JP2004036337A - Bridge falling preventive device - Google Patents

Bridge falling preventive device Download PDF

Info

Publication number
JP2004036337A
JP2004036337A JP2002198251A JP2002198251A JP2004036337A JP 2004036337 A JP2004036337 A JP 2004036337A JP 2002198251 A JP2002198251 A JP 2002198251A JP 2002198251 A JP2002198251 A JP 2002198251A JP 2004036337 A JP2004036337 A JP 2004036337A
Authority
JP
Japan
Prior art keywords
long
fiber
bridge
holding means
prevention device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002198251A
Other languages
Japanese (ja)
Inventor
Tadashi Tsuchiya
土屋 正
Yoichi Shudo
首藤 洋一
Yuji Tokunaga
徳永 祐二
Yasuo Shindo
進藤 泰男
Kazushi Kono
河野 一資
Atsushi Tsunoda
角田 敦
Koichi Tsukamoto
塚本 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Giken Consultant Kk
KOHYEI TRADING CO Ltd
Du Pont Toray Co Ltd
Tokyo Seiko Rope Manufacturing Co Ltd
Original Assignee
Daiichi Giken Consultant Kk
KOHYEI TRADING CO Ltd
Du Pont Toray Co Ltd
Tokyo Seiko Rope Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Giken Consultant Kk, KOHYEI TRADING CO Ltd, Du Pont Toray Co Ltd, Tokyo Seiko Rope Manufacturing Co Ltd filed Critical Daiichi Giken Consultant Kk
Priority to JP2002198251A priority Critical patent/JP2004036337A/en
Publication of JP2004036337A publication Critical patent/JP2004036337A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight and inexpensive device to mitigate/reduce an impact load by absorbing and dispersing the impact energy such as earthquake. <P>SOLUTION: Fixed parts (4) are formed respectively in a bridge (2) and a bridge support (5), and a fiber long body (7) is spread between the fixed parts (4). The middle of the long body (7) is held by a pinching means (8) connected to the fixed parts (4a). One end of the long body (7) from the pinching means (8) is a free end (13) and the other end is connected to the fixed part (4b). The pinching force of the pinching means (8) is made weaker than the fracture strength to settle within such a range that the long body can move in the pinching means (8). A locking section (14) is formed in a position separated by a specified dimension from the pinching means (8) in the free end (13) side of the long body (7). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は鉄道や道路などに設けられた橋梁の落下を防止する落橋防止装置に関し、さらに詳しくは、地震発生時などに受ける突発的な衝撃エネルギーを吸収し発散することにより、衝撃的荷重を緩和・軽減して負担することができ、しかも軽量で安価に実施できる、落橋防止装置に関する。
【0002】
【従来の技術】
一般に、鉄道や高架道路などに設けられた橋梁には、地震等の大きな応力を受けた際に橋梁の落下を防止するため、この橋梁を橋脚などに連結し固定する落橋防止装置が付設される。
上記従来の落橋防止装置は、例えば図6に示すように、橋梁(51)にブラケット等の第1固定部(52)を設けるとともに、この橋梁(51)を支承する橋脚等の橋梁支承部(53)或いは隣接する橋梁に第2固定部(54)を設け、両固定部(52・54)間に長尺体(55)を配置し連結固定したものがある。上記の長尺体(55)には、地震発生時などに衝撃的荷重が加わる可能性があるので、チェーンやスチールワイヤー、あるいは高強度繊維製のロープ等が一般に用いられる。
【0003】
【発明が解決しようとする課題】
しかし、地震発生時に受ける衝撃エネルギーは極めて大きく、安全性を確保するには上記の長尺体を太くする必要があり、そのためこの長尺体の自重が増加して設計上の限界が生ずる。また、太く重い長尺体を用いて施工するには当然、材料費や施工費が高価になるうえ、技術的にも困難を伴うという問題があった。
【0004】
本発明は上記の問題点を解消し、地震発生時などに受ける突発的な衝撃エネルギーを吸収することにより、衝撃的荷重を緩和・軽減して負担することができ、しかも軽量で安価に実施できる、落橋防止装置を提供することを技術的課題とする。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するため、例えば本発明の実施の形態を示す図1から図5に基づいて説明すると、落橋防止装置を次のように構成したものである。
即ち、橋梁(2)に形成した固定部(4)と、この橋梁(2)を支承する橋梁支承部(5)又は隣接する橋梁(2)に形成した固定部(4)との間に長尺体(6)を張設した落橋防止装置であって、上記長尺体(6)の少なくとも一部を、高強度繊維材料で形成した繊維製長尺体(7)で構成し、上記の両固定部(4・4)のうちの一方の固定部(4a)に連結した挟持手段(8)で上記の繊維製長尺体(7)の中間部を挟持して、この繊維製長尺体(7)の挟持手段(8)よりも一端側部分を自由端(13)とするとともに、他端側部分を上記の他方の固定部(4b)に連結し、上記の挟持手段(8)の挟持力は、上記の長尺体(6)の破断強度よりも弱い力で上記の繊維製長尺体(7)がこの挟持手段(8)内を、上記の挟持による摩擦力に抗して移動可能な範囲に設定し、上記の繊維製長尺体(7)の自由端(13)側で上記の挟持手段(8)から所定寸法だけ離隔した位置に、繊維製長尺体(7)の移動を停止する抜止部(14)を形成したことを特徴とする。
【0006】
【作用】
地震発生時等に衝撃エネルギーが加わって橋梁が橋梁支承部からずれ動こうとすると、上記の長尺体にその衝撃的荷重が加わる。上記の挟持手段による挟持力は上記の長尺体の破断強度よりも弱いので、この挟持手段に挟持された上記の繊維製長尺体は、上記の荷重が加わることにより摩擦力に抗して挟持手段内を移動する。このとき上記の衝撃エネルギーの一部が、上記の移動により発生する摩擦熱に変換されて吸収・発散される。
【0007】
上記の繊維製長尺体の移動とともに、上記の自由端側部分が挟持手段内に入り込む。このため、挟持手段が繊維製長尺体を挟持する面積は一定しており、従って、繊維製長尺体が移動する間は常に同程度の摩擦力が発生して略一定の衝撃エネルギーが吸収・発散され、上記の衝撃的荷重が緩和・軽減される。
【0008】
所定寸法の自由端側部分が挟持手段内へ入り込むと、上記の抜止部が挟持手段に達して繊維製長尺体の移動が停止する。そして、上記の橋梁に加わえられた衝撃的荷重のうち、上記の吸収・発散により緩和・軽減された荷重の残部が長尺体に受け止められ、これにより橋梁の落下が防止される。
【0009】
上記の長尺体は、その全体を繊維製長尺体で構成してもよく、或いはチェーンやワイヤーなど他の材質の長尺体と繊維製長尺体とを組み合わせてもよい。
上記の繊維製長尺体の形態としては、ベルト、ロープなどが好ましいが、他の形態であってもよく、厚さ、幅、太さなどは用途とスケール等により決定され、特定の形状、寸法に限定されない。また、この繊維製長尺体は他の材料で被覆、含浸、接着、表面処理などの加工処理が施されていてもよい。
【0010】
上記の繊維製長尺体は、長尺体の複数箇所に設けても良く、また同一個所に複数本を配置してもよい。例えば環状に形成したものを偏平状に折り畳んで繊維製長尺体を構成するなどにより、1つの挟持手段に繊維製長尺体の複数箇所や複数本の繊維製長尺体を挟持すると、挟持面積が複数倍に広がって上記の摩擦力が大きくなり、衝撃エネルギーを良好に吸収し発散できるのでより好ましい。
【0011】
上記の繊維製長尺体を構成する繊維材料としては、比強度200×10m以上、比弾性率3×10m以上のものが好ましく、さらに上記の移動により摩擦熱を生じるので、例えば融点が300℃以上のものなど、耐熱性に優れると一層好ましい。ここで比強度や比弾性率は、ASTM D−885に順じて測定した強度及び弾性率を繊維の比重で割った値である。比強度は高いほど好ましく、具体的にはアラミド繊維、全芳香族ポリエステル繊維、PBO繊維などを挙げることができ、特に耐熱性、耐磨耗性の点でアラミド繊維が最も好ましい。アラミド繊維としては、パラ系全芳香族ポリアミド繊維が好ましいが、メタ系或いは非芳香族化合物が少量共重合されていてもよい。全芳香族ポリエステル繊維も液晶性全芳香族ポリエステル繊維が好ましいが、少量の脂肪族化合物が共重合された液晶性繊維も使用できる。
【0012】
上記の挟持手段による挟持力は、できるだけ大きな摩擦力を生じるように強いほうが好ましいが、長尺体の破断強度よりも弱い範囲内に制限される。上記の摩擦力は、繊維製長尺体が移動を開始するまでは静止摩擦力が作用し、移動開始後は動摩擦力が作用する。一般に動摩擦力は静止摩擦力よりも小さいが、上記の繊維製長尺体の表面に、例えばフッ素樹脂やシリコーン樹脂などの耐熱性合成樹脂層を形成すると、静止摩擦力と動摩擦力との落差を小さくでき、移動開始後も上記の衝撃エネルギーの一部を効率良く摩擦熱に変換して吸収できるので、より好ましい。なお、上記の樹脂としては、PTFE、PFVEなどのフッ素樹脂が特に好ましい。また、上記の耐熱性合成樹脂層は、被覆や含浸、接着、表面処理等により繊維製長尺体の表面に形成してもよく、或いは繊維製長尺体の表面にフィルムやシートを介在させることで形成しても良い。
【0013】
上記の繊維製長尺体の自由端側に設ける抜止部は、金属棒など任意の材料で繊維製長尺体に付設してもよいが、環状に形成したものを偏平状に折り畳んで上記の繊維製長尺体を構成した場合には、一方の折返し端部で上記の抜止部を構成することができ、好ましい。
【0014】
上記の挟持手段は、繊維製長尺体に1個または複数個設けることができる。この挟持手段には、剛性が高く耐腐食性など耐久性に優れた板体が好ましく、鉄、ステンレス、繊維強化複合材などが用いられる。これらの板体等は、例えばボルトとナット等の任意の締付手段で締め付けられる。
