D1 and a capacitor C1 for rectifying and smoothing, a control circuit 1 for driving the switching element Tr1 at a high frequency, and a drive circuit, and a plurality of LEDs are connected in series to an output of the booster circuit. In the lighting device in which the LED units are connected via the resistor R2, the LEDs are connected in series so that the sum of the forward voltages of the LEDs is equal to or higher than the voltage of the DC power supply Vdc so that the current flowing through the LEDs is constant. It is characterized by feedback control.
[0017]
According to a second aspect of the present invention, in the first aspect, when the LED is disconnected, the voltage is switched to a constant voltage control for controlling the output voltage of the booster circuit to be constant.
According to the third aspect of the present invention, when the current flowing through the LED unit is switched between a low output and a high output, the sum of the voltage across the resistor and the forward voltage of the LED at the time of the low output is a DC power supply. The LEDs are connected in series so as to have a voltage equal to or higher than the voltage, and the output voltage of the booster circuit is increased at the time of high output.
[0018]
According to the fourth aspect of the present invention, in the third aspect, the LEDs are connected in series so that the sum of the voltage across the resistor and the forward voltage of the LEDs at the time of low output is equal to or higher than the voltage of the DC power supply. The high output and the low output are switched by changing the resistance value connected to.
According to a fifth aspect of the present invention, in the fourth aspect, when an abnormal voltage exceeding the input voltage range is input at a high output, the operation is switched to a low output operation.
[0019]
According to the invention of claim 6, as shown in FIG. 8, the switching element Tr1, the choke coil L1, and the capacitor C1 are connected in series to the DC power supply Vdc, and the switching element Tr1 and the choke coil L1 are connected from the negative side of the DC power supply Vdc. A diode D1 is connected so that a regenerative current flows toward the connection point, and a step-down circuit having a control circuit 1 and a drive circuit for operating the switching element Tr1 at a high frequency is provided. A plurality of LEDs are provided at the output of the step-down circuit. In the lighting device in which the LED units connected in series are connected via the resistor R2, the sum of the voltage across the resistor R2 and the forward voltage of the LED becomes equal to or less than the voltage of the DC power supply Vdc at the output of the step-down circuit. As described above, the LEDs are connected in series, and feedback control is performed so that the current flowing through the LEDs is constant.
[0020]
According to the invention of claim 7, in claim 6, when the current flowing through the LED unit is switched between low output and high output, the sum of the voltage across the resistor and the forward voltage of the LED at high output is the voltage of the DC power supply. The LED is connected in series as described below, and the output voltage of the step-down circuit is increased at the time of high output.
According to the invention of claim 8, in claim 7, the LED is connected so that the sum of the voltage across the resistor and the forward voltage of the LED at the time of high output is equal to or less than the voltage of the DC power supply, and is connected in series with the LED. The low output and the high output are switched by changing the resistance value.
[0021]
According to the ninth aspect of the present invention, in any one of the first to eighth aspects, a plurality of LED units are connected in parallel, and the LED units are controlled so as to be lit at a constant period, and each LED unit is switched. An overlap period in which a plurality of LED units are turned on at the same time is provided.
According to the tenth aspect of the present invention, in any one of the first to eighth aspects, the first and second LED units are connected in parallel as a load, and the second LED unit is turned on by the circuit current of the first LED unit. It is characterized by comprising a first current mirror circuit for controlling a circuit current, and a second current mirror circuit for controlling a circuit current of the first LED unit with a circuit current of the second LED unit.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
FIG. 1 shows a first embodiment of the present invention. A choke coil L1 and a switching element Tr1 are connected in series with the DC power supply Vdc, and a rectifying diode D1 and a smoothing capacitor C1 are connected to both ends of the switching element Tr1 to form a so-called step-up chopper circuit. At both ends of the capacitor C1, an LED unit (hereinafter, referred to as an LED) including a plurality of LEDs and a resistor R2 for detecting a current flowing through the LEDs are connected in series. The control circuit 1 is a so-called PWM control circuit including an error amplifier (E / A) 1a, an oscillator 1b, and a comparator 1c as shown in FIG. 2, so that the voltage of the IN terminal of the control circuit 1 is constant. The switching element Tr1 of FIG. 1 is switched at a high frequency (several tens to several hundreds kHz).
[0023]
When a battery or the like is used as the DC power supply Vdc, for example, in the case of a battery for an automobile, the voltage fluctuation range widely varies from 9 V to 16 V. Therefore, if the forward voltage of the LED is 3 V / piece, the sum of the forward voltages of the LEDs on the output side is 16 V or more, that is, at least six LEDs are connected in series. , And the current flowing through the LED can be kept constant even when the power supply fluctuates.
[0024]
FIG. 3 shows a modification. The basic configuration is the same as that of FIG. 1, and the output of the booster circuit is connected to the IN terminal of the control circuit 1 which forms a feedback loop via the Zener diode ZD1 and the resistor R5. Since no current flows when the LED is disconnected, the IN terminal is at about 0 V, and the control circuit 1 increases the ON duty of the switching element Tr1 so as to increase the output. Therefore, the output voltage rises, but when the output voltage becomes equal to or higher than the zener voltage, the zener diode ZD1 is turned on, so that the output voltage is substantially limited to the zener voltage.
[0025]
As described above, in the present embodiment, the LEDs are connected in series such that the sum of the forward voltages is equal to or higher than the power supply voltage, and a step-up circuit is used to control the LEDs so that a constant current flows. It is possible to eliminate the variation of voltage, the variation of the conventional parallel circuit and the variation of the light output due to the fluctuation of power supply, etc. In addition, when one LED is disconnected, all the lights are turned off without the need for a complicated circuit. It is possible to prevent the circuit voltage from abnormally increasing when the LED is disconnected and to prevent the switching element from being overloaded with a simple configuration.
[0026]
(Embodiment 2)
FIG. 4 shows an embodiment in which the light output needs to be switched like a tail lamp / stop lamp for an automobile. In a tail lamp / stop lamp for an automobile, it is necessary to switch between a low output when the tail lamp is turned on and a high output when the stop lamp is turned on. When power is input from the Tail terminal, the voltage generated at both ends of the resistor R2 is divided by the resistors R3 and R4 and input to the IN terminal of the control circuit 1, and this voltage is applied to the internal reference voltage Vref. The current flowing through the LED is controlled to operate in the same manner as described above. When the power is input from the Stop terminal, the voltage of the IN terminal of the control circuit 1 is changed to the divided voltage of the parallel circuit including the resistor R4 and the resistors R3 and R5 by turning on the transistor Tr2 via the resistor R6. The voltage at the IN terminal decreases. Therefore, similarly, in order to become the same voltage as the reference voltage Vref, the current flowing through the LED becomes larger than when the tail lamp is turned on. That is, the output voltage of the booster circuit is higher than when the tail lamp is turned on.
