CN105257943B - 一种基于压电分流阻尼技术的液压管路流体脉动衰减装置 - Google Patents

一种基于压电分流阻尼技术的液压管路流体脉动衰减装置 Download PDF

Info

Publication number
CN105257943B
CN105257943B CN201510758285.XA CN201510758285A CN105257943B CN 105257943 B CN105257943 B CN 105257943B CN 201510758285 A CN201510758285 A CN 201510758285A CN 105257943 B CN105257943 B CN 105257943B
Authority
CN
China
Prior art keywords
fluid
cavity
piezoelectric
pipe
attenuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510758285.XA
Other languages
English (en)
Other versions
CN105257943A (zh
Inventor
邓斌
杨帆
柯坚
王国志
于兰英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201510758285.XA priority Critical patent/CN105257943B/zh
Publication of CN105257943A publication Critical patent/CN105257943A/zh
Application granted granted Critical
Publication of CN105257943B publication Critical patent/CN105257943B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/04Devices damping pulsations or vibrations in fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/02Energy absorbers; Noise absorbers
    • F16L55/033Noise absorbers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pipe Accessories (AREA)

Abstract

本发明公开了一种基于压电分流阻尼技术的液压管路流体脉动衰减装置,衰减器(31)的中部为一长方体密封腔体,腔体的左右两端分别具有流入液压流体的进口圆管(1)和流出液压流体的出口圆管(11),进口圆管(1)和出口圆管(11)的部分伸入衰减器腔体内;腔体内表面的上部和下部分别设置有PVDF压电薄膜,PVDF压电薄膜上置有将其两面引出密封腔体外与外部形成电连接的引出线。本发明利用主动滤波衰减低频脉动,被动滤波衰减中、高频脉动,将主、被动滤波结合,既可保持液压系统原有的动特性,又可在较宽频带内提高脉动衰减效果。

