JP2004037313A - 液圧脈動吸収装置及びその減衰定数計測装置並びにその減衰定数計測方法 - Google Patents

液圧脈動吸収装置及びその減衰定数計測装置並びにその減衰定数計測方法 Download PDF

Info

Publication number
JP2004037313A
JP2004037313A JP2002196173A JP2002196173A JP2004037313A JP 2004037313 A JP2004037313 A JP 2004037313A JP 2002196173 A JP2002196173 A JP 2002196173A JP 2002196173 A JP2002196173 A JP 2002196173A JP 2004037313 A JP2004037313 A JP 2004037313A
Authority
JP
Japan
Prior art keywords
pressure
pulsation
pressure sensor
absorbing material
pulsation absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002196173A
Other languages
English (en)
Other versions
JP4236878B2 (ja
Inventor
Yasumasa Kimura
木村 康正
Toshimitsu Tanaka
田中 俊光
Kazuhiro Ueda
上田 員弘
Hajime Nakajima
中島 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002196173A priority Critical patent/JP4236878B2/ja
Publication of JP2004037313A publication Critical patent/JP2004037313A/ja
Application granted granted Critical
Publication of JP4236878B2 publication Critical patent/JP4236878B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】本発明は、脈動する圧液が通る主管の途中部位に接続され、圧力脈動を吸収することができ、その圧力脈動の減衰状態を計測することができる液圧脈動吸収装置及びその減衰定数計測装置並びにその減衰定数計測方法を提供することを目的とする。
【解決手段】脈動する圧液が通る主管2の途中部位に接続されるサイドブランチ3と、このサイドブランチ3内の端部付近に設置される脈動吸収材料4とを備える液圧脈動吸収装置の減衰定数計測装置1であって、前記サイドブランチ3内の圧液の圧力を検出する圧力検出手段と、この圧力検出手段により検出された圧力に基づいて、前記脈動吸収材料の脈動吸収率を算出する算出手段とを備えてなるもの。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は、ポンプ等から吐出される圧液の圧力脈動を吸収し、その圧力脈動の減衰状態を計測する液圧脈動吸収装置及びその減衰定数計測装置並びにその減衰定数計測方法に関する。
【0002】
【従来の技術】
油圧ショベル等の建設機械に使用されている油圧ポンプ等では、圧力脈動が発生し、この振動が車両の構造体から音として放射され騒音問題となっている。このため、圧力脈動低減用としてアキュムレータやサイドブランチ等が一般的に使用されている。その性能評価指標として、消音器有り無しの場合の減衰量を測定する挿入損失、消音器前後の脈動レベルの差から算出した透過損失等が測定される。
【0003】
一方、空気伝搬する騒音を低減する吸音材料として、グラスウールやウレタンフォーム等が使用される。音響材料の吸音性能を評価する指標のひとつとして吸音率があり、音響管をもちいて垂直入射吸音率を測定する計測システムが広く用いられている。また、吸音率を規定する更に基本的な音響材料の評価指標である特性インピーダンス及び伝搬定数についても同様に音響管を用いて測定されている。
【0004】
この音響管を用いて測定した吸音材の吸音率は、垂直入射吸音率と呼ばれ、例えばJISA1405(管内法による速等材料の垂直入射吸音測定方法)等により、一般的に測定されている。図8に示すように、音響管80の一端にスピーカ81を配置し、他端の剛壁82端面に吸音材83を設置し、中央部に設置したマイクロフォン84を移動させ定在比を測定することにより吸音材83の表面インピーダンスを測定する方法である。
【0005】
また、音響管の一端にスピーカを配置し、他端の剛壁端に吸音材を設置し、音響管内のスピーカ側に2点のマイクロフォンを設置して、その2点のマイクロフォンで計測した音圧レベルにより空気中の吸音率を計測する方法(2点マイクロフォン法と呼ばれる)が一般的に用いられている。
【0006】
【発明が解決しようとする課題】
前述した空気伝搬する騒音を低減する吸音材料のグラスウール等の多孔質材料を液体中の圧力脈動低減用として用いると脈動を吸収することができる。その際、空気中で測定している場合と同様に吸音率や伝搬定数などの減衰指標が測定できれば、材料を選定する目安とすることができる。しかし、当然のことながら液中での測定となるため、従来の空気中の測定装置をそのまま使用することができない。つまり、音源としてスピーカを用いる空気中の場合と異なり、液中では脈動発生装置として液圧ポンプを用いる必要がある。
【0007】
また、従来の空気用音響管では、直管形状の音響管の剛壁端面に吸音材を設置するが、液中計測の場合では、配管内に液体が流れるため、直管形状の音響管の端部を剛壁とする構成にできないという問題があった。
【0008】
また、油圧ショベル等の建設機械に使用され、圧力脈動を吸収させる従来の脈動吸収材料や脈動吸収方法では、油圧ポンプから伝わる基本的な圧力脈動の周波数が決まっているため、この周波数にあわせたものを使用している。しかし、油圧ポンプの回転数の変化により、脈動の周波数も変化するため、一つの脈動の周波数にしか効果がないものでは、脈動の減衰が不十分であった。
【0009】
また、脈動吸収材料の減衰性能は、経年変化により劣化することがある。一般的には、許容される減衰性能の間はそのまま使用され、予め設定された期間が過ぎると取り換えることとなる。しかし、許容される減衰性能の間にも脈動吸収材料は、徐々に劣化し、減衰性能が劣ってくるという問題があった。
【0010】