[0027]
Another circuit example is shown in FIG. When power is input from the Tail terminal, the voltage generated at both ends of the resistor R2 is divided by the resistors R3 and R4 and input to the IN terminal of the control circuit 1, and this voltage is applied to the internal reference voltage Vref. The current flowing through the LED is controlled to operate in the same manner as described above. When power is input from the Stop terminal, the transistor Tr2 is turned on via the resistor R6, so that the resistor R5 is connected in parallel with the resistor R2 that limits the current of the LED, and the resistance value decreases, so that the current flows to the LED. The current increases and the light output increases. Although the output voltage decreases because the limiting resistance decreases, the output voltage can be higher than the power supply voltage because the LED forward voltage increases as the LED current increases due to the VI characteristics of the LED. It is possible, and it is possible to reliably control power supply voltage fluctuations.
[0028]
FIG. 6 shows another example of the circuit. When the power is input from the Stop terminal, the transistor Tr2 is turned on via the resistor R6, so that the resistor R5 is connected in parallel to the resistor R2 which limits the current of the LED, and the resistance value is switched. In this example, when power is input, the transistor Tr3 is turned on via the resistor R7 to switch the voltage division ratio of the voltage at the IN terminal of the control circuit 1. When the dimming ratio between the stop lamp lighting and the tail lamp lighting is large, the LED current decreases when the tail lamp lights. Since the LED forward voltage decreases due to the characteristics of the LED, the output voltage of the booster circuit decreases. When the power supply voltage falls below the power supply voltage, control becomes impossible, and when the resistance value of the resistor R2 is increased, the voltage dividing ratio of the resistors R3, R4 becomes too high, so that the control circuit 1 cannot control the power supply fluctuation. On the other hand, there is a possibility that the output voltage of the booster circuit decreases. In order to prevent these, it is necessary to set the output voltage to be much higher than the sum of the forward voltages of the LEDs, which causes a problem that the loss in the current limiting resistor increases.
[0029]
In the circuit shown in FIG. 6, when power is input from the Stop terminal, the transistor Tr2 is turned on. Therefore, the current increases because the limiting resistance value decreases, and when power is input from the Tail terminal, the transistor Tr3 is turned on. By changing the voltage dividing ratio of the resistors R3 and R4, it is not necessary to increase the secondary voltage of the booster circuit more than necessary, and control can be performed so that the output is stabilized.
[0030]
FIG. 7 shows another circuit example. An overvoltage protection circuit including a Zener diode ZD1, a resistor R7, and a transistor Tr3 is provided from the cathodes of the diodes D2 and D3. The Zener voltage of the Zener diode ZD1 is a voltage higher than the power supply voltage range, for example, a voltage of 24V for a power supply whose power supply voltage varies in a range of 9 to 16V. When the LED is lit in a high output state in which power is input from the Stop terminal, an overvoltage occurs due to a surge or the like in the input power supply, and if the overvoltage is a voltage equal to or higher than the zener voltage, the zener diode ZD1 is turned on. Since the transistor Tr3 is turned on, the transistor Tr2 is turned off and the series resistance of the LED unit is only R2, so that the current is switched to a low current when the tail lamp is turned on. Therefore, no overcurrent flows to the LED even with an overvoltage.
[0031]
As described above, in this embodiment, even when the light output is changed, the LEDs are connected in series so that the sum of the forward voltage at the time of the low output is equal to or higher than the power supply voltage, and the output of the booster circuit is set to the low output and the high output. And control so that a constant current flows through the LED, so that even when the optical output is different, the variation in the forward voltage of the LED, the variation in the parallel circuit as in the past, and the variation in the optical output due to power supply fluctuations, etc. Can be eliminated, and when one LED is disconnected, all the lights can be turned off without requiring a complicated circuit.
[0032]
Further, in the circuit as shown in FIG. 6, it is not necessary to increase the output voltage of the booster circuit even at the time of high output, so that the withstand voltage of components can be reduced and the loss at the limiting resistor can be reduced. There are benefits.
Further, in the circuit as shown in FIG. 7, even when a surge-like overvoltage occurs at the time of ignition or the like, the overcurrent does not flow through the LED.
[0033]
(Embodiment 3)
FIG. 8 shows a third embodiment of the present invention. The switching element Tr1 and the choke coil L1 are connected in series with the DC power supply Vdc, the cathode of the regenerative diode D1 is connected to a connection point between the collector of the switching element Tr1 and the choke coil L1, and the anode of the diode D1 is connected to the ground. This is a so-called step-down chopper circuit configuration in which a smoothing capacitor C1 is connected to the other end of the choke coil L1. At both ends of the capacitor C1, an LED unit (hereinafter, referred to as an LED) including a plurality of LEDs and a resistor R2 for detecting a current flowing through the LEDs are connected in series. The control circuit 1 performs so-called PWM control similar to that of FIG. 2, and switches the switching element Tr1 at a high frequency (several tens to several hundreds kHz) so that the voltage across the resistor R2 is constant.
[0034]
When a battery or the like is used as the DC power supply Vdc, for example, in the case of a battery for an automobile, the voltage fluctuation range widely varies from 9 V to 16 V. Therefore, if the forward voltage of the LED is 3 V / piece, the output side LED has a sum of the forward voltage of 9 V or less, that is, a maximum of three LEDs are connected in series. The current can be kept within the fluctuation range, and the current flowing to the LED can be kept constant even when the power supply fluctuates.
[0035]
As described above, in the present embodiment, the LEDs are connected in series such that the sum of the forward voltages is equal to or less than the power supply voltage, and a step-down circuit is used to control the LED so that a constant current flows. It is possible to eliminate variations in light output due to variations in power supply and fluctuations in power supply, etc., and it is possible to turn off all lights without a complicated circuit when one LED is disconnected. This embodiment is particularly effective when the battery voltage is high, for example, 48V.
[0036]
(Embodiment 4)
FIG. 9 shows a fourth embodiment of the present invention. An example in which light output needs to be switched like a tail lamp for an automobile will be described. When power is input from the Tail terminal, the transistor Tr2 is off, and the voltage generated across the resistor R2 is divided by the resistors R3 and R4 and input to the IN terminal of the control circuit 1. The current flowing through the LED is controlled so that the voltage becomes equal to the internal reference voltage Vref, and the LED operates. When power is input from the Stop terminal, the transistor Tr2 is turned on via the resistor R6, so that the voltage at the IN terminal of the control circuit changes to the divided voltage of the parallel circuit including the resistor R4 and the resistors R3 and R5. Voltage decreases. Therefore, in order for the voltage of the IN terminal to become the same voltage as the reference voltage Vref, the current flowing through the LED becomes larger than when power is input from the Tail terminal.