なお、上記の繊維製長尺体や挟持手段と前記の固定部とは、直接連結してもよく、他の長尺体や挟持手段等を介して連結してもよい。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき説明する。
図1から図3は本発明の実施形態を示し、図1は落橋防止装置の概略構成図、図2は落橋防止装置の要部を拡大した斜視図、図3は長尺体の応力と伸びの関係を説明するグラフである。
【0016】
図1に示すように、この落橋防止装置(1)は橋梁(2)を構成する道路床板(3)の下面に固定された第1ブラケット(4a)と、この橋梁(2)を支承する橋脚(5)の上部側面に固定された第2ブラケット(4b)との2つの固定部(4)を備え、この両ブラケット(4a・4b)間に亘って長尺体(6)が張設してある。
【0017】
上記の長尺体(6)は、例えばアラミド繊維等の、比強度が200×10m以上、比弾性率が3×10m以上の高強度を有する繊維材料で形成した繊維製長尺体(7)からなる。この繊維製長尺体(7)は、上記の高強度繊維でベルト状に織成され、このベルトの両端を縫い合せることにより環状に形成して偏平状に折り畳んである。
【0018】
図1及び図2に示すように、上記の繊維製長尺体(7)の中間部は3枚のステンレス製板(9a・9b・9c)を重ねた挟持手段(8)で挟持してある。この挟持手段(8)は、1枚の金属板(9c)の一端部が前記の第1ブラケット(4a)側に延長してあり、この延長部(10)を係止ピン(11)で第1ブラケット(4a)に連結してある。
【0019】
上記の繊維製長尺体(7)は上下2枚に分けられており、それぞれ上記の挟持手段(8)に挟持され、ボルトなどの締付手段(12)で締め付けられる。この挟持手段(8)の挟持力は強いほど好ましいが、上記の繊維製長尺体(7)が破断強度よりも弱い力でこの挟持手段(8)内を移動できる範囲に設定される。
【0020】
上記の繊維製長尺体(7)の上記の第1ブラケット(4a)側部分は自由端(13)とされており、この自由端(13)側の折返し部分は抜止部(14)を構成している。即ち、上記の繊維製長尺体(7)が挟持手段(8)内を前記の第2ブラケット(4b)側へ移動して、上記の抜止部(14)が挟持手段(8)の端面に達すると、それ以降は繊維製長尺体(7)の移動が停止される。一方、図1に示すように、繊維製長尺体(7)の第2ブラケット(4b)側部分は、その折返し部分が係止ピン(15)に挿通されてこの第2ブラケット(4b)に連結されている。
【0021】
上記の繊維製長尺体(7)は、例えば、パラ系アラミド繊維(東レ・デュポン社製:商品名「ケブラー」29−1670dtx)を用いて、次のように製造される。最初に、上記の高強度繊維を織成して、例えば、幅30mm、厚さ1.3mmのベルト(保証耐力30KN)に加工する。次いで、上記の加工に用いた油剤等を精錬工程で洗浄・除去する。その後、この精錬したベルトをPTFE樹脂の水エマルジョン中に浸漬したのち、乾燥工程で乾燥する。これにより表面にPTFE樹脂層を備えた繊維製長尺体(7)が形成される。なお、ベルトの厚さや幅は、要求される性能に応じて適宜設定される。
【0022】
次に、図1〜3に基づいて上記の落橋防止装置の作動を説明する。
上記の橋梁(2)に地震などの衝撃エネルギーが加わると、道路床板(3)が橋脚(5)に対してずれ動こうとする。この結果、上記の長尺体(6)に荷重が加わり、図3に示すように、繊維製長尺体(7)が伸ばされる。そして、繊維製長尺体(7)に加わる荷重が挟持手段(8)の挟持により生ずる静止摩擦力よりも大きくなる時点(S1)で、この繊維製長尺体(7)が挟持手段(8)内を前記の第2ブラケット(4b)側への移動を開始し、両ブラケット(4a・4b)間に配置された長尺体(6)の全長が伸びる。
【0023】
繊維製長尺体(7)の移動中(S2)は、上記の静止摩擦力よりも弱い動摩擦力が発生し、この結果、繊維製長尺体(7)はこの動摩擦力に抗して挟持手段(8)内を移動し続ける。この移動とともに、上記の繊維製長尺体(7)の自由端(13)が挟持手段(8)内に入り込むので、この移動中に挟持手段(8)が繊維製長尺体(7)を挟持する面積は一定しており、ほぼ一定の動摩擦力が発生する。そして上記の自由端(13)の折返し部分で構成した前記の抜止部(14)が挟持手段(8)の端面に達する時点(S3)で、挟持手段(8)に対する繊維製長尺体(7)の移動が停止し、これ以降は荷重の残部が長尺体(6)に加わって、上記の繊維製長尺体(7)が伸ばされる。
【0024】
図3における応力−伸び曲線で囲まれた面積(A)が、上記の長尺体(6)のエネルギー吸収能に対応し、上記の挟持手段(8)内を繊維製長尺体(7)が摩擦力に抗して移動する分、このエネルギー吸収能が大きくなっている。このため、上記の長尺体(6)に加わる衝撃的荷重は大幅に緩衝され、上記の繊維製長尺体(7)の移動停止後、長尺体(6)は残部の荷重を破断時点(S5)よりも低い時点(S4)で充分に負担することができ、橋梁(2)の落下が防止される。
【0025】
上記の実施形態では、1個の挟持手段(8)に1本の環状の繊維製長尺体(7)を挟持したが、本発明の落橋防止装置は上記の実施形態のものに限定されるものではなく、例えば次のような変形例が考えられる。
【0026】
(1) 図4(a)に示す第1変形例では、2本の環状の繊維製長尺体(7a・7b)を、2重形状に配置したものである。
(2) 図4(b)に示す第2変形例では、2本のベルト状の繊維製長尺体(7a・7b)を用いており、一方の繊維製長尺体(7a)の中間部を挟持する挟持手段(8)は、他方の繊維製長尺体(7b)を介して一方の固定部(4a)に連結してある。そして、この繊維製長尺体(7a)の一端側部は自由端(13)に形成して、この自由端(13)に抜止部(14)を付設してあり、他端側部は他方の固定部(4b)に連結してある。
一方、他方の繊維製長尺体(7b)も、一端側部が一方の固定部(4a)に連結されており、中間部を挟持する挟持手段(8)が一方の繊維製長尺体(7a)を介して他方の固定部(4b)に連結してあり、他端側部分が自由端(13)に形成され、この自由端(13)に抜止部(14)を付設してある。
【0027】
(3) 図5(a)は第3変形例を示し、それぞれ固定部(4a・4b)に連結した2個の挟持手段(8a・8b)間に、繊維製長尺体(7)を張設してある。即ち、一方の固定部(4a)に連結した挟持手段(8a)で繊維製長尺体(7)の中間部を挟持し、この繊維製長尺体(7)の上記の挟持手段(8a)よりも一端側部分を自由端(13)としてある。そして繊維製長尺体(7)の他端側部分は、他方の挟持手段(8b)を介して他方の固定部(4b)に連結してある。さらに、繊維製長尺体(7)の上記の他方の挟持手段(8b)よりも他端側部分は自由端(13)としてある。従って、上記の他方の固定部(4b)側からみても同様の構成となっている。
【0028】
(4) 図5(b)は第4変形例を示し、2本の繊維製長尺体と2つの挟持手段を用いてある。一方の繊維製長尺体(7a)の中間部を挟持する挟持手段(8a)は、他方の挟持手段(8b)と他方の繊維製長尺体(7b)を介して一方の固定部(4a)に連結されており、繊維製長尺体(7a)の他端側部分が他方の固定部(4b)に連結されている。他方の繊維製長尺体(7b)も同様に構成されている。
【0029】
(5) 図5(c)は第5変形例を示し、第4変形例と同様に、2本の繊維製長尺体と2つの挟持手段を用いてある。この変形例では繊維製長尺体(7a・7b)と挟持手段(8a・8b)との各組を直列に配置してある。従って、一方の繊維製長尺体(7a)は他端側部分を、他方の挟持手段(8b)と繊維製長尺体(7a)とを介して他方の固定部(4b)に連結してある。また、他方の繊維製長尺体(7b)は、中間部分を挟持する挟持手段(8b)が一方の繊維製長尺体(7a)と一方の挟持手段(8a)とを介して一方の固定部(4a)に連結されている。
【0030】
上記の実施形態では、一方の固定部を道路床板に固定したが、橋梁が橋桁を備える場合は、この橋桁に上記の一方の固定部を固定しても良い。また、上記の他方の固定部を橋脚に固定したが、例えば河川の側壁など他の構造部で橋梁を支承している場合は、その構造部に上記の他方の固定部が固定される。或いは、橋梁間に落橋防止装置を設ける場合は、上記の他方の固定部は隣接する橋梁に付設される。なお、本発明に用いる上記の繊維製長尺体や挟持手段、固定部など各部材の形状・構造等は、上記の実施形態や変形例のものに限定されないことはいうまでもない。
【0031】
【発明の効果】
本発明は上記のように構成され作用することから、次の効果を奏する。
【0032】
(1) 繊維製長尺体が挟持手段内を移動することで、橋梁に加えられた衝撃エネルギーの一部を摩擦熱に変換して吸収・発散することができる。しかも、繊維製長尺体の移動中は自由端側部分が挟持手段内に入り込むので、常に同程度の摩擦力が発生し、略一定の衝撃エネルギーを吸収・発散することができる。この結果、長尺体に加わる衝撃的荷重を効率良く緩和・軽減できるので、抜止部が挟持手段に達して繊維製長尺体の移動が停止したのち、この緩和・軽減された荷重の残部を長尺体で負担でき、橋梁の落下を効果的に防止することができる。
【0033】
(2) 長尺体は衝撃的荷重のうち、繊維製長尺体の移動により緩和・軽減されたのちの荷重を受け止めるだけでよいことから、前記の従来技術と異なって長尺体を過剰に太くする必要がなく、軽量に構成することができ、材料費や施工費などが安価であるうえ、施工作業なども容易に実施することができる。
【0034】
(3) 上記の繊維製長尺体を、環状に形成したものを偏平状に折り畳んで構成した場合には、挟持手段に繊維製長尺体の2箇所が挟持されることから、挟持面積が2倍になって大きな摩擦力を生じ、衝撃エネルギーを良好に吸収し発散することができる。
また、この場合には、上記の偏平化した環状の繊維製長尺体の、一方の折返し端部で上記の抜止部を構成することができ、抜止部として別部材を必要としないので、安価に実施することができる。
【0035】
(4) 上記の繊維製長尺体の表面に、例えばフッ素樹脂等の耐熱性合成樹脂層を形成した場合には、繊維製長尺体の移動開始までに作用する静止摩擦力と移動中に作用する動摩擦力とに落差が少なく、繊維製長尺体の移動開始後も上記の衝撃エネルギーの一部を効率良く摩擦熱に変換して吸収することができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す、落橋防止装置の概略構成図である。
【図2】本発明の実施形態の、落橋防止装置の要部を拡大した斜視図である。
【図3】本発明の、長尺体の応力と伸びの関係を説明するグラフである。
【図4】本発明の変形例を示し、図4(a)は第1変形例の概略構成図、図4(b)は第2変形例の概略構成図である。
【図5】本発明の他の変形例を示し、図5(a)は第3変形例の概略構成図、図5(b)は第4変形例の概略構成図、図5(c)は第5変形例の概略構成図である。
【図6】従来技術を示す、落橋防止装置の概略構成図である。
【符号の説明】
1…落橋防止装置
2…橋梁
4…固定部
4a…一方の固定部(第1ブラケット)
4b…他方の固定部(第2ブラケット)
5…橋梁支承部(橋脚)
6…長尺体
7…繊維製長尺体
8…挟持手段
13…自由端
14…抜止部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fall prevention device for preventing a bridge provided on a railway or a road from falling, and more particularly, to reduce a shock load by absorbing and dispersing sudden impact energy received during an earthquake or the like. The present invention relates to a fall prevention device which can be reduced and burdened, and which can be implemented at a low cost and light weight.
[0002]
[Prior art]
Generally, bridges installed on railways, elevated roads, and the like are provided with a fall prevention device that connects and fixes the bridge to a pier or the like to prevent the bridge from falling when subjected to a large stress such as an earthquake. .
As shown in FIG. 6, for example, the above-mentioned conventional fall prevention device is provided with a first fixing portion (52) such as a bracket on a bridge (51), and a bridge support portion such as a pier supporting the bridge (51). 53) Alternatively, a second fixing portion (54) is provided on an adjacent bridge, and an elongated body (55) is arranged and fixed between both fixing portions (52, 54). Since there is a possibility that an impact load is applied to the long body (55) at the time of an earthquake or the like, a chain, a steel wire, a rope made of high-strength fiber, or the like is generally used.
[0003]
[Problems to be solved by the invention]
However, the impact energy received when an earthquake occurs is extremely large, and it is necessary to make the above-mentioned long body thick in order to ensure safety. Therefore, the self-weight of this long body increases, and there is a limit in design. In addition, there is a problem that the use of a thick and heavy long body naturally increases the material cost and the construction cost, and also involves technical difficulties.
[0004]
The present invention solves the above-mentioned problems, and absorbs sudden impact energy received at the time of an earthquake or the like, so that the impact load can be reduced and reduced, and the burden can be reduced. It is a technical task to provide a bridge fall prevention device.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention will be described with reference to, for example, FIGS. 1 to 5 showing an embodiment of the present invention.
That is, the length between the fixed portion (4) formed on the bridge (2) and the fixed portion (4) formed on the bridge supporting portion (5) for supporting the bridge (2) or the adjacent bridge (2). A bridge prevention device having a long body (6) stretched therein, wherein at least a part of the long body (6) is constituted by a fiber long body (7) formed of a high-strength fiber material. The intermediate portion of the long fiber body (7) is held by a holding means (8) connected to one of the fixing portions (4a) of the two fixing portions (4, 4), and the long fiber member is formed. One end of the body (7) from the holding means (8) is a free end (13), and the other end is connected to the other fixing part (4b). The holding force is lower than the breaking strength of the long body (6), and the fiber long body (7) rubs inside the holding means (8) by the above-described friction. The fiber long body (7) is set at a position movable away from the holding means (8) by a predetermined dimension on the free end (13) side of the long fiber body (7). A retaining portion (14) for stopping the movement of the body (7) is formed.
[0006]
[Action]
When impact energy is applied at the time of an earthquake or the like and the bridge tries to move away from the bridge support, the impact load is applied to the elongated body. Since the clamping force by the clamping means is weaker than the breaking strength of the elongated body, the fiber long body clamped by the clamping means resists the frictional force by applying the load. Move in the holding means. At this time, part of the impact energy is converted into frictional heat generated by the movement and absorbed and diverged.
[0007]
With the movement of the long fiber body, the free end side portion enters the holding means. For this reason, the area in which the holding means holds the long fiber body is constant, and therefore, while the long fiber body moves, the same level of frictional force is always generated and a substantially constant impact energy is absorbed.・ Emitted, the above-mentioned impact load is reduced or reduced.
[0008]
When the free end side portion having a predetermined size enters the holding means, the above-mentioned retaining portion reaches the holding means, and the movement of the long fiber body is stopped. Then, of the impact load applied to the bridge, the remaining portion of the load reduced or reduced by the absorption and divergence is received by the elongated body, thereby preventing the bridge from falling.
[0009]
The above long body may be composed entirely of a long body made of fiber, or a long body made of another material such as a chain or a wire may be combined with a long body made of fiber.
The form of the above-mentioned long fiber body is preferably a belt, a rope, or the like, but may be another form, and the thickness, width, thickness, etc. are determined by the application and scale, etc. It is not limited to dimensions. Further, the long fiber body may be coated with another material, subjected to processing such as impregnation, adhesion, surface treatment, or the like.
[0010]
The above-mentioned long fiber body may be provided at a plurality of locations of the long body, or a plurality of the long fibers may be arranged at the same location. For example, when a plurality of fiber elongated bodies or a plurality of fiber elongated bodies are sandwiched by one holding means by, for example, forming a long fiber body by folding an annularly formed one into a flat shape, the clamping is performed. It is more preferable because the frictional force is increased by expanding the area a plurality of times and the impact energy can be favorably absorbed and diffused.
[0011]