Description

一种基于压电分流阻尼技术的液压管路流体脉动衰减装置
技术领域
本发明属于液压管路流体脉动控制领域,具体涉及一种基于压电分流阻尼技术的液压管路流体脉动衰减装置。
背景技术
由于轴向柱塞泵自身结构特性以及巨大压差导致油液反冲回油缸,使得柱塞泵同时存在着固有流量脉动和回冲流量脉动,且以回冲流量脉动为主。泵输出的流量脉动在流经液压管道时,由于管道中节流口、阀口等的存在,会产生压力脉动。管道内的压力、流量脉动会诱发管路振动、产生噪声,从而降低液压元件寿命,严重时会导致灾难性的事故。因此,控制和削弱液压管路系统的流体脉动具有很重要的现实意义。
目前,流体脉动衰减分为被动控制和主动控制两部分。被动控制主要是在液压系统中设置衰减器,国内外已先后研制成功了多种类型的脉动衰减装置并在实际应用中取得了不同程度的衰减效果。但随着液压系统向着高压、大流量、大功率密度方向发展,液压流体脉动被动控制也暴露出了许多缺点,例如:(1)在实际液压系统中,由于系统的复杂性,如非线性、分布参数以及不确定性等因素,使得系统很容易受到外界干扰的影响。而传统的脉动衰减器往往属于被动式,其结构参数不可变,即使可变,也是人工手动调节,不具有自适应削减脉动波的能力;(2)一般地,脉动能量主要集中在200Hz以下频率范围,衰减这个频率段内的脉动是很重要的。采用被动控制方法时,衰减器对中、高频脉动削减比较好,但对低频脉动,由于体积庞大、衰减效果不太理想,其中阻性衰减器能量损失过大,而抗性衰减器也各有不足。
流体脉动主动控制是利用专门的装置产生一个附加压力波,使它与源压力脉动波频率相同、幅值相等且相位相差,以此来消减系统中的压力与流量脉动。目前,主动滤波的方法主要有:(1)在管道中直接加装伺服作动器,通过其往复运动来增大或减小管路容积,产生压力脉动波抵消原液压系统中的压力脉动;(2)在管道外壁安装压电陶瓷或磁致伸缩等智能材料作动器,通过作动器的运动使管壁发生弹性变形,从而在管道内产生压力脉动波;(3)基于旁路溢流原理,在主管路中引出一分叉管路,在分叉管路上安装由压电陶瓷等智能材料驱动的主动节流阀、主动消振阀或伺服阀,通过控制阀的运动,达到抑制主管路脉动的效果。随着液压系统的发展,前人所研究的液压流体脉动主动控制方法也暴露出了许多缺点,总结如下:(1)当加装伺服作动器时,由于要产生幅值大小相等、相位相差的次级脉动波,这就使得作动器体积较大;又由于在高压液压系统中,作动器要承受很大的负载,使得其驱动电压或磁场强度非常大,会引起作动器过热等一系列问题;(2)因为管路中的高压流体会使管道刚度变大,因此若要管道发生变形,则要很大的执行力,利用液压系统管壁的变形来产生压力脉动波的流体脉动主动控制大多应用于低压的液压管路系统,对于高压液压系统并不适用;(3)主动滤波虽然消除脉动的效果较好,但主动控制系统复杂、成本昂贵,因此目前只处于实验室水平。
发明内容
本发明的目的是提供一种基于压电分流阻尼技术的液压管路流体脉动衰减装置,该装置不仅结构紧凑,还实现了流体脉动的主、被动一体化控制,结合各自的优点,能够有效削弱宽频带内的脉动和振动、噪声。
本发明的目的是通过如下的手段实现的。
一种基于压电分流阻尼技术的液压管路流体脉动衰减装置,衰减器机械结构部分31的中部为一长方体密封腔体,腔体的左右两端分别具有流入液压流体的进口圆管1和流出液压流体的出口圆管11,进口圆管1和出口圆管11的部分伸入衰减器腔体内;腔体内表面的上部和下部分别设置有PVDF压电薄膜,PVDF压电薄膜上置有将其两面引出密封腔体外与外部形成电连接的引出线,即:用于与可控电感型压电分支电路24连接的上引出线(5和8)和用于与电荷放大电路27连接的下引出线(18和19);衰减器腔体内的进口圆管1、出口圆管11的侧壁上布满孔径大小不均匀的微孔;衰减器腔体的内径大于进口圆管1和出口圆管11的内径,形成内插管单室扩张式结构。
进一步地,作为本发明的一种基于压电分流阻尼技术的液压管路流体脉动衰减装置:在制作压电传感器时,为了提高灵敏度,将二片或二片以上具有相同性能的PVDF压电薄膜17并联连接,薄膜两侧的铝电极15和16各是一层很薄的铝箔,与PVDF压电薄膜的粘结非常牢固,也很柔韧,可以承受很高的应力和做大幅度的弯曲应变。用环氧树脂14包裹PVDF压电薄膜17及其铝电极,这样既起到绝缘作用又可以保护薄膜避免与管道中的流体发生接触。
进一步地,可控电感型压电分支电路24由可控电感元件25和可控电阻元件26串联组成,构成分支电路压电阻尼系统。作为本发明的一种基于压电分流阻尼技术的液压管路流体脉动衰减装置:当PVDF压电薄膜17采用并联连接时,前置放大器应配接高增益和高输入阻抗的电荷放大器,因此将下端盖通孔(20和21)引出的下引出线(18和19)与电荷放大电路27相连。由于压电传感器等效电路只有在负载为无穷大,内部无漏电时,受力产生的电压U或电荷q才能长期保持不变;如果负载不是无穷大,则电路就要按指数规律进行放电(详见李金田于2004年在《传感器技术》上发表的《压电传感器与前置放大器的配接》),因此压电传感器的测量电路首先要接入一个高输入阻抗的前置放大器。
本发明将衰减器上端盖通孔(6和9)引出的引出线(5和8)与可控电感型压电分支电路24相连,这种分支电路压电阻尼系统由可控电感元件25和可控电阻元件26串联组成,其中可控电阻元件26的作用是耗散由于流体脉动引起的压力能,可控电感元件25的功能是储存流体压力能。通过调整分支电路中电阻和电感的值,可以使压电系统的谐振频率与流体脉动基波频率相一致,从而达到抑制压力脉动的作用。
本发明衰减器腔体内部的进口圆管和出口圆管的侧壁上布满微孔。所述微孔(22)和(23)的孔径在0.1-0.3mm之间变化。查阅国内脉动衰减装置专利,如中国专利公布号CN102226491 A,公布日2011.10.26,发明专利的名称为用于输液管路流体消脉降噪装置,该发明公开了一种用于输液管路流体消脉降噪装置,装置中的微孔Ⅰ的孔径和微孔Ⅱ的孔径均为1-3mm,同一块微孔板上的孔直径是相同的。该装置存在的不足:根据马大猷院士的微穿孔板结构理论,只有当微孔孔径小于1mm时,才容易获得宽频带吸收(详见马大猷院士于1975年在《中国科学》上发表的《微穿孔板吸声结构的理论和设计》),因此该发明装置脉动衰减频带较窄;并且采用的同一孔径微孔板只对单一脉动频率有效。针对这些缺陷,本发明公开的一种脉动衰减装置中的微孔(22)、(23)孔径均未超过0.3mm,且孔径在0.1-0.3mm之间变化。通常,微穿孔板的声阻随着孔径的变小而大大提高,当达到0.3mm或更小时,其吸声带宽就相当可观了(详见张斌于2007年在《应用声学》上发表的《用传递矩阵法预测单层或多层微孔板的吸声性能》)。拥有多种不同孔径孔的同一块微孔板吸声性能已有实验研究及结果,实验表明:不同孔径微孔板具有拓展吸声带宽的能力,比同一孔径微孔板更具优势,吸收带宽加大,同时不降低吸声系数。
综上所述,本发明的一种基于压电分流阻尼技术的液压管路流体脉动衰减装置集合主、被动控制来提高其抑制脉动的能力。利用主动滤波衰减低频脉动,被动滤波衰减中、高频脉动,将主、被动滤波结合,既可保持液压系统原有的动特性,又可在较宽频带内提高脉动衰减效果。
附图说明
图1为本发明的一种基于压电分流阻尼技术的液压管路流体脉动衰减装置机械部分的纵向剖视图。
图2为电荷放大电路示意图。
图3可控电感型压电分支电路示意图。
图4为本发明实施例液压管路流体脉动主、被动一体化控制系统原理图。
图5为控制器原理图。
具体实施方式
下面将结合附图和实施例对本发明作进一步的详细说明。
