JP2004037908A - Method for depositing antireflection film on organic material surface - Google Patents

Method for depositing antireflection film on organic material surface Download PDF

Info

Publication number
JP2004037908A
JP2004037908A JP2002195881A JP2002195881A JP2004037908A JP 2004037908 A JP2004037908 A JP 2004037908A JP 2002195881 A JP2002195881 A JP 2002195881A JP 2002195881 A JP2002195881 A JP 2002195881A JP 2004037908 A JP2004037908 A JP 2004037908A
Authority
JP
Japan
Prior art keywords
refractive index
forming
base material
index layer
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002195881A
Other languages
Japanese (ja)
Inventor
Shorin Shu
周 鐘 霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANU SHINKU KAGI KOFUN YUGENKO
KANU SHINKU KAGI KOFUN YUGENKOSHI
Original Assignee
KANU SHINKU KAGI KOFUN YUGENKO
KANU SHINKU KAGI KOFUN YUGENKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANU SHINKU KAGI KOFUN YUGENKO, KANU SHINKU KAGI KOFUN YUGENKOSHI filed Critical KANU SHINKU KAGI KOFUN YUGENKO
Priority to JP2002195881A priority Critical patent/JP2004037908A/en
Publication of JP2004037908A publication Critical patent/JP2004037908A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for depositing an antireflection film on an organic material surface under a low temperature. <P>SOLUTION: In the method for depositing the antireflection film on the organic material surface, a base material composed of an organic material in which the generation of a gas by decomposition can not be neglected when exceeding a prescribed temperature is an object to be plated, and after placing it in a reaction chamber together with a target material as a plating material, while setting he temperature of the base material to a work temperature within a prescribed range lower than the prescribed temperature, plating material particles are released from the surface of the target material by excitation, shifted to a base material surface and deposited onto the base material surface as the antireflection film. By forming a prescribed distance between the base material and the target material, thermal effects generated by the collision of the shifting particles with the base material when reaching the base material and being deposited onto the base material are reduced and the work temperature of the base material surface during the process of depositing the antireflection film is kept within the prescribed range. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光関係素子、例えばLCD、PDA、CRT、PDP、各種のカメラ、太陽電池乃至車両の窓体などに使用する有機材表面への反射防止膜の形成方法に関する。
【0002】
【従来の技術】
前記光関係素子への反射防止膜の形成は、一般にスパッタリング法、真空蒸着法、イオンプレーティング法などの物理蒸着(PVD)法によって形成されている。これらの方法は、高温の状態で行われる必要があるため、プラスチックなどの有機材からなる基板にとっては、所定温度(例えば60℃)を超えると、基材が分解してガスを生じ、ある程度膜を曇らせて機能を低下させる虞がある。例えば、偏光板は、ポリビニルアルコール(PVA)からなる基板の両面にそれぞれ三酢酸繊維素(TAC)からなる層を形成した後、更に、一面に表面保護層を形成し、他面に光学粘着剤によって離形膜を覆うことにより形成された複合プラスチック材であるので、それを基材として使用してその外表面に、光に対する反射率を低減させることができる反射防止膜を形成する場合、形成の高温(略60℃以上時)により基板や三酢酸繊維素層・粘着剤などを分解してガスを生じ、前記最外層の離形膜に気泡を発生させた結果、偏光板の機能を低下させるのみならず、反射防止膜を形成するための反応室の真空度及び鍍材としてのターゲット材の純度を破壊するという欠点がある。したがって、低温で有機材表面へ反射防止膜を形成することができる方法が求められている。