そこで、本発明は、前述のような問題点を考慮し、脈動する圧液が通る主管の途中部位に接続され、圧力脈動を吸収することができ、その圧力脈動の減衰状態を計測することができる液圧脈動吸収装置及びその減衰定数計測装置並びにその減衰定数計測方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の請求項1に記載の液圧脈動吸収装置の減衰定数計測装置は、脈動する圧液が通る主管の途中部位に接続されるサイドブランチと、このサイドブランチ内の端部付近に設置される脈動吸収材料とを備える液圧脈動吸収装置の減衰定数計測装置であって、前記サイドブランチ内の圧液の圧力を検出する圧力検出手段と、この圧力検出手段により検出された圧力に基づいて、前記脈動吸収材料の脈動吸収率を算出する算出手段とを備えてなるものである。
【0012】
このような構成によると、主管内を通る圧液の流れを阻害することなく、圧力センサで圧液の圧力を測定し、脈動吸収率を算出することができ、脈動吸収材料の最適材料の選定を効率良く行うことができる。
【0013】
請求項2に記載の液圧脈動吸収装置の減衰定数計測装置は、請求項1において、前記圧力検出手段は、前記脈動吸収材料の入口側に設けられた第1圧力センサと第2圧力センサであって、前記算出手段は、前記第1圧力センサと前記第2圧力センサとの間の圧力の伝達関数を測定する測定手段と、この伝達関数に基づいて前記脈動吸収材料の脈動吸収率を計算する計算手段とを含んでなるものである。
【0014】
このような構成によると、第1圧力センサと第2圧力センサとの間の圧力の伝達関数を測定し、脈動吸収材料の表面インピーダンスを算出した後、脈動吸収率を算出することができ、脈動吸収材料の最適材料の選定を効率良く行うことができる。
【0015】
請求項3に記載の液圧脈動吸収装置の減衰定数計測装置は、請求項1において、前記圧力検出手段は、前記脈動吸収材料の入口側に設けられた第1圧力センサと第2圧力センサと、前記サイドブランチの端面に設けられる第3圧力センサとであって、前記算出手段は、前記第1圧力センサと前記第2圧力センサとの間の圧力の伝達関数と前記第1圧力センサと前記第3圧力センサとの間の圧力の伝達関数を測定する測定手段と、これらの伝達関数に基づいて任意厚さの前記脈動吸収材料の脈動吸収率を計算する計算手段とを含んでなるものである。
【0016】
このような構成によると、第1圧力センサと第2圧力センサとの間の圧力の伝達関数と第1圧力センサと第3圧力センサとの間の圧力の伝達関数を測定し、任意厚さの脈動吸収材料の特性インピーダンスと伝搬定数を算出した後、脈動吸収率を算出することができる。従って、脈動吸収材料の最適材料の選定を効率良く行うことができる。
【0017】
請求項4に記載の液圧脈動吸収装置の減衰定数計測方法は、脈動する圧液が通る主管の途中部位に接続されるサイドブランチと、このサイドブランチ内の端部付近に設置される脈動吸収材料とを備える液圧脈動吸収装置の減衰定数計測方法であって、前記サイドブランチ内の圧液の圧力を検出する圧力検出工程と、検出された前記圧力に基づいて、前記脈動吸収材料の脈動吸収率を算出する算出工程とを備えてなるものである。
【0018】
このような方法によると、主管内を通る圧液の流れを阻害することなく、各工程を順次進むことによって、脈動吸収材料の脈動吸収率を算出することができ、脈動吸収材料の最適材料の選定を効率良く行うことができる。
【0019】
請求項5に記載の液圧脈動吸収装置の減衰定数計測方法は、請求項4において、前記圧力検出工程は、前記脈動吸収材料の入口側に設けられた第1圧力センサと第2圧力センサを用いる工程であって、前記算出工程は、前記第1圧力センサと前記第2圧力センサとの間の圧力の伝達関数を測定する測定工程と、この伝達関数に基づいて前記脈動吸収材料の脈動吸収率を計算する計算工程とを含んでなるものである。
【0020】
このような方法によると、各工程を順次進むことによって、脈動吸収材料の表面インピーダンスを算出した後、脈動吸収率を算出することができ、脈動吸収材料の最適材料の選定を効率良く行うことができる。
【0021】
請求項6に記載の液圧脈動吸収装置の減衰定数計測方法は、請求項4において、前記圧力検出工程は、前記脈動吸収材料の入口側に設けられた第1圧力センサと第2圧力センサと、前記サイドブランチの端面に設けられる第3圧力センサとを用いる工程であって、前記算出工程は、前記第1圧力センサと前記第2圧力センサとの間の圧力の伝達関数と前記第1圧力センサと前記第3圧力センサとの間の圧力の伝達関数を測定する測定工程と、これらの伝達関数に基づいて任意厚さの前記脈動吸収材料の脈動吸収率を計算する計算工程とを含んでなるものである。
【0022】
このような方法によると、各工程を順次進むことによって、任意厚さの脈動吸収材料の特性インピーダンスと伝搬定数を算出した後、脈動吸収率を算出することができる。従って、脈動吸収材料の最適材料の選定を効率良く行うことができる。
【0023】
請求項7に記載の液圧脈動吸収装置は、脈動する圧液が通る主管の途中部位に接続されるサイドブランチと、このサイドブランチ内の端部付近に設置される脈動吸収材料と、前記脈動吸収材料の減衰状態を計測する計測手段と、前記脈動吸収材料の減衰状態を変更する変更手段とを備えるものである。
【0024】
このような構成によると、主管内を通る圧液の流れを阻害することなく、脈動吸収材料による圧液の脈動の減衰状態を確認することができ、状況によっては、脈動吸収材料を変更することができる。
【0025】
請求項8記載の液圧脈動吸収装置は、請求項7において、前記変更手段は、前記サイドブランチの長さの変更、前記脈動吸収材料の前記サイドブランチ内における位置の変更、前記脈動吸収材料の厚み変更のいずれか一つ又はこれらの組み合わせであるものである。
【0026】
このような構成によると、脈動吸収材料による圧液の脈動の減衰状態にあわせてサイドブランチの長さや脈動吸収材料の位置、厚みを変化させて、確実に圧液の脈動を吸収することができる。
【0027】
請求項9記載の液圧脈動吸収装置は、請求項7又は8において、前記計測手段は、前記サイドブランチ内の圧液の圧力を検出する圧力センサと、この圧力センサからの信号を受けて、前記脈動吸収材料の脈動吸収率を演算する演算装置とを備えて成るものである。
【0028】
このような構成によると、容易に脈動吸収材料の脈動吸収率を演算することができ、脈動吸収材料による圧液の脈動の減衰状態を確認することができる。
【0029】
【発明の実施の形態】
本発明の実施の形態例を図1乃至図4に基づいて以下に説明する。また、以下に表現する脈動吸収率は、一般的に空気中で垂直入射吸音率と定義される定数を液中で適用した場合の表現とするものである。
【0030】
図1は、本発明に係る液圧脈動吸収装置の減衰定数計測装置の概略構成図である。図1に示す液圧脈動吸収装置の減衰定数計測装置1は、液圧ポンプ8に接続される主管2の途中部位に接続されるサイドブランチ3と、サイドブランチ3内の端部付近に設置される脈動吸収材料4と、脈動吸収材料4の入口側に設けられた第1圧力センサ5と第2圧力センサ6と、サイドブランチ3の端面に設けられた第3圧力センサ7と、各圧力センサと配線されたFFT10とで構成されている。なお、液圧脈動吸収装置の減衰定数計測装置1には、図1に示すようにFFT10と配線された演算装置9が設けられている。
