JP2004035345A - Optical fiber preform heating furnace - Google Patents

Optical fiber preform heating furnace Download PDF

Info

Publication number
JP2004035345A
JP2004035345A JP2002196239A JP2002196239A JP2004035345A JP 2004035345 A JP2004035345 A JP 2004035345A JP 2002196239 A JP2002196239 A JP 2002196239A JP 2002196239 A JP2002196239 A JP 2002196239A JP 2004035345 A JP2004035345 A JP 2004035345A
Authority
JP
Japan
Prior art keywords
optical fiber
opening
fiber preform
heating furnace
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002196239A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamagishi
山岸 裕幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002196239A priority Critical patent/JP2004035345A/en
Publication of JP2004035345A publication Critical patent/JP2004035345A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01257Heating devices therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating furnace of an optical fiber preform that eliminates unnecessary excess in opening. <P>SOLUTION: This heating furnace is for heating a vertically supported optical fiber preform 1 and has opening and closing shutters 4 and 5, one installed at the upper opening 31 and the other at the lower opening. The shutters 4 and 5 are each comprised of a plurality of shutter plates 4A, 4B; 5A, 5B; 11 arranged so as to be one on top of the other in the axial direction or arranged so as to contact with each other at the same level in the axial direction. The opening areas of the openings are adjusted by shifting each of shutter plates 4A, 4B; 5A, 5B;11 in the radial direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は光ファイバ母材加熱炉、特にその上、下方の両開口部に開閉シャッタを設けた光ファイバ母材加熱炉に関するものである。
【0002】
【従来の技術】
図4について、光ファイバ母材1をその上端に取り付けたダミー棒2を介して加熱炉3内に吊持し、ヒータ3Aによって加熱しながら紡糸加工する工程を検討してみる。
【0003】
周知のように加熱炉3の内部には、不活性ガス、空気、あるいは酸素(カーボン使用の炉の場合は不可)などの清浄なガスを導入して炉内を陽圧化し、ゴミや不要なガスの侵入を防ぎ、消耗品の長寿命化を図ることが通常行われている。
【0004】
さて図4(a)は紡糸工程の開始時の状態を示すものであるが、このときは加熱炉3の上下の開口部はそれぞれ蓋体14,15によりほぼ完全に閉じられ、炉内部の温度低下も防止され、また加熱炉3内に導入循環させられる不活性ガス等がみだりに消耗することもない。
【0005】
しかしながら紡糸工程が進んでダミー棒2の部分が上方開口部にさしかかる同図(b)の状態においては、上部蓋体14の、先に光ファイバ母材1の本体部分を通過させた孔内径がダミー棒2の外径に比して大き過ぎ、このため生じる隙間eから炉内の熱気が逃げ、また不活性ガス等がムダに費消され、またさらに不要なガスが侵入する可能性もある。
【0006】
図5はこのような不都合を改善するための従来対策を示したもので、(a)は上部蓋体として、内径が光ファイバ母材1を十分収容できる大きさで、また軸方向にも加工開始時の炉上部に突出するその長さをカバーするだけの高さを有し、上端部にダミー棒2の通るだけの孔のある中空円柱状の蓋体16を示した。
【0007】
また図5(b)は光ファイバ母材1と同径のダミー棒2Aを接続する対策を示すものであるが、これではなるほど加工が進行して光ファイバ母材1の部分が上部蓋体14の通過孔から下方に外れても、代わりに同径のダミー棒2Aが取って代わることになるから隙間が生じない理屈である。
【0008】
【発明が解決しようとする課題】
しかし前者の対策では加熱炉3内の容積が増加することになるので、加熱温度保持のための費用や不活性ガス等の費用が増加し、またダミー棒2の長さも長くする必要があって得策ではなく、また後者の対策ではダミー棒2Aが大型になるための費用が非常に嵩み、またこれを光ファイバ母材1に接続する際の作業時間が長くなり過ぎる欠点がある。
【0009】
【課題を解決するための手段】
この発明は上述の課題をすべて解決するためになされたものであって、請求項1の発明によるその解決手段は、光ファイバ母材を鉛直に支持した状態で加熱する加熱炉であって、その上方開口部および下方開口部にそれぞれ開閉シャッタが設けられ、前記開閉シャッタは軸方向に重なるか、あるいは軸方向に同一高さで互いに突き合わせ状態に配設される複数のシャッタ板から成り、前記各シャッタ板が半径方向に移動することによって前記開口部の開口面積が調節できるように構成されていることを特徴とする光ファイバ母材加熱炉である。
【0010】
また請求項2の発明によるその解決手段は、前記開閉シャッタのいずれか一方または両方が軸方向に離隔して複数個設けられていることを特徴とする請求項1記載の光ファイバ母材加熱炉である。
【0011】
また請求項3の発明によるその解決手段は、前記上方開口部の直ぐ上方の位置に外径測定器が設けられ、前記各シャッタ板の移動量が前記外径測定器の時々刻々の測定結果に従ってか、あるいはあらかじめ測定されて知られている前記光ファイバ母材の形状数値に従ってあらかじめ作成入力されている移動量指示プログラムに従って移動させられることを特徴とする、請求項1または請求項2記載の光ファイバ母材加熱炉である。
【0012】
【発明の実施の形態】
図1および図2を参照してこの発明の一実施例を説明する。加熱炉3の上方開口部31には開閉シャッタ4が、下方開口部には開閉シャッタ5が設けられる。また上部の開閉シャッタ4の上方には、軸方向に移動してそこを通過する光ファイバ母材1またはダミー棒2の外径を測定する外径測定器6が配設される。
【0013】
開閉シャッタ4も同5も同一の構造なのでこれを図2についてまとめて説明する。加熱炉3の中心軸線YYに関して対称な等角的位置に、複数の、図示の例では2枚のシャッタ板4A,4Bが軸方向に重なるか、あるいは軸方向に同一高さで互いに突き合わせ状態に配設される。
【0014】
シャッタ板4A,4Bの対向端部41は、もし両シャッタ板が重なりあうように構成されている場合は開口部を最大の開口状態にするようにほぼ円形に区画する円弧状に形成され、両シャッタ板4A,4Bが相互に近接移動して、その開口が最大状態から順次縮小される。
【0015】
またその両シャッタ板4A,4Bが突き合わせ状態に構成されているときは、両者がもっとも近接した状態で対向端部41が最小開口のほぼ円形を区画し、両シャッタ板4A,4Bが互いに離隔するにつれて開口面積が大きくなる。
【0016】
以上はもっとも単純な2枚の場合を説明したもので、枚数を増やし、また補助的な遮蔽板を添えることで開口部に隙間ができることを防止できることは当然である。例えば軸方向にこのように半径方向に近接・離隔して開閉するシャッタを複数組設置し、それらの開閉作動の方向を角度的にずらして積み上げる形状とすることによって、閉状態のときの隙間を全体として小さくすることができる。
【0017】
このようなシャッタ板4A,4Bを中心軸線YYに関して半径方向に移動させる機構は、図示のように駆動モータM1(開閉シャッタ5についてはM2、これはサーボモータが最適)で回転されるピニオン7によってラック8を進退させる機構でもいいし、また図示していないが流体圧シリンダ等でもよい。
【0018】
なお開閉シャッタ4および5の上述の機構全体はフレームFの上にまとめられて、具体的機構は図示してはいないがラック8による調整方向と異なる角度方向の調整も可能となるように構成してもよい。
【0019】
つぎに加熱炉3の上下の開口部の開口程度の調節制御について説明する。光ファイバ母材1は鉛直方向に上から下に移動するので、上部開閉シャッタ4のすぐ上方に近接して外径測定器6が設けられ、これによってここを通過する光ファイバ母材1の通過部分の外径が測定される。
【0020】
しかしてその測定データに従って、その測定部分が直後に通過する上方開口部31の、またある時間経過後に通過する下方開口部の開口程度を制御する。制御の仕方は、時々刻々の外径測定データによるリアルタイムのフィードバック制御でよい。
【0021】
あるいは使用する光ファイバ母材1のあらかじめ測定され、知られている形状数値、つまり例えば端部外径が何ミリメートルで、そこから軸方向に何ミリ上がった位置の外径は何ミリメートルだというような情報に基づいてあらかじめ制御プログラムを組んでおき、このプログラムにしたがって上下の開口部の開口の程度を調節するようにすることも容易である。
【0022】
場合によっては、光ファイバ母材1の中心軸線が加熱炉3の中心軸線YYに一致しないときも起こりえる。外径測定器6が測定するエッジデータから光ファイバ母材1の中心軸線位置が割り出せるから、この場合はまず心合わせの作業をするが、これは図2に示した開閉シャッタ4,5の機構全体を含むフレームFを所要の方向に所要量だけ移動させればよい。
【0023】
図3に示したものはカメラの絞り機構に使用されるもので、これによれば目的の開口をかなり精密に円形に保ったままその面積の大小の調節ができる。周知の機構なので簡単に説明すれば、円盤9の上にほぼ同径の円板10が中心Oの周りに同心的に相対回転可能(9Aはこの相対回転させるための把手)に位置し、最大開口円周を符号32で示すとすれば、円周32の直径と円板10の外径のちょうど中間の直径の円周線10Aの上の点Pの周りに回動可能に多数のシャッタ板11が重なり状態に設けられる。
【0024】
シャッタ板11は円板1Oの外周と円周32とをそれぞれ外周および内周とする幅bの円輪を所定の中心角分だけ切り取った形をしており、その切り取る中心角は、(b)図においてその内周線を中心Oを通る位置に置いたとき、P点に回動可能に取り付けられる端部11Aに対して反対側端部11Bがちょうど円板10の外周線位置にくるような中心角である。しかしてこの端部11Bは円盤9に取り付けられる。
【0025】
以上の構成によって、円盤9を把手9Aを持って円板10に相対的に反時計回りに止まるまで回転させれば、図3(a)に示す最大開口状態まで開くことになり、逆向きに止まるまで回せば、開口面積がゼロのほぼ完全に閉じた状態にすることができる。
【0026】
図示してはいないが、本発明の別の実施例として上下の開閉シャッタを軸方向に重ねてそれぞれ複数個設けたものがある。あるいは上方開口部31のみ複数個とし、下方開口部には単一の開閉シャッタとするなどでもいい。
【0027】
しかしてこれらの開閉シャッタの形式を、すべて同一機構のものとしても、あるいは一つをたとえば図2に示した機構、他のものは図3に示した機構というように混用してもいい。
【0028】
【発明の効果】
この発明によれば、加熱工程中に光ファイバ母材の近傍に不要な外気が侵入することがないから製品の光ファイバにゴミなどが付着することがなく伝送特性の向上に大いに効果がある。
また加熱炉内からの対流、放射による温度低下が防止され、使用する不活性ガス等の流出消耗が少なくなるから、紡糸などの加熱工程のランニングコストを削減することができる利点もある。
【0029】
不要な外気について具体的に言えば、カーボン炉の場合は酸素であってこの酸素の侵入によって炉本体や部品が酸化して損耗する事態が防止され、またジルコニア炉の場合は窒素の侵入を防ぎ、炉や部品の還元反応による劣化を防止できる利点がある。
【図面の簡単な説明】
【図1】本発明の一実施例装置を示す図式的に描いた簡略側断面図である。
【図2】開閉シャッタのシャッタ板を駆動する機構の一例を示す斜視図である。
【図3】開閉シャッタのシャッタ板を駆動する別の機構例を示す平面図である。
【図4】従来の加熱炉の欠点を紡糸工程について説明するための側断面図である。
【図5】その欠点に対する従来対策を説明するための簡略側断面図である。
【符号の説明】
1  光ファイバ母材
2,2A ダミー棒
3  加熱炉
31 上方開口部
4,5 開閉シャッタ
4A,5A,11 シャッタ板
6  外径測定器
7  ピニオン
8  ラック
9  円盤
10 円板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical fiber preform heating furnace, and more particularly to an optical fiber preform heating furnace having open / close shutters at both upper and lower openings.
[0002]
[Prior art]
Referring to FIG. 4, a process of suspending the optical fiber preform 1 in the heating furnace 3 via the dummy bar 2 attached to the upper end thereof and performing the spinning process while heating with the heater 3A will be examined.
[0003]
As is well known, a clean gas such as an inert gas, air, or oxygen (not possible in the case of a furnace using carbon) is introduced into the heating furnace 3 to make the inside of the furnace positive pressure, and dust and unnecessary It is common practice to prevent gas from entering and extend the life of consumables.
[0004]
FIG. 4 (a) shows the state at the start of the spinning process. At this time, the upper and lower openings of the heating furnace 3 are almost completely closed by lids 14 and 15, respectively, and the temperature inside the furnace is reduced. Also, the inert gas and the like introduced and circulated into the heating furnace 3 are not consumed unnecessarily.
[0005]
However, in the state shown in FIG. 2B, where the spinning process proceeds and the portion of the dummy rod 2 reaches the upper opening, the inner diameter of the hole of the upper lid 14 that has passed through the main body portion of the optical fiber preform 1 earlier is smaller than the inner diameter of the hole. The outer diameter of the dummy rod 2 is too large, so that the hot air inside the furnace escapes from the gap e that is generated, the inert gas or the like is wasted, and there is a possibility that an unnecessary gas may enter.
[0006]
FIGS. 5A and 5B show a conventional countermeasure for remedying such inconvenience. FIG. 5A shows an upper lid having an inner diameter large enough to accommodate the optical fiber preform 1 and being machined in the axial direction. A hollow cylindrical lid 16 having a height sufficient to cover its length protruding into the upper part of the furnace at the start and having a hole at the upper end through which the dummy rod 2 can pass is shown.
[0007]
FIG. 5B shows a countermeasure for connecting the dummy rod 2A having the same diameter as the optical fiber preform 1. In this case, the processing proceeds as much as possible, and the portion of the optical fiber preform 1 is moved to the upper cover 14A. Therefore, even if the dummy rod 2A is displaced downward from the passage hole, the dummy rod 2A having the same diameter is replaced instead, so that there is no gap.
[0008]
[Problems to be solved by the invention]
However, in the former measure, the volume in the heating furnace 3 increases, so that the cost for maintaining the heating temperature and the cost of inert gas and the like increase, and the length of the dummy rod 2 also needs to be increased. This is not an advantageous measure, and the latter measure has the drawback that the cost for increasing the size of the dummy rod 2A is extremely large, and that the work time for connecting the dummy rod 2A to the optical fiber preform 1 becomes too long.
[0009]
[Means for Solving the Problems]
The present invention has been made to solve all the above-mentioned problems, and a solution according to the invention of claim 1 is a heating furnace that heats an optical fiber preform in a vertically supported state. Opening / closing shutters are respectively provided at the upper opening and the lower opening, and the opening / closing shutters are formed of a plurality of shutter plates that are arranged in an axially overlapping or abutting state at the same height in the axial direction. An optical fiber preform heating furnace characterized in that an opening area of the opening can be adjusted by moving a shutter plate in a radial direction.
[0010]
The optical fiber preform heating furnace according to claim 1, wherein the solution according to the invention of claim 2 is such that one or both of the opening and closing shutters are provided in a plurality in the axial direction. It is.
[0011]
According to another aspect of the present invention, an outer diameter measuring device is provided just above the upper opening, and the amount of movement of each of the shutter plates is determined according to the momentarily measured result of the outer diameter measuring device. 3. The light according to claim 1, wherein the optical fiber is moved in accordance with a movement amount instruction program which is prepared and input in advance in accordance with a numerical value of the shape of the optical fiber preform which is measured and known in advance. This is a fiber preform heating furnace.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. An opening / closing shutter 4 is provided at an upper opening 31 of the heating furnace 3, and an opening / closing shutter 5 is provided at a lower opening. An outer diameter measuring device 6 for measuring the outer diameter of the optical fiber preform 1 or the dummy rod 2 moving in the axial direction and passing therethrough is provided above the upper opening / closing shutter 4.
[0013]
Since the open / close shutters 4 and 5 have the same structure, this will be described with reference to FIG. At a symmetrical position symmetrical with respect to the center axis YY of the heating furnace 3, a plurality of, in the illustrated example, two shutter plates 4 </ b> A and 4 </ b> B overlap in the axial direction or abut against each other at the same height in the axial direction. Will be arranged.
[0014]
The opposing ends 41 of the shutter plates 4A and 4B are formed in an arc shape that partitions the opening into a substantially circular shape so that the opening is in the maximum open state if the two shutter plates are configured to overlap each other. The shutter plates 4A and 4B move close to each other, and their openings are sequentially reduced from the maximum state.
[0015]
When the shutter plates 4A and 4B are configured to abut each other, the opposing end 41 defines a substantially circular shape having a minimum opening when the shutter plates 4A and 4B are closest to each other, and the shutter plates 4A and 4B are separated from each other. As the opening area increases, the opening area increases.
[0016]
The above description is for the simplest case of two sheets, and it is natural that a gap can be prevented from being formed in the opening by increasing the number of sheets and adding an auxiliary shielding plate. For example, by installing a plurality of shutters that open and close in the axial direction in such a manner as to be close to and away from each other in the radial direction, and by stacking the shutters in a direction in which the opening and closing operations are angularly shifted, the gap in the closed state can be reduced. The overall size can be reduced.
[0017]
The mechanism for moving the shutter plates 4A and 4B in the radial direction with respect to the center axis YY is provided by a pinion 7 rotated by a drive motor M1 (M2 for the open / close shutter 5, which is optimally a servo motor) as shown in the figure. A mechanism for moving the rack 8 forward and backward may be used, and a fluid pressure cylinder or the like (not shown) may be used.
[0018]
The whole mechanism of the opening / closing shutters 4 and 5 is integrated on the frame F, and a specific mechanism (not shown) is configured to enable adjustment in an angle direction different from the adjustment direction by the rack 8. You may.
[0019]
Next, control for adjusting the degree of opening of the upper and lower openings of the heating furnace 3 will be described. Since the optical fiber preform 1 moves vertically from top to bottom, an outer diameter measuring device 6 is provided immediately above the upper opening / closing shutter 4 so that the optical fiber preform 1 passes therethrough. The outer diameter of the part is measured.
[0020]
According to the measurement data, the degree of opening of the upper opening 31 through which the measurement portion passes immediately after and the lower opening through which the measurement portion passes after a certain period of time is controlled. The control method may be real-time feedback control based on the outer diameter measurement data every moment.
[0021]
Alternatively, a previously measured and known shape numerical value of the optical fiber preform 1 to be used, that is, for example, how many millimeters the outer diameter of the end portion is, and how many millimeters the outer diameter at the position where it is raised in the axial direction by how many millimeters. It is also easy to prepare a control program in advance based on such information and adjust the degree of opening of the upper and lower openings according to the program.
[0022]
In some cases, the center axis of the optical fiber preform 1 may not coincide with the center axis YY of the heating furnace 3. Since the center axis position of the optical fiber preform 1 can be determined from the edge data measured by the outer diameter measuring device 6, the centering operation is first performed in this case. This is performed by the mechanism of the open / close shutters 4, 5 shown in FIG. What is necessary is just to move the frame F including the whole in a required direction by a required amount.
[0023]
The one shown in FIG. 3 is used for a diaphragm mechanism of a camera, and according to this, the size of the area can be adjusted while keeping the target opening in a very precise circular shape. Since the mechanism is a well-known mechanism, a disk 10 having substantially the same diameter can be relatively concentrically rotated on the disk 9 around the center O (9A is a handle for the relative rotation). Assuming that the opening circumference is indicated by reference numeral 32, a large number of shutter plates are rotatable around a point P on a circumferential line 10A having a diameter exactly intermediate the diameter of the circumference 32 and the outer diameter of the disk 10. 11 are provided in an overlapping state.
[0024]
The shutter plate 11 has a shape obtained by cutting a circle having a width b having the outer circumference and the circumference 32 of the disk 1O as the outer circumference and the inner circumference, respectively, by a predetermined center angle. In the drawing, when the inner peripheral line is placed at a position passing through the center O, the end 11B opposite to the end 11A rotatably attached to the point P is exactly at the position of the outer peripheral line of the disk 10. Is the central angle. The end 11B of the lever is attached to the disk 9.
[0025]
With the above configuration, if the disc 9 is rotated counterclockwise relative to the disc 10 with the handle 9A, the disc 9 is opened to the maximum opening state shown in FIG. If it is turned until it stops, it can be brought into a nearly completely closed state with an opening area of zero.
[0026]
Although not shown, there is another embodiment of the present invention in which a plurality of upper and lower opening and closing shutters are provided so as to be overlapped in the axial direction. Alternatively, a plurality of upper openings 31 may be provided, and a single opening / closing shutter may be provided in the lower opening.
[0027]
The types of these opening / closing shutters may be all the same, or one of them may be used as the mechanism shown in FIG. 2 and the other as the mechanism shown in FIG.
[0028]
【The invention's effect】
According to the present invention, unnecessary outside air does not enter the vicinity of the optical fiber preform during the heating step, so that dust and the like do not adhere to the optical fiber of the product, which is greatly effective in improving transmission characteristics.
In addition, there is an advantage that running temperature of a heating process such as spinning can be reduced because temperature reduction due to convection and radiation from the inside of the heating furnace is prevented, and consumption of an inert gas or the like to be used is reduced.
[0029]
Specifically, unnecessary external air is oxygen in the case of a carbon furnace, and the intrusion of this oxygen prevents the furnace body and parts from being oxidized and worn, and the zirconia furnace prevents nitrogen from entering. In addition, there is an advantage that deterioration of the furnace and parts due to the reduction reaction can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic side sectional view schematically showing an apparatus according to an embodiment of the present invention.
FIG. 2 is a perspective view showing an example of a mechanism for driving a shutter plate of an opening / closing shutter.
FIG. 3 is a plan view showing another example of a mechanism for driving a shutter plate of an opening / closing shutter.
FIG. 4 is a side sectional view for explaining a drawback of a conventional heating furnace in a spinning process.
FIG. 5 is a simplified side sectional view for explaining a conventional measure against the drawback.
[Explanation of symbols]
Reference Signs List 1 optical fiber preform 2, 2A dummy rod 3 heating furnace 31 upper opening 4, 5 opening / closing shutter 4A, 5A, 11 shutter plate 6 outer diameter measuring instrument 7 pinion 8 rack 9 disk 10 disk

Claims (3)

光ファイバ母材(1)を鉛直に支持した状態で加熱する加熱炉であって、その上方開口部(31)および下方開口部にそれぞれ開閉シャッタ(4,5)が設けられ、前記開閉シャッタ(4,5)は、軸方向に重なるか、あるいは軸方向に同一高さで互いに突き合わせ状態に配設される複数のシャッタ板(4A,4B;5A,5B;11)から成り、前記各シャッタ板(4A,4B;5A,5B;11)が半径方向に移動することによって前記開口部の開口面積が調節できるように構成されていることを特徴とする光ファイバ母材加熱炉。A heating furnace for heating an optical fiber preform (1) in a vertically supported state, wherein open / close shutters (4, 5) are provided at an upper opening (31) and a lower opening, respectively. Each of the shutter plates (4, 5) comprises a plurality of shutter plates (4A, 4B; 5A, 5B; 11) which are arranged in the axial direction or arranged at the same height in the axial direction so as to abut against each other. (4A, 4B; 5A, 5B; 11) is configured so that the opening area of the opening can be adjusted by moving in the radial direction. 前記開閉シャッタ(4,5)のいずれか一方または両方が軸方向に離隔して複数個設けられていることを特徴とする請求項1記載の光ファイバ母材加熱炉。2. An optical fiber preform heating furnace according to claim 1, wherein one or both of said open / close shutters (4, 5) are provided in a plurality in the axial direction. 前記上方開口部(31)の直ぐ上方の位置に外径測定器(6)が設けられ、前記各シャッタ板(4A,4B;5A,5B;11)の移動量が前記外径測定器(6)の時々刻々の測定結果に従ってか、あるいはあらかじめ測定されて知られている前記光ファイバ母材(1)の形状数値に従ってあらかじめ作成入力されている移動量指示プログラムに従って移動させられることを特徴とする、請求項1または請求項2記載の光ファイバ母材加熱炉。An outer diameter measuring device (6) is provided immediately above the upper opening (31), and the amount of movement of each of the shutter plates (4A, 4B; 5A, 5B; 11) is measured by the outer diameter measuring device (6). The optical fiber preform (1) is moved according to a momentary measurement result or according to a movement amount instruction program previously created and input according to the shape numerical value of the optical fiber preform (1) measured and known in advance. The optical fiber preform heating furnace according to claim 1 or claim 2.
JP2002196239A 2002-07-04 2002-07-04 Optical fiber preform heating furnace Pending JP2004035345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196239A JP2004035345A (en) 2002-07-04 2002-07-04 Optical fiber preform heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196239A JP2004035345A (en) 2002-07-04 2002-07-04 Optical fiber preform heating furnace

Publications (1)

Publication Number Publication Date
JP2004035345A true JP2004035345A (en) 2004-02-05

Family

ID=31704389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196239A Pending JP2004035345A (en) 2002-07-04 2002-07-04 Optical fiber preform heating furnace

Country Status (1)

Country Link
JP (1) JP2004035345A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296298C (en) * 2004-06-18 2007-01-24 浙江富春江罗依尔光纤制造有限公司 Automatic blanking device
JP2019070774A (en) * 2017-10-11 2019-05-09 住友電気工業株式会社 Apparatus for manufacturing optical fiber and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296298C (en) * 2004-06-18 2007-01-24 浙江富春江罗依尔光纤制造有限公司 Automatic blanking device
JP2019070774A (en) * 2017-10-11 2019-05-09 住友電気工業株式会社 Apparatus for manufacturing optical fiber and method for manufacturing the same
JP7035439B2 (en) 2017-10-11 2022-03-15 住友電気工業株式会社 Optical fiber manufacturing equipment and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2004005848A5 (en)
JP2004035345A (en) Optical fiber preform heating furnace
JP2005298211A (en) Guide device having at least one guide roller for guiding strip material to strip material treatment apparatus
JP2007035237A (en) Optical disk recording control method and optical disk recording control apparatus
JP2000126888A (en) Laser beam machine
JP5539567B2 (en) Image heating apparatus and image forming apparatus
JPH10202964A (en) Color thermal printing method and printer
JP4151747B2 (en) Magnetic recording apparatus and magnetic recording head drive mechanism
JP2024003990A (en) Image forming apparatus
JPS61146576A (en) Line thermal transfer recorder
JP5759757B2 (en) Roller device
JPS60227066A (en) Opening area adjusting device
EP3888586B1 (en) Device for separating a deep-drawn jaw-spanning dental apparatus of thermoform film and method of use
JP3945808B2 (en) Automatic bending correction method and correction device for workpiece
JP6999477B2 (en) Light intensity control device
JP6554320B2 (en) Fixing apparatus and image forming apparatus
JPH01207727A (en) Focusing device for zoom lens camera
JP4763243B2 (en) Image forming apparatus with simulated drum support
JP2013004142A (en) Method for manufacturing magnetic recording medium, and reader for reading product information on magnetic recording medium
JP2005074608A (en) Work cutting method and device
JP4774364B2 (en) Optical disc manufacturing apparatus and manufacturing method thereof
JP4480376B2 (en) Recording device
JPH11271243A (en) X-ray analyzer
JP2008132684A (en) Thermal printer
JP2006147098A (en) Optical disk and optical disk apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040407

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20061019

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A02 Decision of refusal

Effective date: 20070305

Free format text: JAPANESE INTERMEDIATE CODE: A02