As a fiber material constituting the above-mentioned long body made of fiber, those having a specific strength of 200 × 10 3 m or more and a specific elastic modulus of 3 × 10 6 m or more are preferable, and the above-mentioned movement generates frictional heat. It is more preferable that the heat resistance is excellent, such as those having a melting point of 300 ° C. or higher. Here, the specific strength and specific elastic modulus are values obtained by dividing the strength and elastic modulus measured according to ASTM D-885 by the specific gravity of the fiber. The higher the specific strength, the more preferable. Specific examples include aramid fiber, wholly aromatic polyester fiber, PBO fiber and the like. Aramid fiber is most preferable particularly in view of heat resistance and abrasion resistance. As the aramid fiber, a para-based wholly aromatic polyamide fiber is preferable, but a meta- or non-aromatic compound may be copolymerized in a small amount. The wholly aromatic polyester fiber is preferably a liquid crystalline wholly aromatic polyester fiber, but a liquid crystalline fiber obtained by copolymerizing a small amount of an aliphatic compound can also be used.
[0012]
The holding force by the holding means is preferably strong so as to generate as large a frictional force as possible, but is limited within a range weaker than the breaking strength of the elongated body. The above frictional force is a static frictional force until the fiber long body starts moving, and a kinetic frictional force works after the movement starts. Generally, the dynamic frictional force is smaller than the static frictional force.However, if a heat-resistant synthetic resin layer such as a fluororesin or a silicone resin is formed on the surface of the above-mentioned long fiber body, a drop between the static frictional force and the dynamic frictional force is generated. This is more preferable because it can be reduced and a part of the impact energy can be efficiently converted to frictional heat and absorbed even after the start of movement. In addition, as the above resin, a fluororesin such as PTFE and PFVE is particularly preferable. The heat-resistant synthetic resin layer may be formed on the surface of the long fiber body by coating, impregnation, adhesion, surface treatment, or the like, or a film or sheet is interposed on the surface of the long fiber body. May be formed.
[0013]
The retaining portion provided on the free end side of the above-mentioned fiber long body may be attached to the fiber long body with an arbitrary material such as a metal rod, but the one formed in an annular shape is folded flat and the above When a long fiber body is formed, the above-mentioned retaining portion can be formed at one folded end, which is preferable.
[0014]
One or a plurality of the above-described holding means can be provided on the long fiber body. For this holding means, a plate having high rigidity and excellent durability such as corrosion resistance is preferable, and iron, stainless steel, fiber reinforced composite material, or the like is used. These plates and the like are fastened by any fastening means such as bolts and nuts.
In addition, the above-mentioned fiber long body and the holding means may be directly connected to the fixing portion, or may be connected via another long body and the holding means.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 3 show an embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a bridge prevention device, FIG. 2 is an enlarged perspective view of a main part of the bridge prevention device, and FIG. 4 is a graph for explaining the relationship.
[0016]
As shown in FIG. 1, the bridge prevention device (1) includes a first bracket (4a) fixed to a lower surface of a road floor plate (3) constituting a bridge (2), and a pier supporting the bridge (2). It has two fixing portions (4) with a second bracket (4b) fixed to the upper side surface of (5), and an elongated body (6) is stretched between the two brackets (4a and 4b). It is.
[0017]
The above long body (6) is a long fiber made of a fiber material having a high strength such as aramid fiber having a specific strength of 200 × 10 3 m or more and a specific elastic modulus of 3 × 10 6 m or more. Consists of body (7). The long fiber body (7) is woven in a belt shape with the high-strength fiber described above, and is formed into an annular shape by sewing both ends of the belt and folded flat.
[0018]
As shown in FIGS. 1 and 2, the intermediate portion of the long fiber body (7) is clamped by clamping means (8) in which three stainless steel plates (9a, 9b, 9c) are stacked. . In the holding means (8), one end of one metal plate (9c) is extended toward the first bracket (4a), and the extended portion (10) is connected to the first bracket (4a) by a locking pin (11). It is connected to one bracket (4a).
[0019]
The above-mentioned long fiber body (7) is divided into upper and lower two pieces, each of which is held by the above-mentioned holding means (8) and fastened by fastening means (12) such as bolts. The holding force of the holding means (8) is preferably as high as possible, but is set within a range in which the above-mentioned long fiber body (7) can move in the holding means (8) with a force lower than the breaking strength.
[0020]