[0037]
FIG. 10 shows another example. When power is input from the Tail terminal, the voltage generated at both ends of the resistor R2 is divided by the resistors R3 and R4 and input to the IN terminal of the control circuit 1. This voltage is used as the internal reference voltage Vref. The currents flowing through the LEDs are controlled and operated in the same manner. When power is input from the Stop terminal, the transistor Tr2 is turned on via the resistor R6, so that the resistor R5 is connected in parallel with the resistor R2 that limits the current of the LED, and the current flowing through the LED is reduced because the limiting resistance is reduced. And the light output increases. When the current increases, the forward voltage of the LED increases. Therefore, the output voltage can be reduced to the power supply voltage or less by reducing the resistance value, and the power supply fluctuation can be reliably controlled.
[0038]
As described above, in this embodiment, even when the light output is changed, the LEDs are connected in series such that the sum of the forward voltage at the time of high output is equal to or less than the power supply voltage, and the output of the step-down circuit is set to the low output and the high output. And control so that a constant current flows through the LED, so that even when the optical output is different, the variation in the forward voltage of the LED, the variation in the parallel circuit as in the past, and the variation in the optical output due to power supply fluctuations, etc. Can be eliminated, and when one LED is disconnected, all the lights can be turned off without requiring a complicated circuit.
[0039]
(Embodiment 5)
FIG. 11 shows a circuit configuration of the fifth embodiment of the present invention. This is an example in which a plurality of LED units are turned on. The output of a booster circuit including a choke coil L1, a diode D1, a switching element Tr5, a capacitor C1, and a control circuit 1 includes PNP transistors Tr1 and Tr2 and emitter resistors R1 and R2. A first current mirror circuit (one transistor, for example, the base and collector of Tr2 is short-circuited), and the anode sides of the LED units (LED1, LED2) are connected to the collector sides of the PNP transistors Tr1 and Tr2, respectively. A second current mirror circuit (a transistor whose base and collector are not short-circuited between the base and collector of the PNP transistor on the anode side of the LED, Tr3 in this case) is composed of NPN transistors Tr3 and Tr4 and emitter resistors R3 and R4 on the cathode side of the transistor. Base kore Between motor are short-circuited) are connected, detects either the voltage drop of the resistor R3 or R4, the booster circuit as the voltage or the circuit current is constant is the constant current control.
[0040]
The two current mirror circuits described above have a relationship of mirroring circuit currents with each other, so that both LED circuit currents are balanced, and when one of the currents disappears, the other current is cut off. In addition to suppressing the unbalance of the LED light output of each circuit in the conventional example, all the lights can be turned off in the event that even one LED is disconnected. In addition, since all lights are not turned off mode, there is no The above two problems can be solved with a simple configuration without being fixed to the mode.
[0041]
FIG. 12 shows an example in the case of three LED units. Terminals A, B, and C are connected to terminals A, B, and C in FIG. As described above, in the present embodiment, even when a plurality of LED units are connected in parallel, it is possible to eliminate the unbalance of the light output due to the variation in the forward voltage Vf of the LED. The function of turning off the LED can also be exhibited as it is. Further, the present invention can be similarly applied to three or more parallel circuits.
[0042]
(Embodiment 6)
FIG. 13 shows a circuit configuration according to the sixth embodiment of the present invention. LED units LED1 and LED2 composed of a plurality of LEDs are connected via transistors Tr2 and Tr3 to the output section of the booster circuit that performs constant current control. The bases of the transistors Tr2 and Tr3 are connected to the collectors of the transistors Tr4 and Tr5 via the resistors R5 and R6, respectively, and the transistors Tr4 and Tr5 are driven by signals S1 and S2 from the control circuit 2, respectively.
[0043]
As shown in FIG. 14, when the signal S1 is High, the transistors Tr4 and Tr2 are turned on, and the LED1 is turned on. When the signal S2 is High, the transistors Tr5 and Tr3 are turned on, and so-called time-division control for turning on the LED2 is performed. The signals S1 and S2 provide an overlap period T1 in which the signals are simultaneously High, and in this period, the two LED units LED1 and LED2 are controlled so as to be turned on simultaneously.
[0044]
When a plurality of LED units are turned on in parallel in this manner, the light output of the LED units may be unbalanced due to variations in the forward voltage of each LED unit. Since the light is turned on only every time, there is no imbalance in the light output due to the variation in the forward voltage. The signals S1 and S2 for switching the transistors Tr2 and Tr3 are provided with a moment T1 at which the signals are simultaneously High. When switching between the LEDs 1 and LED2, the moment when both the LEDs are turned on is always provided. , And no abnormal pressure rise occurs during switching.
[0045]
(Embodiment 7)
FIG. 15 shows a circuit configuration according to the seventh embodiment of the present invention. When a plurality of LEDs are connected in series to the output of the booster circuit and the light output is changed, the light output can be reduced by short-circuiting some of the plurality of LEDs so that they are not turned on. Specifically, an LED unit including a plurality of LEDs is connected to an output section of a constant current circuit having a booster circuit configuration including a choke coil L1, a switching element Tr1, a diode D1, a capacitor C1, and a control circuit 1. Constant current control is performed with the following currents. When a stop lamp with a high light output is turned on, a power supply is connected to the Stop-side terminal, so that all the LEDs on the output side are turned on because the transistors Tr2 and Tr3 are off. When the tail lamp with a low light output is turned on, the power supply is connected to the terminal on the Tail side to turn on the transistors Tr2 and Tr3, so that part of the LED is short-circuited and does not emit light, and only part of the LED is turned on. As a result, the light output is reduced.
[0046]
FIG. 16 shows another example. An LED unit in which a plurality of LEDs are connected in series is connected in parallel to an output section of the booster circuit. As in FIG. 15, when the stop lamp is turned on, the transistor Tr3 is turned on, so that both the LED1 and the LED2 are turned on. However, when the tail lamp is turned on, only the LED1 is turned on because the transistor Tr3 is turned off.
[0047]
As described above, in the present embodiment, even when a high light output is required in a lighting device including a plurality of LEDs, there is no need to change the current flowing through the LEDs, so that the light output can be easily performed without increasing the temperature of the LEDs. Can be changed, so that a longer life of the LED can be expected.