【0003】
【発明が解決しようとする課題】
本発明の目的は、低温下に有機材表面へ反射防止膜を形成することができる方法を提供することである。
【0004】
【課題を解決するための手段】
前記目的を達成するために、本発明は、所定温度を超えると、分解によるガスの発生が無視できない有機材からなる基材を被鍍物とし、鍍材としてのターゲット材と共に反応室に置いた後、前記基材を前記所定温度より低い所定範囲内の作業温度にさせながら、励起によって前記ターゲット材の面から鍍材粒子を脱出させ、前記基材面へ移行させて、前記基材面に反射防止膜として付着させる有機材表面への反射防止膜の形成方法であって、前記基材と前記ターゲット材との間に所定距離を開けることにより、前記移行粒子の前記基材に到達して前記基材に付着する際の前記基材への衝突によって発生する熱効果を低減させ、前記反射防止膜の形成過程中における前記基材表面の作業温度を前記所定範囲内に保持することを特徴とする有機材表面への反射防止膜の形成方法を提供する。本発明のこの形成方法によると、前記反射防止膜の形成過程中における前記基材表面の温度を前記所定温度より低い所定範囲内の作業温度に保持することができるので、所定温度を超えると分解によるガスの発生により、製作しようとする光関係素子を曇らせてその光学機能を低下させる虞がない。
【0005】
ここで、有機材からなる基材とは、樹脂またはプラスチック材乃至その複合材からなるものをいう。前記励起とは、前記ターゲット材の面から鍍材粒子を脱出させるための各種の方法をいう。例えば電子束またはイオン束をもって前記ターゲット材の面に衝突し、前記鍍材粒子を飛ばし出す方法、または、前記ターゲット材を加熱してその表面から鍍材粒子を蒸発させる方法など。換言すれば、本発明の反射防止膜は、スパッタリング法、真空蒸着法、イオンプレーティング法、イオン補助蒸着法(IBAD;Ion Beam Assisted Deposition)などまたはそれらの併用方法によって形成されることができる。また、前記所定範囲内の作業温度は、通常、低温、即ち60℃以下の温度をいう。前記所定距離は、40〜80cmの範囲内に限定することが好ましい。前記基材の表面粗さは、100nm以下であることが好ましい。前記ターゲット材は、高能量、低温度の前記鍍材粒子を生じることができるものが好ましい。
【0006】
そして、本発明の有機材表面への反射防止膜の形成方法は、更に、前記反射防止膜として、順次高屈折率層と低屈折率層と保護層とをなすよう、所定気体で前記基材表面を洗浄する工程と、高屈折率を有する金属化合物をターゲット材として前記基材面に前記高屈折率層を形成する工程と、前記高屈折率より低い低屈折率を有する金属化合物をターゲット材として前記高屈折率層上に前記低屈折率層を形成する工程と、前記低屈折率層上に前記保護層を形成する工程とを備えてなることができる。また、前記低屈折率層を形成する工程を繰り返して複数回行うことにより前記高屈折率層上に複数の低屈折率層を形成してもよい。なお、前記所定気体として、酸素、窒素、アルゴンから選ばれたものを使用することが好ましい。前記高屈折率を有する金属化合物として、屈折率が2.0以上の金属化合物、例えば、Ta、Cr、TiO、ZnS、ZnO、CdTe、CdS、Ndなどを使用することが好ましい。前記低屈折率を有する金属化合物として、屈折率が1.5以下の金属化合物、例えば、BaF、MgF、NaAlF、NaAl14、SiO、YbF、CeFなどを使用することが好ましい。前記保護層として、MgF、SiOから選ばれたものを使用することが好ましい。前記高屈折率層の厚さは、10〜15nm程度に形成することが好ましい。前記保護層の厚さは、80〜120nm程度に形成することが好ましい。また、前記低屈折率層を形成する工程を4回繰り返し前記高屈折率層上に4層の低屈折率層を形成する場合、各低屈折率層の厚さは、それぞれ20〜40nm、65〜85nm、112.5〜187.5nm、20〜40nm程度に形成することが好ましい。前記低屈折率層を形成する工程を5回繰り返し前記高屈折率層上に5層の低屈折率層を形成する場合、各低屈折率層の厚さは、それぞれ20〜40nm、65〜85nm、112.5〜187.5nm、20〜40nm、80〜100nm程度に形成することが好ましい。
【0007】
そして、前記有機材表面への反射防止膜の形成方法によって製作された光関係素子は、前記反射防止膜の形成過程中における前記基材表面の温度を前記所定温度より低い所定範囲内の作業温度に保持したまま前記反射防止膜が形成されたため、所定温度を超えると分解によるガスの発生により素子を曇らせて機能を低下させることがなかったので、その信頼性、反射防止効果及び素子全体の品質などを確保することができる。
【0008】
ここで、前記光関係素子とは、光と作用関係があり、特に反射防止膜により反射作用を低減させる必要があるものをいう。例えば、偏光板、各種の画像表示装置、車両の窓、眼鏡、カメラのレンズなど。
【0009】
また、前記有機材表面への反射防止膜の形成方法によって製作された光関係素子は、その波長範囲450〜750nmでの光に対する平均反射率が0.5%以下あることが好ましい。
【0010】
【発明の実施の形態】
以下、本発明の有機材表面への反射防止膜の形成方法の好ましい実施の形態を詳しく説明する。図1は、本発明の有機材表面への反射防止膜の形成方法の第1の実施の形態によって有機材製の基材の表面に反射防止膜を形成する場合のステップを示すフローチャートである。図示のように、本発明の有機材表面への反射防止膜の形成方法は、所定気体で前記基材の表面を洗浄する工程(ステップ1)と、高屈折率を有する金属化合物をターゲット材として前記基材面2に高屈折率層を形成する工程(ステップ2)と、前記高屈折率より低い低屈折率を有する金属化合物をターゲット材として前記高屈折率層上に第1〜4の低屈折率層を順次に形成する工程(ステップ3,4,5,6)と、前記第4の低屈折率層上に保護層を形成する工程(ステップ7)とからなる。以下、図2〜図6に示している実施例の形成順を追って前記有機材表面への反射防止膜の形成方法における各工程を詳しく説明する。前記実施例では、まず、図2のように、複合プラスチック材からなり、且つ表面粗さを約90nmにさせた偏光板を基材2とし、それを温度約50℃、真空度約2×10−3Paの反応室3内に置いた後、アルゴンイオン束41で前記基材2表面21を洗浄した(ステップ1)。そして、図3のように、前記のように洗浄した基材2を被鍍物とし、屈折率2.1のCeOをターゲット材51として、加熱しながら、電圧6KVの電子束を用いて前記ターゲット材51の面に衝突し、前記ターゲット材51の面から鍍材粒子52を飛ばし出した後、イオン補助蒸着法(IBAD)により、前記鍍材粒子52を細かくて均一にしてから、前記基材面21に付着させて厚さ10〜15nm程度(この実施例では約13nm)の高屈折率層53を形成した(ステップ2)。