The first bracket (4a) side portion of the long fiber body (7) is a free end (13), and the folded portion on the free end (13) side constitutes a retaining portion (14). are doing. That is, the above-mentioned long fiber body (7) moves inside the holding means (8) toward the second bracket (4b), and the above-mentioned retaining portion (14) is attached to the end face of the holding means (8). Upon reaching, the movement of the long fiber body (7) is stopped thereafter. On the other hand, as shown in FIG. 1, the folded portion of the fiber long body (7) on the side of the second bracket (4b) is inserted into the locking pin (15), and the second bracket (4b) is inserted into the second bracket (4b). Are linked.
[0021]
The above-mentioned long fiber body (7) is manufactured as follows using, for example, para-aramid fiber (manufactured by Du Pont-Toray Co., Ltd .: trade name “Kevlar” 29-1670dtx). First, the high-strength fiber is woven and processed into, for example, a belt having a width of 30 mm and a thickness of 1.3 mm (guaranteed proof stress of 30 KN). Next, the oil agent and the like used in the above processing are washed and removed in the refining step. Thereafter, the refined belt is immersed in a water emulsion of PTFE resin, and then dried in a drying step. As a result, a long fiber body (7) having a PTFE resin layer on the surface is formed. Note that the thickness and width of the belt are appropriately set according to the required performance.
[0022]
Next, the operation of the above-described bridge-fall prevention device will be described with reference to FIGS.
When impact energy such as an earthquake is applied to the bridge (2), the road floor plate (3) tends to move with respect to the pier (5). As a result, a load is applied to the long body (6), and the long fiber body (7) is stretched as shown in FIG. Then, at a time (S1) when the load applied to the long fiber body (7) becomes larger than the static friction force generated by the holding of the holding means (8), the long fiber body (7) is held by the holding means (8). ) Starts moving toward the second bracket (4b), and the entire length of the elongated body (6) disposed between the two brackets (4a, 4b) increases.
[0023]
During the movement of the long fiber body (7) (S2), a kinetic friction force smaller than the above-described static friction force is generated. As a result, the long fiber body (7) is pinched against the kinetic friction force. Continue moving in means (8). Along with this movement, the free end (13) of the long fiber body (7) enters the holding means (8), and during this movement, the holding means (8) removes the long fiber body (7). The clamping area is constant, and a substantially constant dynamic friction force is generated. At the time (S3) when the retaining portion (14) constituted by the folded portion of the free end (13) reaches the end face of the holding means (8) (S3), the long fiber body (7) with respect to the holding means (8). ) Is stopped, and thereafter, the remaining portion of the load is applied to the elongated body (6), and the above-described elongated fiber body (7) is extended.
[0024]
The area (A) surrounded by the stress-elongation curve in FIG. 3 corresponds to the energy absorbing ability of the long body (6), and the inside of the holding means (8) is a long fiber body (7). This energy absorption ability is increased by the amount that moves against the frictional force. Therefore, the impact load applied to the long body (6) is largely buffered, and after the movement of the long fiber body (7) is stopped, the long body (6) reduces the remaining load at the time of breaking. The load can be sufficiently borne at a time (S4) lower than (S5), and the bridge (2) is prevented from falling.
[0025]
In the above embodiment, one annular long fiber body (7) is held by one holding means (8), but the bridge prevention device of the present invention is limited to the above embodiment. Instead, for example, the following modifications can be considered.
[0026]
(1) In a first modified example shown in FIG. 4A, two annular long fibers (7a and 7b) are arranged in a double shape.
(2) In the second modified example shown in FIG. 4B, two belt-shaped long fibers (7a and 7b) are used, and an intermediate portion of one long fiber (7a). The holding means (8) for holding is connected to one fixing portion (4a) via the other long fiber body (7b). One end of the long fiber body (7a) is formed at a free end (13), and the free end (13) is provided with a retaining portion (14). (4b).
On the other hand, the other fiber long body (7b) also has one end connected to one fixing portion (4a), and the holding means (8) for holding the intermediate portion has one fiber long body (7b). It is connected to the other fixed part (4b) via 7a), the other end is formed at the free end (13), and the free end (13) is provided with a retaining part (14).
[0027]
(3) FIG. 5 (a) shows a third modification, in which a long fiber body (7) is stretched between two holding means (8a, 8b) connected to the fixing portions (4a, 4b). It is set up. That is, the intermediate portion of the long fiber body (7) is held by the holding means (8a) connected to the one fixing portion (4a), and the holding means (8a) of the long fiber body (7) is held. One end side is a free end (13). The other end of the long fiber body (7) is connected to the other fixing portion (4b) via the other holding means (8b). Further, the other end portion of the long fiber body (7) than the other holding means (8b) is a free end (13). Therefore, the configuration is the same when viewed from the other fixed portion (4b).
[0028]
(4) FIG. 5B shows a fourth modified example, in which two long fibers made of fiber and two holding means are used. The holding means (8a) for holding the intermediate portion of one of the long fibers (7a) is fixed to one of the fixing portions (4a) via the other holding means (8b) and the other long fiber (7b). ), And the other end of the long fiber body (7a) is connected to the other fixing portion (4b). The other long fiber body (7b) is similarly configured.
[0029]
(5) FIG. 5 (c) shows a fifth modified example, in which, similarly to the fourth modified example, two long fibers made of fibers and two holding means are used. In this modification, each set of a long fiber body (7a, 7b) and a holding means (8a, 8b) is arranged in series. Therefore, one fiber long body (7a) is connected at the other end to the other fixing part (4b) via the other holding means (8b) and the fiber long body (7a). is there. Also, the other fiber long body (7b) has one fixing means (8b) for holding the intermediate portion through one fiber long body (7a) and one holding means (8a). (4a).
[0030]
In the above embodiment, one fixing portion is fixed to the road floor plate. However, when the bridge includes a bridge girder, the one fixing portion may be fixed to the bridge girder. Further, the other fixing portion is fixed to the pier. However, when the bridge is supported by another structural portion such as a side wall of a river, the other fixing portion is fixed to the structural portion. Alternatively, when a fall prevention device is provided between the bridges, the other fixed portion is attached to an adjacent bridge. Needless to say, the shape, structure, etc. of the respective members such as the above-mentioned fibrous long body, the holding means, and the fixing portion used in the present invention are not limited to those in the above-described embodiment and modified examples.
[0031]
【The invention's effect】
The present invention is configured and operated as described above, and has the following effects.
[0032]
(1) By moving the long fiber body in the holding means, a part of the impact energy applied to the bridge can be converted into frictional heat and absorbed / diverged. In addition, since the free end portion enters the holding means during the movement of the long fiber body, the same level of frictional force is always generated, and substantially constant impact energy can be absorbed and diverged. As a result, the impact load applied to the elongated body can be efficiently reduced or reduced, and after the retaining portion reaches the holding means and the movement of the fiber elongated body is stopped, the remaining portion of the reduced and reduced load is removed. It can be borne by the long body, and the bridge can be effectively prevented from falling.
[0033]
(2) Since the elongated body only needs to receive the load after being alleviated / reduced by the movement of the fibrous elongated body out of the impact load, the elongated body is excessively different from the above-described prior art. It is not necessary to make it thicker, it can be made lighter, material costs and construction costs are inexpensive, and construction work and the like can be easily performed.
[0034]
(3) In a case where the above-mentioned fiber long body is formed by folding a ring-shaped member into a flat shape, two portions of the fiber long body are held by the holding means, so that the holding area is small. The frictional force is doubled to generate a large frictional force, and the impact energy can be well absorbed and diverged.
Further, in this case, the above-mentioned retaining portion can be constituted by one folded end of the flattened annular long fiber body, and a separate member is not required as the retaining portion. Can be implemented.
[0035]
(4) When a heat-resistant synthetic resin layer such as a fluororesin is formed on the surface of the above-mentioned fibrous long body, the static friction force acting until the start of movement of the fibrous long body causes There is little drop with the acting dynamic frictional force, and even after the movement of the long fiber body starts, a part of the impact energy can be efficiently converted to frictional heat and absorbed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a bridge prevention device according to an embodiment of the present invention.
FIG. 2 is an enlarged perspective view of a main part of the bridge prevention device according to the embodiment of the present invention.
FIG. 3 is a graph illustrating the relationship between stress and elongation of a long body according to the present invention.
4A and 4B show a modification of the present invention. FIG. 4A is a schematic configuration of a first modification, and FIG. 4B is a schematic configuration of a second modification.
5A and 5B show another modified example of the present invention. FIG. 5A is a schematic structural view of a third modified example, FIG. 5B is a schematic structural view of a fourth modified example, and FIG. It is a schematic structure figure of the 5th modification.
FIG. 6 is a schematic configuration diagram of a fall prevention device showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Bridge prevention device 2 ... Bridge 4 ... Fixed part 4a ... One fixed part (1st bracket)
4b: the other fixing portion (second bracket)
5 ... Bridge support (pier)
6 Elongated body 7 Elongated fiber body 8 Nipping means 13 Free end 14 Retaining part