[0048]
(Embodiment 8)
FIG. 17 shows a circuit configuration of the eighth embodiment of the present invention. In this embodiment, a sensor for detecting lighting / non-lighting is mounted near an LED. 18 and 19 show an example of a mounting structure according to the present embodiment. As shown in FIG. 19, the light receiving element 3 is mounted on the same substrate in the vicinity of the LED, and the arc-shaped light shielding plate 4 is provided so as to cover the light receiving element 3 and a part of the LED. Configured above. As shown in FIG. 18, the light emitted from the LED hits the light-shielding plate 4 and hits the light-receiving element 3, so that it is possible to determine that the LED is turned on, and the external light does not enter the light-receiving element 3 by the light-shielding plate 4. Therefore, it is possible to detect only that the LED is lit.
[0049]
FIG. 17 shows a circuit example using the above configuration. When a current flows through the LED, the LED emits light and the individually provided light receiving element (phototransistor in this case) turns on. When all the LEDs are turned on, all the phototransistors are turned on, so that both the transistors Tr2 and Tr3 are turned on. Since the input of the NOR circuit IC1 becomes <Low, Low>, the output becomes High and the lighting is maintained.
[0050]
Next, assuming that the LED 1-1 does not turn on, the phototransistor corresponding to the LED 1-1 turns off and the transistor Tr2 turns off. Then, since the input of the NOR circuit IC1 becomes <High, Low>, the output becomes Low, the transistor Tr4 is turned off, and the transistor Tr5 is turned off, so that all the LEDs are turned off. When the power is turned on, each LED is turned off and the phototransistor is turned off. Therefore, a delay circuit DL is provided at the output of the NOR circuit IC1 to keep High for a certain period of time when the power is turned on. LED is turned on.
[0051]
Other examples of the mounting structure are shown in FIGS. In the example in which the light receiving element 3 is provided in the same package 6, an LED chip is provided on a substrate 5 by die bonding 7 or the like, and is connected to an internal electrode by a wire 8 from the upper surface of the chip. The internal electrodes are connected to the external electrodes A and B, respectively. The light receiving element 3 is similarly connected to the other electrodes C and D by wires. The light receiving element 3 may be any element that operates by light, such as a photodiode or a phototransistor. The light receiving element 3 has a light receiving surface facing the chip side of the LED. When the LED emits light, the light is received by the light receiving surface and the element operates.
[0052]
22 and 23 show another embodiment. As shown in FIG. 23, a temperature detection element 9 (for example, an NTC thermistor) or the like is provided near the LED, and detects the temperature of the LED to determine whether the LED is turned on. When the LED is turned on, almost the same current flows through the LED, so that the temperature of the LED rises. When the temperature of the LED rises, the resistance value of the thermistor provided in the vicinity of the LED changes, so that the voltage dividing ratio of the thermistor group of the LED 1 and the resistor R7, and similarly, the voltage dividing ratio of the thermistor group of the LED 2 and the resistor R8 change, and A / D conversion of the IC1 The voltages of the input terminals A / D1 and A / D2 change. The resistors R7 and R8 have the same constant. Although the voltage values of the A / D conversion input terminals A / D1 and A / D2 are originally the same, there is an LED whose temperature does not rise if it is not lit, so that the resistance value of the thermistor does not change. For this reason, the voltage division ratio is different from that of the LED unit that is not turned on. Therefore, it is determined that there is an LED that is not turned on, and the OUT terminal of the IC 1 becomes Low, and the transistors Tr4 and Tr5 are turned off and turned off. The IC 1 is configured by a microcomputer or the like, and has a delay function of outputting High for a certain period of time when the power is turned on.
[0053]
As described above, in the present embodiment, by detecting the light and temperature of each LED individually, it is possible to detect that the LED is not turned on even if the LED is not turned on due to a short circuit failure rather than a disconnection.
[0054]
FIG. 24 shows an example of a tail lamp fixture using the lighting devices of the first to eighth embodiments. As shown in FIG. 26, an illumination device in which an LED is mounted on the front surface and an electronic component 9 of the LED lighting circuit is mounted on the back surface is provided at one end of the light guide plate 11, and a reflection plate 12 is provided on one surface of the light guide plate 11. , And the other side emits light. A light guide plate unit 10 as shown in FIG. 25 is formed, and this light guide plate unit 10 is incorporated into a case 13 and a transparent front panel 14 as shown in FIG. 28 to form a tail lamp at the rear of an automobile.
[0055]
As another example, as shown in FIG. 27, a lighting device in which an LED and an electronic component 9 of an LED lighting circuit are mounted on the surface thereof, or a light guide plate unit 10 is incorporated in a case 13 without a surface panel as in FIG. Such tail lamps are also conceivable.
[0056]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the light output fluctuation | variation by the power supply fluctuation | variation of each LED circuit which becomes a subject in the illuminating device which lights several LED with a DC power supply, such as a battery, especially the tail lamp / stop lamp for motor vehicles, which is a subject. It is possible to realize, with a simple configuration, a light output unbalance due to a variation in the directional voltage and a function of turning off all the LEDs when even one LED is disconnected.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a first embodiment of the present invention.
FIG. 2 is a circuit diagram of a control circuit used in the first embodiment of the present invention.
FIG. 3 is a circuit diagram of a modification of the first embodiment of the present invention.
FIG. 4 is a circuit diagram of a second embodiment of the present invention.
FIG. 5 is a circuit diagram of a modification of the second embodiment of the present invention.
FIG. 6 is a circuit diagram of another modification of the second embodiment of the present invention.
FIG. 7 is a circuit diagram of another modification of the second embodiment of the present invention.
FIG. 8 is a circuit diagram of a third embodiment of the present invention.
FIG. 9 is a circuit diagram of a fourth embodiment of the present invention.
FIG. 10 is a circuit diagram of a modified example of the fourth embodiment of the present invention.
FIG. 11 is a circuit diagram according to a fifth embodiment of the present invention.
FIG. 12 is a circuit diagram of a modification of the fifth embodiment of the present invention.
FIG. 13 is a circuit diagram according to a sixth embodiment of the present invention.
FIG. 14 is an operation explanatory diagram of the sixth embodiment of the present invention.
FIG. 15 is a circuit diagram according to a seventh embodiment of the present invention.
FIG. 16 is a circuit diagram of a modification of the seventh embodiment of the present invention.
FIG. 17 is a circuit diagram of an eighth embodiment of the present invention.
FIGS. 18A and 18B are diagrams illustrating an example of a mounting structure according to an eighth embodiment of the present invention, wherein FIG. 18A is a plan view and FIG.
FIG. 19 is a perspective view illustrating an example of a mounting structure according to an eighth embodiment of the present invention.
FIG. 20 is a perspective view showing another example of the mounting structure according to the eighth embodiment of the present invention.
FIG. 21 is a sectional view showing another example of the mounting structure according to the eighth embodiment of the present invention.
FIG. 22 is a circuit diagram of a modification of the eighth embodiment of the present invention.