【0031】
前述した脈動吸収材料4は、グラスウール、ウレタンフォーム、多孔板など圧液の脈動を吸収できるものであれば特に限定するものではない。例えば、圧液の液体が作動油などの場合には、油用紙フィルタを多重に重ね合わせたものを脈動吸収材料に用いることも可能であり、素材等も特に限定するものではなく、圧液の種類等によって適宜選択すればよい。また、後述するように脈動吸収材料4の厚みを変更するのであれば圧縮して厚みを変更できるものを選択すれば良く、圧縮し脈動吸収材料の密度を高くすると脈動の吸収性能は高くなる。また、脈動吸収材料の厚み変更の必要がなければ厚みを変更できないものでも良く、脈動をより吸収する材料を選択すれば良い。
【0032】
主管2は、図1に示すようにバルブ13が途中部位に設けられている。例えば、このバルブ13を介して主管2の先には、液圧モータや液圧シリンダ(いずれも図示せず)等のアクチュエータを接続し、これらのアクチュエータに向けて液圧ポンプ8から吐出された圧液を供給することができる。
【0033】
また、主管2とサイドブランチ3の材質は、金属、樹脂等を使用することができ、特に限定されるものではない。この主管2内を流れる圧液の種類や主管2とサイドブランチ3にかかる圧力によって、適宜選択することが良い。また、主管2とサイドブランチ3にかかる圧力によっては、材質のみならず肉厚や形状を変えて、圧力に耐えることができるものであればよく、材質と同様に特に限定するものではない。
【0034】
前述したサイドブランチ3は、円筒形状や角筒形状等の管を適用することができる。このサイドブランチ3の一端部は、圧液が漏れないように閉塞されており、端部の端面に第3圧力センサ7が設けられている。また、主管2の途中部位に接続されているので主管2内を通る圧液の流れを阻害することがない。
【0035】
また、サイドブランチ3内に設けられている第1圧力センサ5と第2圧力センサ6と第3圧力センサ7は、サイドブランチ3内の圧液の圧力を検出する圧力検出手段である。図1に示すように、第1圧力センサ5は脈動吸収材料の表面からD+Lの位置に設けられ、第2圧力センサ6は脈動吸収材料4の表面からLの位置に設けられている。
【0036】
また、図1に示すFFT10は、第1圧力センサ5と第2圧力センサ6との間の圧力の伝達関数と第1圧力センサ5と第3圧力センサ7との間の圧力の伝達関数を測定することができる測定手段である。第1圧力センサ5と第2圧力センサ6との間の圧力の伝達関数をFFT10で測定し、この測定された圧力の伝達関数に基づいて、図1に示す所定厚さdの脈動吸収材料4の脈動吸収率を後述する計算式を用いて計算する計算手段で算出することができる。また、演算装置9で計算することにより簡単に脈動吸収率を算出することができる。
【0037】
また、演算装置9は、パソコン11と入力器12とで構成されており、FFT10とパソコン11と入力器12を図1のように一連に繋ぎ、FFT10で測定した測定値をパソコン11に取り込み、パソコン11で予め取り込む測定値等を決めておき、後述する計算式を計算するプログラムを組んでおくと、FFT10で測定された値から即座に脈動吸収率等が求められる。また、脈動吸収材料4の脈動吸収率がわかると減衰状態も確認することができるので、FFT10で測定した測定値から即座に減衰状態を確認することができる。
【0038】
また、前述した第1圧力センサ5と第2圧力センサ6との間の圧力の伝達関数と第1圧力センサ5と第3圧力センサ7との間の圧力の伝達関数をFFT10で測定し、この測定された圧力の伝達関数に基づいて任意厚さの脈動吸収材料の脈動吸収率を後述する計算式を用いて計算する計算手段で算出することができる。
【0039】
このような測定手段と計算手段である算出手段により、脈動吸収材料4の脈動吸収率を算出することができ、脈動吸収材料4の最適材料の選定を効率良く行うことができる。
【0040】
以下に、本発明に係る液圧脈動吸収装置の減衰定数計測方法の一実施の形態例を説明する。
【0041】
液圧脈動吸収装置の減衰定数計測方法は、図1に示す前述した液圧脈動吸収装置の減衰定数計測装置1の第1圧力センサ5と第2圧力センサ6と第3圧力センサ7を用いた圧力検出工程と、第1圧力センサ5と第2圧力センサ6との圧力の伝達関数と第1圧力センサ5と第3圧力センサ7との圧力の伝達関数を測定する測定工程と、これらの伝達関数に基づいて脈動吸収率を計算する計算工程と、で構成されている。
【0042】
前述の測定工程は、脈動吸収材料4の所定長dが決まっている場合であれば、第1圧力センサ5のPと第2圧力センサ6のPとの圧力の伝達関数であるH=P/Pを測定すれば、以下に示す計算手段である式(1)を用いて、表面インピーダンスZ0を算出し、式(2)、(3)を用いて脈動吸収材料4の脈動吸収率αを計算することができる。
【0043】
【数1】
Figure 2004037313
【0044】
ここで、Sはサイドブランチの断面積、ρは脈動吸収材料の密度、cは音速、kは波長定数、iは複素記号である。また、Z0の実数部、虚数部を式(2)のようにX、Yと定義すると、脈動吸収材料4の脈動吸収率αは、式(3)により計算できる。
【0045】
【数2】
Figure 2004037313
【0046】
【数3】
Figure 2004037313
【0047】
以上の式(1)、(2)、(3)によって、サイドブランチ3内に設置した第1圧力センサ5と第2圧力センサ6との圧力の伝達関数であるHを測定すれば、脈動吸収率αを計算することができる。
【0048】
次に、脈動吸収材料4の所定厚さdが任意厚さdxの場合であれば、第1圧力センサ5のPと第2圧力センサ6のPとの圧力の伝達関数であるH=P/Pと第1圧力センサ5のPと第3圧力センサ7のPとの圧力の伝達関数であるH=P/Pを測定すれば、伝搬定数γと特性インピーダンスZcを以下に示す計算手段である式(4)、(5)、(6)、(7)を用いて計算することができる。
【0049】
式(4)は、脈動吸収材料4の前後面である図1に示す断面Hと断面Kにおける圧力と体積速度の関係を表現したものである。
【0050】
【数4】
Figure 2004037313
【0051】
ここで、γは伝搬定数であり、Zcは特性インピーダンスを示す。断面Kは、閉であるため、P=P、U=0である。よって式(4)より
【0052】
【数5】
Figure 2004037313
【0053】
となる。P及びUはサイドブランチ3内の第1圧力センサ5のPと第2圧力センサ6のPにより、式(6)が表現でき、式(5)、(6)より式(7)となる。