本发明基于压电分流阻尼技术的液压管路流体脉动衰减装置,如图1、2、3所示,进口圆管1、出口圆管11的部分伸入衰减器腔体内,且通过螺纹部分13与端盖3相连。衰减器左右端盖3与上下端盖7之间通过开槽圆柱头螺钉4连接;为了增大电荷放大电路27的输出电压,将PVDF压电薄膜17并联连接,并且在PVDF压电薄膜两侧粘结铝电极(15和16),从而制作成PVDF压电薄膜传感器;用环氧树脂14将PVDF压电薄膜17以及铝电极进行包裹,再通过502粘合剂10将其粘合在上、下端盖的内壁上;在脉动衰减器上、下端盖表面开通孔(6、9、20和21),从而将铝电极上的引出线(5、8、18和19)引出。将上引出线(5和8)引出连接可控电感型压电分支电路24,下引出线(18和19)引出连接电荷放大电路27;在位于衰减器腔体内的进口圆管1、出口圆管11的侧壁上布满孔径大小不均匀的微孔(22和23)。
本发明的控制对象是基本的液压管路系统,一个典型的例子如图4所示,由油箱、油滤、电机、阻塞泵、蓄能器、溢流阀、液压管路和可调节流阀组成。具体的连接关系为:电机带动柱塞泵从油箱中吸油,产生一定流量的高压流体,若油液压力达到溢流阀调定压力时,直接溢流回油箱;若油液压力未达到溢流阀调定压力时,油液进入液压管路中,在液压管路末端安装作为负载的可调节流阀,高压流体流经可调节流阀回到油箱;其中,皮囊式蓄能器起到吸收脉动和稳压的作用,油滤过滤掉油液中的杂质,溢流阀调定液压系统中的最高压力,起到安全保护的作用。
本发明是一种基于压电分流阻尼技术的液压管路流体脉动主、被动一体化控制方法,包括以下几个步骤:
第一步、如图4所示,利用安装在泵出口处的皮囊式蓄能器对液压管路压力脉动进行一定程度的被动衰减;
第二步、如图4所示,基于压电分流阻尼技术的液压管路流体脉动主、被动一体化控制方法采用PVDF(压电薄膜)薄壁筒式液压脉动衰减器作为流体脉动主、被动一体化控制的执行元件;
第三步、如图4所示,脉动衰减器采用内插管单室扩张式结构,该结构属于抗性衰减器的结构类型之一,可对液压管路中的流体压力脉动进行再次的被动衰减。以内插管中轴面为对称面,铺设上、下层PVDF压电层;
第四步、如图4所示,将下层PVDF压电层做成压电薄膜传感器,用于检测液压管道内部的压力脉动。利用PVDF压电材料的正压电效应,将脉动信号转化为电信号,由于直接由PVDF压电薄膜输出的电荷或电压信号十分微弱,所以只有当PVDF压电薄膜传感器与相匹配的前置电路相连接时,才能构成一个完整的信号输出部分。将PVDF压电薄膜传感器视为电荷源,使其与电荷放大电路相连,电荷信号经电荷放大电路转化成电压信号。输出的电压信号再通过A/D卡转化成控制器可处理的数字信号,控制器对采集到的压力脉动数据进行FFT变换,得到压力振动频谱,选择基频作为要进行脉动衰减的成分。采用自适应寻优控制算法,将误差压力传感器所测的衰减后的压力脉动量大小作为控制目标,对分支电路的电路参数进行不断地调整,直到误差压力传感器测量到的压力脉动最小,从而实现流体脉动的主动控制。
需要对第四步做如下补充说明:(1)由于源脉动流量含有多个正弦分量,一般情况下高频流量脉动无法测量,但可以通过测量压力脉动来进行分析,并且压力脉动恰好又是衡量振动强度的直接指标,因此这里通过检测压力脉动作为评价液压管路振动的指标,而且液压系统中压力脉动的频率与流量脉动的频率是一致的;(2)如图5所示,自适应寻优控制算法,这种算法就是在系统的振动控制过程中,按照某种优化准则动态地调整有关控制参数,以使受控系统的输出处于振动最小状态的一种控制方法。此处以误差压力传感器所测的消振后的压力脉动量大小作为控制目标,被控对象为泵源系统,对采集到的压力脉动数据进行FFT变换,得到压力脉动频谱,选择其幅值最大的频率点(即基频)为要消振的成分。对分支电路中的可调电阻与可调电感值进行不断地调整,使压电系统的谐振频率与脉动波的某个频率相一致,从而控制液压系统的振动响应,直到误差压力传感器测量到的压力脉动最小,从而实现流体脉动的主动控制。

Claims (3)

1.一种基于压电分流阻尼技术的液压管路流体脉动衰减装置,其特征在于,衰减器(31)的中部为一长方体密封腔体,腔体的左右两端分别具有流入液压流体的进口圆管(1)和流出液压流体的出口圆管(11),进口圆管(1)和出口圆管(11)的部分伸入衰减器腔体内;腔体内表面的上部和下部分别设置有PVDF压电薄膜,PVDF压电薄膜上置有将其两面引出密封腔体外与外部形成电连接的引出线,即:用于与可控电感型压电分支电路(24)连接的上引出线(5和8)和用于与电荷放大电路(27)连接的下引出线(18和19);衰减器腔体内的进口圆管(1)、出口圆管(11)的侧壁上布满孔径大小不均匀的微孔;衰减器腔体的内径大于进口圆管(1)和出口圆管(11)的内径,形成内插管单室扩张式结构;
所述PVDF压电薄膜采用多层叠合的结构,多层PVDF压电薄膜并联连接,并且在PVDF压电薄膜两侧粘结铝电极,环氧树脂(14)将PVDF压电薄膜以及铝电极进行包裹,起到绝缘作用且保护PVDF压电薄膜(17)避免与管道内的流体接触;
所述微孔(22)和(23)的孔径在0.1-0.3mm之间变化。
2.根据权利要求1所述的基于压电分流阻尼技术的液压管路流体脉动衰减装置,其特征在于,电荷放大电路(27)由运算放大器(30)、电荷放大器反馈电容(28)和反馈电阻(29)组成。
3.根据权利要求1所述的基于压电分流阻尼技术的液压管路流体脉动衰减装置,其特征在于,所述可控电感型压电分支电路(24)由可控电感元件(25)和可控电阻元件(26)串联组成,构成分支电路压电阻尼系统。
CN201510758285.XA 2015-11-09 2015-11-09 一种基于压电分流阻尼技术的液压管路流体脉动衰减装置 Expired - Fee Related CN105257943B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510758285.XA CN105257943B (zh) 2015-11-09 2015-11-09 一种基于压电分流阻尼技术的液压管路流体脉动衰减装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510758285.XA CN105257943B (zh) 2015-11-09 2015-11-09 一种基于压电分流阻尼技术的液压管路流体脉动衰减装置

Publications (2)

Publication Number Publication Date
CN105257943A CN105257943A (zh) 2016-01-20
CN105257943B true CN105257943B (zh) 2017-10-24

Family

ID=55097770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510758285.XA Expired - Fee Related CN105257943B (zh) 2015-11-09 2015-11-09 一种基于压电分流阻尼技术的液压管路流体脉动衰减装置

Country Status (1)

Country Link
CN (1) CN105257943B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696721B (zh) * 2016-01-26 2018-07-31 广州大学 基于叠层压电驱动器调节的智能黏滞阻尼器
CN105525697B (zh) * 2016-01-26 2018-12-07 广州大学 叠层压电驱动器调节的智能旁路式黏滞阻尼器
CN106090524B (zh) * 2016-06-03 2018-07-17 西安交通大学 一种串联式液压压力脉动衰减器及衰减方法
CN106704167B (zh) * 2016-12-19 2018-05-08 浙江大学 一种集成在柱塞泵内的可调衰减频率的压力脉动衰减装置
CN107246527B (zh) * 2017-06-13 2019-08-06 哈尔滨工程大学 一种能够回收噪声能量的管道消声装置
CN107478419B (zh) * 2017-07-13 2019-06-21 江苏科技大学 一种脉动衰减器性能测试装置及测试方法
CN109630799B (zh) * 2019-01-18 2024-05-03 湖南和广生物科技有限公司 高压流体消振稳流装置
CN110939614B (zh) * 2019-12-14 2021-06-25 哈尔滨工业大学 宽频带弹簧振子液压脉动衰减器
CN111706739A (zh) * 2020-06-24 2020-09-25 华中科技大学 一种分频组合压力脉动衰减装置及方法
CN112987508B (zh) * 2021-03-04 2022-09-30 长鑫存储技术有限公司 振动衰减结构及曝光装置
CN113236632A (zh) * 2021-03-31 2021-08-10 温州大学 一种脉动衰减器主被动一体化系统及多频振动抑制方法
CN113328652B (zh) * 2021-06-23 2022-09-02 青岛科技大学 一种基于压电薄膜俘能频率可调的压电俘能器
CN114396523B (zh) * 2022-02-24 2024-05-03 中国人民解放军海军工程大学 一种用于充液管路的主被动复合消声器
CN114719116A (zh) * 2022-03-22 2022-07-08 烟台大学 一种基于压电陶瓷的管路压力脉动减振装置及控制系统
CN114922884B (zh) * 2022-05-06 2023-03-28 燕山大学 一种用于液压管路的宽频压力脉动衰减器及其工作过程