FIG. 23 is a perspective view showing an example of a mounting structure according to a modification of the eighth embodiment of the present invention.
FIG. 24 is an exploded perspective view showing an example of a mounting structure of a tail lamp using the lighting device of the present invention.
FIG. 25 is a perspective view showing the appearance of a semi-finished tail lamp using the lighting device of the present invention.
26A and 26B are diagrams illustrating an example of a mounting structure of a tail lamp on a substrate using the lighting device of the present invention, wherein FIG. 26A is a plan view, FIG. 26B is a side view, and FIG.
27A and 27B are diagrams illustrating another example of a mounting structure of a tail lamp on a substrate using the lighting device of the present invention, wherein FIG. 27A is a plan view, FIG. 27B is a side view, and FIG. is there.
FIG. 28 is a perspective view showing an example of an appearance of a finished product of a tail lamp using the lighting device of the present invention.
FIG. 29 is a perspective view showing another example of the appearance of a completed tail lamp using the lighting device of the present invention.
FIG. 30 is a circuit diagram of a conventional lighting device using a plurality of LEDs.
FIG. 31 is a perspective view showing a mounting position of a tail lamp / stop lamp of an automobile.
FIG. 32 is a circuit diagram showing an example in which a function of suppressing variation in light output is added to a conventional lighting device using a plurality of LEDs.
FIG. 33 is a circuit diagram showing an example in which a conventional lighting device using a plurality of LEDs is provided with an all-light-off function when a wire is disconnected.
[Explanation of symbols]
LED LED series circuit
Vdc DC power supply
L1 choke coil
Tr1 switching element
D1 diode
C1 Smoothing capacitor
R2 Current limiting resistor
1 control circuit

Claims (10)

直流電源にチョークコイルとスイッチング素子を直列接続し、スイッチング素子両端の電圧を整流平滑するダイオード及びコンデンサと、上記スイッチング素子を高周波で動作させる制御回路及び駆動回路で構成された昇圧回路を備え、この昇圧回路の出力に複数個のLEDが直列に接続されたLEDユニットが抵抗を介して接続された照明装置において、LEDの順方向電圧の和が直流電源の電圧以上となるようにLEDを直列に接続し、LEDに流れる電流が一定となるようにフィードバック制御したことを特徴とする照明装置。A direct-current power supply includes a choke coil and a switching element connected in series, a diode and a capacitor for rectifying and smoothing the voltage across the switching element, and a booster circuit including a control circuit and a drive circuit for operating the switching element at a high frequency. In a lighting device in which an LED unit in which a plurality of LEDs are connected in series to the output of a booster circuit is connected via a resistor, the LEDs are connected in series such that the sum of the forward voltages of the LEDs is equal to or higher than the DC power supply voltage. A lighting device, wherein the lighting device is connected and feedback controlled so that a current flowing through the LED is constant. 請求項1において、LEDの断線時には昇圧回路の出力電圧が一定となるように制御する定電圧制御に切り替えることを特徴とする照明装置。2. The lighting device according to claim 1, wherein when the LED is disconnected, the voltage is switched to constant voltage control for controlling the output voltage of the booster circuit to be constant. 請求項1または2において、LEDユニットに流れる電流を低出力と高出力に切り替える場合に、低出力時には抵抗両端の電圧とLEDの順方向電圧の和が直流電源の電圧以上となるようにLEDを直列に接続し、高出力時には昇圧回路の出力電圧を高くしたことを特徴とする照明装置。In claim 1 or 2, when switching the current flowing through the LED unit between a low output and a high output, the LED is controlled such that the sum of the voltage across the resistor and the forward voltage of the LED at the time of the low output is equal to or higher than the DC power supply voltage. A lighting device characterized in that the output voltage of the booster circuit is increased when the output is high, when they are connected in series. 請求項3において、低出力時に抵抗両端の電圧とLEDの順方向電圧の和が直流電源の電圧以上となるようにLEDを直列に接続し、LEDユニットと直列に接続された抵抗値を変化させることで高出力と低出力を切り替えることを特徴とする照明装置。In claim 3, the LEDs are connected in series such that the sum of the voltage across the resistor and the forward voltage of the LEDs at the time of low output is equal to or higher than the voltage of the DC power supply, and the resistance value connected in series with the LED unit is changed. A lighting device characterized by switching between high output and low output. 請求項4において、高出力時に入力電圧範囲を超える異常電圧が入力された時には低出力時の動作に切り替えることを特徴とする照明装置。5. The lighting device according to claim 4, wherein when an abnormal voltage exceeding the input voltage range is input at a high output, the operation is switched to a low output operation. 直流電源にスイッチング素子とチョークコイル及びコンデンサを直列接続し、直流電源の負極側からスイッチング素子とチョークコイルの接続点に向けて回生電流を流すようにダイオードを接続し、上記スイッチング素子を高周波で動作させる制御回路及び駆動回路を有する降圧回路を備え、この降圧回路の出力に複数個のLEDが直列に接続されたLEDユニットが抵抗を介して接続された照明装置において、降圧回路の出力に、前記抵抗両端の電圧とLEDの順方向電圧の和が直流電源の電圧以下となるようにLEDを直列に接続し、LEDに流れる電流が一定となるようにフィードバック制御したことを特徴とする照明装置。A switching element, a choke coil, and a capacitor are connected in series to the DC power supply, and a diode is connected so that a regenerative current flows from the negative side of the DC power supply to the connection point between the switching element and the choke coil. A step-down circuit having a control circuit and a drive circuit to cause the LED unit in which a plurality of LEDs are connected in series to the output of the step-down circuit to be connected via a resistor. An illuminating device wherein LEDs are connected in series such that the sum of the voltage across the resistor and the forward voltage of the LEDs is equal to or less than the voltage of the DC power supply, and feedback control is performed so that the current flowing through the LEDs is constant. 請求項6において、LEDユニットに流れる電流を低出力と高出力に切り替える場合に、高出力時に抵抗両端の電圧とLEDの順方向電圧の和が直流電源の電圧以下となるようにLEDを直列に接続し、高出力時には降圧回路の出力電圧を高くしたことを特徴とする照明装置。In claim 6, when switching the current flowing through the LED unit between a low output and a high output, the LEDs are connected in series such that the sum of the voltage across the resistor and the forward voltage of the LED at the time of high output is equal to or less than the voltage of the DC power supply. A lighting device, wherein the output voltage of the step-down circuit is increased when the power is high. 請求項7において、高出力時に抵抗両端の電圧とLEDの順方向電圧の和が直流電源の電圧以下となるようにLEDを接続し、LEDと直列に接続された抵抗値を変化させることで低出力と高出力を切り替えること特徴とする照明装置。8. The LED according to claim 7, wherein the LED is connected such that the sum of the voltage across the resistor and the forward voltage of the LED at the time of high output is equal to or less than the voltage of the DC power supply, and the resistance connected in series with the LED is changed. A lighting device characterized by switching between output and high output. 請求項1〜8のいずれかにおいて、LEDユニットが複数個並列に接続され、それらのLEDユニットがそれぞれ一定周期で点灯するように制御され、各LEDユニットを切り替える時に複数のLEDユニットが同時に点灯する重複期間を設けたことを特徴とする照明装置。In any one of claims 1 to 8, a plurality of LED units are connected in parallel, and each of the LED units is controlled so as to be lit at a constant period, and when switching each LED unit, the plurality of LED units are lit at the same time. A lighting device, wherein an overlapping period is provided. 請求項1〜8のいずれかにおいて、負荷として第1及び第2のLEDユニットを並列に接続され、第1のLEDユニットの回路電流で第2のLEDユニットの回路電流を制御する第1のカレントミラー回路と、第2のLEDユニットの回路電流で第1のLEDユニットの回路電流を制御する第2のカレントミラー回路を備えることを特徴とする照明装置。The first current according to any one of claims 1 to 8, wherein a first and a second LED unit are connected in parallel as a load, and the circuit current of the second LED unit is controlled by the circuit current of the first LED unit. An illumination device comprising: a mirror circuit; and a second current mirror circuit that controls a circuit current of the first LED unit with a circuit current of the second LED unit.