前記高屈折率層形成工程5の過程中において、前記基材2と前記ターゲット材51との距離は60cmに保持し、且つ前記基材2の温度を約50℃に保持していた。それにより、前記鍍材粒子52の前記基材2に到達して前記基材2に付着する際の前記基材2への衝突によって発生する熱効果を低減させ、前記高屈折率層の形成過程中における前記基材の表面温度を約50℃に保持した。そして、図4のように、前記高屈折率層53が形成してある基材2を被鍍物とし、屈折率1.4のCeFをターゲット材61として、前記基材2と前記ターゲット材61との距離を60cmに保持し、且つ前記基材2の温度を約50℃に保持したまま、前記高屈折率層53上に厚さ20〜40nm(この実施例では約30nm)の第1の低屈折率層63を形成した(ステップ3)。そして、低屈折率層の範囲をもっと厚くするため、図5のように、前記ステップ3と同様な低屈折率層形成工程を繰り返して3回行い、前記第1の低屈折率層63上に厚さ65〜85nm(この実施例では約75nm)の第2の低屈折率層71と、厚さ112.5〜187.5nm(可視光線の波長の四分の一;この実施例では、波長550nmの光をモード光とし、その波長の四分の一の約137.5nmを取った)の第3の低屈折率層72と、厚さ20〜40nm(この実施例では約30nm)の第4の低屈折率層73とを順次に形成した(ステップ4,5,6)。次に、図6のように、前記高屈折率層53及び前記第1〜4の低屈折率層63,71〜73が形成してある基材2を被鍍物とし、MgF材をターゲット材81として、前記基材2と前記ターゲット材81との距離を約60cmに保持し、且つ前記基材2の温度を約50℃に保持したまま、前記第4の屈折率層73上に厚さ約100nmの保護層83を形成し(ステップ7)、前記基材2に反射防止膜20の形成を完成した。即ち、この実施例に形成された反射防止膜20は、前記高屈折率層53と前記第1〜4の低屈折率層63,71〜73と前記保護層83とからなり、即ち前記反射防止膜20を形成してなる反射防止膜付き光関係素子9の構成は図7に示している様である。
【0011】
本発明の有機材表面への反射防止膜の形成方法の第2の実施の形態の前記第1の実施の形態と異なる点は、前記保護層形成工程(ステップ7)の前に第5の低屈折率層形成工程を更に備え、即ち前記第4の低屈折率層73と前記保護層83との間に厚さ80〜100nmの第5の低屈折率層74を形成する。この第2の実施の形態の実施例は、実際に、約90nmの第5の低屈折率層74を形成した。換言すれば、この実施の形態において、反射防止膜201は、前記高屈折率層53と前記第1〜5の低屈折率層63,71〜74と前記保護層83とからなる。また、前記反射防止膜の形成方法によって製作された反射防止膜201付き光関係素子91の構成は図8に示している様である。図9は、前記第2の実施の形態によって製作された反射防止膜201付き光関係素子91の可視光線に対する反射率を示す。図示のように、この光関係素子91の可視光線の波長範囲450〜750nmでの光に対する平均反射率は、0.5%以下であり、波長550nmでの光に対する反射率は、0.2%以下である。
【0012】
【発明の効果】
本発明の有機材表面への反射防止膜の形成方法は、所定温度を超えると分解によるガスの発生が無視できない欠点がある有機材からなる基材へ低温下に反射防止膜を形成することができるため、所定温度を超えると分解によるガスの発生により、製作しようとする光関係素子を曇らせてその光学機能を低下させる虞がないので、該形成方法によって製作された光関係素子の信頼性、反射防止効果及び素子全体の品質などを確保することができる。
【0013】
以上説明した実施の形態は、あくまでも本発明の技術的内容を明らかにする意図のものにおいてなされたものであり、本発明はそうした具体例に限定して狭義に解釈されるものではなく、本発明の精神とクレームに述べられた範囲で、いろいろと変更して実施できるものである。
【図面の簡単な説明】
【図1】本発明の有機材表面への反射防止膜の形成方法の第1の実施の形態によって有機材製の基材の表面に反射防止膜を形成する場合のステップを示すフローチャート。
【図2】前記実施の形態における洗浄工程を示す説明図。
【図3】前記実施の形態における高屈折率層形成工程を示す説明図。
【図4】前記実施の形態における第1の低屈折率層形成工程を示す説明図。
【図5】前記実施の形態における第2、3、4の低屈折率層形成工程を示す説明図。
【図6】前記実施の形態における保護層形成工程を示す説明図。
【図7】前記実施の形態によって製作された光関係素子を示す縦断面図。
【図8】本発明の有機材表面への反射防止膜の形成方法の第2の実施の形態によって製作された光関係素子を示す縦断面図。
【図9】前記実施の形態によって製作された反射防止膜201付き光関係素子の可視光線に対する反射率を示す説明図。
【符号の説明】
2 基材
20,201 反射防止膜
21 基材表面
3 反応室
41 イオン束
51,61,81 ターゲット材
53 高屈折率層
63 第1の低屈折率層
71〜74 第2〜5の低屈折率層
83 保護層
9,91 光関係素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for forming an antireflection film on an organic material surface used for an optical element, for example, an LCD, a PDA, a CRT, a PDP, various cameras, a solar cell, or a window of a vehicle.
[0002]
[Prior art]