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226491A (zh) * 2011-06-08 2011-10-26 浙江大学 用于输液管路流体消脉降噪装置
CN102506031A (zh) * 2011-12-31 2012-06-20 北京航空航天大学 一种基于双边溢流原理的液压管路流体脉动主动抑制方法
RU2480663C1 (ru) * 2011-11-16 2013-04-27 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ стабилизации давления в трубопроводах
CN104500904A (zh) * 2015-01-04 2015-04-08 哈尔滨工程大学 高压充液管路一体化集成有源消声器
CN205136942U (zh) * 2015-11-09 2016-04-06 西南交通大学 一种基于压电分流阻尼技术的液压管路流体脉动衰减装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260084A (ja) * 1994-03-16 1995-10-13 Tokai Rubber Ind Ltd 脈動吸収装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226491A (zh) * 2011-06-08 2011-10-26 浙江大学 用于输液管路流体消脉降噪装置
RU2480663C1 (ru) * 2011-11-16 2013-04-27 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ стабилизации давления в трубопроводах
CN102506031A (zh) * 2011-12-31 2012-06-20 北京航空航天大学 一种基于双边溢流原理的液压管路流体脉动主动抑制方法
CN104500904A (zh) * 2015-01-04 2015-04-08 哈尔滨工程大学 高压充液管路一体化集成有源消声器
CN205136942U (zh) * 2015-11-09 2016-04-06 西南交通大学 一种基于压电分流阻尼技术的液压管路流体脉动衰减装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
用传递矩阵法预测单层或多层微孔板的吸声性能;张斌等;《应用声学》;20070531;第165页 *

Also Published As

Publication number Publication date
CN105257943A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
CN105257943B (zh) 一种基于压电分流阻尼技术的液压管路流体脉动衰减装置
CN105351285A (zh) 基于压电分流阻尼技术的液压管路流体脉动主被动一体化控制方法
US7212641B2 (en) Electromechanical acoustic liner
CN205136942U (zh) 一种基于压电分流阻尼技术的液压管路流体脉动衰减装置
EP2444605B1 (de) Schalldämpfer
Nudehi et al. Modeling and experimental investigation of a Helmholtz resonator with a flexible plate
DE102005011747B3 (de) Aktiver Abgasschalldämpfer
EP0898774B1 (de) Reaktiver schalldämpfer
Lee et al. Noise reduction of passive and active hybrid panels
Aranda et al. A space-coiling resonator for improved energy harvesting in fluid power systems
CN106090521A (zh) 充液管道低频鼓式主被动复合消声系统
Wu Broadband piezoelectric shunts for passive structural vibration control
Kusano et al. Frequency selective MEMS microphone based on a bioinspired spiral-shaped acoustic resonator
CN113236632A (zh) 一种脉动衰减器主被动一体化系统及多频振动抑制方法
US6778673B1 (en) Tunable active sound absorbers
EP1329876A2 (de) Resonator zur Schalldämpfung in einem schallführenden Rohrkanal
CN104778366B (zh) 一种管式多孔h型液压滤波器固有频率的计算方法
CN112233638B (zh) 一种可调的低频消声结构的设计方法
CN105864155A (zh) 一种全频段液压系统压力脉动抑制方法
CN105909598A (zh) 一种全频段液压系统压力脉动抑制装置
Abbad Numerical investigations on a tunable Helmholtz resonator: integration of a passive polymer membrane in a Helmholtz resonator
CN111654568B (zh) 扬声器系统以及基于该扬声器系统的驱动方法
JP2004036778A (ja) 圧力脈動吸収装置
Cheer et al. Broadband active control of noise and vibration in a fluid-filled pipeline using an array of non-intrusive structural actuators
CN108825922B (zh) 一种数字溢流式充液管路有源消声装置及其消声方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171024

Termination date: 20201109