JP2002190875A 2002-06-28 2002-06-28 Lighting device Expired - Lifetime JP4007096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190875A JP4007096B2 (en) 2002-06-28 2002-06-28 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190875A JP4007096B2 (en) 2002-06-28 2002-06-28 Lighting device

Publications (2)

Publication Number Publication Date
JP2004039288A true JP2004039288A (en) 2004-02-05
JP4007096B2 JP4007096B2 (en) 2007-11-14

Family

ID=31700669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190875A Expired - Lifetime JP4007096B2 (en) 2002-06-28 2002-06-28 Lighting device

Country Status (1)

Country Link
JP (1) JP4007096B2 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114324A (en) * 2004-10-14 2006-04-27 Sony Corp Light emitting element driving device and display device
JP2006288945A (en) * 2005-04-14 2006-10-26 Pentax Corp Voltage control circuit of endoscope device
JP2007018878A (en) * 2005-07-07 2007-01-25 Matsushita Electric Works Ltd Luminaire
JP2007242477A (en) * 2006-03-09 2007-09-20 Nichia Chem Ind Ltd Light emitting device, light emitting element driving circuit, and method of driving light emitting element
JP2007302122A (en) * 2006-05-11 2007-11-22 Ichikoh Ind Ltd Vehicular lighting unit
DE102006031679A1 (en) * 2006-07-08 2008-01-10 Hella Kgaa Hueck & Co. Circuit arrangement for the electrical control of a motor vehicle headlight
JP2008126958A (en) * 2006-11-24 2008-06-05 Stanley Electric Co Ltd Variable load type lighting circuit
DE102007002809A1 (en) * 2007-01-18 2008-07-24 Hella Kgaa Hueck & Co. Method for pulsed operation of lighting unit with light emitting diodes for motor vehicles, involves dephasing of pulse mode of two light-emitting diodes of two groups
US7414524B2 (en) 2004-09-02 2008-08-19 Koito Manufacturing Co., Ltd. Lighting control circuit for vehicle lighting equipment
JP2008273390A (en) * 2007-04-27 2008-11-13 Yazaki Corp Outdoor led lamp control device and electrical connection box
JP2008544497A (en) * 2005-06-10 2008-12-04 アギア システムズ インコーポレーテッド Regulating current through a resistive load
JP2009051276A (en) * 2007-08-24 2009-03-12 Sakae Riken Kogyo Co Ltd Control circuit of vehicular lightning device, and vehicular lightning device
JP2009080966A (en) * 2007-09-25 2009-04-16 Toshiba Lighting & Technology Corp Illumination device
JP2009261213A (en) * 2008-03-24 2009-11-05 Toshiba Lighting & Technology Corp Power supply apparatus and luminaire
JP2010021008A (en) * 2008-07-10 2010-01-28 Koizumi Lighting Technology Corp Led lighting device
JP2010040509A (en) * 2008-08-05 2010-02-18 O2 Micro Inc Driving circuit for supplying electrical power to light source
WO2010027460A2 (en) * 2008-09-02 2010-03-11 Eveready Battery Company, Inc. Battery powered lighting appliance having substantially constant light output
KR200448077Y1 (en) 2007-12-07 2010-03-12 (주) 파워에이앤디 Lighting LED device with equal load control circuit
JP2010086826A (en) * 2008-09-30 2010-04-15 Kyocera Corp Light source device and display
JP2010118319A (en) * 2008-11-14 2010-05-27 Toshiba Lighting & Technology Corp Lighting device and lighting fixture
JP2010205453A (en) * 2009-02-27 2010-09-16 Toshiba Lighting & Technology Corp Led lighting device
JP2011003467A (en) * 2009-06-19 2011-01-06 Minebea Co Ltd Lighting system
KR101026441B1 (en) 2008-02-08 2011-04-07 가부시키가이샤 고이토 세이사꾸쇼 Lighting control unit for vehicle lighting fixture
DE102009054172A1 (en) * 2009-11-23 2011-05-26 Xtronic Gmbh Circuit for operating LED i.e. high-power-LED, of head light in motor vehicle, has LED linkage connected in parallel to another LED linkage, where LED linkages are operated with LED supply voltage
JP2011210660A (en) * 2010-03-30 2011-10-20 Panasonic Electric Works Co Ltd Lighting device and lighting fixture using it
EP2381741A2 (en) 2010-04-23 2011-10-26 Panasonic Electric Works Co., Ltd. Lighting device, headclamp apparatus and vehicle using same
KR101098451B1 (en) 2007-07-13 2011-12-23 리치테크 테크놀로지 코포레이션 Led driver and control method thereof
JP2012009391A (en) * 2010-06-28 2012-01-12 Panasonic Electric Works Co Ltd Led lighting device
KR101129952B1 (en) * 2010-05-14 2012-03-28 엘지이노텍 주식회사 LED string driving apparatus
WO2012070283A1 (en) * 2010-11-26 2012-05-31 シャープ株式会社 Laser light emitting device, and vehicle lighting appliance using same
JP2012114338A (en) * 2010-11-26 2012-06-14 Sharp Corp Laser light-emitting device and vehicle lamp using the same
JP2012121352A (en) * 2010-12-06 2012-06-28 Mitsubishi Electric Corp Apparatus for lighting led
JP2012134281A (en) * 2010-12-21 2012-07-12 Sharp Corp Laser light-emitting device, and lighting fixture for vehicle using the same
JP2012138321A (en) * 2010-12-28 2012-07-19 Ichikoh Ind Ltd Lighting fixture lighting circuit
JP2012160392A (en) * 2011-02-02 2012-08-23 Stanley Electric Co Ltd Lighting control device
JP2013203146A (en) * 2012-03-27 2013-10-07 Ichikoh Ind Ltd Lighting fixture for vehicle
KR101328906B1 (en) * 2007-01-23 2013-11-13 엘지디스플레이 주식회사 Back light unit for liquid crystal display and method for fabricating having the same
KR101365345B1 (en) 2006-06-01 2014-02-20 소니 주식회사 Drive device for light emitting diode element, light source device, and display
JP2014078421A (en) * 2012-10-11 2014-05-01 Panasonic Corp Light emitting diode activation device an illuminating device using the light emitting diode activation device