The formation of the antireflection film on the optical device is generally formed by a physical vapor deposition (PVD) method such as a sputtering method, a vacuum deposition method, and an ion plating method. Since these methods need to be performed at a high temperature, for a substrate made of an organic material such as plastic, if the temperature exceeds a predetermined temperature (for example, 60 ° C.), the base material is decomposed to generate gas, and a film is formed to some extent. May be clouded and the function may be degraded. For example, as for a polarizing plate, a layer made of triacetate cellulose (TAC) is formed on both surfaces of a substrate made of polyvinyl alcohol (PVA), and then a surface protective layer is further formed on one surface, and an optical adhesive is formed on the other surface. Since it is a composite plastic material formed by covering the release film by using, it is used when forming an anti-reflection film capable of reducing the reflectance to light on its outer surface by using it as a base material. The high temperature (at about 60 ° C. or higher) decomposes the substrate, the triacetate cellulose layer, the adhesive, etc. to generate gas, which generates air bubbles in the outermost release film, thereby deteriorating the function of the polarizing plate. In addition to this, there is a disadvantage in that the degree of vacuum in the reaction chamber for forming the anti-reflection film and the purity of the target material as the plating material are destroyed. Therefore, there is a need for a method capable of forming an antireflection film on the surface of an organic material at a low temperature.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method capable of forming an antireflection film on an organic material surface at a low temperature.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, when a temperature exceeds a predetermined temperature, a base material made of an organic material whose generation of gas due to decomposition is not negligible is used as a substrate to be plated, and placed in a reaction chamber together with a target material as a plating material. Thereafter, while allowing the base material to be at a working temperature within a predetermined range lower than the predetermined temperature, the plating particles escape from the surface of the target material by excitation, and are transferred to the base material surface. A method of forming an anti-reflection film on the surface of an organic material to be attached as an anti-reflection film, by opening a predetermined distance between the base material and the target material, to reach the base material of the transition particles A heat effect generated by collision with the base material when adhering to the base material is reduced, and the working temperature of the base material surface during the formation process of the antireflection film is kept within the predetermined range. Organic material Method for forming a reflection preventing film to the surface. According to this forming method of the present invention, the temperature of the base material surface during the process of forming the antireflection film can be maintained at a working temperature within a predetermined range lower than the predetermined temperature. As a result, there is no danger of fogging the optical device to be manufactured and deteriorating its optical function.
[0005]
Here, the base material made of an organic material refers to a material made of a resin or a plastic material or a composite material thereof. The term “excitation” refers to various methods for allowing plating particles to escape from the surface of the target material. For example, a method of colliding the surface of the target material with an electron flux or an ion flux to eject the plating particles, or a method of heating the target material and evaporating the plating particles from the surface. In other words, the antireflection film of the present invention can be formed by a sputtering method, a vacuum deposition method, an ion plating method, an ion-assisted deposition method (IBAD; Ion Beam Assisted Deposition), or a combination method thereof. The working temperature within the predetermined range usually means a low temperature, that is, a temperature of 60 ° C. or less. Preferably, the predetermined distance is limited to a range of 40 to 80 cm. The surface roughness of the substrate is preferably 100 nm or less. The target material is preferably capable of producing the plating particles at a high capacity and a low temperature.
[0006]
Then, the method for forming an antireflection film on the surface of an organic material according to the present invention further comprises the step of forming the base material with a predetermined gas so that a high refractive index layer, a low refractive index layer, and a protective layer are sequentially formed as the antireflection film. A step of cleaning the surface, a step of forming the high-refractive-index layer on the substrate surface using a metal compound having a high refractive index as a target material, and a step of forming a metal compound having a low refractive index lower than the high-refractive index as the target material. Forming a low refractive index layer on the high refractive index layer, and forming the protective layer on the low refractive index layer. Also, a plurality of low refractive index layers may be formed on the high refractive index layer by repeating the step of forming the low refractive index layer a plurality of times. Preferably, the predetermined gas is selected from oxygen, nitrogen, and argon. As the metal compound having a high refractive index, a metal compound having a refractive index of 2.0 or more, for example, Ta 2 O 5 , Cr 2 O 3 , TiO 2 , ZnS, ZnO 2 , CdTe, CdS, Nd 2 O 3 and the like It is preferred to use Examples of the metal compound having a low refractive index, 1.5 or less of the metal compound is a refractive index, for example, BaF 2, MgF 2, Na 3 AlF 6, Na 5 Al 3 F 14, SiO 2, YbF 3, CeF 3 , etc. It is preferred to use It is preferable to use a material selected from MgF 2 and SiO 2 as the protective layer. The thickness of the high refractive index layer is preferably formed to be about 10 to 15 nm. The thickness of the protective layer is preferably about 80 to 120 nm. Further, when the step of forming the low refractive index layer is repeated four times to form four low refractive index layers on the high refractive index layer, the thickness of each low refractive index layer is 20 to 40 nm and 65, respectively. To 85 nm, 112.5 to 187.5 nm, and about 20 to 40 nm. When the step of forming the low-refractive-index layer is repeated five times to form five low-refractive-index layers on the high-refractive-index layer, the thickness of each low-refractive-index layer is 20 to 40 nm and 65 to 85 nm, respectively. , 112.5 to 187.5 nm, about 20 to 40 nm, and about 80 to 100 nm.
[0007]
The optical device manufactured by the method of forming an anti-reflection film on the surface of the organic material may have a temperature of the substrate surface during a process of forming the anti-reflection film within a predetermined range lower than the predetermined temperature. Since the anti-reflection film was formed while maintaining the temperature, when the temperature exceeded a predetermined temperature, gas generation due to decomposition did not fog the element and the function was not degraded. Etc. can be secured.
[0008]
Here, the light-related element refers to an element that has an operative relation with light, and in particular, it is necessary to reduce the reflection effect by an antireflection film. For example, polarizing plates, various image display devices, vehicle windows, glasses, camera lenses, and the like.
[0009]
Further, the optical-related element manufactured by the method for forming an anti-reflection film on the surface of the organic material preferably has an average reflectance of 0.5% or less with respect to light in a wavelength range of 450 to 750 nm.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the method for forming an antireflection film on the surface of an organic material according to the present invention will be described in detail. FIG. 1 is a flowchart showing steps in the case of forming an antireflection film on the surface of a substrate made of an organic material according to the first embodiment of the method for forming an antireflection film on the surface of an organic material according to the present invention. As shown in the drawing, the method for forming an antireflection film on the surface of an organic material according to the present invention includes a step of cleaning the surface of the base material with a predetermined gas (step 1), and a method of using a metal compound having a high refractive index as a target material. Forming a high refractive index layer on the substrate surface 2 (step 2); and forming a first to fourth low refractive index layers on the high refractive index layer using a metal compound having a low refractive index lower than the high refractive index as a target material. It comprises a step of sequentially forming a refractive index layer (steps 3, 4, 5, 6) and a step of forming a protective layer on the fourth low refractive index layer (step 7). Hereinafter, the respective steps in the method for forming an antireflection film on the surface of the organic material will be described in detail in the order of formation of the embodiment shown in FIGS. In the above embodiment, first, as shown in FIG. 2, a polarizing plate made of a composite plastic material and having a surface roughness of about 90 nm was used as a base material 2 and was heated at a temperature of about 50 ° C. and a degree of vacuum of about 2 × 10 After being placed in the reaction chamber 3 at −3 Pa, the surface 21 of the substrate 2 was washed with an argon ion flux 41 (Step 1). Then, as shown in FIG. 3, the base material 2 washed as described above is used as a plating target, CeO 2 having a refractive index of 2.1 is used as a target material 51, and while heating, the electron beam having a voltage of 6 KV is used. After colliding with the surface of the target material 51 and ejecting the plating particles 52 from the surface of the target material 51, the plating particles 52 are made fine and uniform by ion-assisted vapor deposition (IBAD). A high-refractive-index layer 53 having a thickness of about 10 to 15 nm (about 13 nm in this embodiment) was formed by being attached to the material surface 21 (step 2). During the process of forming the high refractive index layer 5, the distance between the base material 2 and the target material 51 was maintained at 60 cm, and the temperature of the base material 2 was maintained at about 50 ° C. Thereby, the thermal effect generated by the collision of the plating particles 52 with the substrate 2 when the plating particles 52 reach the substrate 2 and adhere to the substrate 2 is reduced, and the process of forming the high refractive index layer is performed. The surface temperature of the substrate in the inside was kept at about 50 ° C. Then, as shown in FIG. 4, the base material 2 on which the high refractive index layer 53 is formed is used as a plating target, and CeF 3 having a refractive index of 1.4 is used as a target material 61, and the base material 2 and the target material are used. While maintaining the distance to 61 at 60 cm and the temperature of the substrate 2 at about 50 ° C., a first layer having a thickness of 20 to 40 nm (about 30 nm in this embodiment) is formed on the high refractive index layer 53. Was formed (step 3). Then, in order to further increase the range of the low refractive index layer, as shown in FIG. 5, a low refractive index layer forming step similar to the step 3 is repeated three times, and the low refractive index layer is formed on the first low refractive index layer 63. A second low refractive index layer 71 having a thickness of 65 to 85 nm (about 75 nm in this embodiment) and a thickness of 112.5 to 187.5 nm (a quarter of the wavelength of visible light; A third low-refractive-index layer 72 having a wavelength of 550 nm as a mode light and taking a quarter of the wavelength of about 137.5 nm) and a second low-refractive-index layer 72 having a thickness of 20 to 40 nm (about 30 nm in this embodiment). 4 and the low refractive index layer 73 were formed sequentially (steps 4, 5, 6). Next, as shown in FIG. 6, the substrate 2 on which the high refractive index layer 53 and the first to fourth low refractive index layers 63, 71 to 73 are formed is to be plated, and the MgF 2 material is used as a target. As the material 81, the thickness between the base material 2 and the target material 81 is maintained at about 60 cm, and the temperature of the base material 2 is maintained at about 50 ° C. on the fourth refractive index layer 73. A protective layer 83 having a thickness of about 100 nm was formed (Step 7), and the formation of the antireflection film 20 on the base material 2 was completed. That is, the antireflection film 20 formed in this embodiment is composed of the high refractive index layer 53, the first to fourth low refractive index layers 63, 71 to 73, and the protective layer 83. The configuration of the optical device 9 with an antireflection film having the film 20 formed thereon is as shown in FIG.
[0011]
The second embodiment of the method of forming an antireflection film on the surface of an organic material according to the present invention is different from the first embodiment in that a fifth low-reflection film is formed before the protective layer forming step (step 7). A refractive index layer forming step is further provided, that is, a fifth low refractive index layer 74 having a thickness of 80 to 100 nm is formed between the fourth low refractive index layer 73 and the protective layer 83. In the example of the second embodiment, a fifth low refractive index layer 74 of about 90 nm was actually formed. In other words, in this embodiment, the antireflection film 201 includes the high refractive index layer 53, the first to fifth low refractive index layers 63, 71 to 74, and the protective layer 83. The configuration of the optical device 91 with the anti-reflection film 201 manufactured by the method for forming the anti-reflection film is as shown in FIG. FIG. 9 shows the reflectance with respect to visible light of the optical device 91 with the antireflection film 201 manufactured according to the second embodiment. As shown in the figure, the average reflectance of the light-related element 91 for light in the wavelength range of 450 to 750 nm of visible light is 0.5% or less, and the reflectance for light of 550 nm in wavelength is 0.2%. It is as follows.
[0012]
【The invention's effect】
The method for forming an anti-reflection film on the surface of an organic material according to the present invention can form an anti-reflection film at a low temperature on a substrate made of an organic material that has a drawback that gas generation due to decomposition cannot be ignored when the temperature exceeds a predetermined temperature. When the temperature exceeds a predetermined temperature, the generation of gas due to decomposition causes no fogging of the optical device to be manufactured and the possibility of deteriorating its optical function. The antireflection effect and the quality of the entire device can be ensured.
[0013]
The embodiments described above are intended to clarify the technical contents of the present invention, and the present invention is not limited to such specific examples and is not interpreted in a narrow sense. Various modifications can be made within the spirit and scope of the claims.
[Brief description of the drawings]
FIG. 1 is a flowchart showing steps when an antireflection film is formed on a surface of a substrate made of an organic material according to a first embodiment of the method of forming an antireflection film on an organic material surface of the present invention.
FIG. 2 is an explanatory view showing a cleaning step in the embodiment.
FIG. 3 is an explanatory view showing a high refractive index layer forming step in the embodiment.
FIG. 4 is an explanatory view showing a first low refractive index layer forming step in the embodiment.
FIG. 5 is an explanatory view showing second, third, and fourth low refractive index layer forming steps in the embodiment.
FIG. 6 is an explanatory view showing a protective layer forming step in the embodiment.
FIG. 7 is a longitudinal sectional view showing an optical device manufactured according to the embodiment.
FIG. 8 is a longitudinal sectional view showing an optical device manufactured according to a second embodiment of the method for forming an antireflection film on the surface of an organic material according to the present invention.
FIG. 9 is an explanatory diagram showing the reflectance with respect to visible light of the optical device with the antireflection film 201 manufactured according to the embodiment.
[Explanation of symbols]
2 base material 20, 201 antireflection film 21 base material surface 3 reaction chamber 41 ion flux 51, 61, 81 target material 53 high refractive index layer 63 first low refractive index layer 71 to 74 second to fifth low refractive index Layer 83 Protective layer 9, 91 Optical element

Claims (10)

所定温度を超えると、分解によるガスの発生が無視できない有機材からなる基材を被鍍物とし、鍍材としてのターゲット材と共に反応室に置いた後、前記基材を前記所定温度より低い所定範囲内の作業温度にさせながら、励起によって前記ターゲット材の面から鍍材粒子を脱出させ、前記基材面へ移行させて、前記基材面に反射防止膜として付着させる有機材表面への反射防止膜の形成方法であって、
前記基材と前記ターゲット材との間に所定距離を開けることにより、前記移行粒子の前記基材に到達して前記基材に付着する際の前記基材への衝突によって発生する熱効果を低減させ、前記反射防止膜の形成過程中における前記基材表面の作業温度を前記所定範囲内に保持することを特徴とする有機材表面への反射防止膜の形成方法。
When the temperature exceeds a predetermined temperature, a base material made of an organic material whose generation of gas due to decomposition is not negligible is to be plated, and after being placed in a reaction chamber together with a target material as a plating material, the base material is cooled to a predetermined temperature lower than the predetermined temperature. The plating particles escape from the surface of the target material by excitation while being brought into a working temperature within the range, are transferred to the substrate surface, and are reflected on the organic material surface to be attached to the substrate surface as an antireflection film. A method for forming a prevention film, comprising:
By providing a predetermined distance between the base material and the target material, a thermal effect generated by collision of the migrating particles with the base material when the migrated particles reach the base material and adhere to the base material is reduced. A method of forming an anti-reflection film on an organic material surface, wherein the working temperature of the surface of the base material during the process of forming the anti-reflection film is maintained within the predetermined range.
前記所定範囲内の作業温度を60℃以下とすることを特徴とする請求項1に記載の有機材表面への反射防止膜の形成方法。2. The method according to claim 1, wherein the working temperature within the predetermined range is set to 60 [deg.] C. or less. 前記反射防止膜として、順次高屈折率層と低屈折率層と保護層とをなすよう、
高屈折率を有する金属化合物をターゲット材として前記基材面に前記高屈折率層を形成する工程と、
前記高屈折率より低い低屈折率を有する金属化合物をターゲット材として前記高屈折率層上に前記低屈折率層を形成する工程と、
前記低屈折率層上に前記保護層を形成する工程とを備えてなることを特徴とする請求項1に記載の有機材表面への反射防止膜の形成方法。
As the antireflection film, so as to sequentially form a high refractive index layer, a low refractive index layer and a protective layer,
Forming the high refractive index layer on the substrate surface using a metal compound having a high refractive index as a target material,
Forming the low refractive index layer on the high refractive index layer using a metal compound having a low refractive index lower than the high refractive index as a target material,
Forming the protective layer on the low refractive index layer. The method of forming an antireflection film on an organic material surface according to claim 1, further comprising: forming the protective layer on the low refractive index layer.
前記所定距離を40〜80cmとすることを特徴とする請求項1、2または3に記載の有機材表面への反射防止膜の形成方法。4. The method according to claim 1, wherein the predetermined distance is set to 40 to 80 cm. 前記低屈折率層を形成する工程を繰り返して複数回行うことにより前記高屈折率層上に複数の低屈折率層を形成することを特徴とする請求項3に記載の有機材表面への反射防止膜の形成方法。The reflection on the organic material surface according to claim 3, wherein a plurality of low refractive index layers are formed on the high refractive index layer by repeating the step of forming the low refractive index layer a plurality of times. A method for forming the prevention film. 前記基材上に前記高屈折率層を形成する工程の前に、更に、所定気体で前記基材表面を洗浄する工程を備えてなることを特徴とする請求項3に記載の有機材表面への反射防止膜の形成方法。4. The method according to claim 3, further comprising, before the step of forming the high refractive index layer on the substrate, a step of cleaning the surface of the substrate with a predetermined gas. For forming an antireflection film. 前記高屈折率を有する金属化合物として、屈折率が2.0以上の金属化合物を使用することを特徴とする請求項3に記載の有機材表面への反射防止膜の形成方法。4. The method according to claim 3, wherein a metal compound having a refractive index of 2.0 or more is used as the metal compound having a high refractive index. 前記低屈折率を有する金属化合物として、屈折率が1.5以下の金属化合物を使用することを特徴とする請求項7に記載の有機材表面への反射防止膜の形成方法。The method according to claim 7, wherein a metal compound having a refractive index of 1.5 or less is used as the metal compound having a low refractive index. 前記所定気体として、酸素、窒素、アルゴンから選ばれたものを使用することを特徴とする請求項6に記載の有機材表面への反射防止膜の形成方法。7. The method according to claim 6, wherein the predetermined gas is selected from oxygen, nitrogen, and argon. 前記基材の表面粗さは100nm以下であることを特徴とする請求項1に記載の有機材表面への反射防止膜の形成方法。2. The method according to claim 1, wherein the surface roughness of the substrate is 100 nm or less.
JP2002195881A 2002-07-04 2002-07-04 Method for depositing antireflection film on organic material surface Pending JP2004037908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195881A JP2004037908A (en) 2002-07-04 2002-07-04 Method for depositing antireflection film on organic material surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195881A JP2004037908A (en) 2002-07-04 2002-07-04 Method for depositing antireflection film on organic material surface

Publications (1)

Publication Number Publication Date
JP2004037908A true JP2004037908A (en) 2004-02-05

Family

ID=31704137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195881A Pending JP2004037908A (en) 2002-07-04 2002-07-04 Method for depositing antireflection film on organic material surface

Country Status (1)

Country Link
JP (1) JP2004037908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518498B2 (en) 2009-09-02 2013-08-27 Samsung Display Co., Ltd. Liquid crystal display and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518498B2 (en) 2009-09-02 2013-08-27 Samsung Display Co., Ltd. Liquid crystal display and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US9459379B2 (en) Optical member and method for producing same
JP3808917B2 (en) Thin film manufacturing method and thin film
JP2006267561A (en) Optical element and manufacturing method thereof
JP3905035B2 (en) Method for forming optical thin film
JP2000214302A (en) Antireflection film and its production
JP2006301487A (en) Near-infrared ray cut filter
CN114335392B (en) Preparation process of anti-reflection film for OLED flexible display
JP5489603B2 (en) Optical article and manufacturing method thereof
JPH08122504A (en) Antireflection film and its production
JP2004037908A (en) Method for depositing antireflection film on organic material surface
JP2004334012A (en) Antireflection film and optical filter
US6863965B2 (en) Optical component
JP2004012657A (en) Antireflection film
JP2002267803A (en) Antireflection film and optical parts
JP3361621B2 (en) Anti-reflection coating for infrared region
EP1380858A1 (en) Method for manufacturing an anti-reflective coating on a substrate for the production of a polarizer
JPS61124901A (en) Production of color separating filter
JP2004255635A (en) Transparent laminated film, antireflection film, polarizing plate using the same, and liquid crystal display device
JP2011150267A (en) Optical article and method for manufacturing the same
JPH0894802A (en) Optical element
JP3689923B2 (en) Method for producing plastic film having antireflection film
JP2003098311A (en) Optical component
JP3404346B2 (en) Method of manufacturing optical thin film and method of manufacturing substrate having optical thin film
JP2003098308A (en) Optical parts
CN210270230U (en) Antireflection film