【0054】
【数6】
Figure 2004037313
【0055】
【数7】
Figure 2004037313
【0056】
以上のような式(4)、(5)、(6)、(7)により、伝達関数H、Hを測定すれば、伝搬定数γ、特性インピーダンスZcを計算することができ、以下に示す式(8)より脈動吸収材料の任意厚さdxの場合の表面インピーダンスZ0を計算することができる。
【0057】
【数8】
Figure 2004037313
【0058】
この式(8)により算出された表面インピーダンスZ0を、前述した式(2)、(3)を用いて計算することよって、脈動吸収率αを算出することができる。
【0059】
このように、圧力検出工程と測定工程と計算工程の各工程を順次進むことによって、脈動吸収率αを算出することができ、脈動吸収材料4の最適材料の選定を効率良く行うことができる。
【0060】
また、本発明に係る液圧脈動吸収装置は、前述の実施の形態例に限定されるものでなく、以下に示すような脈動吸収材料の減衰状態を計測する手段と変更する変更手段を備えた液圧脈動吸収装置も使用することができる。
【0061】
図2(a)は、本発明に係る液圧脈動吸収装置の一実施の形態例を示す説明図であり、脈動吸収材料が正規の状態を示す。図2(a)に示す液圧脈動吸収装置20は、脈動する圧液が通る主管15の途中部位に接続されるサイドブランチ16と、このサイドブランチ内の端部付近に設置される脈動吸収材料17と、圧力検出手段と測定手段との両手段をあわせた脈動吸収材料17の減衰状態を計測する計測手段と、脈動吸収材料17の減衰状態を変更する変更手段とを備える構成である。なお、図2(a)に示すようにFFT26と配線されたパソコン27とパソコン27に配線された入力器28とアクチュエータ駆動装置29が設けられている。
【0062】
前述のサイドブランチ16は、円筒形状の管であり、内面に凸部18が形成されており、端部は、開放されている。この開放されている端部に、シリンダ(図示しない)のシリンダロッド19に接続され、サイドブランチ16の軸方向に移動可能なフランジ21が設けられている。なお、フランジ21の外径は、サイドブランチ16の内径と略同一である。また、フランジ21の外周面には、サイドブランチ16の内周面とフランジ21の外周面との間から圧液が漏れないようにパッキン22が設けられている。
【0063】
また、脈動吸収材料17は、サイドブランチ16内の凸部18と、サイドブランチ16の軸方向に移動可能なフランジ21との間に設置されており、このフランジ21がサドブランチ16の軸方向に移動することによって、脈動吸収材料17は圧縮され、厚みを変更させる変更手段がサイドブランチ16に設けられている。このようにして脈動吸収材料17の厚みを圧縮して変更し、脈動吸収材料17の密度を高くして脈動吸収を高くすることができる。なお、サイドブランチ16内の脈動吸収材料17を取り除けばサイドブランチ16の長さ変更だけを可能とすることができる。
【0064】
前述の計測手段は、脈動吸収材料17の入口側に設けられた第1圧力センサ23と第2圧力センサ24と、フランジ21の端面に設けられた第3圧力センサ25による圧力検出手段と、第1圧力センサ23と第2圧力センサ24との間の圧力の伝達関数と第1圧力センサ23と第3圧力センサ25との間の圧力の伝達関数をFFT26で測定する測定手段とからなるものである。なお、FFT26、パソコン27、入力器28は、前述したものを同じように適用することができ、同じ効果を得ることができる。従って、後述するシリンダや液圧ポンプ等のアクチュエータをパソコンからの信号を受けたアクチュエータ駆動装置により駆動制御することができる。
【0065】
このようにしてシリンダロッド19に接続されたフランジ21がサイドブランチ16の軸方向に移動させることができる。また、パソコン27に脈動吸収率が一定値以下になると脈動吸収材料17の減衰状態を回復させるため、アクチュエータ駆動装置29に信号を送り、シリンダ等のアクチュエータを動かし、脈動吸収材料17の厚みを変更するような制御プログラムを組み入れておけば自動的に脈動吸収率の減衰状態を回復することができる。
【0066】
前述した計測手段の第1圧力センサ23と第2圧力センサ24との間の圧力の伝達関数をFFT26で測定することによって、脈動吸収材料17による圧液の脈動の減衰状態を脈動吸収材料17の脈動吸収率αを前述した式(1)、(2)、(3)で算出することで確認することができ、状況によって脈動吸収材料17を変更することができる。
【0067】
図2(b)に示すようにフランジ21をサイドブランチ16の軸方向に移動させることによって、脈動吸収材料の厚みを任意に変更することができる。こうして変更された脈動吸収材料17の脈動吸収率αを第1圧力センサ23と第2圧力センサ24との間の圧力の伝達関数Hと第1圧力センサ23と第3圧力センサ25との間の圧力の伝達関数HをFFT26で計測し、前述した式(4)、(5)、(6)、(7)で伝搬定数γと特性インピーダンスZcを算出する。
【0068】
次に式(8)で脈動吸収材料17の表面インピーダンスZ0を算出し、式(2)、(3)により算出することができる。従って、圧縮して脈動吸収材料17の厚さを任意に変更した場合でも脈動吸収率αを算出することができ、状況によっては、更に圧縮して最適な脈動吸収材料17の厚みに変更することができる。
【0069】
次に、脈動吸収材料をサイドブランチ内で移動させる液圧脈動吸収装置について以下に説明する。
【0070】
図3(a)、(b)は、本発明に係る液圧脈動吸収装置の一実施の形態例を示す説明図である。図3(a)に示す液圧脈動吸収装置30は、前述した液圧脈動吸収装置20と良く似た構成である。前述した液圧脈動吸収装置20と異なる部分は、サイドブランチ32の端部が開放されておらず閉塞されており、端部にシリンダ(図示しない)のシリンダロッド34が通過できる通孔44が設けられており、シリンダロッド34に接続され、サイドブランチ32の軸方向に移動可能なフランジ35がサイドブランチ32の内径より小さい径を有するという部分である。また、脈動吸収材料33が前述した脈動吸収材料17のように圧縮され、任意に厚みを変更するのではなく、サイドブランチの軸方向に移動し、サイドブランチ32の内面に形成されている凸部36により、その移動が規制される。なお、通孔44には、サイドブランチ32内の圧液が漏れないように、内周面にパッキン等が設けられている。
【0071】