US8754588B2 (en) 2011-09-12 2014-06-17 Panasonic Corporation Illumination apparatus
CN104010880A (en) * 2011-12-21 2014-08-27 丰田自动车株式会社 Stop lamp device
JP2014156195A (en) * 2013-02-15 2014-08-28 Ichikoh Ind Ltd Vehicular lamp fitting lighting circuit
JP2015088386A (en) * 2013-10-31 2015-05-07 ミネベア株式会社 Led driving device and lighting apparatus
JP2015216031A (en) * 2014-05-12 2015-12-03 アイリスオーヤマ株式会社 Lighting device for led illumination device and led illumination device
JP2016000615A (en) * 2015-09-30 2016-01-07 株式会社小糸製作所 Head lamp equipment for vehicle
JP2016100164A (en) * 2014-11-20 2016-05-30 パナソニックIpマネジメント株式会社 Lighting device and illumination equipment using the same
JP2016181483A (en) * 2015-03-25 2016-10-13 コイズミ照明株式会社 Lighting device and illuminating fixture
CN108012380A (en) * 2017-12-27 2018-05-08 苏州菲达旭微电子有限公司 A kind of linear Width funtion constant current and constant power circuit and there is its LED light
CN108934108A (en) * 2017-05-24 2018-12-04 株式会社小糸制作所 Light-emitting actuating device, lamps apparatus for vehicle
JP2018206714A (en) * 2017-06-09 2018-12-27 アール・ビー・コントロールズ株式会社 Led illumination device
JP2019135728A (en) * 2019-05-22 2019-08-15 コイズミ照明株式会社 Lighting device and illuminating fixture
KR102192393B1 (en) * 2019-12-09 2020-12-17 이경연 Led system for vehicle lighting having high efficiency and high reliability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105722279A (en) * 2016-04-14 2016-06-29 海盐丽光电子科技有限公司 Near-far light driving circuit for light emitting diode (LED) automobile lens

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005041791B4 (en) * 2004-09-02 2011-02-24 Koito Manufacturing Co., Ltd. Lighting control circuit for vehicle lighting equipment
US7414524B2 (en) 2004-09-02 2008-08-19 Koito Manufacturing Co., Ltd. Lighting control circuit for vehicle lighting equipment
JP2006114324A (en) * 2004-10-14 2006-04-27 Sony Corp Light emitting element driving device and display device
JP4525287B2 (en) * 2004-10-14 2010-08-18 ソニー株式会社 Light emitting element driving device and display device
JP2006288945A (en) * 2005-04-14 2006-10-26 Pentax Corp Voltage control circuit of endoscope device
JP2008544497A (en) * 2005-06-10 2008-12-04 アギア システムズ インコーポレーテッド Regulating current through a resistive load
JP2007018878A (en) * 2005-07-07 2007-01-25 Matsushita Electric Works Ltd Luminaire
JP2007242477A (en) * 2006-03-09 2007-09-20 Nichia Chem Ind Ltd Light emitting device, light emitting element driving circuit, and method of driving light emitting element
JP2007302122A (en) * 2006-05-11 2007-11-22 Ichikoh Ind Ltd Vehicular lighting unit
KR101365345B1 (en) 2006-06-01 2014-02-20 소니 주식회사 Drive device for light emitting diode element, light source device, and display
DE102006031679A1 (en) * 2006-07-08 2008-01-10 Hella Kgaa Hueck & Co. Circuit arrangement for the electrical control of a motor vehicle headlight
JP2008126958A (en) * 2006-11-24 2008-06-05 Stanley Electric Co Ltd Variable load type lighting circuit
JP4698560B2 (en) * 2006-11-24 2011-06-08 スタンレー電気株式会社 Variable load lighting circuit
DE102007002809A1 (en) * 2007-01-18 2008-07-24 Hella Kgaa Hueck & Co. Method for pulsed operation of lighting unit with light emitting diodes for motor vehicles, involves dephasing of pulse mode of two light-emitting diodes of two groups
KR101328906B1 (en) * 2007-01-23 2013-11-13 엘지디스플레이 주식회사 Back light unit for liquid crystal display and method for fabricating having the same
JP2008273390A (en) * 2007-04-27 2008-11-13 Yazaki Corp Outdoor led lamp control device and electrical connection box
KR101098451B1 (en) 2007-07-13 2011-12-23 리치테크 테크놀로지 코포레이션 Led driver and control method thereof
JP2009051276A (en) * 2007-08-24 2009-03-12 Sakae Riken Kogyo Co Ltd Control circuit of vehicular lightning device, and vehicular lightning device
JP2009080966A (en) * 2007-09-25 2009-04-16 Toshiba Lighting & Technology Corp Illumination device
KR200448077Y1 (en) 2007-12-07 2010-03-12 (주) 파워에이앤디 Lighting LED device with equal load control circuit
KR101026441B1 (en) 2008-02-08 2011-04-07 가부시키가이샤 고이토 세이사꾸쇼 Lighting control unit for vehicle lighting fixture
JP2013085466A (en) * 2008-03-24 2013-05-09 Toshiba Lighting & Technology Corp Power supply device and lighting apparatus
JP2009261213A (en) * 2008-03-24 2009-11-05 Toshiba Lighting & Technology Corp Power supply apparatus and luminaire
JP2010021008A (en) * 2008-07-10 2010-01-28 Koizumi Lighting Technology Corp Led lighting device
JP2010040509A (en) * 2008-08-05 2010-02-18 O2 Micro Inc Driving circuit for supplying electrical power to light source
WO2010027460A2 (en) * 2008-09-02 2010-03-11 Eveready Battery Company, Inc. Battery powered lighting appliance having substantially constant light output
WO2010027460A3 (en) * 2008-09-02 2010-06-17 Eveready Battery Company, Inc. Battery powered lighting appliance having substantially constant light output
JP2010086826A (en) * 2008-09-30 2010-04-15 Kyocera Corp Light source device and display
JP2010118319A (en) * 2008-11-14 2010-05-27 Toshiba Lighting & Technology Corp Lighting device and lighting fixture
JP2010205453A (en) * 2009-02-27 2010-09-16 Toshiba Lighting & Technology Corp Led lighting device
JP2011003467A (en) * 2009-06-19 2011-01-06 Minebea Co Ltd Lighting system
