JP2004035998A - Permanent magnet alloy for jewelry and production method - Google Patents

Permanent magnet alloy for jewelry and production method Download PDF

Info

Publication number
JP2004035998A
JP2004035998A JP2002232126A JP2002232126A JP2004035998A JP 2004035998 A JP2004035998 A JP 2004035998A JP 2002232126 A JP2002232126 A JP 2002232126A JP 2002232126 A JP2002232126 A JP 2002232126A JP 2004035998 A JP2004035998 A JP 2004035998A
Authority
JP
Japan
Prior art keywords
less
alloy
permanent magnet
magnetic flux
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002232126A
Other languages
Japanese (ja)
Other versions
JP2004035998A5 (en
Inventor
Takafumi Nakayama
中山 孝文
Yuetsu Murakami
村上 雄悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elect & Magn Alloys Res Inst
Kuwayama KK
Research Institute for Electromagnetic Materials
Original Assignee
Elect & Magn Alloys Res Inst
Kuwayama KK
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elect & Magn Alloys Res Inst, Kuwayama KK, Research Institute for Electromagnetic Materials filed Critical Elect & Magn Alloys Res Inst
Priority to JP2002232126A priority Critical patent/JP2004035998A/en
Publication of JP2004035998A publication Critical patent/JP2004035998A/en
Publication of JP2004035998A5 publication Critical patent/JP2004035998A5/ja
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a permanent magnet alloy for jewelry which has a high residual magnetic flux density and a high coercive force, to provide a production method therefor, and to provide equipment for medical purpose and electromagnetic equipment obtained by using the same. <P>SOLUTION: The permanent magnet alloy comprises, by weight, 83 to 87% Pt, and one or more kinds selected from Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, W, Al, Si, Ti, Zr, Hf, V, Nb, Ta, In, Ge, Sn, Re, Ru, Os, Rh, Ir, rare earth elements, Ca and a Ca-fluorine compound, and the balance Fe. The alloy has a residual magnetic flux density of ≥2,000 gauss and a coercive force of ≥200 oersted. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、Fe(鉄)およびPt(白金)からなる宝飾用永久磁石合金、あるいはこれを主成分とし、副成分としてCo(コバルト),Ni(ニッケル),Cu(銅),Mn(マンガン),Pd(パラジウム),Ag(銀),Au(金),Cr(クロミウム),Mo(モリブデン),W(タングステン),Al(アルミニウム),Si(シリコン),Ti(チタニウム),Zr(ジルコニウム),Hf(ハフニウム),V(バナジウム),Nb(ニオビウム),Ta(タンタル),In(インジウム),Ge(ゲルマニウム),Sn(錫),Re(レニウム),Ru(ルテニウム),Os(オスミウム),Rh(ロジウム),Ir(イリジウム),希土類元素,CaおよびCaフッ素化合物の1種または2種以上からなる宝飾用永久磁石合金およびその製造法ならびにこれを用いた医療用器具および電磁機器に関するもので、その目的とするところは、残留磁束密度および保磁力が大きい宝飾用永久磁石合金を得ることにある。
【0002】
【従来の技術】
Fe−Pt系2元合金においては、Fe−50原子%Pt合金は規則格子のγ相から不規則格子のγ相への変態温度が約1320℃と高温度であるため、水焼入れによる急冷でも規則化が進行して過時効の状態となり、最大エネルギー積の大きな磁石合金が得られない。そこで、Fe−Pt系合金の組成を、変態温度が比較的低いFe側に移動して、容易に不規則格子のγ相が得られるようにし、これに時効処理を加えて規則格子のγ相に変態させた規則化の初期状態または母相のγ相の地に微細なγ相が均一に分散した状態とすることによって、最大エネルギー積の大きな磁石合金が得られている(特公平3−35801号)。
【0003】
【発明が解決しようとする課題】
Fe−Pt系合金の永久磁石特性は、均一な不規則格子γ相中における規則化の初期状態またはγ相の地に微細な規則格子γ相が均一に分散した状態において、残留磁束密度および保磁力が大きくなり、最も高いエネルギー積を示す。そのため、初期において規則格子γ相の生成を抑制するため、規則格子変態温度以上の高温度から急冷処理を施す。しかし、この変態温度が非常に高い領域にあり、高磁石特性を有する合金を再現性良く、多量に生産することの妨げとなっており、これを改善することが強く望まれている。またFe−Pt系において貴金属品位証明極印が得られる85重量%以上のPtを含む合金は、磁石特性を示さない反強磁性金属間化合物FePtが形成される組成の近傍にあり、高い磁石特性を安定して得ることが困難であるが、この点も改良が望まれている。
【0004】
【課題を解決するための手段】
本発明は、貴金属品位証明極印が得られるFe−Pt系合金の磁石特性、磁石特性の再現性、鋳造性および加工性等を改善することを目的としている。
即ち、本発明は重量パーセントにて、主成分としてPt83〜87%と、副成分としてCo,Ni,Cu,Mn,Pd,Ag,Au,Cr,Mo,Wのそれぞれ5%以下、Al,Si,Ti,Zr,Hf,V,Nb,Ta,In,Ge,Sn,Re,Ru,Os,Rh,Ir,希土類元素のそれぞれ3%以下、CaおよびCaフッ素化合物のそれぞれ0.5%以下の1種または2種以上の合計0.0001〜10%以下および残部Feと少量の不純物とからなる合金で、真空中又は種々なガス雰囲気、例えばアルゴン、メタン、水素、窒素等のガス中において適当な溶解法、例えば高周波誘導溶解法、電流加熱炉法、アーク溶解法等によって溶湯となし、適当な鋳型、例えば金型、耐火物からなる鋳型などに鋳込むことにより、健全な鋳塊が得られる。
【0005】
磁石特性の向上を図るためには、これを規則格子変態温度以上の700℃以上融点以下の温度で適当時間、例えば1分間以上500時間以下、望ましくは5分間以上300時間以下加熱して溶体化した後、100℃/時以上、望ましくは300℃/時以上の速度で冷却することによって不規則格子相を形成する。ついで、直ちにかあるいは必要に応じて加工率10%以上、望ましくは20%以上の冷間加工を施した後規則格子変態温度以下の200℃以上1100℃以下、望ましくは300℃以上1000℃以下の温度で適当時間、例えば1分間以上1000時間以下、望ましくは5分間以上800時間以下加熱し、冷却する。あるいは、鋳造後または700℃以上融点以下の温度において1分間以上500時間以下加熱し、不規則格子相に成した後、1℃/時以上100℃/秒以下の適当な速度で冷却することにより適度な規則格子相が形成され、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上の宝飾用永久磁石合金が得られる。
【0006】
これらの永久磁石合金は磁石特性に優れ、且つ白金含有量が多いため貴金属品位証明極印が受けられるので、宝飾用品、例えばファッションリング(指輪)、ブレスレット、ネックレス、ペンダントおよびピアス等に好適である。また、一般的な磁気医療用具、例えば貼付用磁石、宝飾用吸着器具等あるいは電磁機器、例えば心電計アクチュエーター、電磁探針等にも応用できる。
【0007】
本発明の特徴とするところは次の通りである。
[第1発明]
重量パーセントにて、Pt83〜87%および残部Feと少量の不純物とからなり、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金に関する。
【0008】
[第2発明]
重量パーセントにて、主成分としてPt83〜87%と、副成分としてCo,Ni,Cu,Mn,Pd,Ag,Au,Cr,Mo,Wのそれぞれ5%以下、Al,Si,Ti,Zr,Hf,V,Nb,Ta,In,Ge,Sn,Re,Ru,Os,Rh,Ir,希土類元素のそれぞれ3%以下、CaおよびCaフッ素化合物のそれぞれ0.5%以下の1種または2種以上の合計0.0001〜10%以下および残部Feと少量の不純物とからなり、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金に関する。
【0009】
[第3発明]
重量パーセントにて、Pt83〜87%および残部Feと少量の不純物とからなる合金を、700℃以上融点以下の温度において1分間以上500時間以下加熱して均質化処理した後100℃/時以上の速度で冷却し、ついで200℃〜1100℃の温度で1分間以上1000時間以下加熱後冷却することにより、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金の製造法に関する。
【0010】
[第4発明]
重量パーセントにて、Pt83〜87%および残部Feと少量の不純物とからなる合金を、700℃以上融点以下の温度において1分間以上500時間以下加熱して均質化処理した後100℃/時以上の速度で冷却し、ついで加工率10%以上の冷間加工を施し、これをさらに200℃〜1100℃の温度で1分間以上1000時間以下加熱後冷却することにより、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金の製造法に関する。
【0011】
[第5発明]
重量パーセントにて、Pt83〜87%および残部Feと少量の不純物とからなる合金を、鋳造後又は700℃以上融点以下の温度において1分間以上500時間以下加熱して均質化処理した後、1℃/時以上100℃/秒以下の速度で冷却することにより、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金の製造法に関する。
【0012】
[第6発明]
重量パーセントにて、主成分としてPt83〜87%と、副成分としてCo,Ni,Cu,Mn,Pd,Ag,Au,Cr,Mo,Wのそれぞれ5%以下、Al,Si,Ti,Zr,Hf,V,Nb,Ta,In,Ge,Sn,Re,Ru,Os,Rh,Ir,希土類元素のそれぞれ3%以下、CaおよびCaフッ素化合物のそれぞれ0.5%以下の1種または2種以上の合計0.0001〜10%以下および残部Feと少量の不純物とからなる合金を、700℃以上融点以下の温度において1分間以上500時間以下加熱して均質化処理した後100℃/時以上の速度で冷却し、ついで200℃〜1100℃の温度で1分間以上1000時間以下加熱後冷却することにより、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金の製造法に関する。
【0013】
[第7発明]
重量パーセントにて、主成分としてPt83〜87%と、副成分としてCo,Ni,Cu,Mn,Pd,Ag,Au,Cr,Mo,Wのそれぞれ5%以下、Al,Si,Ti,Zr,Hf,V,Nb,Ta,In,Ge,Sn,Re,Ru,Os,Rh,Ir,希土類元素のそれぞれ3%以下、CaおよびCaフッ素化合物のそれぞれ0.5%以下の1種または2種以上の合計0.0001〜10%以下および残部Feと少量の不純物とからなる合金を、700℃以上融点以下の温度において1分間以上500時間以下加熱して均質化処理した後100℃/時以上の速度で冷却し、ついで加工率10%以上の冷間加工を施し、これをさらに200℃〜1100℃の温度で1分間以上1000時間以下加熱後冷却することにより、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金の製造法に関する。
【0014】
[第8発明]
重量パーセントにて、主成分としてPt83〜87%と、副成分としてCo,Ni,Cu,Mn,Pd,Ag,Au,Cr,Mo,Wのそれぞれ5%以下、Al,Si,Ti,Zr,Hf,V,Nb,Ta,In,Ge,Sn,Re,Ru,Os,Rh,Ir,希土類元素のそれぞれ3%以下、CaおよびCaフッ素化合物のそれぞれ0.5%以下の1種または2種以上の合計0.0001〜10%以下および残部Feと少量の不純物とからなる合金を、700℃以上融点以下の温度において1分間以上500時間以下加熱して均質化処理した後1℃/時以上100℃/秒以下の速度で冷却することにより、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金の製造法に関する。
【0015】
[第9発明]
重量パーセントにて、Pt83〜87%および残部Feと少量の不純物とからなり、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上をすることを特徴とする宝飾用永久磁石合金よりなる医療用器具に関する。
【0016】
[第10発明]
重量パーセントにて、主成分としてPt83〜87%と、副成分としてCo,Ni,Cu,Mn,Pd,Ag,Au,Cr,Mo,Wのそれぞれ5%以下、Al,Si,Ti,Zr,Hf,V,Nb,Ta,In,Ge,Sn,Re,Ru,Os,Rh,Ir,希土類元素のそれぞれ3%以下、CaおよびCaのフッ素化合物のそれぞれ0.5%以下の1種または2種以上の合計0.0001〜10%以下および残部Feと少量の不純物とからなり、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金よりなる医療用器具に関する。
【0017】
[第11発明]
重量パーセントにて、Pt83〜87%および残部Feと少量の不純物とからなり、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金よりなる電磁機器に関する。
【0018】
[第12発明]
重量パーセントにて、主成分としてPt83〜87%と、副成分としてCo,Ni,Cu,Mn,Pd,Ag,Au,Cr,Mo,Wのそれぞれ5%以下、Al,Si,Ti,Zr,Hf,V,Nb,Ta,In,Ge,Sn,Re,Ru,Os,Rh,Ir,希土類元素のそれぞれ3%以下、CaおよびCaフッ素化合物のそれぞれ0.5%以下の1種または2種以上の合計0.0001〜10%以下および残部Feと少量の不純物とからなり、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金よりなる電磁機器に関する。
【0019】
次に、本発明合金の成分組成を上記の範囲に限定した理由は、白金の含有量が多いため貴金属品位証明極印を受けることができ、且つこの組成範囲では残留磁束密度が2,000ガウス以上、保磁力が200エルステッド以上を有し、磁石特性が優れているが、この組成範囲をはずれると磁石特性が劣化するからである。
本発明合金は、等価原子比のFe−Pt合金の組成をPt側に移動させて貴金属合金組成と永久磁石特性を兼備させたものである。Ptが83〜87%の範囲においては規則格子の面心正方晶型γ相が存在し所期の磁石特性が得られるが、Pt量が87%を越えると、隣接する反強磁性金属間化合物FePtの特性によって強磁性が得られなくなり、また、Pt量が83%に満たない合金では貴金属品位証明極印を受けられないので、Ptを83〜87%に限定した。さらに、副成分としてCo,Ni,Cu,Mn,Pd,Ag,Au,Cr,Mo,Wのそれぞれ5%以下、Al,Si,Ti,Zr,Hf,V,Nb,Ta,In,Ge,Sn,Re,Ru,Os,Rh,Ir,希土類元素のそれぞれ3%以下、CaおよびCaフッ素化合物のそれぞれ0.5%以下の1種または2種以上の合計0.0001〜10%以下添加すると、残留磁束密度の上昇、保磁力の増加あるいは磁気履歴曲線の角形性が良好となり、比較的大きな最大エネルギー積を有する磁石合金が得られる。
【0020】
次に、本発明における均一化処理条件の限定理由について説明する。本発明の組成になる合金の規則格子変態点は組成によって異なり、700〜1100℃であり、また融点は約1600℃にある。このため、均一化処理温度が700℃以上でないと規則格子γ相が混在し、不規則格子γ単相が得られないので、700℃以上融点以下に限定した。均一化処理時間が1分に満たないと処理効果が得られず、長時間では経済的に好ましくなく、且つ磁石特性劣化の原因となる酸化の進行が著しく増加するので、1分間以上500時間以下に限定した。均質化処理後の冷却速度は速いことが望ましいが、100℃/時に満たないと微細分散析出した規則格子γ相から成る結晶粒が粗大化し、磁石特性劣化の原因となるので、冷却速度は100℃/時以上に限定した。
【0021】
次に、急冷後に磁石特性を発現させる時効処理条件の限定理由について説明する。時効処理温度が200℃に満たないと、時効時間が2000時間以上を要し、経済的に好ましくないばかりか処理効果が得られず、磁石特性の向上が望めない。他方、1100℃を越えると規則化が進行せず、磁石特性が得られないので、時効温度は200〜1100℃に限定した。なお、好適範囲は300〜800℃である。また加熱・冷却過程を含めた時効時間が1分に満たないと、時効温度が1100℃でも磁石特性が得られず、他方1000時間を越えると規則化が進行して過時効となって磁石特性が著しく劣化するので、時効処理時間は1分以上1000時間以下に限定した。なお時効処理後の冷却速度は磁石特性に影響を与えないので、急冷、徐冷のいずれも採用できるが、速く冷却することが望ましい。
【0022】
次に時効処理に先立って、線引又は圧延等の加工を行う場合に、加工率が10%に満たないと、内部歪が表面層にのみ留まり、磁石特性の向上を図るには不充分なので、加工率は10%以上に限定した。
【0023】
【作用】
本発明でいう組成的に、また熱処理によって不完全となっているγ相とは、Fe−Pt2元合金では原子比にてFe:Pt=50:50の場合に完全規則格子になるところを、本発明では組成をPt側に移動させることによってγ相を不完全な規則格子にしているものであり、また急冷あるいは急冷後再加熱することによってγ相から規則格子のγ相に変態する初期の状態が形成され、不完全なγ相となっているものである。この状態では、保磁力ならびに磁気履歴曲線の角形性が大きく、残留磁束密度も高くなるので、最大エネルギー積が大きくなり、本発明で所期した残留磁束密度2,000ガウス以上および保磁力200エルステッド以上となり、宝飾用永久磁石合金が再現性良く得られる。
【0024】
次に本発明を行程順に詳細に説明する。
(1)本発明合金を造るには、目的の組成に秤量した金属を適当な溶解炉を用いて溶解した後充分に撹拌して組成的に均質な溶融合金を造り、これを適当な形状の鋳型に入れ鋳塊となすか、又は所定の形状に、鍛造、線引き、圧延して成形する。これを700℃以上融点以下の温度に1分間以上500時間以下加熱し均質化処理した後、100℃/時間以上の冷却速度で急冷する。この工程は、規則格子変態点以上の温度に加熱され、不規則格子相化した合金を急冷することによって不規則格子の面心立方晶型γ相単体とし、その状態を常温に得て固定しようとする工程である。
【0025】
(2)(1)の急冷後200〜1100℃の温度で少なくとも1分間以上1000時間以下再加熱すると、高温において生じた不規則格子のγ相固溶体が、規則格子のγ相に変態する初期の状態に局所歪が生じ、磁壁の移動が阻止されることによって、大きな保磁力及び残留磁束密度を有する磁石合金が得られるのである。
この工程は、急冷することによって不規則格子の面心立方晶型γ相から規則格子の面心正方晶型γ相に変態する初期の状態、又は不規則格子γ相の地に規則格子γ相の微細結晶が均一に分散した状態を、常温に得て固定しようとする工程である。
【0026】
(3)(1)の急冷をした後加工率10%以上の線引き又は圧延等の冷間加工をする。
(4)(3)の冷間加工をした後(2)の焼戻処理を加える。この工程は(3)の工程で生じた内部歪が、γ相の変化に当って適当な局所歪と結晶の集合組織を生成させ、その結果磁気履歴曲線における角形性の向上を助長し、優秀な磁石特性が得られるのである。勿論、加工率10%以下においても、充分ではないが、その効果が認められる。
尚、合金組成によっては、鋳造後または700℃以上融点以下の温度において1分間以上500時間以下加熱し均質化処理して不規則格子のγ相固溶体となした後、合金組成に適応した1℃/時以上100℃/秒以下の適当な速度で冷却すると、冷却中にγ相固溶体の母相中に適当量の規則格子のγ相が変態することにより、残留磁束密度が2,000ガウス以上および保磁力が200エルステッド以上の磁石特性が得られるのである。
【0027】
【実施例】
つぎに本発明の実施例につき説明する。
実施例1;試料番号2(組成Pt=84%、Pd=2.0%、Fe=残部)の合金の製造および評価。
原料として、純度99.99%の電解鉄、純度99.9%の白金およびパラジウムを用いた。全重量30gの原料をアルゴンガス中におけるアーク溶解法によって溶解してボタン状の鋳造母材を作製し、これをアルミナ柑禍に入れて真空中、高周波誘導溶解炉によって溶解した後、直径3.5mmの円柱状の孔をもつ鋳型に注入した。得られた丸棒から30mmの長さを切り取り、表1に示すような熱処理および冷間加工を施し、磁石特性を測定した。
【0028】
【表1】

Figure 2004035998
【0029】
実施例2;合金番号9(組成Pt=85%、Cr=0.5%、Ti=0.2%、Fe=残部)の合金の製造および評価。
原料として、実施例1の電解鉄、白金および純度約99.9%のクロムとチタンを用いた。また溶解法は、高周波誘導炉を用いて原料を直接溶解し、実施例1と同様の鋳型に湯を注入した。得られた丸棒に表2に示した各種熱処理および冷間加工を施して磁石特性を測定した。
【0030】
【表2】
Figure 2004035998
【0031】
なお、代表的な合金の特性は表3に示す通りであり、いずれも優れた磁石特性を有している。また、希土類元素はSc、Yおよびランタン族系元素からなるものであるが、その効果は均等であり、Yの場合を表3中に示した。
【0032】
【表3】
Figure 2004035998
【0033】
【発明の効果】
本発明合金は、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上の値を有する磁石特性の優れた磁石合金で、且つ、貴金属製品と認定されるPt量を含有するため、宝飾用品、医療用具ならびに電気的機械的エネルギーの変換を利用した電磁部品および当該電磁部品を用いた電磁機器等に好適である。[0001]
[Industrial applications]
The present invention provides a jewelry permanent magnet alloy composed of Fe (iron) and Pt (platinum), or a main component thereof, and Co (cobalt), Ni (nickel), Cu (copper), Mn (manganese) as subcomponents. , Pd (palladium), Ag (silver), Au (gold), Cr (chromium), Mo (molybdenum), W (tungsten), Al (aluminum), Si (silicon), Ti (titanium), Zr (zirconium) , Hf (hafnium), V (vanadium), Nb (niobium), Ta (tantalum), In (indium), Ge (germanium), Sn (tin), Re (rhenium), Ru (ruthenium), Os (osmium) , Rh (rhodium), Ir (iridium), rare earth elements, Ca and Ca fluorine compounds, jewelry permanent magnet alloys And relates to medical instruments and electromagnetic devices using their preparation as well as this, it is an object is to obtain a residual magnetic flux density and the coercive force is large jewelery permanent magnet alloy.
[0002]
[Prior art]
Since in the Fe-Pt-based binary alloy, Fe-50 atomic% Pt alloy is high temperature transformation temperature and about 1320 ° C. to gamma phase disordered lattice from gamma 1 phase of ordered lattice, quenched by water quenching However, regularization progresses, resulting in an overaged state, and a magnet alloy having a large maximum energy product cannot be obtained. Therefore, the composition of the Fe-Pt alloy, go to the transformation temperature is relatively low Fe side, readily as gamma phase disordered lattice is obtained, the rules by adding an aging treatment grating to gamma 1 by the state of fine gamma 1 phase to the land of the initial state or in the matrix gamma phase of ordering which is transformed into the phase is uniformly dispersed, large magnet alloy of the maximum energy product is obtained (KOKOKU No. 3-35801).
[0003]
[Problems to be solved by the invention]
The permanent magnet properties of the Fe-Pt-based alloy show the residual magnetic flux density and the residual magnetic flux density in the initial state of ordering in the uniform disordered lattice γ phase or in the state in which the fine ordered lattice γ 1 phase is uniformly dispersed in the ground of the γ phase. The coercive force increases and shows the highest energy product. Therefore, in order to suppress the formation of ordered lattice gamma 1 phase in the initial, the quenching process from ordered lattice transformation temperature or more high temperature applied. However, this transformation temperature is in a very high range, which hinders the production of an alloy having high magnet properties with good reproducibility and in large quantities. It is strongly desired to improve this. The alloy containing a noble metal quality certification hallmark 85 wt% or more of Pt obtained in FePt system is in the vicinity of the composition antiferromagnetic intermetallic compound FePt 3 which does not exhibit magnetic properties is formed, a high magnetic characteristic Is difficult to obtain stably, but improvement in this point is also desired.
[0004]
[Means for Solving the Problems]
An object of the present invention is to improve magnet properties, reproducibility of magnet properties, castability, workability, and the like of an Fe-Pt-based alloy from which a noble metal quality certification polemark can be obtained.
That is, in the present invention, Pt 83 to 87% as a main component and 5% or less of each of Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, and W as subcomponents, Al, Si , Ti, Zr, Hf, V, Nb, Ta, In, Ge, Sn, Re, Ru, Os, Rh, Ir, and rare earth elements each at 3% or less, and Ca and Ca fluorine compounds at 0.5% or less, respectively. An alloy comprising one or more of 0.0001 to 10% or less in total and the balance of Fe and a small amount of impurities, which is suitable in a vacuum or various gas atmospheres, for example, a gas such as argon, methane, hydrogen, or nitrogen. By using a suitable melting method, such as a high-frequency induction melting method, a current heating furnace method, and an arc melting method, the molten metal is cast into a suitable mold, for example, a mold, a mold made of refractory, etc. It is.
[0005]
In order to improve the magnet properties, it is heated at a temperature of 700 ° C. or higher and the melting point or lower of the superlattice lattice transformation temperature for a suitable time, for example, 1 minute to 500 hours, preferably 5 minutes to 300 hours, to form a solution. After that, an irregular lattice phase is formed by cooling at a rate of 100 ° C./hour or more, preferably 300 ° C./hour or more. Then, immediately or if necessary, after cold working at a working rate of 10% or more, preferably 20% or more, the temperature is 200 ° C or more and 1100 ° C or less, preferably 300 ° C or more and 1000 ° C or less. The mixture is heated at a temperature for an appropriate time, for example, 1 minute to 1000 hours, preferably 5 minutes to 800 hours, and cooled. Alternatively, by heating after casting for 1 minute to 500 hours at a temperature of 700 ° C. to melting point to form an irregular lattice phase, and then cooling at an appropriate rate of 1 ° C./hour to 100 ° C./second. An appropriate regular lattice phase is formed, and a jewelry permanent magnet alloy having a residual magnetic flux density of 2,000 Gauss or more and a coercive force of 200 Oe or more is obtained.
[0006]
Since these permanent magnet alloys have excellent magnet properties and a high platinum content, they can be used as precious metal quality certification pole marks, and thus are suitable for jewelry articles, such as fashion rings (rings), bracelets, necklaces, pendants, and earrings. In addition, the present invention can be applied to general magnetic medical devices, such as sticking magnets, jewelry suction devices, and electromagnetic devices, such as electrocardiograph actuators and electromagnetic probes.
[0007]
The features of the present invention are as follows.
[First invention]
The present invention relates to a jewelry permanent magnet alloy comprising 83 to 87% by weight of Pt, the balance being Fe and a small amount of impurities, and having a residual magnetic flux density of 2,000 Gauss or more and a coercive force of 200 Oe or more.
[0008]
[Second invention]
In weight percent, 83 to 87% of Pt as a main component, 5% or less of each of Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, and W as subcomponents, Al, Si, Ti, Zr, One or two of Hf, V, Nb, Ta, In, Ge, Sn, Re, Ru, Os, Rh, Ir, and rare earth elements, each of which is 3% or less, and each of Ca and Ca fluorine compounds is 0.5% or less. The present invention relates to a permanent magnet alloy for jewelry, comprising a total of 0.0001 to 10% or less, the balance being Fe and a small amount of impurities, and having a residual magnetic flux density of 2,000 gauss or more and a coercive force of 200 Oe or more.
[0009]
[Third invention]
An alloy consisting of 83 to 87% by weight of Pt and the balance of Fe and a small amount of impurities is heated at a temperature of 700 ° C. or more and a melting point or less for 1 minute or more and 500 hours or less, and then homogenized to 100 ° C./hour or more. Jewelry having a remanence of at least 2,000 gauss and a coercive force of at least 200 Oe by cooling at a speed and then heating at a temperature of 200 ° C. to 1100 ° C. for 1 minute to 1000 hours and then cooling. The present invention relates to a method for producing a permanent magnet alloy.
[0010]
[Fourth invention]
An alloy consisting of 83 to 87% by weight of Pt and the balance of Fe and a small amount of impurities is heated at a temperature of 700 ° C. or more and a melting point or less for 1 minute or more and 500 hours or less, and then homogenized to 100 ° C./hour or more. Cool at a speed, then perform cold working at a working ratio of 10% or more, further heat it at a temperature of 200 ° C. to 1100 ° C. for 1 minute or more and 1000 hours or less, and then cool to obtain a residual magnetic flux density of 2,000 gauss or more. And a method for producing a jewelry permanent magnet alloy having a coercive force of 200 Oe or more.
[0011]
[Fifth invention]
An alloy consisting of 83-87% by weight of Pt and the balance of Fe and a small amount of impurities is homogenized after casting or by heating at a temperature of 700 ° C. or more and a melting point of 1 minute or more and 500 hours or less. The present invention relates to a method for producing a jewelry permanent magnet alloy, characterized by having a residual magnetic flux density of at least 2,000 gauss and a coercive force of at least 200 Oe by cooling at a rate of not less than / h and not more than 100 ° C / sec.
[0012]
[Sixth invention]
In weight percent, 83 to 87% of Pt as a main component, 5% or less of each of Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, and W as subcomponents, Al, Si, Ti, Zr, One or two of Hf, V, Nb, Ta, In, Ge, Sn, Re, Ru, Os, Rh, Ir, and rare earth elements, each of which is 3% or less, and each of Ca and Ca fluorine compounds is 0.5% or less. The alloy comprising the total of 0.0001 to 10% or less and the balance of Fe and a small amount of impurities is heated at a temperature of 700 ° C. or more and a melting point or less for 1 minute or more and 500 hours or less, and then homogenized, and then 100 ° C./hour or more. And then heated at a temperature of 200 ° C. to 1100 ° C. for 1 minute to 1000 hours and then cooled to obtain a residual magnetic flux density of 2,000 gauss or more and a coercive force of 200 Els A process for producing jewelery permanent magnet alloy characterized by having a higher de.
[0013]
[Seventh invention]
In weight percent, 83 to 87% of Pt as a main component, 5% or less of each of Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, and W as subcomponents, Al, Si, Ti, Zr, One or two of Hf, V, Nb, Ta, In, Ge, Sn, Re, Ru, Os, Rh, Ir, and rare earth elements, each of which is 3% or less, and each of Ca and Ca fluorine compounds is 0.5% or less. The alloy comprising the total of 0.0001 to 10% or less and the balance of Fe and a small amount of impurities is heated at a temperature of 700 ° C. or more and a melting point or less for 1 minute or more and 500 hours or less, and then homogenized, and then 100 ° C./hour or more. Then, cold working is performed at a working rate of 10% or more, and this is further heated at a temperature of 200 ° C. to 1100 ° C. for 1 minute to 1000 hours, and then cooled to obtain a residual magnetic flux density. , 000 Gauss or more and a process for producing jewelery permanent magnet alloy characterized by having a coercive force 200 Oe or more.
[0014]
[Eighth invention]
In weight percent, 83 to 87% of Pt as a main component, 5% or less of each of Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, and W as subcomponents, Al, Si, Ti, Zr, One or two of Hf, V, Nb, Ta, In, Ge, Sn, Re, Ru, Os, Rh, Ir, and rare earth elements, each of which is 3% or less, and each of Ca and Ca fluorine compounds is 0.5% or less. The alloy comprising the total of 0.0001 to 10% or less and the balance of Fe and a small amount of impurities is heated at a temperature of 700 ° C or more and a melting point or less for 1 minute or more and 500 hours or less, and then homogenized, and then 1 ° C / hour or more. The present invention relates to a method for producing a jewelry permanent magnet alloy characterized by having a residual magnetic flux density of at least 2,000 gauss and a coercive force of at least 200 Oersted by cooling at a rate of 100 ° C./sec or less. That.
[0015]
[Ninth invention]
Medical use comprising a permanent magnet alloy for jewelry, characterized by having a Pt of 83 to 87%, a balance of Fe and a small amount of impurities, and having a residual magnetic flux density of 2,000 gauss or more and a coercive force of 200 Oe or more. Equipment related.
[0016]
[Tenth invention]
In weight percent, 83 to 87% of Pt as a main component, 5% or less of each of Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, and W as subcomponents, Al, Si, Ti, Zr, Hf, V, Nb, Ta, In, Ge, Sn, Re, Ru, Os, Rh, Ir, 3% or less of each of rare earth elements, and Ca and a fluorine compound of 0.5% or less of each of fluorine compounds of Ca or 2 or more. A total of at least 0.0001 to 10% of the species, the balance being Fe and a small amount of impurities, and having a residual magnetic flux density of at least 2,000 gauss and a coercive force of at least 200 Oe, and comprising a jewelry permanent magnet alloy. It relates to medical equipment.
[0017]
[Eleventh invention]
An electromagnetic device comprising a permanent magnet alloy for jewelry, comprising 83 to 87% by weight of Pt, the balance being Fe and a small amount of impurities, having a residual magnetic flux density of 2,000 Gauss or more and a coercive force of 200 Oe or more. About.
[0018]
[Twelfth invention]
In weight percent, 83 to 87% of Pt as a main component, 5% or less of each of Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, and W as subcomponents, Al, Si, Ti, Zr, One or two of Hf, V, Nb, Ta, In, Ge, Sn, Re, Ru, Os, Rh, Ir, and rare earth elements, each of which is 3% or less, and each of Ca and Ca fluorine compounds is 0.5% or less. A total of 0.0001 to 10% or less, the balance being Fe and a small amount of impurities, and having a residual magnetic flux density of 2,000 gauss or more and a coercive force of 200 oersted or more, an electromagnet made of a jewelry permanent magnet alloy. Equipment related.
[0019]
Next, the reason why the composition of the alloy of the present invention is limited to the above range is that the content of platinum is large, so that the noble metal quality certification pole can be obtained, and in this composition range, the residual magnetic flux density is 2,000 gauss or more. This is because the coercive force is 200 Oe or more and the magnet properties are excellent, but if the composition is out of this range, the magnet properties are deteriorated.
The alloy of the present invention combines the composition of a noble metal alloy and the properties of a permanent magnet by shifting the composition of an Fe—Pt alloy having an equivalent atomic ratio to the Pt side. Pt although desired magnetic properties present face-centered tetragonal gamma 1-phase ordered lattice in the range of 83-87% is obtained, when the Pt content exceeds 87%, between the anti-ferromagnetic metal adjacent compound FePt 3 characteristics by no longer ferromagnetic can be obtained and, since the amount of Pt can not receive the noble quality certification hallmark is an alloy of less than 83%, with limited Pt to 83 to 87%. Furthermore, each of Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, and W as an auxiliary component is 5% or less, and Al, Si, Ti, Zr, Hf, V, Nb, Ta, In, Ge, When Sn, Re, Ru, Os, Rh, Ir, and rare earth elements are added in an amount of 3% or less, respectively, and Ca and a Ca fluorine compound are each 0.5% or less, or a total of 0.0001 to 10% of a total of two or more kinds is added. As a result, the residual magnetic flux density is increased, the coercive force is increased, or the squareness of the magnetic hysteresis curve is improved, and a magnet alloy having a relatively large maximum energy product can be obtained.
[0020]
Next, the reason for limiting the homogenization processing conditions in the present invention will be described. The superlattice transformation point of the alloy having the composition of the present invention varies depending on the composition and is 700 to 1100 ° C, and the melting point is about 1600 ° C. For this reason, if the homogenization treatment temperature is not higher than 700 ° C., the ordered lattice γ 1 phase is mixed, and the disordered lattice γ single phase cannot be obtained. If the homogenization treatment time is less than 1 minute, the treatment effect cannot be obtained. If the treatment time is long, it is not economically preferable, and the oxidation progress which causes the deterioration of the magnet characteristics is remarkably increased. Limited to. It is desirable that the cooling rate after the homogenization treatment is high. However, if the cooling rate is less than 100 ° C./hour, the crystal grains composed of the finely dispersed and precipitated ordered lattice γ 1 phase become coarse and cause deterioration of the magnet characteristics. It was limited to 100 ° C./hour or more.
[0021]
Next, the reason for limiting the aging treatment conditions for exhibiting magnet properties after rapid cooling will be described. If the aging treatment temperature is lower than 200 ° C., the aging time requires 2000 hours or more, which is not only economically unfavorable, but also results in no treatment effect and no improvement in magnet properties can be expected. On the other hand, if the temperature exceeds 1100 ° C., the ordering does not proceed, and magnet properties cannot be obtained. Therefore, the aging temperature is limited to 200 to 1100 ° C. The preferred range is 300 to 800 ° C. If the aging time including the heating / cooling process is less than 1 minute, magnet characteristics cannot be obtained even at an aging temperature of 1100 ° C. Is significantly deteriorated, so that the aging treatment time is limited to 1 minute or more and 1000 hours or less. Since the cooling rate after the aging treatment does not affect the magnet properties, either rapid cooling or slow cooling can be adopted, but rapid cooling is desirable.
[0022]
Next, prior to the aging treatment, when processing such as drawing or rolling is performed, if the processing rate is less than 10%, the internal strain remains only in the surface layer, which is insufficient for improving the magnet properties. The processing rate was limited to 10% or more.
[0023]
[Action]
Compositionally referred to in the present invention, also the gamma 1 phase which is incomplete by the heat treatment, Fe in atomic ratio was Fe-Pt2 binary alloy: Pt = 50: 50 the place to become a completely ordered lattice in the case of In the present invention, the γ 1 phase is made into an imperfect ordered lattice by shifting the composition to the Pt side, and the γ 1 phase is transformed into the γ 1 phase of the ordered lattice by quenching or reheating after quenching. the initial state is formed to, those that become incomplete gamma 1 phase. In this state, since the coercive force and the squareness of the magnetic hysteresis curve are large and the residual magnetic flux density is also high, the maximum energy product is large, and the residual magnetic flux density of 2,000 gauss or more and the coercive force of 200 Oe As described above, a jewelry permanent magnet alloy can be obtained with good reproducibility.
[0024]
Next, the present invention will be described in detail in the order of steps.
(1) In order to produce the alloy of the present invention, a metal weighed to a desired composition is melted using a suitable melting furnace, and then sufficiently stirred to produce a compositionally homogeneous molten alloy, which is formed into an appropriate shape. It is put into a mold to form an ingot, or forged, drawn, and rolled into a predetermined shape. This is heated to a temperature of 700 ° C. or higher and a melting point or lower and heated for 1 minute to 500 hours, homogenized, and then rapidly cooled at a cooling rate of 100 ° C./hour or higher. In this process, the alloy which has been heated to a temperature higher than the transformation point of the ordered lattice and quenched into the disordered lattice-phased alloy is turned into a face-centered cubic γ-phase unit having an irregular lattice, and the state is obtained at room temperature and fixed. It is a process to be.
[0025]
(2) When reheating at a temperature of 200 to 1100 ° C. for at least 1 minute to 1000 hours after the quenching of (1), the initial phase in which the γ phase solid solution of the disordered lattice generated at a high temperature is transformed into the γ 1 phase of the ordered lattice In this state, local strain is generated, and movement of the domain wall is prevented, so that a magnet alloy having a large coercive force and a residual magnetic flux density can be obtained.
This step is performed in an initial state in which quenching transforms the face-centered cubic γ phase of disordered lattice into a face-centered tetragonal γ 1 phase of disordered lattice, or in the state of disordered lattice γ phase This is a process in which a state in which one- phase fine crystals are uniformly dispersed is obtained at room temperature to fix it.
[0026]
(3) After the rapid cooling of (1), cold working such as drawing or rolling at a working rate of 10% or more is performed.
(4) After the cold working of (3), the tempering treatment of (2) is added. This step is the internal strain caused in the step (3), to generate a texture suitable local strain and crystal hitting the change of gamma 1-phase, promotes improvement of squareness in result the magnetic hysteresis curve, Excellent magnet properties can be obtained. Of course, even if the processing rate is 10% or less, the effect is recognized, though not sufficiently.
Depending on the alloy composition, after casting or heating at a temperature of 700 ° C. or more and a melting point or less for 1 minute or more and 500 hours or less, a homogenization treatment is performed to form a γ-phase solid solution having an irregular lattice. / 100 ° C. / sec when cooled below the proper speed or time, by gamma 1-phase an appropriate amount of ordered lattice in the matrix phase of the gamma phase solid solution during cooling is transformed, the residual magnetic flux density of 2,000 Gauss As described above, the magnet characteristics having a coercive force of 200 Oe or more can be obtained.
[0027]
【Example】
Next, embodiments of the present invention will be described.
Example 1: Production and evaluation of an alloy of Sample No. 2 (composition Pt = 84%, Pd = 2.0%, Fe = remainder).
As raw materials, 99.99% pure electrolytic iron, 99.9% pure platinum and palladium were used. A raw material having a total weight of 30 g was melted by an arc melting method in argon gas to prepare a button-shaped casting base material, which was put into an alumina crucible and melted in a vacuum using a high-frequency induction melting furnace. It was poured into a mold having a 5 mm cylindrical hole. A length of 30 mm was cut out from the obtained round bar, subjected to heat treatment and cold working as shown in Table 1, and the magnet properties were measured.
[0028]
[Table 1]
Figure 2004035998
[0029]
Example 2: Production and evaluation of alloy No. 9 (composition Pt = 85%, Cr = 0.5%, Ti = 0.2%, Fe = remaining).
As raw materials, the electrolytic iron, platinum of Example 1, and chromium and titanium having a purity of about 99.9% were used. In the melting method, raw materials were directly melted using a high-frequency induction furnace, and hot water was poured into the same mold as in Example 1. The obtained round bar was subjected to various heat treatments and cold working shown in Table 2 to measure magnet properties.
[0030]
[Table 2]
Figure 2004035998
[0031]
The properties of typical alloys are as shown in Table 3, and all have excellent magnet properties. The rare earth element is composed of Sc, Y and a lanthanum group element, and the effect is the same. The case of Y is shown in Table 3.
[0032]
[Table 3]
Figure 2004035998
[0033]
【The invention's effect】
The alloy of the present invention is a magnet alloy having excellent magnetic properties having a residual magnetic flux density of 2,000 gauss or more and a coercive force of 200 oersted or more, and containing a Pt amount recognized as a noble metal product, jewelry articles, The present invention is suitable for medical devices, electromagnetic components utilizing conversion of electrical and mechanical energy, electromagnetic devices using the electromagnetic components, and the like.

Claims (12)

重量パーセントにて、Pt83〜87%および残部Feと少量の不純物とからなり、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金。A jewelry permanent magnet alloy comprising 83-87% by weight of Pt, the balance being Fe and a small amount of impurities, having a residual magnetic flux density of 2,000 gauss or more and a coercive force of 200 oersteds or more. 重量パーセントにて、主成分としてPt83〜87%と、副成分としてCo,Ni,Cu,Mn,Pd,Ag,Au,Cr,Mo,Wのそれぞれ5%以下、Al,Si,Ti,Zr,Hf,V,Nb,Ta,In,Ge,Sn,Re,Ru,Os,Rh,Ir,希土類元素のそれぞれ3%以下、CaおよびCaフッ素化合物のそれぞれ0.5%以下の1種または2種以上の合計0.0001〜10%以下および残部Feと少量の不純物とからなり、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金。In weight percent, 83 to 87% of Pt as a main component, 5% or less of each of Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, and W as subcomponents, Al, Si, Ti, Zr, One or two of Hf, V, Nb, Ta, In, Ge, Sn, Re, Ru, Os, Rh, Ir, and rare earth elements, each of which is 3% or less, and each of Ca and Ca fluorine compounds is 0.5% or less. A permanent magnet alloy for jewelry comprising a total of 0.0001 to 10% or less, a balance of Fe and a small amount of impurities, and has a residual magnetic flux density of 2,000 gauss or more and a coercive force of 200 oersted or more. 重量パーセントにて、Pt83〜87%および残部Feと少量の不純物とからなる合金を、700℃以上融点以下の温度において1分間以上500時間以下加熱して均質化処理した後100℃/時以上の速度で冷却し、ついで200℃〜1100℃の温度で1分間以上1000時間以下加熱後冷却することにより、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金の製造法。An alloy consisting of 83 to 87% by weight of Pt and the balance of Fe and a small amount of impurities is heated at a temperature of 700 ° C. or more and a melting point or less for 1 minute or more and 500 hours or less, and then homogenized to 100 ° C./hour or more. Jewelry characterized by having a residual magnetic flux density of at least 2,000 gauss and a coercive force of at least 200 Oe by cooling at a speed and then heating at a temperature of 200 ° C. to 1100 ° C. for 1 minute to 1000 hours and then cooling. Manufacturing method of permanent magnet alloy. 重量パーセントにて、Pt83〜87%および残部Feと少量の不純物とからなる合金を、700℃以上融点以下の温度において1分間以上500時間以下加熱して均質化処理した後100℃/時以上の速度で冷却し、ついで加工率10%以上の冷間加工を施し、これをさらに200℃〜1100℃の温度で1分間以上1000時間以下加熱後冷却することにより、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金の製造法。An alloy consisting of 83 to 87% by weight of Pt and the balance of Fe and a small amount of impurities is heated at a temperature of 700 ° C. or more and a melting point or less for 1 minute or more and 500 hours or less, and then homogenized to 100 ° C./hour or more. Cool at a speed, then perform cold working at a working ratio of 10% or more, further heat it at a temperature of 200 ° C. to 1100 ° C. for 1 minute or more and 1000 hours or less, and then cool to obtain a residual magnetic flux density of 2,000 gauss or more. And a method for producing a jewelry permanent magnet alloy having a coercive force of 200 Oe or more. 重量パーセントにて、Pt83〜87%および残部Feと少量の不純物とからなる合金を、鋳造後または700℃以上融点以下の温度において1分間以上500時間以下加熱して均質化処理した後、1℃/時以上100℃/秒以下の速度で冷却することにより、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金の製造法。An alloy consisting of 83 to 87% by weight of Pt and the balance of Fe and a small amount of impurities is subjected to homogenization treatment after casting or by heating at a temperature of 700 ° C. or more and a melting point of 1 minute or more and 500 hours or less. A method for producing a jewelry permanent magnet alloy, characterized by having a residual magnetic flux density of not less than 2,000 gauss and a coercive force of not less than 200 Oe by cooling at a rate of not less than / h and not more than 100 ° C / sec. 重量パーセントにて、主成分としてPt83〜87%と、副成分としてCo,Ni,Cu,Mn,Pd,Ag,Au,Cr,Mo,Wのそれぞれ5%以下、Al,Si,Ti,Zr,Hf,V,Nb,Ta,In,Ge,Sn,Re,Ru,Os,Rh,Ir,希土類元素のそれぞれ3%以下、CaおよびCaフッ素化合物のそれぞれ0.5%以下の1種または2種以上の合計0.0001〜10%以下および残部Feと少量の不純物とからなる合金を、700℃以上融点以下の温度において1分間以上500時間以下加熱して均質化処理した後100℃/時以上の速度で冷却し、ついで200℃〜1100℃の温度で1分間以上1000時間以下加熱後冷却することにより、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金の製造法。In weight percent, 83 to 87% of Pt as a main component, 5% or less of each of Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, and W as subcomponents, Al, Si, Ti, Zr, One or two of Hf, V, Nb, Ta, In, Ge, Sn, Re, Ru, Os, Rh, Ir, and rare earth elements, each of which is 3% or less, and each of Ca and Ca fluorine compounds is 0.5% or less. The alloy comprising the total of 0.0001 to 10% or less and the balance of Fe and a small amount of impurities is heated at a temperature of 700 ° C. or more and a melting point or less for 1 minute or more and 500 hours or less, and then homogenized, and then 100 ° C./hour or more. At a temperature of 200 ° C. to 1100 ° C. for 1 minute or more and 1000 hours or less, followed by cooling to obtain a residual magnetic flux density of 2,000 gauss or more and a coercive force of 200 Elst. Preparation of jewelery permanent magnet alloy characterized by having a higher de. 重量パーセントにて、主成分としてPt83〜87%と、副成分としてCo,Ni,Cu,Mn,Pd,Ag,Au,Cr,Mo,Wのそれぞれ5%以下、Al,Si,Ti,Zr,Hf,V,Nb,Ta,In,Ge,Sn,Re,Ru,Os,Rh,Ir,希土類元素のそれぞれ3%以下、CaおよびCaフッ素化合物のそれぞれ0.5%以下の1種または2種以上の合計0.0001〜10%以下および残部Feと少量の不純物とからなる合金を、700℃以上融点以下の温度において1分間以上500時間以下加熱して均質化処理した後100℃/時以上の速度で冷却し、ついで加工率10%以上の冷間加工を施し、これをさらに200℃〜1100℃の温度で1分間以上1000時間以下加熱後冷却することにより、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金の製造法。In weight percent, 83 to 87% of Pt as a main component, 5% or less of each of Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, and W as subcomponents, Al, Si, Ti, Zr, One or two of Hf, V, Nb, Ta, In, Ge, Sn, Re, Ru, Os, Rh, Ir, and rare earth elements, each of which is 3% or less, and each of Ca and Ca fluorine compounds is 0.5% or less. The alloy comprising the total of 0.0001 to 10% or less and the balance of Fe and a small amount of impurities is heated at a temperature of 700 ° C. or more and a melting point or less for 1 minute or more and 500 hours or less, and then homogenized, and then 100 ° C./hour or more. Then, cold working is performed at a working rate of 10% or more, and this is further heated at a temperature of 200 ° C. to 1100 ° C. for 1 minute to 1000 hours, and then cooled to obtain a residual magnetic flux density. The process of jewelery permanent magnet alloy characterized by having more than 000 gauss to and coercivity 200 oersteds. 重量パーセントにて、主成分としてPt83〜87%と、副成分としてCo,Ni,Cu,Mn,Pd,Ag,Au,Cr,Mo,Wのそれぞれ5%以下、Al,Si,Ti,Zr,Hf,V,Nb,Ta,In,Ge,Sn,Re,Ru,Os,Rh,Ir,希土類元素のそれぞれ3%以下、CaおよびCaフッ素化合物のそれぞれ0.5%以下の1種または2種以上の合計0.0001〜10%以下および残部Feと少量の不純物とからなる合金を、鋳造後または700℃以上融点以下の温度において1分間以上500時間以下加熱して均質固溶化処理した後、1℃/時以上100℃/秒以下の速度で冷却することにより、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金の製造法。In weight percent, 83 to 87% of Pt as a main component, 5% or less of each of Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, and W as subcomponents, Al, Si, Ti, Zr, One or two of Hf, V, Nb, Ta, In, Ge, Sn, Re, Ru, Os, Rh, Ir, and rare earth elements, each of which is 3% or less, and each of Ca and Ca fluorine compounds is 0.5% or less. After casting, or after heating the alloy consisting of 0.0001 to 10% or less and the balance of Fe and a small amount of impurities at a temperature of 700 ° C. or more and a melting point or less for 1 minute or more and 500 hours or less, a homogeneous solution treatment is performed, A permanent magnet for jewelry characterized by having a residual magnetic flux density of at least 2,000 gauss and a coercive force of at least 200 Oe by cooling at a rate of 1 ° C./hour to 100 ° C./second. The process of the alloy. 重量パーセントにて、Pt83〜87%および残部Feと少量の不純物とからなり、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上をすることを特徴とする宝飾用永久磁石合金よりなる医療用器具。Medical use comprising a permanent magnet alloy for jewelry, characterized by having a Pt of 83 to 87%, a balance of Fe and a small amount of impurities, and having a residual magnetic flux density of 2,000 gauss or more and a coercive force of 200 Oe or more. Appliances. 重量パーセントにて、主成分としてPt83〜87%と、副成分としてCo,Ni,Cu,Mn,Pd,Ag,Au,Cr,Mo,Wのそれぞれ5%以下、Al,Si,Ti,Zr,Hf,V,Nb,Ta,In,Ge,Sn,Re,Ru,Os,Rh,Ir,希土類元素のそれぞれ3%以下、CaおよびCaのフッ素化合物のそれぞれ0.5%以下の1種または2種以上の合計0.0001〜10%以下および残部Feと少量の不純物とからなり、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金よりなる医療用器具。In weight percent, 83 to 87% of Pt as a main component, 5% or less of each of Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, and W as subcomponents, Al, Si, Ti, Zr, Hf, V, Nb, Ta, In, Ge, Sn, Re, Ru, Os, Rh, Ir, 3% or less of each of rare earth elements, and Ca and a fluorine compound of 0.5% or less of each of fluorine compounds of Ca or 2 or more. A total of at least 0.0001 to 10% of the species, the balance being Fe and a small amount of impurities, and having a residual magnetic flux density of at least 2,000 gauss and a coercive force of at least 200 Oe, and comprising a jewelry permanent magnet alloy. Medical instruments. 重量パーセントにて、Pt83〜87%および残部Feと少量の不純物とからなり、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金よりなる電磁機器。An electromagnetic device comprising a permanent magnet alloy for jewelry, comprising 83 to 87% by weight of Pt, the balance being Fe and a small amount of impurities, having a residual magnetic flux density of 2,000 Gauss or more and a coercive force of 200 Oe or more. . 重量パーセントにて、主成分としてPt83〜87%と、副成分としてCo,Ni,Cu,Mn,Pd,Ag,Au,Cr,Mo,Wのそれぞれ5%以下、Al,Si,Ti,Zr,Hf,V,Nb,Ta,In,Ge,Sn,Re,Ru,Os,Rh,Ir,希土類元素のそれぞれ3%以下、CaおよびCaフッ素化合物のそれぞれ0.5%以下の1種または2種以上の合計0.0001〜10%以下および残部Feと少量の不純物とからなり、残留磁束密度2,000ガウス以上および保磁力200エルステッド以上を有することを特徴とする宝飾用永久磁石合金よりなる電磁機器。In weight percent, 83 to 87% of Pt as a main component, 5% or less of each of Co, Ni, Cu, Mn, Pd, Ag, Au, Cr, Mo, and W as subcomponents, Al, Si, Ti, Zr, One or two of Hf, V, Nb, Ta, In, Ge, Sn, Re, Ru, Os, Rh, Ir, and rare earth elements, each of which is 3% or less, and each of Ca and Ca fluorine compounds is 0.5% or less. A total of 0.0001 to 10% or less, the balance being Fe and a small amount of impurities, and having a residual magnetic flux density of 2,000 gauss or more and a coercive force of 200 oersted or more, an electromagnet made of a jewelry permanent magnet alloy. machine.
JP2002232126A 2002-07-05 2002-07-05 Permanent magnet alloy for jewelry and production method Pending JP2004035998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232126A JP2004035998A (en) 2002-07-05 2002-07-05 Permanent magnet alloy for jewelry and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232126A JP2004035998A (en) 2002-07-05 2002-07-05 Permanent magnet alloy for jewelry and production method

Publications (2)

Publication Number Publication Date
JP2004035998A true JP2004035998A (en) 2004-02-05
JP2004035998A5 JP2004035998A5 (en) 2005-11-10

Family

ID=31711787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232126A Pending JP2004035998A (en) 2002-07-05 2002-07-05 Permanent magnet alloy for jewelry and production method

Country Status (1)

Country Link
JP (1) JP2004035998A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084948A1 (en) * 2009-01-24 2010-07-29 国立大学法人徳島大学 Alloy for medical use and medical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084948A1 (en) * 2009-01-24 2010-07-29 国立大学法人徳島大学 Alloy for medical use and medical device
US8821566B2 (en) 2009-01-24 2014-09-02 The University Of Tokushima Alloy for medical use and medical device
JP5598922B2 (en) * 2009-01-24 2014-10-01 国立大学法人徳島大学 Medical alloys and medical devices

Similar Documents

Publication Publication Date Title
CN107532267B (en) Nanocrystalline magnetic alloy and heat treatment method thereof
JP2002541321A (en) Nickel-based metal material and method of manufacturing the same
TW200533767A (en) Ternary and multi-nary iron-based bulk glassy alloys and nanocrystalline alloys
US20110192508A1 (en) Magnetostrictive material and preparation method thereof
JPH0741891A (en) Wear resistant high permeability alloy, its production and magnetic recording and reproducing head
JP5059035B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
JP2710948B2 (en) Ultrafine crystalline Fe-based alloy with excellent corrosion resistance and method for producing the same
JP2001279357A (en) Magnetic shape memory alloy
JP5486050B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
JP2513679B2 (en) Ultra-high coercive force permanent magnet with large maximum energy product and method for manufacturing the same
JP3294029B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JP5787499B2 (en) Amorphous magnetic alloy, related articles and methods
JP4037104B2 (en) High corrosion resistance magnet alloy and manufacturing method
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
Sun et al. Thermal stability and magnetic properties of Co–Fe–Hf–Ti–Mo–B bulk metallic glass
JP2004035998A (en) Permanent magnet alloy for jewelry and production method
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
Gopalan et al. High saturation magnetization and microstructure in melt-spun Fe–P ribbons
JPH0768604B2 (en) Fe-based magnetic alloy
JP4217038B2 (en) Soft magnetic alloy
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPH08321415A (en) Permanent magnet, its manufacture and medical instrument
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
WO2023243533A1 (en) Fe-Mn ALLOY, HAIRSPRING FOR WATCH, AND METHOD FOR PRODUCING Fe-Mn ALLOY
KR100710613B1 (en) Fe-BASED NANO CRYSTALLINE ALLOY AND METHOD FOR MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120