また、その他の各圧力センサは、前述したものが同じような位置に設けられている。つまり、主管31とサイドブランチ32の接続部側に第1圧力センサ37と第2圧力センサ38が設けられており、第3圧力センサ39だけがサイドブランチ32の端部に設けられている。また、FFT40、パソコン41、入力器42、アクチュエータ駆動装置43も前述したものを同じように適用可能であり、FFT40による計測手段も同じである。また、パソコン41、入力器42は、脈動吸収率を、即座に算出するために使用することができ、アクチュエータ駆動装置43は、前述したように制御プログラムがパソコン41に組み入れておれば、パソコン41からの信号によって脈動吸収材料を移動させ後述する圧液の脈動を吸収できる周波数を変化させることが可能となる。
【0072】
また、脈動吸収材料33が図3(a)に示す位置にある場合に、圧液は脈動吸収材料33が設けられたフランジ35とサイドブランチ32内の端面との間の空間に流れるようになっており、この空間により圧液の脈動を吸収できる周波数を変化させることが可能なため、図3(b)のように脈動吸収材料33の位置をサイドブランチ32の軸方向に移動させることで、吸収できる脈動の中心周波数を変化させることができるので脈動の周波数が変化した場合に対応することができる。
【0073】
なお、このような場合には、脈動吸収材料33とサイドブランチ32内の端面との距離が1/4波長となる周波数を中心に吸収性能が良くなる。このため、この周波数を記憶しておき、液圧脈動吸収装置30で測定できる脈動の周波数に応じて、脈動吸収材料33の位置を変えてやれば中心周波数の減衰性能が向上する。
【0074】
次に、脈動吸収材料をサイドブランチ内に追加する液圧脈動吸収装置について以下に説明する。
【0075】
図4は、本発明に係る液圧脈動吸収装置の一実施の形態例を示す説明図である。図4に示す液圧脈動吸収装置50は、主管51の途中部位に接続され、側方片側に脈動吸収材料53が挿入可能な開口が設けられたサイドブランチ52と、主管51とサイドブランチ52の接続部側に設けられた第1圧力センサ54と第2圧力センサ55と、サイドブランチ52の端面に設けられた第3圧力センサ56と、各圧力センサによる圧力検出手段と測定手段との両手段をあわせた脈動吸収材料53の減衰状態を計測する計測手段と、脈動吸収材料53を開口から挿入可能なシリンダ57と、シリンダを動作させる液圧ポンプ58で脈動吸収材料53の減衰状態を変更する変更手段とで構成されている。なお、シリンダ57と液圧ポンプ58には、一般的に使用されている油圧シリンダや油圧ポンプ等を使用することができる。また、計測手段は、前述したものと同じような構成、同じ計測方法を適用することができる。
【0076】
サイドブランチ52は、円筒形状や四角筒形状等使用することができ、特に限定するものではない。また、材質も前述したサイドブランチ52と同様のものを使用することができる。このサイドブランチ52の側面には、脈動吸収材料53を挿入可能な開口が設けられており、開口の内周面には、パッキン等が設けられている。従って、サイドブランチ内から外方に向かって圧液が漏れることがない。
【0077】
また、サイドブランチ52の開口に挿入するような脈動吸収材料53には、開口面積と略同じ断面積を有する多孔板を用いることが好ましい。例えば、多孔板には、穴径がφ0.5mm〜φ2mm、板厚が1mm〜5mmでなり、多孔の穴面積を合計した時の開口率が1%〜5%の多孔板を用いることができ、特に限定されるものではない。
【0078】
また、前述した脈動吸収材料53の端部には、シリンダ57のシリンダロッド59と連結されており、シリンダ57を液圧ポンプ58で動かすことにより脈動吸収材料53がサイドブランチ52の開口に挿入されるが、引き抜かれた場合に開口から外れることがないようにシリンダ57とシリンダロッド59で位置決めされている。従って、サイドブランチ52内から外方に向かって圧液が漏れることがない。
【0079】
前述の計測手段は、主管51とサイドブランチ52の接続部側に設けられた第1圧力センサ54と第2圧力センサ55と、サイドブランチ52の端面に設けられた第3圧力センサ56による圧力検出手段と、第1圧力センサ54と第2圧力センサ55との間の圧力の伝達関数と第1圧力センサ54と第3圧力センサ56との間の圧力の伝達関数をFFT60で測定する測定手段とからなるものである。
【0080】
前述した計測手段の第1圧力センサ54と第2圧力センサ55との間の圧力の伝達関数をFFT60で測定することによって、脈動吸収材料53による圧液の脈動の減衰状態を脈動吸収材料53の脈動吸収率αを前述した式(1)、(2)、(3)で算出することで確認することができる。
【0081】
また、第1圧力センサ54と第2圧力センサ55との間の圧力の伝達関数Hと第1圧力センサ54と第3圧力センサ56との間の圧力の伝達関数HをFFT60で計測し、前述した式(4)、(5)、(6)、(7)で伝搬定数γと特性インピーダンスZcを算出する。次に、式(8)で脈動吸収材料の表面インピーダンスZ0を算出し、式(2)、(3)により脈動吸収材料53の脈動吸収率αを算出することができる。
【0082】
また、図4に示すようにサイドブランチ52に脈動吸収材料64が挿入できる開口を設け、脈動吸収材料64をシリンダ66のシリンダロッド65に接続し、液圧ポンプ67を追加することによって、脈動吸収材料53の脈動吸収率αを算出して減衰状態を把握し、減衰状態を最適にするため、圧液の脈動の周波数にあわせてパソコン61からアクチュエータ駆動装置63に信号を送り、液圧ポンプ58、67を動かして、シリンダ57、66を動作させ、脈動吸収材料53、64を順次追加して行くことができる。こうして脈動吸収材料53、64を追加することで、吸収できる脈動の中心周波数を一つ追加するごとに一つ増やすことができる。なお、図4に示す入力器62で、パソコン61に脈動吸収率を計算する計算プログラムを組み込むことによって、前述と同様に即座に脈動吸収率を算出することができる。
【0083】
図4に示すような脈動吸収材料53に多孔板を用いた場合での吸収したい脈動の中心周波数は、多孔板とサイドブランチ52の内壁との開口(隙間)の大きさや多孔板同士の間隔等で予め設定することが可能である。
【0084】
以上のような液圧脈動吸収装置50は、図4に示すパソコン61から信号を受けたアクチュエータ駆動装置63により、液圧ポンプ58、67やシリンダ57、66等のアクチュエータを駆動制御することができる。従って、駆動制御されたアクチュエータ等で、サイドブランチの長さや脈動吸収材料の厚さを変更し、脈動吸収材料の減衰状態を最適な状態にすることができる。また、脈動吸収材料の位置変更や追加することによって、吸収できる脈動の中心周波数を減衰することができる。
【0085】
【実施例】
次に、本発明の液圧脈動吸収装置の減衰定数測定装置を用いた脈動吸収率について実施例により具体的に説明する。以下の実施例には、液圧脈動吸収装置の減衰定数測定装置1を用いているので構成等の詳述は、前述しているので割愛する。
【0086】