DE102009054172A1 (en) * 2009-11-23 2011-05-26 Xtronic Gmbh Circuit for operating LED i.e. high-power-LED, of head light in motor vehicle, has LED linkage connected in parallel to another LED linkage, where LED linkages are operated with LED supply voltage
JP2011210660A (en) * 2010-03-30 2011-10-20 Panasonic Electric Works Co Ltd Lighting device and lighting fixture using it
CN102256411A (en) * 2010-03-30 2011-11-23 松下电工株式会社 Illuminating device and lighting device using same
EP2381741A2 (en) 2010-04-23 2011-10-26 Panasonic Electric Works Co., Ltd. Lighting device, headclamp apparatus and vehicle using same
US8633659B2 (en) 2010-04-23 2014-01-21 Panasonic Corporation Lighting device, headlamp apparatus and vehicle using same
KR101129952B1 (en) * 2010-05-14 2012-03-28 엘지이노텍 주식회사 LED string driving apparatus
JP2012009391A (en) * 2010-06-28 2012-01-12 Panasonic Electric Works Co Ltd Led lighting device
JP2012114338A (en) * 2010-11-26 2012-06-14 Sharp Corp Laser light-emitting device and vehicle lamp using the same
WO2012070283A1 (en) * 2010-11-26 2012-05-31 シャープ株式会社 Laser light emitting device, and vehicle lighting appliance using same
JP2012121352A (en) * 2010-12-06 2012-06-28 Mitsubishi Electric Corp Apparatus for lighting led
JP2012134281A (en) * 2010-12-21 2012-07-12 Sharp Corp Laser light-emitting device, and lighting fixture for vehicle using the same
JP2012138321A (en) * 2010-12-28 2012-07-19 Ichikoh Ind Ltd Lighting fixture lighting circuit
JP2012160392A (en) * 2011-02-02 2012-08-23 Stanley Electric Co Ltd Lighting control device
US8754588B2 (en) 2011-09-12 2014-06-17 Panasonic Corporation Illumination apparatus
CN104010880A (en) * 2011-12-21 2014-08-27 丰田自动车株式会社 Stop lamp device
JP2013203146A (en) * 2012-03-27 2013-10-07 Ichikoh Ind Ltd Lighting fixture for vehicle
JP2014078421A (en) * 2012-10-11 2014-05-01 Panasonic Corp Light emitting diode activation device an illuminating device using the light emitting diode activation device
JP2014156195A (en) * 2013-02-15 2014-08-28 Ichikoh Ind Ltd Vehicular lamp fitting lighting circuit
JP2015088386A (en) * 2013-10-31 2015-05-07 ミネベア株式会社 Led driving device and lighting apparatus
JP2015216031A (en) * 2014-05-12 2015-12-03 アイリスオーヤマ株式会社 Lighting device for led illumination device and led illumination device
JP2016100164A (en) * 2014-11-20 2016-05-30 パナソニックIpマネジメント株式会社 Lighting device and illumination equipment using the same
JP2016181483A (en) * 2015-03-25 2016-10-13 コイズミ照明株式会社 Lighting device and illuminating fixture
JP2016000615A (en) * 2015-09-30 2016-01-07 株式会社小糸製作所 Head lamp equipment for vehicle
CN108934108A (en) * 2017-05-24 2018-12-04 株式会社小糸制作所 Light-emitting actuating device, lamps apparatus for vehicle
JP2018206714A (en) * 2017-06-09 2018-12-27 アール・ビー・コントロールズ株式会社 Led illumination device
JP7016571B2 (en) 2017-06-09 2022-02-07 アール・ビー・コントロールズ株式会社 LED lighting device
CN108012380A (en) * 2017-12-27 2018-05-08 苏州菲达旭微电子有限公司 A kind of linear Width funtion constant current and constant power circuit and there is its LED light
CN108012380B (en) * 2017-12-27 2024-04-19 广东基地照明有限公司 Linear wide-voltage constant-current constant-power circuit and LED lamp with same
JP2019135728A (en) * 2019-05-22 2019-08-15 コイズミ照明株式会社 Lighting device and illuminating fixture
KR102192393B1 (en) * 2019-12-09 2020-12-17 이경연 Led system for vehicle lighting having high efficiency and high reliability
WO2021117990A1 (en) * 2019-12-09 2021-06-17 이경연 Led system for vehicle lighting having high efficiency and high reliability
CN113412683A (en) * 2019-12-09 2021-09-17 李京莲 LED system for vehicle lighting with high efficiency and high reliability
US11343891B2 (en) 2019-12-09 2022-05-24 Kyoungyeon LEE LED system for vehicle lighting having high efficiency and high reliability
CN113412683B (en) * 2019-12-09 2024-04-09 李京莲 LED system for vehicle illumination with high efficiency and high reliability

Also Published As

Publication number Publication date
JP4007096B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP4007096B2 (en) Lighting device
JP4007097B2 (en) Lighting device
EP3468303B1 (en) A led lamp having an outage detection circuit
US7902773B2 (en) Light emitting device
US7274150B2 (en) Lighting control circuit for vehicle lighting equipment
US7952295B2 (en) Illuminating device
US7301284B2 (en) Lighting control circuit for vehicle lighting equipment
US20120104975A1 (en) Lighting system electronic ballast or driver with shunt circuit for lighting control quiescent current
JP2003317978A (en) Lighting circuit for on-vehicle led lighting fixture
JP2004034741A (en) On-vehicle tail/stop lamp
JP6481402B2 (en) LED module and LED lighting device
CN112351551A (en) Light modulation circuit
JP2004039291A (en) Lighting device
JP5046067B2 (en) Lighting device
JP6249555B2 (en) Vehicle lighting
US20240166131A1 (en) Lamp control device
KR102016718B1 (en) Apparatus for controlling of lamp for vehicle
JP2005029019A (en) Constant current driving circuit of electronic light emitting element and electronic light emitting element driving circuit of lighting fixture for vehicle
JP2020201774A (en) Lighting power supply and protection circuit for the same
JP2008130990A (en) Disconnection detecting method
JP2012064339A (en) Illumination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4007096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

EXPY Cancellation because of completion of term