JP2004037362A - Manufacturing method of gas detection element - Google Patents

Manufacturing method of gas detection element Download PDF

Info

Publication number
JP2004037362A
JP2004037362A JP2002197233A JP2002197233A JP2004037362A JP 2004037362 A JP2004037362 A JP 2004037362A JP 2002197233 A JP2002197233 A JP 2002197233A JP 2002197233 A JP2002197233 A JP 2002197233A JP 2004037362 A JP2004037362 A JP 2004037362A
Authority
JP
Japan
Prior art keywords
layer
fine particles
coating layer
sensitive layer
gas detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002197233A
Other languages
Japanese (ja)
Other versions
JP3935791B2 (en
Inventor
Naganori Dojo
堂上 長則
Tadashi Takada
高田 義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2002197233A priority Critical patent/JP3935791B2/en
Publication of JP2004037362A publication Critical patent/JP2004037362A/en
Application granted granted Critical
Publication of JP3935791B2 publication Critical patent/JP3935791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To heighten shape stability of a gas detection element and quality stability derived from the shape stability. <P>SOLUTION: A base material wherein a sensitive layer mainly composed of an indium oxide is formed on a noble metal wire coil is prepared. An electrode 2 is stretched on the bottom part of a butt 1 flatly all over the surface. Fluid dispersion S wherein alumina fine particles are dispersed in ethanol is filled in the butt 1. After dipping bridges 3B where the base material is fixed into the fluid dispersion S, a voltage is applied between the bridges 3B and the electrode 2, to thereby perform an electrophoretic process. After drying a formed coating layer, the layer is sintered at a prescribed temperature as long as a prescribed time, to thereby manufacture this gas detection element having a coating layer on the surface of the sensitive layer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、センサ電極に金属酸化物焼結体からなる感応層を設けたガス検知素や、センサ電極に金属酸化物焼結体からなる感応層を設け、前記感応層に、微粒子の焼結体からなる被覆層を設けたガス検知素子の製造方法に関する。
【0002】
【従来の技術】
従来、ガス検知素子の感応層や、その感応層に対する被覆層を形成する場合には、加圧成型、スクリーン印刷、ディッピング、物理蒸着(真空蒸着、スパッター)、化学蒸着など様々な作製方法が適用されている。
このうち、加圧成型は金型に材料を詰め加圧成型するもので、微小な構造物の作製に適さない。スクリーン印刷は印刷技術を適用したもので、比較的均一な微小な構造物の作製も可能であるが、構造物の形状が平板形状に限られる。また、物理蒸着、化学蒸着は薄膜作製法であり1μm以下厚さの層構造作製法であるため、10μm程度以上の膜厚を必要とする前記感応層や前記被覆層の形成には向かない場合が多い。そのため、微小で、複雑形状のガス検知素子に対しては、ディッピングにより、前記感応層や被覆層を形成すべき微粒子材料の分散液に浸し、引き上げ、その感応層や被覆層を形成すべき微粒子材料をセンサ電極や前記感応層にコーティングしたのち、形成されたコーティング層を乾燥、焼結する方法が、任意形状の感応層や被覆層の作製が可能であるという理由から汎用されている。
【0003】
【発明が解決しようとする課題】
しかし、上述のディッピングによると、形成されるコーティング層の厚さが、均一にはなりにくく、また、微小な基材にコーティング層を形成する場合にも、そのコーティング層の厚さのばらつきが大きい。また、一度の工程で作製されるコーティング層の厚さは、10μm程度であり、これ以上の厚さのコーティング層を必要とする場合には、同様の手順を繰り返し行わねばならないこともあり、さらに、被覆層の膜厚や、感応層の形状安定性が確保されにくいという実情があった。そのため、得られるガス検知素子の特性にばらつきが生じやすく、品質安定性を維持するために歩留まりが低下したりするという問題があった。
【0004】
従って、本発明の目的は、上記実情に鑑み、ガス検知素子の形状安定性や、その形状安定性に由来する品質安定性を高くする点にある。
【0005】
【課題を解決するための手段】
この目的を達成するための本発明のガス検知素子の製造方法の特徴は、
センサ電極に金属酸化物焼結体からなる感応層を設け、前記感応層に、微粒子の焼結体からなる被覆層を設けたガス検知素子の製造方法であって、前記感応層を設けた前記センサ電極および対極を、前記被覆層を形成する微粒子の分散液に浸漬した状態で、前記センサ電極と前記対極との間に電圧を印加し、前記感応層に前記微粒子の層を形成させる電気泳動工程を行い、形成された前記微粒子の層を焼結させる焼結工程を行い、前記被覆層を形成する点にある。
また、前記微粒子の分散液が、微粒子を2×10−3〜4×10−1mol/Lで分散媒に分散させたものであることが好ましく、
前記感応層が球状であることが好ましい。
【0006】
さらには、センサ電極に金属酸化物焼結体からなる感応層を設けたガス検知素子を製造するに、前記感応層を形成する微粒子の分散液に、前記センサ電極および対極を浸漬した状態で、前記センサ電極と前記対極との間に電圧を印加し、前記センサ電極に前記微粒子の層を形成させる電気泳動工程を行った後、形成された前記微粒子の層を焼結させる焼結工程を行い、前記感応層を形成してもよい。
〔作用効果〕
つまり、センサ電極に金属酸化物焼結体からなる感応層を設け、前記感応層を被覆して、微粒子の焼結体からなる被覆層を設けたガス検知素子は、前記感応層において被検知ガスと接触し、その感応層の物性の変化等を捉えることにより前記センサ電極を通じてその被検知ガス種や濃度に応じた出力をだすことができる。このとき、前記被覆層は通常、前記被検知ガス中の妨害ガス成分を除去したり、前記感応層を劣化させる被毒性物質を除去したりする機能を付与するために用いられ、そのガス検知素子のガス選択性や、耐久性を高める効果を発揮する。
前記被覆層を形成させるに、前記被覆層を形成するための微粒子の分散液に、感応層を形成してある前記センサ電極および対極を浸漬した状態で、電気泳動工程を行うと、前記分散液に分散させられた微粒子の電荷に応じて前記微粒子は前記電極の周囲の分散液から、一対の電極のいずれかに均等に泳動させられることになる。ここで、前記微粒子を、前記センサ電極側に泳動させれば、前記感応層表面に前記微粒子が均一に付着して層状に堆積する。
次に、形成された前記微粒子の層を焼結させる焼結工程を行うと、前記微粒子の層は焼結により一体化して、通気性の被覆層を形成する。このとき、前記微粒子の層は、前記感応層に対して均一に形成されることになるから、ばらつきの無い被膜を容易に形成することができる。
【0007】
また、前記微粒子の選択により、前記被覆層の機能を種々変化させることができる。また、前記微粒子の粒径を適切に設定することにより、その被覆層の緻密さを設定することもできる。そのため、前記被覆層に求められる物性に応じて前記微粒子の分散液を適宜調整することによって、被覆層に容易に種々の特性を賦与することができる。
具体的には、前記微粒子として酸化アルミニウム(アルミナ)を用いれば、保護層を作製でき、センサ劣化の原因物質に対する耐久性を向上することが可能となる。前記微粒子としてパラジウムや白金などの貴金属を担持したアルミナ等を用いれば、触媒層を作製でき、エタノールや水素に対する感度を抑制しメタン選択性の優れた都市ガス用センサとすることができる。前記微粒子としては、これらのもののほか、種々の金属酸化物材料を用いることができ、エタノール等の分散媒に分散させて分散液を形成することができる。
【0008】
また、前記微粒子の分散液が、微粒子を2×10−3〜4×10−1mol/Lで分散媒に分散させたものであると、前記微粒子が凝集することなく均一に分散させられ、かつ、適度な時間で十分量の微粒子を堆積させられるので、電気泳動工程を短時間で効率よく行える。
【0009】
また、前記感応層が球状である場合には、特に前記感応層上には微粒子が方向性無く均一に堆積するために、均一な被覆層を形成するのに有利であり、製造効率が大きく向上するので好ましい。
【0010】
また、同様の方法によって、前記ガス検知素子の感応層を形成することもできる。つまり、センサ電極に金属酸化物焼結体からなる感応層を設けたガス検知素子を製造するに、前記感応層を形成する微粒子の分散液に、前記センサ電極および対極を浸漬した状態で、前記電気泳動工程を行うと、緻密でかつ前記センサ電極の形状に適した無駄のない形状のコーティング層を形成することができる。続いて、焼結工程を行い、前記コーティング層を球状に焼成して前記感応層を形成すると、前記微粒子の層は焼結により一体化して、通気性の感応層を形成する。このとき、前記微粒子の層は、前記センサ電極に対して均一に形成されることになるから、ばらつきの少ない一定形状に容易に形成することができる。
【0011】
尚、電気泳動工程は、多数のセンサ電極や、そのセンサ電極に感応層を被覆形成したものを同時に分散液中に浸漬させた状態で、これらに対して一度に電圧を印加することができる。従って本発明によれば、品質にばらつきの少ない多数のガス検知素子を量産性、収率よく得ることができる。
【0012】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
(1) 図2に示すようにテフロン製バット1に、金属酸化物微粒子の所定量をマグネティックスターラーや超音波発生器などでエタノール中に一様に分散させた分散液Sを満たす。また、白金メッシュ2を前記バット1の底面に平らに張る。
一方、あらかじめ白金、白金ロジウム、白金パラジウム等の貴金属線31からなるセンサ電極に酸化スズ等の金属酸化物半導体からなる感応層32を球状に設けてあるガス検知素子の基材3Aを形成しておく。この基材3Aは、固定冶具33に固定して形成したブリッジ3Bとしておく。
前記ブリッジ3Bの多数を前記バットに収容した分散液Sに浸漬する。ここで、前記ブリッジ3Bは、それぞれ、前記固定冶具33を介して前記貴金属線コイル31に通電自在に保持する。このようにして保持されるブリッジ3Bを、前記白金メッシュ2を対極とする一対の電極として、前記ブリッジ3B、白金メッシュ2間に電源4から所定電圧を印加する。すると、前記ガス検知素子の基材3Aに対して電気泳動により金属酸化物微粒子が泳動して堆積されコーティング層を形成する(電気泳動工程)。
【0013】
所定時間後、前記ブリッジ3Bを分散液Sから取り出し、前記コーティング層を乾燥後、所定温度で所定時間焼結すると、前記基材3Aの表面に前記金属酸化物を主成分とする被覆層34を形成することができ(焼結工程)、球状の熱線型ガス検知素子3を得ることができた。
【0014】
(2)先の実施の形態におけるガス検知素子の基材3Aに代え、前記貴金属線コイル31を適用したブリッジ3Bを用いた場合には、前記感応層32を形成することができる。つまり、先の実施例と同様に、あらかじめ貴金属コイル31を、固定冶具33に固定して形成したブリッジ3Bを用意し、先と同様に電気泳動工程を行うと、前記貴金属線コイル上に金属酸化物微粒子を堆積させコーティング層を形成させることができる。
【0015】
所定時間後、前記ブリッジ3Bを分散液Sから取り出し、前記コーティング層を乾燥後、所定温度で所定時間焼結すると、前記貴金属線コイル31の表面に前記金属酸化物を主成分とする感応層32を形成することができ(焼結工程)、貴金属線を延出してなる球状体のガス検知素子の基材3Aを得ることができた。この基材3Aは、このままでガス検知素子3として用いてもよいし、さらに、被覆層34を形成してガス検知素子3としてもよい。
【0016】
尚、前記ブリッジ3Bは、ガス検知回路基板に直接取り付けるなどして、ガス検知装置の内部に組み込むことができる形態としてあり、ガス検知装置製造工程を簡略化できるように構成してある
【0017】
実施例1
図1に示されるように、貴金属線コイル31上に酸化インジウムを主成分とする感応層32を、直径500μmの球状に形成してある基材3Aを用意しておく。
図2のテフロン製バット1の底面に白金メッシュ2からなる電極を一面にかつ平らに張る。アルミナ微粒子を1.3×10−1mol/Lになるようにエタノールに分散させた分散液Sを前記テフロン製バットに満たす。尚、前記分散液Sは、超音波発生器や、各種攪拌機により、アルミナ微粒子が均一にふくまれるように十分分散させておく。基材3Aを固定したブリッジ3Bを前記分散液Sに浸漬した後、前記ブリッジ3Bと前記白金メッシュ2との間に15ボルトの電圧を3分間印加し、電気泳動工程を行う。その後前記ブリッジ3Bを溶液から引き上げ、形成されたコーティング層を乾燥後、所定温度で所定時間焼結すると前記感応層の表面に厚さ約80μmの均一な被覆層34を有するガス検知素子3を作製することができた。
【0018】
このようにして得られたガス検知素子を、センサ高感度化の原因となる毒性物質(シリコーンガス)に所定時間暴露させる耐久性試験を行った。比較として、上述の被覆層34(コーティング)を形成していないもの、従来のディッピングにより形成された被覆層34(コーティング)を有するものについても同様に耐久性を調べた。その結果を図3に示す。図3より、本発明により得られたガス検知素子のセンサ出力は、長時間の毒性物質暴露に対しても所定値を維持し、上昇傾向とはならないことがわかり、従来のものに比べて耐久性が大幅に向上したことが分かる。
【0019】
実施例2
本発明による方法によれば、1個のガス検知素子のみならず、多数のガス検知素子を同時に製造するのに適用することができる。上述の実施例1によるガス検知素子を一度に200個製造したところ、実施例1と同一の分散液Sを用いて電気泳動を行った場合に、前記ブリッジ3Bと前記白金メッシュ2との間に30ボルトの電圧を15分間印加することにより、すべてのガス検知素子に厚さ約80μmのアルミナを主成分とする被覆層34を作製することができた。
【0020】
実施例3
図1に示されるように、貴金属線コイル上に酸化スズを主成分とする感応層32を、直径150μmの球状に形成してある基材3Aを用意しておく。
図2のテフロン製バット1の底面に白金メッシュ2からなる電極を一面にかつ平らに張る。パラジウムを担持したアルミナ粒子を1.3×10−2mol/Lになるようにエタノールに分散させた分散液Sを前記テフロン製バットに満たす。尚、前記分散液Sは、超音波発生器や、各種攪拌機により、アルミナ微粒子が均一にふくまれるように十分分散させておく。基材3Aを固定したブリッジ3Bを前記分散液Sに浸漬した後、前記ブリッジ3Bと前記白金メッシュ2との間に30ボルトの電圧を1分間印加し、電気泳動工程を行う。その後前記ブリッジ3Bを溶液から引き上げ、形成されたコーティング層を乾燥後、所定温度で所定時間焼結すると前記感応層の表面に厚さ約10μmの均一な被覆層34を有するガス検知素子3を作製することができた。
【0021】
図4に得られたガス検知素子のメタン、水素、エタノールに対するガス感度特性を示す。比較として前記被覆層34(コーティング)の無いもの、従来のディッピングにより同様の被覆層34(コーティング)を作製したものについてもガス感度特性を調べた。この結果より、本発明により形成された被覆層34は、メタンガス選択性を向上させる触媒層として有効に働き、メタン感度を上昇させつつ、水素、エタノール感度を減少させ、メタン選択性を向上させることができることがわかる。
【0022】
実施例4
実施例3において前記分散液Sに用いる分散質を、酸化チタン、アルミナ、酸化亜鉛、酸化インジウム、酸化セリウムに変更して、前記被覆層34を形成した。
電気泳動工程の条件としては、分散液S濃度を、酸化チタンは1.7×10−2mol/L、アルミナは1.3×10−2mol/L、酸化亜鉛は1.6×10−2mol/L、酸化インジウムは4.8×10−3mol/L、酸化セリウムは7.7×10−3mol/Lとし、酸化チタン、アルミナは30ボルトを1分間、酸化亜鉛、酸化インジウム、酸化セリウムは30ボルトを10秒、とした。
その結果、直径150μmの酸化スズを主成分とする感応層32に厚さ約10μmの酸化チタン、アルミナ、酸化亜鉛、酸化インジウム、酸化セリウムからなる被覆層34が形成された。
【0023】
各ガス検知素子の被覆層34形成前後における各種ガスに対するセンサ出力を調べたところ図5のようになった。いずれの場合も被覆層34が触媒層として働き、ガス感度特性が変化していることがわかる。特に酸化亜鉛を用いた場合には、全体的に高感度になっていることがわかる。
【0024】
尚、本発明によれば、上述の貴金属線コイルに感応層を形成した熱線型半導体式ガス検知素子の作製のみならず、電極とヒータを備えたアルミナ基板の電極上にガス感応部を形成した基板型センサ上にも被覆層を作製することができる。また、接触燃焼式センサ上に保護層、触媒層などとして機能する被覆層を作製することもできる。
この方法は上述したように溶液中で帯電する粉体粒子なら材料に依らず、また混合粉体粒子からもガス検知素子を作製することが可能である。被覆層の厚さ制御、被覆層の緻密さの制御も容易である。
【0025】
また、この方法は酸化スズ、アルミナなどの微粒子に限らず、溶液中で帯電する微粒子なら材料によらず用いることができる。また用いられる微粒子は種々の微粒子の混合物であってもよい。
【図面の簡単な説明】
【図1】ガス検知素子の一部破断斜視図
【図2】電気泳動工程の概略図
【図3】実施例1の毒性物質暴露試験の結果を示すグラフ
【図4】被覆層によるガス検知特性の変化を示すグラフ
【図5】被覆層の相違によるガス検知特性への影響を示すグラフ
【符号の説明】
31 貴金属線コイル
32 感応層
2  電極
S  分散液
34 被覆層
3  ガス検知素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a gas sensing element in which a sensor electrode is provided with a sensitive layer made of a metal oxide sintered body, and a sensor electrode in which a sensitive layer made of a metal oxide sintered body is provided, and wherein the sensitive layer is made of fine particles. The present invention relates to a method for manufacturing a gas detection element provided with a coating layer made of a body.
[0002]
[Prior art]
Conventionally, when forming a sensitive layer of a gas sensing element or a coating layer for the sensitive layer, various manufacturing methods such as pressure molding, screen printing, dipping, physical vapor deposition (vacuum vapor deposition, sputtering), and chemical vapor deposition are applied. Have been.
Among them, pressure molding is a method in which a material is filled in a metal mold and pressure molded, and is not suitable for manufacturing a minute structure. Screen printing is an application of a printing technique, and it is possible to produce a relatively uniform and minute structure, but the shape of the structure is limited to a flat plate. In addition, since physical vapor deposition and chemical vapor deposition are thin film production methods and a layer structure production method with a thickness of 1 μm or less, they are not suitable for forming the sensitive layer or the coating layer which requires a film thickness of about 10 μm or more. There are many. Therefore, for a gas sensing element having a small and complicated shape, the fine particles to be formed with the sensitive layer or the coating layer are immersed in a dispersion liquid of the fine particle material for forming the sensitive layer or the coating layer by dipping and pulled up. A method in which a material is coated on a sensor electrode or the sensitive layer, and then the formed coating layer is dried and sintered, is widely used because a sensitive layer and a coating layer having an arbitrary shape can be formed.
[0003]
[Problems to be solved by the invention]
However, according to the above-described dipping, the thickness of the formed coating layer is difficult to be uniform, and even when the coating layer is formed on a minute base material, the thickness of the coating layer varies greatly. . In addition, the thickness of the coating layer produced in one process is about 10 μm, and if a coating layer having a thickness greater than this is required, the same procedure may have to be repeated. However, there has been a situation in which it is difficult to secure the thickness of the coating layer and the shape stability of the sensitive layer. For this reason, there is a problem that the characteristics of the obtained gas detection element are likely to vary, and the yield is reduced in order to maintain the quality stability.
[0004]
Therefore, an object of the present invention is to improve the shape stability of a gas detection element and the quality stability derived from the shape stability in view of the above-mentioned circumstances.
[0005]
[Means for Solving the Problems]
The feature of the method for manufacturing a gas detection element of the present invention for achieving this object is as follows.
A method for producing a gas sensing element, wherein a sensitive layer made of a metal oxide sintered body is provided on a sensor electrode, and the sensitive layer is provided with a coating layer made of a sintered body of fine particles, wherein the sensitive layer is provided. Electrophoresis in which a voltage is applied between the sensor electrode and the counter electrode in a state where the sensor electrode and the counter electrode are immersed in the dispersion liquid of the fine particles forming the coating layer, and the sensitive layer forms the layer of the fine particles. Performing a sintering step of sintering the formed fine particle layer to form the coating layer.
Further, it is preferable that the dispersion liquid of the fine particles is obtained by dispersing fine particles in a dispersion medium at 2 × 10 −3 to 4 × 10 −1 mol / L,
Preferably, the sensitive layer is spherical.
[0006]
Furthermore, to manufacture a gas sensing element provided with a sensitive layer made of a metal oxide sintered body on the sensor electrode, in a state where the sensor electrode and the counter electrode are immersed in a dispersion of fine particles forming the sensitive layer, A voltage is applied between the sensor electrode and the counter electrode, an electrophoresis step of forming the fine particle layer on the sensor electrode is performed, and then a sintering step of sintering the formed fine particle layer is performed. , The sensitive layer may be formed.
(Function and effect)
That is, a gas sensing element in which a sensor electrode is provided with a sensitive layer made of a metal oxide sintered body, and the sensitive layer is covered, and a coating layer made of a sintered body of fine particles is provided, By contacting the sensor layer and capturing changes in the physical properties of the sensitive layer, an output corresponding to the type and concentration of the detected gas can be output through the sensor electrode. At this time, the coating layer is generally used to provide a function of removing an interfering gas component in the detection target gas or a toxic substance that deteriorates the sensitive layer, and the gas detection element is provided. It has the effect of improving gas selectivity and durability.
When forming the coating layer, the electrophoresis step is performed in a state in which the sensor electrode and the counter electrode each having the sensitive layer are immersed in a dispersion liquid of fine particles for forming the coating layer. The fine particles are evenly migrated from the dispersion liquid around the electrodes to one of the pair of electrodes according to the electric charge of the fine particles dispersed in the electrode. Here, when the fine particles are caused to migrate toward the sensor electrode, the fine particles uniformly adhere to the surface of the sensitive layer and are deposited in a layer.
Next, when a sintering step of sintering the formed fine particle layer is performed, the fine particle layers are integrated by sintering to form a breathable coating layer. At this time, since the layer of the fine particles is uniformly formed on the sensitive layer, it is possible to easily form a film having no variation.
[0007]
The function of the coating layer can be variously changed by selecting the fine particles. In addition, by appropriately setting the particle diameter of the fine particles, it is possible to set the denseness of the coating layer. Therefore, by appropriately adjusting the dispersion of the fine particles according to the physical properties required for the coating layer, various characteristics can be easily imparted to the coating layer.
Specifically, if aluminum oxide (alumina) is used as the fine particles, a protective layer can be formed, and the durability against substances causing sensor deterioration can be improved. If alumina or the like carrying a noble metal such as palladium or platinum is used as the fine particles, a catalyst layer can be formed, and the sensitivity to ethanol or hydrogen can be suppressed, and a city gas sensor having excellent methane selectivity can be obtained. As the fine particles, in addition to these, various metal oxide materials can be used, and the fine particles can be dispersed in a dispersion medium such as ethanol to form a dispersion.
[0008]
Further, when the dispersion liquid of the fine particles is obtained by dispersing the fine particles in a dispersion medium at 2 × 10 −3 to 4 × 10 −1 mol / L, the fine particles are uniformly dispersed without aggregation. In addition, since a sufficient amount of fine particles can be deposited in an appropriate time, the electrophoresis step can be performed efficiently in a short time.
[0009]
In addition, when the sensitive layer is spherical, fine particles are uniformly deposited on the sensitive layer without directivity, which is advantageous for forming a uniform coating layer and greatly improves the production efficiency. Is preferred.
[0010]
Further, the sensitive layer of the gas sensing element can be formed by the same method. In other words, to manufacture a gas sensing element provided with a sensitive layer made of a metal oxide sintered body on the sensor electrode, the sensor electrode and the counter electrode were immersed in a dispersion of fine particles forming the sensitive layer, By performing the electrophoresis step, it is possible to form a coating layer that is dense and has a shape suitable for the shape of the sensor electrode without waste. Subsequently, a sintering step is performed, and when the coating layer is fired into a spherical shape to form the sensitive layer, the fine particle layer is integrated by sintering to form a breathable sensitive layer. At this time, since the fine particle layer is formed uniformly on the sensor electrode, it can be easily formed into a uniform shape with little variation.