図1に示す液圧ポンプ8に9本ピストンの油圧ポンプを使用し、液体には、作動油を用いた。また、脈動吸収材料4には、油用紙フィルタに用いる紙材料を用いて、厚さ0.2mmの紙材料を円状に切断し、これを多数重ね合わせて厚さ150mmのものとした。測定には、9本ピストンの油圧ポンプを1000rpmで稼動させ、管内圧力を15MPaとして各圧力センサで圧力を測定し、油用紙フィルタからなる脈動吸収材料の脈動吸収率の算出を行った。
【0087】
第1圧力センサ5と第2圧力センサ6を用いてFFT10で測定した伝達関数より脈動吸収材料の脈動吸収率を算出した結果を図5に示す。図5の横軸に周波数、縦軸に脈動吸収率を示す。図5の丸印が油圧ポンプに起因する脈動の卓越ピークに相当する周波数での脈動吸収率を示している。1.5KHz以上で0.7程度の脈動吸収率を示しており、脈動エネルギの70%以上が脈動吸収材料に吸収されていることを示している。従って、脈動吸収材料が、十分な性能を発揮していることわかる。
【0088】
次に、第1圧力センサ5と第2圧力センサ6と第3圧力センサ7を用いてFFT10で測定した伝達関数より、脈動吸収材料の特性インピーダンスと伝搬定数を算出した結果を図6(a)、(b)に示す。油特性インピーダンスρcで正規化した特性インピーダンスZc/ρcを図6(a)に示し、伝搬定数γを図6(b)に示す。これらの定数は、複素数であるため、実数部を丸印で、虚数部を+印で示している。測定された特性インピーダンスZcと伝搬定数γを前述した式(8)に代入すれば、表面インピーダンスZ0を算出でき、前述した式(2)、(3)を用いれば脈動吸収率を算出することができる。従って、より簡便に脈動吸収材料の厚さを変えた場合等の脈動吸収材料の選定を実施することができる。
【0089】
また、図7に第1圧力センサ5と第2圧力センサ6を用いてFFT10で測定した伝達関数より脈動吸収材料の脈動吸収率を算出した結果を丸印で、第1圧力センサ5と第2圧力センサ6と第3圧力センサ7を用いてFFT10で測定した伝達関数より、脈動吸収材料の特性インピーダンスと伝搬定数を算出した結果を前述した計算式を用いて脈動吸収材料の脈動吸収率を算出した結果を+印で示す。図7より2通りから得た結果は良く一致しており、伝搬定数と特性インピーダンスから脈動吸収材料の脈動吸収率が計算できることが良く理解できる。
【0090】
【発明の効果】
請求項1によると、主管内を通る圧液の流れを阻害することなく、圧力センサで圧液の圧力を測定し、脈動吸収率を算出することができ、脈動吸収材料の最適材料の選定を効率良く行うことができる。
【0091】
請求項2によると、第1圧力センサと第2圧力センサとの間の圧力の伝達関数を測定し、脈動吸収材料の表面インピーダンスを算出した後、脈動吸収率を算出することができ、脈動吸収材料の最適材料の選定を効率良く行うことができる。
【0092】
請求項3によると、第1圧力センサと第2圧力センサとの間の圧力の伝達関数と第1圧力センサと第3圧力センサとの間の圧力の伝達関数を測定し、任意厚さの脈動吸収材料の特性インピーダンスと伝搬定数を算出した後、脈動吸収率を算出することができる。従って、脈動吸収材料の最適材料の選定を効率良く行うことができる。
【0093】
請求項4によると、主管内を通る圧液の流れを阻害することなく、各工程を順次進むことによって、脈動吸収材料の脈動吸収率を算出することができ、脈動吸収材料の最適材料の選定を効率良く行うことができる。
【0094】
請求項5によると、各工程を順次進むことによって、脈動吸収材料の表面インピーダンスを算出した後、脈動吸収率を算出することができ、脈動吸収材料の最適材料の選定を効率良く行うことができる。
【0095】
請求項6によると、各工程を順次進むことによって、任意厚さの脈動吸収材料の特性インピーダンスと伝搬定数を算出した後、脈動吸収率を算出することができる。従って、脈動吸収材料の最適材料の選定を効率良く行うことができる。
【0096】
請求項7によると、主管内を通る圧液の流れを阻害することなく、脈動吸収材料による圧液の脈動の減衰状態を確認することができ、状況によっては、脈動吸収材料を変更することができる。
【0097】
請求項8によると、脈動吸収材料による圧液の脈動の減衰状態にあわせてサイドブランチの長さや脈動吸収材料の位置、厚みを変化させて、確実に圧液の脈動を吸収することができる。
【0098】
請求項9によると、容易に脈動吸収材料の脈動吸収率を演算することができ、脈動吸収材料による圧液の脈動の減衰状態を確認することができる。
【図面の簡単な説明】
【図1】本発明に係る液圧脈動吸収装置の減衰定数計測装置の概略構成図である。
【図2】本発明に係る液圧脈動吸収装置の一実施の形態例を示す説明図であり、(a)は、脈動吸収材料が正規の状態を示し、(b)は、脈動吸収材料が圧縮された状態を示す。
【図3】本発明に係る液圧脈動吸収装置の一実施の形態例を示す説明図であり、(a)は、脈動吸収材料が中間位置にある状態を示し、(b)は、脈動吸収材料が上限位置にある状態を示す。
【図4】本発明に係る液圧脈動吸収装置の一実施の形態例を示す説明図である。
【図5】本発明に係る液圧脈動吸収装置の減衰定数計測装置の実施例における脈動吸収率を算出した結果である。
【図6】本発明に係る液圧脈動吸収装置の減衰定数計測装置の実施例における結果であり、(a)は、油特性インピーダンスで正規化した特性インピーダンスを示し、(b)は、伝搬定数を示す。
【図7】本発明に係る液圧脈動吸収装置の減衰定数計測装置の実施例における2通りから算出した脈動吸収率の結果を示すものである。
【図8】従来の空気中における吸音材料の表面インピーダンスを測定する装置の一例を示す説明図である。
【符号の説明】
1 液圧脈動吸収装置の減衰定数計測装置
2 主管
3 サイドブランチ
4 脈動吸収材料
5 第1圧力センサ
6 第2圧力センサ
7 第3圧力センサ
8 液圧ポンプ
9 演算装置
10 FFT
11 パソコン
12 入力器
13 バルブ
15 主管
16 サイドブランチ
17 脈動吸収材料
18 凸部
19 シリンダロッド
20 液圧脈動吸収装置
21 フランジ
22 パッキン
23 第1圧力センサ
24 第2圧力センサ
25 第3圧力センサ
26 FFT
27 パソコン
28 入力器
29 アクチュエータ駆動装置
30 液圧脈動吸収装置
31 主管
32 サイドブランチ
33 脈動吸収材料
34 シリンダロッド
35 フランジ
36 凸部
37 第1圧力センサ
38 第2圧力センサ
39 第3圧力センサ
40 FFT
41 パソコン
42 入力器
43 アクチュエータ駆動装置
44 通孔
50 液圧脈動吸収装置
51 主管
52 サイドブランチ
53 脈動吸収材料
54 第1圧力センサ
55 第2圧力センサ
56 第3圧力センサ
57 シリンダ
58 液圧ポンプ
59 シリンダロッド
60 FFT
61 パソコン
62 入力器
63 アクチュエータ駆動装置
64 脈動吸収材料
65 シリンダロッド
66 シリンダ
67 液圧ポンプ