Claims (7)

橋梁(2)に形成した固定部(4)と、この橋梁(2)を支承する橋梁支承部(5)又は隣接する橋梁(2)に形成した固定部(4)との間に長尺体(6)を張設した落橋防止装置であって、
上記長尺体(6)の少なくとも一部を、高強度繊維材料で形成した繊維製長尺体(7)で構成し、
上記の両固定部(4・4)のうちの一方の固定部(4a)に連結した挟持手段(8)で上記の繊維製長尺体(7)の中間部を挟持して、この繊維製長尺体(7)の挟持手段(8)よりも一端側部分を自由端(13)とするとともに、他端側部分を上記の他方の固定部(4b)に連結し、
上記の挟持手段(8)の挟持力は、上記の長尺体(6)の破断強度よりも弱い力で上記の繊維製長尺体(7)がこの挟持手段(8)内を、上記の挟持による摩擦力に抗して移動可能な範囲に設定し、
上記の繊維製長尺体(7)の自由端(13)側で上記の挟持手段(8)から所定寸法だけ離隔した位置に、繊維製長尺体(7)の移動を停止する抜止部(14)を形成したことを特徴とする、落橋防止装置。
An elongated body between a fixed portion (4) formed on the bridge (2) and a bridge supporting portion (5) for supporting the bridge (2) or a fixed portion (4) formed on an adjacent bridge (2). (6) is a fall prevention device that is stretched,
At least a part of the long body (6) is constituted by a long fiber body (7) formed of a high-strength fiber material,
An intermediate portion of the long fiber body (7) is held by a holding means (8) connected to one of the fixing portions (4a) of the two fixing portions (4, 4). One end of the long body (7) from the holding means (8) is a free end (13), and the other end is connected to the other fixing portion (4b).
The holding force of the holding means (8) is smaller than the breaking strength of the long body (6), and the long fiber body (7) moves through the holding means (8). Set within the range that can move against the frictional force due to pinching,
A retaining portion for stopping the movement of the long fiber body (7) at a position separated from the holding means (8) by a predetermined dimension on the free end (13) side of the long fiber body (7). 14) An apparatus for preventing a bridge from falling, characterized in that 14) is formed.
上記の繊維製長尺体(7)を、環状に形成したものを偏平状に折り畳んで構成した、請求項1に記載の落橋防止装置。The fall prevention device according to claim 1, wherein the long fiber body (7) is formed by annularly folding a flat body. 上記の偏平化した環状の繊維製長尺体(7)の、一方の折返し端部で上記の抜止部(14)を構成した、請求項2に記載の落橋防止装置。The fall prevention device according to claim 2, wherein the retaining portion (14) is formed at one of the folded ends of the flattened annular fiber long body (7). 上記の繊維製長尺体(7)の表面に、耐熱性合成樹脂層を形成した、請求項1から3のいずれか1項に記載の落橋防止装置。The fall prevention device according to any one of claims 1 to 3, wherein a heat-resistant synthetic resin layer is formed on a surface of the long fiber body (7). 上記の合成樹脂がフッ素樹脂である、請求項4に記載の落橋防止装置。The bridge prevention device according to claim 4, wherein the synthetic resin is a fluororesin. 上記の繊維製長尺体(7)が、比強度200×10m以上、比弾性率3×10m以上の繊維材料で構成される、請求項1から5のいずれか1項に記載の落橋防止装置。The said fiber long body (7) is comprised by the fiber material of specific strength 200 * 10 < 3 > m or more and specific elastic modulus 3 * 10 < 6 > m or more, The one of Claim 1 to 5 characterized by the above-mentioned. Bridge prevention device. 上記の繊維材料が、アラミド繊維である、請求項6に記載の落橋防止装置。The fall prevention device according to claim 6, wherein the fiber material is an aramid fiber.
JP2002198251A 2002-07-08 2002-07-08 Bridge falling preventive device Pending JP2004036337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002198251A JP2004036337A (en) 2002-07-08 2002-07-08 Bridge falling preventive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198251A JP2004036337A (en) 2002-07-08 2002-07-08 Bridge falling preventive device

Publications (1)

Publication Number Publication Date
JP2004036337A true JP2004036337A (en) 2004-02-05

Family

ID=31705756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198251A Pending JP2004036337A (en) 2002-07-08 2002-07-08 Bridge falling preventive device

Country Status (1)

Country Link
JP (1) JP2004036337A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249842A (en) * 2005-03-11 2006-09-21 Sho Bond Constr Co Ltd Connecting band
JP2007146488A (en) * 2005-11-28 2007-06-14 Birudorando:Kk Bridge fall preventing structure
JP2007191906A (en) * 2006-01-19 2007-08-02 Hamanaka Nut Kk Grant structure of mechanical property
ITRE20130026A1 (en) * 2013-04-12 2013-07-12 Innocenzo Becci DISSIPATIVE SLIDING SEISMIC CONNECTION WITH DYNAMIC ADAPTIVE ADJUSTMENT OF CAR COMPENSATED
CN104499422A (en) * 2014-11-24 2015-04-08 北京工业大学 Friction energy dissipation beam falling prevention device
JP2015169033A (en) * 2014-03-10 2015-09-28 神鋼鋼線工業株式会社 Cable body and cable structure having the same
JP2016023534A (en) * 2014-07-24 2016-02-08 八千代エンジニヤリング株式会社 Seismic strengthening device for bridge
JP2017155544A (en) * 2016-03-04 2017-09-07 ショーボンド建設株式会社 Bridge fall prevention member

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193635A (en) * 1995-01-17 1996-07-30 Nippon Steel Corp Friction damper device
JPH09242018A (en) * 1996-03-13 1997-09-16 Shibata Ind Co Ltd Beam drop prevention structure and attaching method of buffering member in this structure
JPH1181230A (en) * 1997-09-03 1999-03-26 Mitsubishi Heavy Ind Ltd Tower link of bridge
JPH1193425A (en) * 1997-07-22 1999-04-06 Toray Ind Inc Object drop preventive net material and manhole structure
JPH11148113A (en) * 1997-11-17 1999-06-02 Civil:Kk Prevention of falling stone, prevention guard fence for snowslide, and pocket type prevention net of falling stone
JPH11315510A (en) * 1998-05-06 1999-11-16 Tokyo Fabric Kogyo Kk Connecting bridge fall prevention device
JP2000120024A (en) * 1998-10-12 2000-04-25 Yoshida Kouzou Design:Kk Net for absorbing impact and impact absorbing method
JP2002054673A (en) * 2000-08-14 2002-02-20 Tokyo Seiko Seni Rope Kk Shock absorbing member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193635A (en) * 1995-01-17 1996-07-30 Nippon Steel Corp Friction damper device
JPH09242018A (en) * 1996-03-13 1997-09-16 Shibata Ind Co Ltd Beam drop prevention structure and attaching method of buffering member in this structure
JPH1193425A (en) * 1997-07-22 1999-04-06 Toray Ind Inc Object drop preventive net material and manhole structure
JPH1181230A (en) * 1997-09-03 1999-03-26 Mitsubishi Heavy Ind Ltd Tower link of bridge
JPH11148113A (en) * 1997-11-17 1999-06-02 Civil:Kk Prevention of falling stone, prevention guard fence for snowslide, and pocket type prevention net of falling stone
JPH11315510A (en) * 1998-05-06 1999-11-16 Tokyo Fabric Kogyo Kk Connecting bridge fall prevention device
JP2000120024A (en) * 1998-10-12 2000-04-25 Yoshida Kouzou Design:Kk Net for absorbing impact and impact absorbing method
JP2002054673A (en) * 2000-08-14 2002-02-20 Tokyo Seiko Seni Rope Kk Shock absorbing member

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249842A (en) * 2005-03-11 2006-09-21 Sho Bond Constr Co Ltd Connecting band
JP2007146488A (en) * 2005-11-28 2007-06-14 Birudorando:Kk Bridge fall preventing structure
JP2007191906A (en) * 2006-01-19 2007-08-02 Hamanaka Nut Kk Grant structure of mechanical property
ITRE20130026A1 (en) * 2013-04-12 2013-07-12 Innocenzo Becci DISSIPATIVE SLIDING SEISMIC CONNECTION WITH DYNAMIC ADAPTIVE ADJUSTMENT OF CAR COMPENSATED
WO2014166849A2 (en) 2013-04-12 2014-10-16 Becci Innocenzo Aseismic connection device for connecting a panel to a beam
WO2014166849A3 (en) * 2013-04-12 2015-04-09 Becci Innocenzo Aseismic connection device for connecting a panel to a beam
CN105209698A (en) * 2013-04-12 2015-12-30 I·贝奇 Aseismic connection device for connecting a panel to a beam
CN105209698B (en) * 2013-04-12 2017-07-04 I·贝奇 Anti-shock connector for connecting the panel to beam
JP2015169033A (en) * 2014-03-10 2015-09-28 神鋼鋼線工業株式会社 Cable body and cable structure having the same
JP2016023534A (en) * 2014-07-24 2016-02-08 八千代エンジニヤリング株式会社 Seismic strengthening device for bridge
CN104499422A (en) * 2014-11-24 2015-04-08 北京工业大学 Friction energy dissipation beam falling prevention device
JP2017155544A (en) * 2016-03-04 2017-09-07 ショーボンド建設株式会社 Bridge fall prevention member

Similar Documents

Publication Publication Date Title
Christopoulos et al. Self-centering energy dissipative bracing system for the seismic resistance of structures: development and validation
Mozos et al. Numerical and experimental study on the interaction cable structure during the failure of a stay in a cable stayed bridge
JP2004036337A (en) Bridge falling preventive device
JP5069938B2 (en) Girder connecting device for falling bridge prevention structure
JP2012197864A (en) Hysteresis damper
JP6651501B2 (en) Lateral damping and intermediate support for escalators and moving walkways in seismic events
CA2439825C (en) Method to reduce horizontal lifeline tension and extension during fall arrest
NZ199359A (en) Lead/rubber spiral element for earthquake damper
ITBS20100172A1 (en) METHOD FOR THE EXECUTION OF A STATIC TEST ON A LIFE LINE
JP3389521B2 (en) Vibration energy absorber for tension structure and its construction method
Soltanabadi et al. Experimental studies on a combined damper for repairable steel moment connections
JP2002213531A (en) Damping device
JP2002070943A (en) Slip support device for base isolation
JP2021534340A (en) Control structure with rotational force limiter and energy dissipator
CN105507443B (en) A kind of civil engineering damping device and shock-dampening method
ITBS20100173A1 (en) SUPPORT DEVICE FOR LIFE LINES
Steimer et al. Curved plate energy absorbers for earthquake resistant structures
JP2001106455A (en) Elevator guide rail supporting device
JP2000110887A (en) Base isolation device
CN112744683A (en) Two-way vibration damper suitable for escalator and escalator
JP2004036338A (en) Bridge falling preventive device
JPH10280727A (en) Damping frame by composite type damper and damping method
JP2017160652A (en) Buckling restraint type damper for bridge
JP2002054673A (en) Shock absorbing member
WO2010074229A1 (en) Hysteretic damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20050502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070529