[0011]
In the electrophoresis step, a voltage can be applied to all of the sensor electrodes and the sensor electrodes coated with the sensitive layer at the same time while the sensor electrodes are immersed in the dispersion liquid. Therefore, according to the present invention, it is possible to obtain a large number of gas detecting elements with little variation in quality with high productivity and high yield.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
(1) As shown in FIG. 2, a Teflon vat 1 is filled with a dispersion liquid S obtained by uniformly dispersing a predetermined amount of metal oxide fine particles in ethanol using a magnetic stirrer or an ultrasonic generator. Further, a platinum mesh 2 is stretched flat on the bottom surface of the bat 1.
On the other hand, the base material 3A of the gas detection element, in which the sensitive layer 32 made of a metal oxide semiconductor such as tin oxide is provided in a spherical shape on the sensor electrode made of a noble metal wire 31 made of platinum, platinum rhodium, platinum palladium, or the like, is formed. deep. The substrate 3A is a bridge 3B formed by being fixed to a fixing jig 33.
A large number of the bridges 3B are immersed in the dispersion S stored in the vat. Here, each of the bridges 3B holds the noble metal wire coil 31 through the fixing jig 33 so as to be able to conduct electricity. The bridge 3B thus held is used as a pair of electrodes having the platinum mesh 2 as a counter electrode, and a predetermined voltage is applied from the power supply 4 between the bridge 3B and the platinum mesh 2. Then, the metal oxide fine particles migrate and deposit on the base material 3A of the gas detection element by electrophoresis to form a coating layer (electrophoresis step).
[0013]
After a predetermined time, the bridge 3B is taken out of the dispersion liquid S, the coating layer is dried, and then sintered at a predetermined temperature for a predetermined time to form a coating layer 34 containing the metal oxide as a main component on the surface of the base material 3A. It could be formed (sintering step), and the spherical hot-wire type gas detection element 3 could be obtained.
[0014]
(2) When the bridge 3B to which the noble metal wire coil 31 is applied is used instead of the base 3A of the gas sensing element in the above embodiment, the sensitive layer 32 can be formed. That is, as in the previous embodiment, a bridge 3B formed by previously fixing the noble metal coil 31 to the fixing jig 33 is prepared, and the electrophoresis process is performed in the same manner as described above. It is possible to form a coating layer by depositing fine particles.
[0015]
After a predetermined time, the bridge 3B is taken out of the dispersion liquid S, the coating layer is dried, and then sintered at a predetermined temperature for a predetermined time, so that the sensitive layer 32 containing the metal oxide as a main component is formed on the surface of the noble metal wire coil 31. Was formed (a sintering step), and a base material 3A of a spherical gas detection element formed by extending a noble metal wire was obtained. The base material 3A may be used as it is as the gas detection element 3, or may further be formed with the coating layer 34 to serve as the gas detection element 3.
[0016]
Note that the bridge 3B is configured so as to be directly mounted on a gas detection circuit board and incorporated in the gas detection device, and is configured to simplify the gas detection device manufacturing process.
Example 1
As shown in FIG. 1, a base material 3A in which a sensitive layer 32 containing indium oxide as a main component is formed in a spherical shape with a diameter of 500 μm on a noble metal wire coil 31 is prepared.
An electrode made of a platinum mesh 2 is flatly spread over the bottom of the Teflon bat 1 of FIG. The Teflon vat is filled with the dispersion S in which the alumina fine particles are dispersed in ethanol to 1.3 × 10 −1 mol / L. The dispersion S is sufficiently dispersed by an ultrasonic generator or various stirrers so that the alumina fine particles are uniformly contained. After immersing the bridge 3B to which the base material 3A is fixed in the dispersion liquid S, a voltage of 15 volts is applied between the bridge 3B and the platinum mesh 2 for 3 minutes to perform an electrophoresis step. Thereafter, the bridge 3B is pulled up from the solution, and the formed coating layer is dried and then sintered at a predetermined temperature for a predetermined time to produce a gas detection element 3 having a uniform coating layer 34 having a thickness of about 80 μm on the surface of the sensitive layer. We were able to.
[0018]
A durability test was performed in which the gas detection element thus obtained was exposed to a toxic substance (silicone gas) that causes a high sensitivity of the sensor for a predetermined time. As a comparison, the durability was similarly examined for the case where the above-described coating layer 34 (coating) was not formed and the case where the coating layer 34 (coating) was formed by conventional dipping. The result is shown in FIG. FIG. 3 shows that the sensor output of the gas detection element obtained according to the present invention maintains a predetermined value even after a long-term exposure to a toxic substance, and does not tend to increase. It can be seen that the performance was greatly improved.
[0019]
Example 2
The method according to the present invention can be applied to manufacture not only one gas sensing element but also many gas sensing elements at the same time. When 200 pieces of the gas detection elements according to the above-described first embodiment were manufactured at a time, when electrophoresis was performed using the same dispersion liquid S as in the first embodiment, the gap between the bridge 3B and the platinum mesh 2 was determined. By applying a voltage of 30 volts for 15 minutes, a coating layer 34 having a thickness of about 80 μm and containing alumina as a main component could be formed on all the gas detection elements.
[0020]
Example 3
As shown in FIG. 1, a substrate 3A is prepared in which a sensitive layer 32 mainly composed of tin oxide is formed in a spherical shape with a diameter of 150 μm on a noble metal wire coil.
An electrode made of a platinum mesh 2 is flatly spread over the bottom of the Teflon bat 1 of FIG. The Teflon-made vat is filled with a dispersion liquid S in which alumina particles carrying palladium are dispersed in ethanol at 1.3 × 10 −2 mol / L. The dispersion S is sufficiently dispersed by an ultrasonic generator or various stirrers so that the alumina fine particles are uniformly contained. After the bridge 3B to which the base material 3A is fixed is immersed in the dispersion liquid S, a voltage of 30 volts is applied between the bridge 3B and the platinum mesh 2 for 1 minute to perform an electrophoresis step. Thereafter, the bridge 3B is pulled out of the solution, and the formed coating layer is dried and then sintered at a predetermined temperature for a predetermined time to produce a gas detection element 3 having a uniform coating layer 34 having a thickness of about 10 μm on the surface of the sensitive layer. We were able to.
[0021]
FIG. 4 shows gas sensitivity characteristics of the obtained gas detection element to methane, hydrogen, and ethanol. As a comparison, gas sensitivity characteristics were also examined for those without the coating layer 34 (coating) and those with the same coating layer 34 (coating) produced by conventional dipping. From these results, it can be seen that the coating layer 34 formed according to the present invention effectively functions as a catalyst layer for improving methane gas selectivity, and reduces hydrogen and ethanol sensitivity and improves methane selectivity while increasing methane sensitivity. You can see that you can do it.
[0022]
Example 4
In Example 3, the coating layer 34 was formed by changing the dispersoid used for the dispersion S to titanium oxide, alumina, zinc oxide, indium oxide, and cerium oxide.
The conditions of the electrophoresis process, the dispersion S concentrations, titanium oxide 1.7 × 10 -2 mol / L, alumina 1.3 × 10 -2 mol / L, zinc oxide 1.6 × 10 - 2 mol / L, indium oxide: 4.8 × 10 −3 mol / L, cerium oxide: 7.7 × 10 −3 mol / L, titanium oxide and alumina: 30 volts for 1 minute, zinc oxide, indium oxide Cerium oxide was set at 30 volts for 10 seconds.
As a result, a coating layer 34 made of titanium oxide, alumina, zinc oxide, indium oxide, and cerium oxide having a thickness of about 10 μm was formed on the sensitive layer 32 mainly composed of tin oxide having a diameter of 150 μm.
[0023]
When the sensor outputs for various gases before and after the formation of the coating layer 34 of each gas detection element were examined, the results were as shown in FIG. In each case, it can be seen that the coating layer 34 functions as a catalyst layer and the gas sensitivity characteristics are changed. In particular, when zinc oxide is used, it can be seen that the overall sensitivity is high.
[0024]
According to the present invention, not only the production of a hot-wire type semiconductor gas detection element having a sensitive layer formed on the above-described noble metal wire coil, but also a gas sensitive portion was formed on an electrode of an alumina substrate provided with an electrode and a heater. A coating layer can also be formed on a substrate type sensor. Further, a coating layer functioning as a protective layer, a catalyst layer, or the like can be formed on the contact combustion type sensor.
In this method, as described above, it is possible to produce a gas detection element regardless of the material as long as it is powder particles charged in a solution, and also from mixed powder particles. It is easy to control the thickness of the coating layer and the density of the coating layer.
[0025]
This method is not limited to fine particles such as tin oxide and alumina, and any fine particles charged in a solution can be used regardless of the material. The fine particles used may be a mixture of various fine particles.
[Brief description of the drawings]
FIG. 1 is a partially broken perspective view of a gas detection element. FIG. 2 is a schematic view of an electrophoresis process. FIG. 3 is a graph showing the results of a toxic substance exposure test of Example 1. FIG. FIG. 5 is a graph showing the effect on gas detection characteristics due to differences in coating layers.
31 Noble metal wire coil 32 Sensitive layer 2 Electrode S Dispersion liquid 34 Coating layer 3 Gas detection element

Claims (4)

センサ電極に金属酸化物焼結体からなる感応層を設け、前記感応層に、微粒子の焼結体からなる被覆層を設けたガス検知素子の製造方法であって、前記感応層を設けた前記センサ電極および対極を、前記被覆層を形成する微粒子の分散液に浸漬した状態で、前記センサ電極と前記対極との間に電圧を印加し、前記感応層に前記微粒子の層を形成させる電気泳動工程を行い、形成された前記微粒子の層を焼結させる焼結工程を行い、前記被覆層を形成するガス検知素子の製造方法。A method for producing a gas sensing element, wherein a sensitive layer made of a metal oxide sintered body is provided on a sensor electrode, and the sensitive layer is provided with a coating layer made of a sintered body of fine particles, wherein the sensitive layer is provided. Electrophoresis in which a voltage is applied between the sensor electrode and the counter electrode in a state where the sensor electrode and the counter electrode are immersed in the dispersion liquid of the fine particles forming the coating layer, and the sensitive layer forms the fine particle layer. Performing a sintering step of sintering the formed fine particle layer to form the coating layer. 前記微粒子の分散液が、微粒子を2×10−3〜4×10−1mol/Lで分散媒に分散させたものである請求項1に記載のガス検知素子の製造方法。The method according to claim 1, wherein the dispersion liquid of the fine particles is obtained by dispersing fine particles in a dispersion medium at 2 × 10 −3 to 4 × 10 −1 mol / L. 前記感応層が球状である請求項1または2に記載のガス検知素子の製造方法。The method according to claim 1, wherein the sensitive layer is spherical. センサ電極に金属酸化物焼結体からなる感応層を設けたガス検知素子の製造方法であって、前記感応層を形成する微粒子の分散液に、前記センサ電極および対極を浸漬した状態で、前記センサ電極と前記対極との間に電圧を印加し、前記センサ電極に前記微粒子の層を形成させる電気泳動工程を行った後、形成された前記微粒子の層を焼結させる焼結工程を行い、前記感応層を形成するガス検知素子の製造方法。A method for manufacturing a gas sensing element provided with a sensitive layer made of a metal oxide sintered body on a sensor electrode, wherein the sensor electrode and the counter electrode are immersed in a dispersion of fine particles forming the sensitive layer, A voltage is applied between the sensor electrode and the counter electrode, and after performing an electrophoresis step of forming the layer of fine particles on the sensor electrode, performing a sintering step of sintering the formed layer of fine particles, A method for manufacturing a gas sensing element for forming the sensitive layer.
JP2002197233A 2002-07-05 2002-07-05 Manufacturing method of gas detection element Expired - Lifetime JP3935791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197233A JP3935791B2 (en) 2002-07-05 2002-07-05 Manufacturing method of gas detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197233A JP3935791B2 (en) 2002-07-05 2002-07-05 Manufacturing method of gas detection element

Publications (2)

Publication Number Publication Date
JP2004037362A true JP2004037362A (en) 2004-02-05
JP3935791B2 JP3935791B2 (en) 2007-06-27

Family

ID=31705059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197233A Expired - Lifetime JP3935791B2 (en) 2002-07-05 2002-07-05 Manufacturing method of gas detection element

Country Status (1)

Country Link
JP (1) JP3935791B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002888A (en) * 2007-06-25 2009-01-08 Yazaki Corp Contact combustion type gas sensor
JP2010002376A (en) * 2008-06-23 2010-01-07 Yazaki Corp Gas sensor and gas concentration detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002888A (en) * 2007-06-25 2009-01-08 Yazaki Corp Contact combustion type gas sensor
JP2010002376A (en) * 2008-06-23 2010-01-07 Yazaki Corp Gas sensor and gas concentration detection device

Also Published As

Publication number Publication date
JP3935791B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
US8988079B2 (en) Carbon-based electrodes with graphene modification
SE437889B (en) SENSORS FOR SATURATION OF THE ACID CONCENTRATION IN GASES
CN1065527A (en) With the nano-architecture composite membrane is the sensor of base
EP0017375A1 (en) Exhaust gas sensor having porous metal-impregnated ceramic element
Dougami et al. Modification of metal oxide semiconductor gas sensor by electrophoretic deposition
RU2684426C1 (en) Multioxide gas-analytic chip and method for production thereof by electrochemical method
JP3935791B2 (en) Manufacturing method of gas detection element
JP3424356B2 (en) Oxygen sensor element and manufacturing method thereof
Tsui et al. Additively manufactured mixed potential electrochemical sensors for NO x, C 3 H 8, and NH 3 detection
KR100929025B1 (en) Plasma contact-fired hydrogen and combustible gas sensor and method of manufacturing the same
JPH04507461A (en) Self-holding thin film filament sensor, its formation method, and application to gas detectors and gas chromatography
JP5792181B2 (en) Controlled electrochemical activation of carbon-based electrodes
JP5275099B2 (en) Hydrogen detection element and hydrogen detection sensor
US20190113460A1 (en) Nanostructured materials
JP2000275157A (en) Particle sensor using alternate attraction film
JPH10228996A (en) Device for measuring plasma space electric potential
RU2804746C1 (en) Method for creating gas and vapour sensor based on sensitive layers of metal-containing silicon-carbon films
JPH0843339A (en) Smell sensor and manufacture thereof
JP2867851B2 (en) Oxygen concentration sensor and method for forming trap layer thereof
JP2001194337A (en) Method for measuring gas concentration
JP2009300107A (en) Substrate-type gas detection element and method for manufacturing constituent particles of gas responding layer
Sakhairi et al. Effect of Zinc Precursor on Interdigitated Electrode using Electrochemical Deposition Method
JPH03152452A (en) Sensitive film for measuring gaseous hydride
JPH01185440A (en) Oxygen sensor element
JPH02170043A (en) Manufacture of limit current type gas concentration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250