Claims (9)

  1. 脈動する圧液が通る主管の途中部位に接続されるサイドブランチと、このサイドブランチ内の端部付近に設置される脈動吸収材料とを備える液圧脈動吸収装置の減衰定数計測装置であって、
    前記サイドブランチ内の圧液の圧力を検出する圧力検出手段と、この圧力検出手段により検出された圧力に基づいて、前記脈動吸収材料の脈動吸収率を算出する算出手段とを備えてなる液圧脈動吸収装置の減衰定数計測装置。
  2. 前記圧力検出手段は、前記脈動吸収材料の入口側に設けられた第1圧力センサと第2圧力センサであって、前記算出手段は、前記第1圧力センサと前記第2圧力センサとの間の圧力の伝達関数を測定する測定手段と、この伝達関数に基づいて前記脈動吸収材料の脈動吸収率を計算する計算手段とを含んでなる請求項1に記載の液圧脈動吸収装置の減衰定数計測装置。
  3. 前記圧力検出手段は、前記脈動吸収材料の入口側に設けられた第1圧力センサと第2圧力センサと、前記サイドブランチの端面に設けられる第3圧力センサとであって、前記算出手段は、前記第1圧力センサと前記第2圧力センサとの間の圧力の伝達関数と前記第1圧力センサと前記第3圧力センサとの間の圧力の伝達関数を測定する測定手段と、これらの伝達関数に基づいて任意厚さの前記脈動吸収材料の脈動吸収率を計算する計算手段とを含んでなる請求項1に記載の液圧脈動吸収装置の減衰定数計測装置。
  4. 脈動する圧液が通る主管の途中部位に接続されるサイドブランチと、このサイドブランチ内の端部付近に設置される脈動吸収材料とを備える液圧脈動吸収装置の減衰定数計測方法であって、
    前記サイドブランチ内の圧液の圧力を検出する圧力検出工程と、検出された前記圧力に基づいて、前記脈動吸収材料の脈動吸収率を算出する算出工程とを備えてなる液圧脈動吸収装置の減衰定数計測方法。
  5. 前記圧力検出工程は、前記脈動吸収材料の入口側に設けられた第1圧力センサと第2圧力センサを用いる工程であって、前記算出工程は、前記第1圧力センサと前記第2圧力センサとの間の圧力の伝達関数を測定する測定工程と、この伝達関数に基づいて前記脈動吸収材料の脈動吸収率を計算する計算工程とを含んでなる請求項4に記載の液圧脈動吸収装置の減衰定数計測方法。
  6. 前記圧力検出工程は、前記脈動吸収材料の入口側に設けられた第1圧力センサと第2圧力センサと、前記サイドブランチの端面に設けられる第3圧力センサとを用いる工程であって、前記算出工程は、前記第1圧力センサと前記第2圧力センサとの間の圧力の伝達関数と前記第1圧力センサと前記第3圧力センサとの間の圧力の伝達関数を測定する測定工程と、これらの伝達関数に基づいて任意厚さの前記脈動吸収材料の脈動吸収率を計算する計算工程とを含んでなる請求項4に記載の液圧脈動吸収装置の減衰定数計測方法。
  7. 脈動する圧液が通る主管の途中部位に接続されるサイドブランチと、
    このサイドブランチ内の端部付近に設置される脈動吸収材料と、
    前記脈動吸収材料の減衰状態を計測する計測手段と、
    前記脈動吸収材料の減衰状態を変更する変更手段とを備える液圧脈動吸収装置。
  8. 前記変更手段は、前記サイドブランチの長さの変更、前記脈動吸収材料の前記サイドブランチ内における位置の変更、前記脈動吸収材料の厚み変更のいずれか一つ又はこれらの組み合わせである請求項7に記載の液圧脈動吸収装置。
  9. 前記計測手段は、前記サイドブランチ内の圧液の圧力を検出する圧力センサと、この圧力センサからの信号を受けて、前記脈動吸収材料の脈動吸収率を演算する演算装置とを備えて成る請求項7又は8に記載の液圧脈動吸収装置。
JP2002196173A 2002-07-04 2002-07-04 減衰定数計測装置及び液圧脈動吸収装置の減衰定数計測方法 Expired - Fee Related JP4236878B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196173A JP4236878B2 (ja) 2002-07-04 2002-07-04 減衰定数計測装置及び液圧脈動吸収装置の減衰定数計測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196173A JP4236878B2 (ja) 2002-07-04 2002-07-04 減衰定数計測装置及び液圧脈動吸収装置の減衰定数計測方法

Publications (2)

Publication Number Publication Date
JP2004037313A true JP2004037313A (ja) 2004-02-05
JP4236878B2 JP4236878B2 (ja) 2009-03-11

Family

ID=31704336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196173A Expired - Fee Related JP4236878B2 (ja) 2002-07-04 2002-07-04 減衰定数計測装置及び液圧脈動吸収装置の減衰定数計測方法

Country Status (1)

Country Link
JP (1) JP4236878B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218659A (ja) * 2006-02-15 2007-08-30 Toshiba Corp 主蒸気配管および沸騰水型原子力発電プラントの運転方法
US7866147B2 (en) 2005-09-30 2011-01-11 Southwest Research Institute Side branch absorber for exhaust manifold of two-stroke internal combustion engine
US7946382B2 (en) 2006-05-23 2011-05-24 Southwest Research Institute Gas compressor with side branch absorber for pulsation control
US8123498B2 (en) 2008-01-24 2012-02-28 Southern Gas Association Gas Machinery Research Council Tunable choke tube for pulsation control device used with gas compressor
JP2015028349A (ja) * 2013-07-30 2015-02-12 株式会社コガネイ 脈動防止装置
JP6264498B1 (ja) * 2017-09-21 2018-01-24 株式会社システムアンドデータリサーチ 減衰定数の推定方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7866147B2 (en) 2005-09-30 2011-01-11 Southwest Research Institute Side branch absorber for exhaust manifold of two-stroke internal combustion engine
JP2007218659A (ja) * 2006-02-15 2007-08-30 Toshiba Corp 主蒸気配管および沸騰水型原子力発電プラントの運転方法
JP4551875B2 (ja) * 2006-02-15 2010-09-29 株式会社東芝 主蒸気配管
US7946382B2 (en) 2006-05-23 2011-05-24 Southwest Research Institute Gas compressor with side branch absorber for pulsation control
US8123498B2 (en) 2008-01-24 2012-02-28 Southern Gas Association Gas Machinery Research Council Tunable choke tube for pulsation control device used with gas compressor
JP2015028349A (ja) * 2013-07-30 2015-02-12 株式会社コガネイ 脈動防止装置
JP6264498B1 (ja) * 2017-09-21 2018-01-24 株式会社システムアンドデータリサーチ 減衰定数の推定方法

Also Published As

Publication number Publication date
JP4236878B2 (ja) 2009-03-11

Similar Documents

Publication Publication Date Title
US11815110B2 (en) Systems and methods for managing noise in compact high speed and high force hydraulic actuators
US10196947B2 (en) Muffler
CN105257943B (zh) 一种基于压电分流阻尼技术的液压管路流体脉动衰减装置
US5655367A (en) Inlet or exhaust line for a reciprocating machine
DE102005011747B3 (de) Aktiver Abgasschalldämpfer
EP2444605B1 (de) Schalldämpfer
JP6659234B2 (ja) 消音器
EP1217339A2 (en) Noise silencer and method for use with an ultrasonic meter
CN108561669B (zh) 弹性背腔式管路减振消声装置
US5810566A (en) Pulse damper or acoustic outlet piece for a compressor and compressor equipped therewith
JP4236878B2 (ja) 減衰定数計測装置及び液圧脈動吸収装置の減衰定数計測方法
EP1717433A9 (de) Aktiver Ansaugschalldämpfer
Čudina et al. Detection of cavitation in situ operation of kinetic pumps: Effect of cavitation on the characteristic discrete frequency component
CN101749544A (zh) 用于诊断流体系统中的噪声的测量装置和方法
CN103353042A (zh) 压力自适应低频宽带弹性共振消声装置
CN102705043B (zh) 一种起重机及其排气系统的消声器
JP2004036778A (ja) 圧力脈動吸収装置
KR20100061568A (ko) 흡음 장치
CN202673403U (zh) 一种起重机及其排气系统的消声器
JP2007278516A (ja) 圧力脈動吸収装置
JP4476705B2 (ja) 消音機構
JP4567372B2 (ja) 消音器
JP2007278517A (ja) 圧力脈動吸収装置
CN211286094U (zh) 用于声学实验室墙壁孔洞上的消声装置
CN213871675U (zh) 一种蒸汽锅炉的消音机构

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4236878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees