JP2004035328A - Reforming device - Google Patents

Reforming device Download PDF

Info

Publication number
JP2004035328A
JP2004035328A JP2002194940A JP2002194940A JP2004035328A JP 2004035328 A JP2004035328 A JP 2004035328A JP 2002194940 A JP2002194940 A JP 2002194940A JP 2002194940 A JP2002194940 A JP 2002194940A JP 2004035328 A JP2004035328 A JP 2004035328A
Authority
JP
Japan
Prior art keywords
transfer plate
heat transfer
chamber
reforming
deformation preventing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002194940A
Other languages
Japanese (ja)
Other versions
JP4183448B2 (en
Inventor
Satoshi Ibe
伊部 聰
Susumu Takami
高見 晋
Norihisa Kamiya
神家 規寿
Masaaki Tatsumi
辰己 雅昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002194940A priority Critical patent/JP4183448B2/en
Publication of JP2004035328A publication Critical patent/JP2004035328A/en
Application granted granted Critical
Publication of JP4183448B2 publication Critical patent/JP4183448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reforming device which can enhance its durability while reducing cost and shortening a starting time. <P>SOLUTION: In this reforming device, a reforming chamber 3 into which a reforming catalyst 3c is charged is installed at one side of a heat transfer plate 40 whose edge is fixed and at the other side, there is provided a heating chamber 4 for heating the reforming chamber 3 through the heat transfer plate 40 by the flow of a heating fluid. A plurality of preventive bodies 42 are provided for preventing the heat transfer plate 40 from deforming so as to swell to the side of the heating chamber 4 by pushing or pulling. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、周縁部が固定された伝熱板の一側面側に、改質触媒が装入された改質室が設けられ、前記伝熱板の他側面側に、加熱用流体が通流して前記改質室を前記伝熱板を介して加熱する加熱室が設けられた改質装置に関する。
【0002】
【従来の技術】
かかる改質装置は、バーナの燃焼ガス等の加熱用流体を加熱室に通流させて、伝熱板を介して改質室内の改質触媒を加熱する状態で、改質室に、改質処理用の水蒸気を混合させた炭化水素系又はアルコール系の原燃料を供給して、原燃料を改質処理することにより、水素含有ガスを得るものであり、例えば、燃料電池にて発電反応用として用いられる燃料ガスを生成するために用いられる。通常、改質触媒は粒状に構成され、多数の粒状の改質触媒が改質室内に装入されることになる。
【0003】
従来の改質装置は、図9に示すように、単に、平板状の伝熱板40を周縁部を固定して、改質室3と加熱室4とを仕切るように設けて構成していた。
ちなみに、図9に示す従来の改質装置では、改質室3は、皿状の室形成部材41の周縁部を伝熱板40の一側面側に溶接接続して構成し、加熱室4は、皿状の室形成部材41の周縁部を伝熱板40の他側面側に溶接接続して構成し、加熱室4内に、その加熱室4内にてガス燃料を燃焼させるガスバーナ4bを設けて、そのガスバーナ4bの燃焼ガスを加熱用流体として加熱室4内に通流させるようになっている。
【0004】
【発明が解決しようとする課題】
ところで、かかる改質装置においては、改質触媒を伝熱板を介して効率良く加熱するようにするのが好ましいことから、通常、改質装置は、伝熱板が縦向きとなる姿勢(以下、立ち姿勢と略記する場合がある)や、伝熱板が改質室の底部となる姿勢(以下、伝熱板底部姿勢と略記する場合がある)にて設けて、改質触媒を伝熱板に接触させるようにする。ちなみに、改質装置を立ち姿勢で設ける場合には、改質室内においては横断面方向に改質触媒が充満した状態となっているので、改質触媒を上下方向に通過するように原燃料を流して、供給される原燃料をもれなく改質触媒中を通過させるようにして、原燃料を改質処理する改質処理率を高くするようにしている。
そして、改質装置を上述のように立ち姿勢や伝熱板底部姿勢で配置した場合には、伝熱板は、その周縁部が固定され且つ改質触媒により加熱室側に向く荷重が印加される状態で、加熱されることになる。
【0005】
しかしながら、従来の改質装置では、立ち姿勢や伝熱板底部姿勢で配置した場合には、運転中は、伝熱板40が加熱されて熱膨張すると、伝熱板40は、改質触媒3cによって加熱室側に向けて印加される荷重により、伝熱板40は、加熱室側に膨出するように変形し易く、又、運転が停止されて伝熱板40が冷却されても、伝熱板40には、改質触媒3cにより加熱室側に向けて荷重が印加されていることから、伝熱板40は元の形状に戻り難いことから、伝熱板40は、加熱室側に膨出するように変形したままになり易く、運転経過と共に、伝熱板40の加熱室側への膨出変形量が大きくなる。ちなみに、図9にて、改質装置を立ち姿勢で設置した場合において、伝熱板40が加熱室側に膨出変形した状態を二点鎖線にて示す。
【0006】
そして、伝熱板が加熱室側に膨出するように変形すると、改質室の容積が増大することから、改質室内における改質触媒の装入状態が変化するため、原燃料を所望通りに改質処理し難くなる。例えば、改質装置を立ち姿勢で設けて、改質触媒を上下方向に通過するように原燃料を流す場合は、伝熱板が加熱室側に膨出するように変形すると、改質触媒が沈んで、改質触媒の装入高さが低くなることから、原燃料が改質触媒を通過する距離が短くなり、原燃料を所望通りに改質処理し難くなる。
従って、従来の改質装置では、耐久性が短いという問題があった。
【0007】
ちなみに、伝熱板を加熱室側に膨出変形し難くするために、伝熱板の厚さを厚くして伝熱板の強度を強くすることが考えられる。しかしながら、伝熱板の厚さを厚くすると、材料費が高くなると共に、溶接等の加工費が高くなることから、改質装置の価格が高くなり、又、伝熱板の熱容量が大きくなることから、起動時間が長くなるという不具合が生じる。
【0008】
本発明は、かかる実情に鑑みてなされたものであり、その目的は、低廉化及び起動時間の短縮化を図りながらも、耐久性を向上し得る改質装置を提供することにある。
【0009】
【課題を解決するための手段】
〔請求項1記載の発明〕
請求項1に記載の改質装置は、周縁部が固定された伝熱板の一側面側に、改質触媒が装入された改質室が設けられ、前記伝熱板の他側面側に、加熱用流体が通流して前記改質室を前記伝熱板を介して加熱する加熱室が設けられたものであって、
前記伝熱板が前記加熱室側に膨出するように変形するのを突っ張り又は引張りにて防止する伝熱板変形防止体が設けられている点を特徴とする。
即ち、伝熱板が加熱されて、加熱室側に膨出するように変形しようとしても、伝熱板変形防止体による突っ張り又は引っ張りにより、伝熱板の加熱室側への膨出変形が防止される。
そこで、改質装置を立ち姿勢や伝熱板底部姿勢にて配置することにより、改質触媒により伝熱板に対して加熱室側に向けて加重が印加される状態となって、伝熱板が加熱室側に膨出変形し易い状態となっても、伝熱板変形防止体による突っ張り又は引張りにより、伝熱板の加熱室側への膨出変形を防止することができることから、伝熱板の厚さを薄くすることが可能となる。
つまり、伝熱板の厚さを薄くしながらも、伝熱板の加熱室側への膨出変形を防止することが可能となるのである。
そして、伝熱板の厚さを薄くすることが可能となることにより、材料費の低廉化及び溶接等の加工費の低廉化を図ることができることから、改質装置の低廉化を図ることができ、又、伝熱板の熱容量を小さくすることできることから、起動時間の短縮化を図ることができる。
又、伝熱板の加熱室側への膨出変形を防止することができることから、改質室内における改質触媒の装入状態を初期の状態から変化し難くして、原燃料を所期通りに改質処理することが可能となり、改質装置の耐久性の向上を図ることができる。
要するに、低廉化及び起動時間の短縮化を図りながらも、耐久性を向上し得る改質装置を提供することができるようになった。
【0010】
〔請求項2記載の発明〕
請求項2に記載の改質装置は、請求項1において、前記改質室が、皿状の改質室形成部材の周縁部を前記伝熱板に固着して構成され、
前記伝熱板変形防止体が、前記改質室形成部材における前記伝熱板に対向する部分を支えにして、引張りにて前記伝熱板の変形を防止するように前記改質室内に設けられている点を特徴とする。
即ち、伝熱板が加熱されて、加熱室側に膨出するように変形しようとしても、改質室形成部材における伝熱板に対向する部分を支えにした伝熱板変形防止体の引張りにより、伝熱板の加熱室側への膨出変形が防止される。
そして、改質室形成部材における伝熱板に対向する部分を支えにした引張りにより、伝熱板の加熱室側への膨出変形を防止するように、伝熱板変形防止体を設けるにしても、改質室が皿状の改質室形成部材の周縁部を伝熱板に固着して構成されて、伝熱板にて改質室の一側面部を形成するようにしてあることから、伝熱板変形防止体を簡素な構造にて設けることが可能となり、もって、伝熱板変形防止体を設けるためのコストを低減することができて、改質装置の低廉化を一層図ることができる。
又、伝熱板変形防止体が改質室に設けられていることから、伝熱板変形防止体を改質触媒中に埋没する状態で設けることが可能となる。そして、そのように伝熱板変形防止体を改質触媒中に埋没する状態で設けることにより、伝熱板変形防止体を通じて、伝熱板から改質触媒へ熱を伝導させることができるので、改質触媒の加熱温度分布を小さくすることが可能となり、もって、適切に改質処理できるようにしながら、改質触媒を加熱するのにかかわるエネルギー消費量を少なくすることができて、ランニングコストの低廉化が可能となる。
従って、改質装置の低廉化を更に図りながら、ランニングコストの低廉化をも図ることができるようになった。
【0011】
〔請求項3記載の発明〕
請求項3に記載の改質装置は、請求項1において、前記加熱室が、皿状の加熱室形成部材の周縁部を前記伝熱板に固着して構成され、
前記伝熱板変形防止体が、前記加熱室形成部材における前記伝熱板に対向する部分を支えにして、突っ張りにて前記伝熱板の変形を防止するように前記加熱室内に設けられている点を特徴とする。
即ち、伝熱板が加熱されて、加熱室側に膨出するように変形しようとしても、加熱室形成部材における伝熱板に対向する部分を支えにした伝熱板変形防止体の突っ張りにより、伝熱板の加熱室側への膨出変形が防止される。
そして、加熱室形成部材における伝熱板に対向する部分を支えにした突っ張りにより、伝熱板の加熱室側への膨出変形を防止するように、伝熱板変形防止体を設けるにしても、加熱室が皿状の加熱室形成部材の周縁部を伝熱板に固着して構成されて、伝熱板にて加熱室の一側面部を形成するようにしてあることから、伝熱板変形防止体を簡素な構造にて設けることが可能となり、もって、伝熱板変形防止体を設けるためのコストを低減することができて、低廉化を一層図ることができる。
しかも、伝熱板変形防止体の突っ張りにより、伝熱板の加熱室側への膨出変形を防止するようにすることにより、伝熱板変形防止体を設けるにしても、伝熱板変形防止体は、溶接等により伝熱板に固着することなく、単に、伝熱板が加熱室側に膨出変形するのを接当により受け止めるように設けることが可能となるので、伝熱板変形防止体を設けるためのコストを一段と低減することができて、低廉化を更に図ることができる。
従って、改質装置の低廉化を更に図る上で好ましい具体構成を提供することができる。
【0012】
〔請求項4記載の発明〕
請求項4に記載の改質装置は、請求項1〜3のいずれかにおいて、前記伝熱板変形防止体が、棒状に構成され、
耐熱性を有する筒状体が、棒状の前記伝熱板変形防止体を被覆するように設けられている点を特徴とする。
即ち、耐熱性を有する筒状体が棒状の伝熱板変形防止体を被覆するように設けられているので、棒状の伝熱板変形防止体が熱により劣化するのを抑制することができる。
つまり、耐熱性を有する筒状体を、棒状の伝熱板変形防止体を被覆するように設けるようにすることにより、耐熱性を有する筒状体の材料としては、例えば、耐熱性に優れたセラミックを用い、一方、棒状の伝熱板変形防止体の材料としては、例えば、金属等、セラミックよりも耐熱性は低くなるものの、材料費が安価で、しかも、溶接等の加工がし易くて加工費の低廉化を図り易いものを用いることが可能となり、伝熱板変形防止体を設けるためのコストを低減することができて、改質装置の低廉化を一層図ることができる。
従って、改質装置の低廉化を更に図る上で好ましい具体構成を提供することができる。
【0013】
〔請求項5記載の発明〕
請求項5に記載の改質装置は、請求項1〜4のいずれかにおいて、前記伝熱板が縦向きに設けられ、
前記改質室及び前記加熱室が、前記伝熱板の厚さ方向に薄い偏平状に構成され、
複数の前記伝熱板変形防止体が、縦向きの前記伝熱板における下方側に偏った位置に、分散状に設けられている点を特徴とする。
即ち、改質室及び加熱室が、伝熱板の厚さ方向に薄い偏平状に構成されていることから、単位量の改質触媒に対する伝熱面積を大きくすることができて、改質触媒を効率良く加熱することができると共に、改質触媒の加熱温度分布を小さくすることが可能となる。つまり、適切に改質処理できるようにしながら、改質触媒を加熱するのにかかわるエネルギー消費量を少なくすることができて、ランニングコストの低廉化が可能となる
縦姿勢の伝熱板に対して、伝熱板の下方側ほど大きくなる状態で改質触媒により加熱室側に向けて加重が印加されるものの、複数の伝熱板変形防止体が、縦向きの伝熱板における下方側に偏った位置に、分散状に設けられているので、伝熱板の加熱室側への膨出変形を適切に防止することができる。つまり、伝熱板の加熱室側への膨出変形を適切に防止することできるようにしながら、伝熱板変形防止体の設置個数を少なくすることが可能となり、伝熱板変形防止体を設けるためのコストを低減することができて、改質装置の低廉化を一層図ることができる。従って、ランニングコストの低廉化を可能としながら、改質装置の低廉化を更に図ることができるようになった。
【0014】
【発明の実施の形態】
〔第1実施形態〕
以下、図面に基づいて、本発明の第1実施形態を説明する。
図1ないし図3に示すように、改質装置Rは、縁部が固定された伝熱板40の一側面側に、粒状の改質触媒3cを装入した改質室3を設け、伝熱板40の他側面側に、ガスバーナ4bを内装してそのガスバーナ4bの燃焼ガスを加熱用流体として通流させて、改質室4を伝熱板40を介して加熱する加熱室としての燃焼室4を設けて構成して、燃焼室4にて伝熱板40を介して改質室3内の改質触媒3cを加熱する状態で、改質室3に改質処理用の水蒸気を混合させた天然ガス等の原燃料ガスを供給して、その原燃料ガスを水素ガスと一酸化炭素ガスを含むガスに改質処理するように構成してある。
【0015】
そして、伝熱板40が燃焼室4側に膨出するように変形するのを引張りにて防止する伝熱板変形防止体としての丸棒状の伝熱板変形防止棒状体42を設けてある。
【0016】
説明を加えると、改質装置Rは、矩形の伝熱板40にて仕切られた二つの矩形板状の偏平な室を備えるように形成した矩形板状の偏平な双室具備容器Bdを用いて構成し、二室のうちの一方を改質室3として用い、他方を燃焼室4として用いている
双室具備容器Bdは、矩形平板状の伝熱板40の両側に一対の皿状容器形成部材41を振分け配置した状態で、周縁部をシーム溶接にて接続して、内部に二つの偏平な室を区画形成するように形成してある。
そして、双室具備容器Bdを用いて構成した改質装置Rは、伝熱板40が縦向きとなる縦姿勢で設けてある。
【0017】
つまり、改質室3を、皿状の改質室形成部材としての皿状容器形成部材41の周縁部を伝熱板40に固着して構成し、燃焼室4を、皿状の加熱室形成部材としての皿状容器形成部材41の周縁部を伝熱板40に固着して構成してある。
又、伝熱板40を縦向きに設け、改質室3及び燃焼室4を、伝熱板40の厚さ方向に薄い偏平状に構成してある。
【0018】
尚、伝熱板40は、ステンレス等の耐熱金属を用いて形成し、皿状容器形成部材41は、周縁部を接続代として中央部が膨出する皿状に、ステンレス等の耐熱金属製の板材をプレス成形して形成してある。改質触媒3cは、ルテニウム、ニッケル、白金等の触媒をセラミック製の多孔質粒状体に保持させて、粒状に形成し、その粒状の改質触媒3cの多数を、通気可能な状態で改質室3に装入してある。
【0019】
改質室3を形成する皿状容器形成部材41の上部には、改質処理対象の原燃料ガスを供給するノズル44を室内に連通する状態で接続し、下部には、改質処理ガスを排出するノズル44を室内に連通する状態で接続して、粒状改質触媒群を上下方向に通過するように原燃料ガスを流して、改質処理するようにしてある。
【0020】
燃焼室4内には、断熱材46を、燃焼室4における伝熱板40の側に燃焼用空間を形成するように、燃焼室4を形成する皿状容器形成部材41における伝熱板40に対向する部分に当て付けた状態で設けてある。その断熱材46における伝熱板40に対向する部分は、下方側が上方側より低くなる段差状に形成してある。そして、断熱材46の下方側と伝熱板40との間に形成される下方側燃焼室部分の底部に、長尺状のガスバーナ4bを配設し、断熱材46の上方側と伝熱板40との間に形成されて、前記下方側燃焼室部分よりも幅狭な上方側燃焼室部分に、白金、パラジウム等から成る燃焼触媒4cを設けてある。ガスバーナ4bは、多数のガス噴出孔を長手方向に沿って備えたガス噴出管tgと、多数の空気噴出孔を長手方向に沿って備えた空気噴出管taとを、ガス噴出孔から噴出されるガス燃料と空気噴出孔から噴出される燃焼用空気とを衝突させるように並べて構成してある。
ガスバーナ4bのガス噴出管tgには燃料供給路24を、空気噴出管taには燃焼用空気路29をそれぞれ、燃焼室4を形成する皿状容器形成部材41を貫通させて接続し、更に、燃焼室4を形成する皿状容器形成部材41の上部には、ガスバーナ4bの燃焼ガスを排出するノズル44を室内に連通する状態で接続してある。
そして、燃料供給路24を通じて供給されるガス燃料をガスバーナ4bにて燃焼させると共に、未燃焼のガス燃料を燃焼触媒cの触媒作用にて燃焼させ、燃焼ガスをノズル44にて排出するように構成してある。
【0021】
次に、図2及び図3に基づいて、伝熱板変形防止棒状体42について説明を加える。
第1実施形態においては、複数の伝熱板変形防止棒状体42を、燃焼室4を形成する皿状容器形成部材41(皿状の加熱室形成部材に相当する)における伝熱板40に対向する部分を支えにして、突っ張りにて伝熱板40の変形を防止するように燃焼室4内に設けてあり、それら複数の伝熱板変形防止棒状体42は、縦向きの伝熱板40における下方側に偏った位置に、分散状に設けてある。
【0022】
具体的には、伝熱板変形防止棒状体42を、その長手方向を伝熱板40に略直交させる姿勢で、その長手方向の一端を皿状容器形成部材41の伝熱板40に対向する部分に溶接にて固着して設けてある。
第1実施形態では、更に、耐熱性を有する円筒状の筒状体43を、伝熱板変形防止棒状体42を被覆するように設けてある。伝熱板変形防止棒状体42及び筒状体43の長さは、ガスバーナ4bの加熱により熱膨張した状態で、それぞれの伝熱板40側の端部が伝熱板40に接当するように、皿状容器形成部材41の伝熱板40に対向する部分と伝熱板40との間隔よりも多少短く設定してある。
ちなみに、伝熱板変形防止棒状体42は、皿状容器形成部材41を伝熱板40に溶接する前に、予め、皿状容器形成部材41に溶接して取り付けておいて、そのように伝熱板変形防止棒状体42を取り付けた皿状容器形成部材41を伝熱板40に溶接することになる。
【0023】
複数の伝熱板変形防止棒状体42の分散配置形態としては、複数の伝熱板変形防止棒状体42が千鳥状に並ぶように、複数の伝熱板変形防止棒状体42が横方向に並ぶ伝熱板変形防止棒状体42の列を上下方向に複数列(本実施形態では3列)に並べた配置形態としてある。
伝熱板変形防止棒状体42は、ステンレス(例えばSUS301S))等の耐熱金属を用いて形成し、筒状体43は、伝熱板変形防止棒状体42よりも更に耐熱性に優れた材料、例えば、セラミック(例えば、再結晶アルミナ)を用いて形成してある。
【0024】
つまり、ガスバーナ4bが燃焼すると、伝熱板変形防止棒状体42及び筒状体43が熱膨張して、それぞれの伝熱板40側の端部が伝熱板40に接当する状態となり、伝熱板変形防止棒状体42及び筒状体43により、燃焼室4を形成する皿状容器形成部材41における伝熱板40に対向する部分を支えにした突っ張りにて、伝熱板40の燃焼室4の側への膨出変形が防止されることとなる。
【0025】
次に、上述の改質装置Rを用いた水素含有ガス生成装置について説明する。
図8に示すように、水素含有ガス生成装置は、改質装置Rに加えて、その改質装置Rにて改質処理する天然ガス等の炭化水素系の原燃料ガスを脱硫処理する脱硫部1と、改質装置Rにおける改質処理用の水蒸気を生成する水蒸気生成部Sと、改質装置Rから供給される改質処理ガス中の一酸化炭素ガスを水蒸気を用いて二酸化炭素ガスに変成させることにより変成処理する変成部5と、その変成部5から供給される変成処理ガス中の一酸化炭素ガスを選択酸化することにより選択酸化処理する選択酸化部6とを備えて、一酸化炭素ガス濃度の低い(例えば10ppm以下)水素リッチな燃料ガスを生成するように構成してある。
【0026】
水蒸気生成部Sは、改質装置Rの燃焼室4から排出された燃焼ガスを通流させる水蒸気生成用加熱通流部11と、供給される原料水を水蒸気生成用加熱通流部11による加熱にて蒸発させる蒸発処理部2とから構成してある。
【0027】
更に、水素含有ガス生成装置には、改質室3から排出された高温の改質処理ガスを通流させて、改質室3を保温する保温用通流部7と、脱硫部1からの脱硫原燃料ガスと改質室3からの高温の改質処理ガスとを熱交換させて、改質室3に供給される脱硫原燃料ガスを予熱する脱硫原燃料ガス用熱交換器Epと、改質室3からの高温の改質処理ガスと脱硫部1に供給される原燃料ガスとを熱交換させて原燃料ガスを予熱する原燃料ガス用熱交換器Eaと、変成部5を冷却するために冷却用流体を通流させる変成部冷却用通流部8と、同じく、変成部6を冷却するために冷却用流体を通流させる変成部冷却用通流部9と、変成部5及び選択酸化部6を冷却する冷却用ファン10とを設けてある。
【0028】
脱硫原燃料ガス用熱交換器Epは、保温用通流部7から排出された改質処理ガスを通流させる上流側改質処理ガス通流部12と、改質室3に供給する脱硫原燃料ガスを通流させる脱硫原燃料ガス通流部13とを熱交換自在に設けて構成し、原燃料ガス用熱交換器Eaは、上流側改質処理ガス通流部12から排出された改質処理ガスを通流させる下流側改質処理ガス通流部15と、脱硫部1に供給する原燃料ガスを通流させる原燃料ガス通流部16とを熱交換自在に設けて構成してある。
【0029】
水素含有ガス生成装置は、矩形板状の偏平な容器Bの複数を板状形状の厚さ方向に並べて設けて、各容器Bを用いて、改質装置R、水蒸気生成部S、脱硫部1、変成部5、選択酸化部6、各通流部等をそれぞれ構成してある。
複数の容器Bのうちの一部は、一つの室を備えるように形成した単室具備容器Bmにて構成し、残りは、上述した改質装置Rを構成するのと同様の双室具備容器Bdにて構成してある。
各双室具備容器Bdや単室具備容器Bmには、必要に応じて、流体供給用や流体排出用のノズル44を内部の室と連通する状態で取り付けてある。
【0030】
本実施形態においては、9個の双室具備容器Bdと、1個の単室具備容器Bmを、側面視において左端から3個目に単室具備容器Bmを位置させた状態で、横方向に厚さ方向に並べて設けて、コンパクトに形成してある。尚、9個の双室具備容器Bdと1個の単室具備容器Bmとを並べるに当たっては、伝熱させる必要のあるもの同士は密着させた状態で、且つ、伝熱量を調節する必要のあるもの同士の間には伝熱量調節用の断熱材19を介在させた状態で並べてある。
9個の双室具備容器Bdの区別が明確になるように、便宜上、双室具備容器を示す符号Bdの後に、左からの並び順を示す符号1,2,3……………9を付す。
【0031】
左端の双室具備容器Bd1の左側の室を備えた部分を用いて、水蒸気生成用加熱通流部11を構成し、右側の室を備えた部分を用いて蒸発処理部2を構成してある。つまり、左端の双室具備容器Bd1にて水蒸気生成部Sを構成してある。左から2個目の双室具備容器Bd2を用いて、上述のように改質装置Rを構成してある。
単室具備容器Bmを用いて、保温用通流部7を構成してある。
左から3個目の双室具備容器Bd3の左側の室を備えた部分を用いて、上流側改質処理ガス通流部12を構成し、右側の室を備えた部分を用いて、脱硫原燃料ガス通流部13を構成してある。つまり、左から3個目の双室具備容器Bd3を用いて、脱硫原燃料ガス用熱交換器Epを構成してある。
【0032】
左から4個目の双室具備容器Bd4を用いて、脱硫部1を構成し、左から5個目の双室具備容器Bd5の左側の室を備えた部分を用いて、脱硫部1を構成し、右側の室を備えた部分を用いて、原燃料ガス通流部16を構成してある。
左から6個目の双室具備容器Bd6の左側の室を備えた部分を用いて、下流側改質処理ガス通流部15を構成し、右側の室を備えた部分を用いて、変成部5を構成してある。つまり、左から5個目の双室具備容器Bd5の右側の室を備えた部分と、左から6個目の双室具備容器Bd6の左側の室を備えた部分とを用いて、原燃料ガス用熱交換器Eaを構成してある。
左から7個目の双室具備容器Bd7の左側の室を備えた部分を用いて、変成部5を構成し、右側の室を備えた部分を用いて変成部冷却用通流部8を構成してある。
左から8個目の双室具備容器Bd8を用いて、変成部5を構成し、左から9個目(右端)の双室具備容器Bd9の左側の室を備えた部分を用いて、変成部冷却用通流部9を構成し、右側の室を備えた部分を用いて選択酸化部6を構成してある。
【0033】
脱硫部1を構成する双室具備容器Bdの室内には、脱硫触媒を保持したセラミック製の多孔質粒状体の多数を通気可能な状態で装入し、変成部5を構成する双室具備容器Bdの室内には、酸化鉄又は銅亜鉛の変成反応用触媒を保持したセラミック製の多孔質粒状体の多数を通気可能な状態で装入し、選択酸化部6を構成する双室具備容器Bdの室内には、ルテニウムの選択酸化用触媒を保持したセラミック製の多孔質粒状体の多数を通気可能な状態で装入してある。
【0034】
つまり、改質装置Rを構成する双室具備容器Bd2の一方側に、その双室具備容器Bd2の側から、保温用通流部7を構成する単室具備容器Bm、断熱材19、脱硫原燃料ガス用熱交換器Epを構成する双室具備容器Bd3、断熱材19、脱硫部1を構成する双室具備容器Bd4、脱硫部1及び原燃料ガス通流部16を構成する双室具備容器Bd5、下流側改質処理ガス通流部15及び変成部5を構成する双室具備容器Bd6、変成部5及び変成部冷却用通流部8を構成する双室具備容器Bd7、変成部5を構成する双室具備容器Bd8、変成部冷却用通流部9及び選択酸化部6を構成する双室具備容器Bd9を記載順に並ぶように互いに密接配置して設け、双室具備容器Bd2の他方側に、その双室具備容器Bd2の側から、断熱材19、水蒸気生成部Sを構成する双室具備容器Bd1を記載順に並ぶように密接配置して設けてある。
【0035】
図8において、白抜き矢印にて示すように、原燃料ガス供給路21を原燃料ガス用熱交換器Eaの原燃料ガス通流部16に接続し、並びに、原燃料ガス通流部16、脱硫部1、脱硫原燃料ガス用熱交換器Epの脱硫原燃料ガス通流部13、改質室3、保温用通流部7、脱硫原燃料ガス用熱交換器Epの上流側改質処理ガス通流部12、原燃料ガス用熱交換器Eaの下流側改質処理ガス通流部15、変成部5、選択酸化部6の順に流れるガス処理経路を形成するように、それらをガス処理用流路22にて接続してある。
【0036】
選択酸化部6から排出された選択酸化処理ガスを燃料ガスとして燃料電池Gに供給するように、選択酸化部6と燃料電池Gとを燃料ガス路23にて接続し、燃料電池Gから排出された排燃料ガスをガス燃料として改質装置Rのガスバーナ4bに供給すべく、燃料電池Gとガスバーナ4bのガス噴出管tgとを燃料供給路24にて接続してある。
【0037】
図8において、実線矢印にて示すように、原料水ポンプ14から水蒸気生成用の原料水が送られる原料水供給路25を水蒸気生成部Sの蒸発処理部2に接続し、蒸発処理部2にて生成された水蒸気を送出する水蒸気路26を、脱硫部1と被改質ガス通流部13とを接続するガス処理用流路22に接続して、ガス処理用流路22を通流する脱硫原燃料ガスに改質用の水蒸気を混合させるように構成してある。
【0038】
図8において、破線矢印にて示すように、燃焼室4から排出された燃焼ガスを、水蒸気生成用加熱通流部11、変成部冷却用通流部8の順に流すように、それら燃焼室4、水蒸気生成用加熱通流部11、変成部冷却用通流部8を燃焼ガス路27にて接続して、水蒸気生成用加熱通流部11においては、燃焼ガスによって蒸発処理部2を加熱し、変成部冷却用通流部8においては、燃焼ガスによって、発熱反応である変成反応が行われる変成部5を冷却するように構成してある。
【0039】
図8において、一点鎖線矢印にて示すように、ブロア28からの空気を燃焼用空気として、ガスバーナ4bに供給するように、ブロア28とガスバーナ4bの空気噴出管taとを燃焼用空気路29にて接続してある。尚、図示は省略するが、ブロア28からの空気を変成部冷却用通流部9を通流させてからガスバーナ4bに供給する変成部冷却用空気路も設けてあり、変成部5の冷却能力が不足するとき、例えば、夏期の高気温時には、その変成部冷却用空気路を通じて、燃焼用空気をガスバーナ4bに供給するように切り換え可能なように構成してある。
【0040】
又、最後段の変成部5と選択酸化部6とを接続するガス処理用流路22には、原料水供給路25を流れる原料水を変成処理ガスにて予熱する原料水予熱用熱交換器17を設けると共に、変成処理ガスから凝縮水を除去するドレントラップ30を、その原料水予熱用熱交換器17よりも下流側の箇所に設けて、変成処理ガスと原料水とを熱交換させて、原料水を予熱すると共に、変成処理ガスを冷却するようにしてある。
更に、変成部冷却用通流部8から燃焼ガス路27を通じて排出された燃焼ガスと、燃焼用空気路29を通じて燃焼室4に供給する燃焼用空気及び燃料供給路24を通じてガスバーナ4bに供給するオフガスとを熱交換させて、燃焼用空気及びオフガスを予熱する排熱回収用熱交換器31を設けてある。
【0041】
以下、本発明の第2ないし第5の各実施形態を説明するが、各実施形態においては、伝熱板変形防止棒状体42により伝熱板40の変形を防止する構造、伝熱板変形防止棒状体42の配置形態、又は、支持構造等の伝熱板変形防止棒状体42に関連する構成が異なる以外は、第1実施形態と同様に構成してあるので、第1実施形態と同じ構成要素や同じ作用を有する構成要素については、重複説明を避けるために、同じ符号を付すことにより説明を省略し、主として、伝熱板変形防止棒状体42に関連する構成について説明する。
又、第2ないし第5の各実施形態による改質装置Rは、第1実施形態による改質装置Rと同様に、図8に示す水素含有ガス生成装置に用いることができるが、第2ないし第5の各実施形態による改質装置Rを用いた水素含有ガス生成装置説明は省略する。
【0042】
〔第2実施形態〕
以下、図4に基づいて、第2実施形態を説明する。
第2実施形態においては、伝熱板変形防止棒状体42により伝熱板40の変形を防止する構造、伝熱板変形防止棒状体42の配置形態は第1実施形態と同様であるが、伝熱板変形防止棒状体42の支持構造が第1実施形態と異なり、又、耐熱性を有する筒状体43を設けていない点が第1実施形態と異なる。
【0043】
伝熱板変形防止棒状体42により伝熱板40の変形を防止する構造としては、第1実施形態と同様に、燃焼室4を形成する皿状容器形成部材41における伝熱板40に対向する部分を支えにして、突っ張りにて伝熱板40の変形を防止する構造である。つまり、複数の伝熱板変形防止棒状体42を、燃焼室4を形成する皿状容器形成部材41における伝熱板40に対向する部分を支えにして、突っ張りにて伝熱板40の変形を防止ように燃焼室4内に設けてある。
伝熱板変形防止棒状体42の配置形態としては、第1実施形態と同様に、複数の伝熱板変形防止棒状体42を、縦向きの伝熱板40における下方側に偏った位置に、分散状に設けてある。又、複数の伝熱板変形防止棒状体42の分散配置形態も第1実施形態と同様である。
【0044】
伝熱板変形防止棒状体42の支持構造について説明を加えると、伝熱板変形防止棒状体42は、その長手方向を伝熱板40に略直交させる姿勢で、その長手方向の一端を伝熱板40に溶接して固着し、他端を燃焼室4を形成する皿状容器形成部材41における伝熱板40に対向する部分に溶接にて固着して設けてある。ちなみに、予め、伝熱板変形防止棒状体42を皿状容器形成部材41に溶接して取り付けておき、そのように伝熱板変形防止棒状体42を取り付けた皿状容器形成部材41を伝熱板40に溶接するときに、伝熱板変形防止棒状体42の端部を伝熱板40に圧接して溶接することになる。
【0045】
〔第3実施形態〕
以下、図5に基づいて、第3実施形態を説明する。
第3実施形態においては、伝熱板変形防止棒状体42の配置形態は第1実施形態と同様であるが、伝熱板変形防止棒状体42により伝熱板40の変形を防止する構造、及び、伝熱板変形防止棒状体42の支持構造が第1実施形態と異なり、又、耐熱性を有する筒状体43を設けていない点が第1実施形態と異なる。
【0046】
つまり、伝熱板変形防止棒状体42の配置形態としては、第1実施形態と同様に、複数の伝熱板変形防止棒状体42を、縦向きの伝熱板40における下方側に偏った位置に、分散状に設けてある。又、複数の伝熱板変形防止棒状体42の分散配置形態も第1実施形態と同様である。
【0047】
伝熱板変形防止棒状体42により伝熱板40の変形を防止する構造としては、改質室3を形成する皿状容器形成部材41における伝熱板40に対向する部分を支えにして、引張りにて伝熱板40の変形を防止する構造である。つまり、複数の伝熱板変形防止棒状体42を、改質室3を形成する皿状容器形成部材41における伝熱板40に対向する部分を支えにして引張りにて伝熱板40の変形を防止するように改質室3内に設けてある。
【0048】
伝熱板変形防止棒状体42の支持構造について説明を加えると、伝熱板変形防止棒状体42は、その長手方向を伝熱板40に略直交させる姿勢で、その長手方向の一端を伝熱板40に溶接して固着し、他端を改質室3を形成する皿状容器形成部材41における伝熱板40に対向する部分に溶接にて固着して設けてある。ちなみに、予め、伝熱板変形防止棒状体42を皿状容器形成部材41に溶接して取り付けておき、そのように伝熱板変形防止棒状体42を取り付けた皿状容器形成部材41を伝熱板40に溶接するときに、伝熱板変形防止棒状体42の端部を伝熱板40に圧接して溶接することになる。
【0049】
つまり、第3実施形態の改質装置Rでは、伝熱板変形防止棒状体42により、改質室3を形成する皿状容器形成部材41における伝熱板40に対向する部分を支えにした引張りにて、伝熱板40の燃焼室4の側への膨出変形が防止されることとなる。
又、伝熱板変形防止棒状体42は、改質触媒3c中に埋没する状態となっているので、伝熱板変形防止棒状体42を通じて、伝熱板40から改質触媒3cへ熱を伝導させることができるので、改質触媒3cの加熱温度分布を小さくすることが可能となる。
【0050】
〔第4実施形態〕
以下、図6に基づいて、第4実施形態を説明する。
第4実施形態においては、伝熱板変形防止棒状体42の配置形態は第1実施形態と同様であるが、伝熱板変形防止棒状体42により伝熱板40の変形を防止する構造、及び、伝熱板変形防止棒状体42の支持構造が第1実施形態と異なり、又、耐熱性を有する筒状体43を設けていない点が第1実施形態と異なる。
【0051】
つまり、伝熱板変形防止棒状体42の配置形態としては、第1実施形態と同様に、複数の伝熱板変形防止棒状体42を、縦向きの伝熱板40における下方側に偏った位置に、分散状に設けてある。又、複数の伝熱板変形防止棒状体42の分散配置形態も第1実施形態と同様である。
【0052】
伝熱板変形防止棒状体42により伝熱板40の変形を防止する構造としては、改質室3を形成する皿状容器形成部材41における伝熱板40に対向する部分を支えにして、引張りにて伝熱板40の変形を防止する構造である。つまり、複数の伝熱板変形防止棒状体42を、改質室3を形成する皿状容器形成部材41における伝熱板40に対向する部分を支えにして引張りにて伝熱板40の変形を防止するように改質室3内に設けてある。
【0053】
伝熱板変形防止棒状体42の支持構造について説明を加えると、伝熱板変形防止棒状体42は、その長手方向の伝熱板40の側の端部に周方向外方に張り出す鍔部42fを備え、その伝熱板変形防止棒状体42を、長手方向を伝熱板40に略直交させる姿勢で、その長手方向の一端の鍔部40fを、伝熱板40に溶接により固着した係止部材45に係止した状態で、他端を改質室3を形成する皿状容器形成部材41における伝熱板40に対向する部分に溶接にて固着して設けてある。伝熱板変形防止棒状体42の鍔部42fと係止部材45とは、互いの接当により、伝熱板40が燃焼室4の側に膨出変形するのを阻止すべく係止するようにしてある。
ちなみに、予め、伝熱板変形防止棒状体42を皿状容器形成部材41に溶接して取り付けておき、そのように伝熱板変形防止棒状体42を取り付けた皿状容器形成部材41を、伝熱板変形防止棒状体42の鍔部42fが係止部材45に係止するように配置して、皿状容器形成部材41を伝熱板40に溶接することになる。
【0054】
〔第5実施形態〕
以下、図7に基づいて、第5実施形態を説明する。
第5実施形態においては、伝熱板変形防止棒状体42の配置形態は第1実施形態と同様であるが、伝熱板変形防止棒状体42により伝熱板40の変形を防止する構造、及び、伝熱板変形防止棒状体42の支持構造の一部が第1実施形態と異なり、又、耐熱性を有する筒状体43を設けていない点が第1実施形態と異なる。
【0055】
つまり、伝熱板変形防止棒状体42の配置形態としては、第1実施形態と同様に、複数の伝熱板変形防止棒状体42を、縦向きの伝熱板40における下方側に偏った位置に、分散状に設けてある。又、複数の伝熱板変形防止棒状体42の分散配置形態も第1実施形態と同様である。
【0056】
伝熱板変形防止棒状体42により伝熱板40の変形を防止する構造としては、改質室3を形成する皿状容器形成部材41における伝熱板40に対向する部分を支えにした引張りと、燃焼室4を形成する皿状容器形成部材41における伝熱板40に対向する部分を支えにした突っ張りとの両方により、伝熱板40の変形を防止する構造である。つまり、複数の伝熱板変形防止棒状体42を、改質室3を形成する皿状容器形成部材41における伝熱板40に対向する部分を支えにして引張りにて伝熱板40の変形を防止するように改質室3内に設け、又、複数の伝熱板変形防止棒状体42を、燃焼室4を形成する皿状容器形成部材41における伝熱板40に対向する部分を支えにして、突っ張りにて伝熱板40の変形を防止ように燃焼室4内に設けてある。
【0057】
燃焼室4内に設ける伝熱板変形防止棒状体42の支持構造は、第1実施形態と同様であり、改質室3内に設ける伝熱板変形防止棒状体42の支持構造は第4実施形態と同様であるので、説明を省略する。
【0058】
〔別実施形態〕
次に別実施形態を説明する。
伝熱板変形防止体42の具体構成として、上記の各実施形態において例示した丸棒状の伝熱板変形防止棒状体42に限定されるものではない。例えば角棒状や楕円棒状の棒状体、又は、波板状体にて構成することができる。又、伝熱板変形防止体42を、改質室形成部材41における伝熱板40に対向する部分を支えにして、引張りにて伝熱板40の変形を防止するように改質室3内に設ける場合は、伝熱板変形防止体42は、チェーン等の索状体にて構成することができる。
【0059】
上記の第1実施形態において、筒状体43を省略することができる。又、上記の第2ないし第5の各実施形態において、耐熱性を有する円筒状の筒状体43を、伝熱板変形防止棒状体42を被覆するように設けても良い。
【0060】
上記の各実施形態においては、複数の伝熱板変形防止体42を、縦向きの伝熱板40における下方側に偏った位置に、分散状に設ける場合について例示したが、複数の伝熱板変形防止体42を、縦向きの伝熱板40における全面にわたって、分散状に設けても良い。特に、複数の伝熱板変形防止体42を、改質室3内において、縦向きの伝熱板40における全面にわたって、分散状に設けると、改質触媒3cの加熱温度分布を一段と小さくすることができるので、好ましい。
【0061】
伝熱板変形防止体42を複数設ける場合、その個数は、伝熱板40の大きさ等に応じて、適宜に変更することができる。又、伝熱板変形防止体42を1個設けても良い。
【0062】
上記の各実施形態においては、加熱室4としての燃焼室4の内部にガスバーナ4bを設けて、そのガスバーナ4bの燃焼ガスを加熱用流体として通流させるように構成する場合について例示したが、ガスバーナの燃焼ガスや、各種燃焼式原動機の燃焼排ガスを加熱用流体として、加熱室4の外部から加熱室内に供給するように構成しても良い。
【0063】
改質室3及び加熱室4を形成するための具体構成は、上記の各実施形態において例示した構成に限定されるものではなく、例えば、筒状体の一方の開口縁を伝熱板40に溶接等により固着し、他方の開口縁に板状の蓋体を溶接等により固着して構成しても良い。
【0064】
改質室3及び加熱室4の形状は、伝熱板40の厚さ方向に薄い偏平状に構成する場合、上記の各実施形態において例示したように矩形板状に限定されるものではなく、例えば、円板状でも良い。又、改質室3及び加熱室4は、伝熱板40の厚さ方向に薄い偏平状に構成する場合に限定されるものではなく、例えば、直方体状や立方体状に構成しても良い。
【0065】
上記の各実施形態においては、改質装置Rを、伝熱板40が縦向きとなる立ち姿勢にて設ける場合について例示したが、伝熱板40が改質室3の底部となる伝熱板底部姿勢にて設けても良い。
【0066】
ガスバーナ4bの具体構成は、上記の実施形態において例示した構成に限定されるものではなく、種々の構成が可能であり、例えば、ガス燃料と燃焼用空気との予混合ガスを噴出して燃焼させる構成でも良い。
【0067】
本発明による改質装置Rは、上記の各実施形態の如き水素含有ガス生成装置に組み込んで用いる場合に限定されるものではなく、単独で用いることが可能である。
【図面の簡単な説明】
【図1】実施形態にかかる改質装置の斜視図
【図2】第1実施形態にかかる改質装置の分解斜視図
【図3】第1実施形態にかかる改質装置の縦断側面図
【図4】第2実施形態にかかる改質装置の縦断側面図
【図5】第3実施形態にかかる改質装置の縦断側面図
【図6】第4実施形態にかかる改質装置の縦断側面図
【図7】第5実施形態にかかる改質装置の縦断側面図
【図8】第1実施形態にかかる改質装置を用いた水素含有ガス生成装置の縦断側面図
【図9】従来の改質装置の縦断側面図
【符号の説明】
3  改質室
3c 改質触媒
4  加熱室
40 伝熱板
41 改質室形成部材、加熱室形成部材
42 伝熱板変形防止体
43 筒状体
[0001]
TECHNICAL FIELD OF THE INVENTION
In the present invention, a reforming chamber in which a reforming catalyst is loaded is provided on one side of a heat transfer plate having a fixed peripheral portion, and a heating fluid flows through the other side of the heat transfer plate. And a reforming apparatus provided with a heating chamber for heating the reforming chamber via the heat transfer plate.
[0002]
[Prior art]
Such a reformer is configured to allow a heating fluid such as combustion gas of a burner to flow through a heating chamber and heat a reforming catalyst in the reforming chamber via a heat transfer plate. A hydrogen-containing gas is obtained by supplying a hydrocarbon-based or alcohol-based raw fuel mixed with water vapor for processing, and reforming the raw fuel to obtain a hydrogen-containing gas. It is used to generate fuel gas used as. Usually, the reforming catalyst is formed in a granular shape, and a large number of granular reforming catalysts are charged into the reforming chamber.
[0003]
As shown in FIG. 9, the conventional reformer is configured such that a flat heat transfer plate 40 is simply provided at a peripheral portion so as to partition the reforming chamber 3 and the heating chamber 4. .
By the way, in the conventional reforming apparatus shown in FIG. 9, the reforming chamber 3 is formed by welding the peripheral portion of the dish-shaped chamber forming member 41 to one side of the heat transfer plate 40, and the heating chamber 4 The peripheral portion of the dish-shaped chamber forming member 41 is welded to the other side of the heat transfer plate 40, and a gas burner 4 b for burning gas fuel in the heating chamber 4 is provided in the heating chamber 4. Thus, the combustion gas from the gas burner 4b is allowed to flow into the heating chamber 4 as a heating fluid.
[0004]
[Problems to be solved by the invention]
By the way, in such a reformer, it is preferable to efficiently heat the reforming catalyst via the heat transfer plate. Therefore, usually, the reformer has a posture in which the heat transfer plate is oriented vertically (hereinafter, referred to as a vertical position). , Standing position) or a position in which the heat transfer plate is the bottom of the reforming chamber (hereinafter, may be abbreviated as the heat transfer plate bottom position) to transfer the reforming catalyst to heat. Make contact with the board. By the way, when the reforming apparatus is installed in the upright position, since the reforming catalyst is filled in the cross section in the reforming chamber, the raw fuel is passed through the reforming catalyst in the vertical direction. The raw fuel to be supplied is allowed to pass through the reforming catalyst without leakage, so that the reforming processing rate for reforming the raw fuel is increased.
When the reformer is arranged in the standing posture or the heat transfer plate bottom position as described above, the heat transfer plate is applied with a load whose peripheral portion is fixed and directed toward the heating chamber by the reforming catalyst. In a state of being heated.
[0005]
However, in the conventional reforming apparatus, when the heat transfer plate 40 is heated and thermally expanded during operation when the heat transfer plate 40 is arranged in the standing posture or the heat transfer plate bottom position, the heat transfer plate 40 Due to the load applied toward the heating chamber side, the heat transfer plate 40 is easily deformed so as to swell toward the heating chamber side, and even if the operation is stopped and the heat transfer plate 40 is cooled, Since a load is applied to the heating plate 40 toward the heating chamber by the reforming catalyst 3c, the heat transfer plate 40 is hard to return to the original shape. The heat transfer plate 40 is easily deformed so as to swell, and the amount of swelling deformation of the heat transfer plate 40 toward the heating chamber increases as the operation proceeds. Incidentally, in FIG. 9, the state in which the heat transfer plate 40 swells and deforms toward the heating chamber when the reformer is installed in the standing posture is indicated by a two-dot chain line.
[0006]
When the heat transfer plate is deformed so as to swell toward the heating chamber, the capacity of the reforming chamber increases, and the state of charging the reforming catalyst in the reforming chamber changes. It becomes difficult to perform the reforming process. For example, when the reformer is provided in a standing position and the raw fuel flows so as to pass through the reforming catalyst in the vertical direction, when the heat transfer plate is deformed so as to expand toward the heating chamber, the reforming catalyst is Since the sinking occurs and the charging height of the reforming catalyst decreases, the distance that the raw fuel passes through the reforming catalyst decreases, and it becomes difficult to perform the reforming process on the raw fuel as desired.
Therefore, the conventional reformer has a problem that durability is short.
[0007]
Incidentally, in order to make it difficult for the heat transfer plate to swell and deform toward the heating chamber, it is conceivable to increase the thickness of the heat transfer plate to increase the strength of the heat transfer plate. However, when the thickness of the heat transfer plate is increased, the material cost is increased and the processing cost such as welding is increased, so that the price of the reformer is increased and the heat capacity of the heat transfer plate is increased. This causes a problem that the startup time is lengthened.
[0008]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a reformer capable of improving durability while reducing the cost and starting time.
[0009]
[Means for Solving the Problems]
[Invention of claim 1]
The reforming apparatus according to claim 1, wherein a reforming chamber in which a reforming catalyst is loaded is provided on one side of the heat transfer plate to which the peripheral portion is fixed, and on the other side of the heat transfer plate. A heating chamber for heating the reforming chamber through the heat transfer plate through which a heating fluid flows is provided,
The heat transfer plate is characterized in that a heat transfer plate deformation preventing body is provided for preventing the heat transfer plate from being deformed so as to bulge toward the heating chamber by stretching or pulling.
That is, even if the heat transfer plate is heated and deforms so as to bulge toward the heating chamber, the heat transfer plate is prevented from bulging and deforming toward the heating chamber by the tension or pulling by the heat transfer plate deformation preventing body. Is done.
Therefore, by arranging the reformer in a standing position or a bottom position of the heat transfer plate, a load is applied to the heat transfer plate toward the heating chamber by the reforming catalyst. Even when the heat transfer plate is easily swelled and deformed toward the heating chamber, the heat transfer plate can prevent the heat transfer plate from being swelled and deformed toward the heating chamber by stretching or pulling the heat transfer plate. The thickness of the plate can be reduced.
That is, it is possible to prevent the heat transfer plate from bulging toward the heating chamber while reducing the thickness of the heat transfer plate.
Since the thickness of the heat transfer plate can be reduced, the cost of materials and the cost of processing such as welding can be reduced, so that the cost of the reformer can be reduced. Since the heat capacity of the heat transfer plate can be reduced, the start-up time can be reduced.
In addition, since the heat transfer plate can be prevented from swelling and deforming toward the heating chamber, the charged state of the reforming catalyst in the reforming chamber is unlikely to change from the initial state, and the raw fuel can be used as expected. And the durability of the reformer can be improved.
In short, it has become possible to provide a reformer capable of improving the durability while reducing the cost and the startup time.
[0010]
[Invention of claim 2]
In the reforming apparatus according to claim 2, in claim 1, the reforming chamber is configured by fixing a peripheral portion of a dish-shaped reforming chamber forming member to the heat transfer plate,
The heat transfer plate deformation preventing body is provided in the reforming chamber so as to support a portion of the reforming chamber forming member facing the heat transfer plate and prevent deformation of the heat transfer plate by pulling. Is characterized.
In other words, even if the heat transfer plate is heated and tries to deform so as to swell toward the heating chamber side, the heat transfer plate deformation preventing body supporting the portion of the reforming chamber forming member facing the heat transfer plate is pulled. In addition, the swelling deformation of the heat transfer plate toward the heating chamber is prevented.
Then, a heat transfer plate deformation preventing body is provided so as to prevent the heat transfer plate from bulging to the heating chamber side by pulling with the portion facing the heat transfer plate of the reforming chamber forming member as a support. Also, since the reforming chamber is configured by fixing the peripheral portion of the dish-shaped reforming chamber forming member to the heat transfer plate, the heat transfer plate forms one side surface of the reforming chamber. In addition, the heat transfer plate deformation preventing body can be provided with a simple structure, so that the cost for providing the heat transfer plate deformation preventing body can be reduced, and the cost of the reformer can be further reduced. Can be.
Further, since the heat transfer plate deformation preventing member is provided in the reforming chamber, the heat transfer plate deformation preventing member can be provided in a state of being buried in the reforming catalyst. And, by providing the heat transfer plate deformation preventing body in such a state that it is buried in the reforming catalyst, heat can be conducted from the heat transfer plate to the reforming catalyst through the heat transfer plate deformation preventing body. It is possible to reduce the heating temperature distribution of the reforming catalyst, thereby reducing the energy consumption involved in heating the reforming catalyst while enabling appropriate reforming treatment, thereby reducing running costs. The cost can be reduced.
Therefore, the running cost can be reduced while further reducing the cost of the reformer.
[0011]
[Invention of claim 3]
In the reformer according to claim 3, in claim 1, the heating chamber is configured by fixing a peripheral portion of a dish-shaped heating chamber forming member to the heat transfer plate,
The heat transfer plate deformation preventing body is provided in the heating chamber so as to support a portion of the heating chamber forming member facing the heat transfer plate and to prevent deformation of the heat transfer plate with a strut. Features a point.
That is, even if the heat transfer plate is heated and is going to be deformed so as to swell toward the heating chamber side, by the heat transfer plate deformation preventing body supporting the portion of the heating chamber forming member facing the heat transfer plate, The heat transfer plate is prevented from bulging toward the heating chamber.
Further, even if a heat transfer plate deformation preventing body is provided so as to prevent the heat transfer plate from bulging toward the heating chamber by a tension supported by a portion of the heating chamber forming member facing the heat transfer plate. Since the heating chamber is formed by fixing the peripheral portion of the dish-shaped heating chamber forming member to the heat transfer plate, and the heat transfer plate forms one side surface of the heating chamber, the heat transfer plate The deformation preventing body can be provided with a simple structure, so that the cost for providing the heat transfer plate deformation preventing body can be reduced, and the cost can be further reduced.
In addition, by preventing the heat transfer plate from being bulged toward the heating chamber side by the heat transfer plate deformation preventing member, even if the heat transfer plate deformation preventing member is provided, it is possible to prevent the heat transfer plate deformation. The body can be provided so as to receive the swelling deformation of the heat transfer plate to the heating chamber side by abutment without being fixed to the heat transfer plate by welding or the like. The cost for providing the body can be further reduced, and the cost can be further reduced.
Therefore, it is possible to provide a specific configuration preferable for further reducing the cost of the reformer.
[0012]
[Invention of claim 4]
The reforming device according to claim 4 is the reforming device according to any one of claims 1 to 3, wherein the heat transfer plate deformation preventing body is configured in a rod shape,
A heat-resistant cylindrical body is provided so as to cover the rod-shaped heat transfer plate deformation preventing body.
That is, since the heat-resistant tubular body is provided so as to cover the rod-shaped heat transfer plate deformation preventing body, the rod-shaped heat transfer plate deformation preventing body can be prevented from being deteriorated by heat.
In other words, by providing a heat-resistant tubular body so as to cover the rod-shaped heat transfer plate deformation preventing body, as a material of the heat-resistant tubular body, for example, excellent heat resistance Ceramic is used. On the other hand, as a material for the rod-shaped heat transfer plate deformation preventing body, for example, metal and the like have lower heat resistance than ceramic, but the material cost is low, and processing such as welding is easy. Since it is possible to use a material which can easily reduce the processing cost, the cost for providing the heat transfer plate deformation preventing body can be reduced, and the cost of the reformer can be further reduced.
Therefore, it is possible to provide a specific configuration preferable for further reducing the cost of the reformer.
[0013]
[Invention according to claim 5]
In the reformer according to claim 5, in any one of claims 1 to 4, the heat transfer plate is provided in a vertical direction,
The reforming chamber and the heating chamber are configured to be thin and flat in the thickness direction of the heat transfer plate,
It is characterized in that a plurality of the heat transfer plate deformation preventing members are provided in a dispersive manner at positions deviated downward in the vertically oriented heat transfer plate.
That is, since the reforming chamber and the heating chamber are configured to be thin and flat in the thickness direction of the heat transfer plate, the heat transfer area with respect to the unit amount of the reforming catalyst can be increased, Can be efficiently heated and the heating temperature distribution of the reforming catalyst can be reduced. In other words, the energy consumption for heating the reforming catalyst can be reduced while the reforming process can be appropriately performed, and the running cost can be reduced.
Although the load is applied toward the heating chamber by the reforming catalyst in a state where the heat transfer plate becomes larger toward the lower side of the heat transfer plate, the plurality of heat transfer plate deformation prevention members Since the heat transfer plate is provided in a dispersive manner at a position deviated downward in the heat transfer plate, it is possible to appropriately prevent the heat transfer plate from expanding toward the heating chamber. In other words, it is possible to reduce the number of heat transfer plate deformation preventive bodies provided while appropriately preventing the heat transfer plate from bulging toward the heating chamber, and to provide the heat transfer plate deformation preventive body. Cost can be reduced, and the cost of the reformer can be further reduced. Therefore, it has become possible to further reduce the cost of the reformer while enabling the running cost to be reduced.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 3, the reforming apparatus R is provided with a reforming chamber 3 in which a granular reforming catalyst 3c is loaded, on one side of a heat transfer plate 40 having a fixed edge. On the other side of the hot plate 40, a gas burner 4b is provided, and the combustion gas of the gas burner 4b is passed as a heating fluid, and the reforming chamber 4 is heated as a heating chamber through the heat transfer plate 40. In the state where the reforming chamber 3 is provided and the reforming catalyst 3c in the reforming chamber 3 is heated via the heat transfer plate 40 in the combustion chamber 4, steam for the reforming process is mixed into the reforming chamber 3. A raw fuel gas such as natural gas is supplied, and the raw fuel gas is reformed into a gas containing hydrogen gas and carbon monoxide gas.
[0015]
A round bar-shaped heat transfer plate deformation preventing rod 42 is provided as a heat transfer plate deformation preventing member for preventing the heat transfer plate 40 from being deformed so as to expand toward the combustion chamber 4 by tension.
[0016]
In addition, the reforming apparatus R uses a rectangular plate-shaped flat twin-chambered container Bd formed to have two rectangular plate-shaped flat chambers partitioned by the rectangular heat transfer plate 40. One of the two chambers is used as the reforming chamber 3 and the other is used as the combustion chamber 4
The twin-chamber-equipped container Bd has a pair of dish-shaped container forming members 41 arranged on both sides of a rectangular flat heat transfer plate 40, and the peripheral edges thereof are connected by seam welding. It is formed so as to define a chamber.
Further, the reforming apparatus R configured by using the twin chamber-equipped container Bd is provided in a vertical posture in which the heat transfer plate 40 is oriented vertically.
[0017]
That is, the reforming chamber 3 is configured by fixing the peripheral edge of the dish-shaped container forming member 41 as a dish-shaped reforming chamber forming member to the heat transfer plate 40, and the combustion chamber 4 is formed as a dish-shaped heating chamber forming member. The peripheral portion of the dish-shaped container forming member 41 as a member is fixed to the heat transfer plate 40.
Further, the heat transfer plate 40 is provided vertically, and the reforming chamber 3 and the combustion chamber 4 are configured to be thin and flat in the thickness direction of the heat transfer plate 40.
[0018]
Note that the heat transfer plate 40 is formed using a heat-resistant metal such as stainless steel, and the dish-shaped container forming member 41 is formed in a dish-like shape in which a central portion bulges around a peripheral edge portion as a connection margin. It is formed by pressing a plate material. The reforming catalyst 3c is formed by holding a catalyst such as ruthenium, nickel, and platinum in a porous ceramic material to form granules, and reforming a large number of the granulated reforming catalysts 3c in a gas-permeable state. It is in room 3.
[0019]
A nozzle 44 for supplying a raw fuel gas to be reformed is connected to an upper portion of the dish-shaped container forming member 41 forming the reforming chamber 3 so as to communicate with the chamber. The discharge nozzles 44 are connected in a state of communicating with the room, and the raw fuel gas is flown so as to pass vertically through the granular reforming catalyst group to perform the reforming process.
[0020]
In the combustion chamber 4, a heat insulating material 46 is applied to the heat transfer plate 40 of the dish-shaped container forming member 41 forming the combustion chamber 4 so as to form a combustion space on the side of the heat transfer plate 40 in the combustion chamber 4. It is provided in a state where it is applied to the opposing portion. The portion of the heat insulating material 46 facing the heat transfer plate 40 is formed in a step shape in which the lower side is lower than the upper side. A long gas burner 4b is arranged at the bottom of the lower combustion chamber formed between the lower side of the heat insulator 46 and the heat transfer plate 40, and the upper side of the heat insulator 46 and the heat transfer plate. A combustion catalyst 4c made of platinum, palladium or the like is provided in the upper combustion chamber portion formed between the upper combustion chamber portion and the lower combustion chamber portion and narrower than the lower combustion chamber portion. The gas burner 4b ejects from the gas ejection holes a gas ejection tube tg having many gas ejection holes along the longitudinal direction and an air ejection tube ta having many air ejection holes along the longitudinal direction. The gas fuel and the combustion air ejected from the air ejection holes are arranged side by side so as to collide with each other.
The fuel supply path 24 is connected to the gas ejection pipe tg of the gas burner 4b, and the combustion air path 29 is connected to the air ejection pipe ta by penetrating and connecting the dish-shaped container forming member 41 forming the combustion chamber 4. A nozzle 44 for discharging the combustion gas of the gas burner 4b is connected to an upper portion of the dish-shaped container forming member 41 forming the combustion chamber 4 so as to communicate with the chamber.
Then, the gas fuel supplied through the fuel supply path 24 is burned by the gas burner 4b, the unburned gas fuel is burned by the catalytic action of the combustion catalyst c, and the combustion gas is discharged by the nozzle 44. I have.
[0021]
Next, the heat transfer plate deformation preventing rod-shaped body 42 will be described with reference to FIGS. 2 and 3.
In the first embodiment, the plurality of heat transfer plate deformation preventing rods 42 face the heat transfer plate 40 in the dish-shaped container forming member 41 (corresponding to a dish-shaped heating chamber forming member) forming the combustion chamber 4. The plurality of heat transfer plate deformation preventing rods 42 are provided in the combustion chamber 4 so that the heat transfer plate 40 is prevented from being deformed by strutting with the supporting portion as a support. Are provided in a dispersive manner at positions deviated downward.
[0022]
Specifically, the heat-transfer plate deformation preventing rod 42 has a longitudinal end substantially perpendicular to the heat-transfer plate 40, and one end in the longitudinal direction faces the heat-transfer plate 40 of the dish-like container forming member 41. It is fixed to the part by welding.
In the first embodiment, a heat-resistant cylindrical body 43 is further provided so as to cover the heat-transfer plate deformation preventing rod 42. The lengths of the heat transfer plate deformation preventing rods 42 and the cylindrical members 43 are such that the ends on the side of the heat transfer plate 40 abut on the heat transfer plate 40 in a state where they are thermally expanded by the heating of the gas burners 4b. The distance between the portion of the dish-shaped container forming member 41 facing the heat transfer plate 40 and the heat transfer plate 40 is set to be slightly shorter.
By the way, the heat transfer plate deformation preventing rod 42 is welded to the dish-shaped container forming member 41 in advance before the dish-shaped container forming member 41 is welded to the heat transfer plate 40, and the heat transfer plate 41 is thus transferred. The dish-shaped container forming member 41 to which the hot plate deformation preventing rod 42 is attached is welded to the heat transfer plate 40.
[0023]
As the dispersed arrangement of the plurality of heat transfer plate deformation preventing rods 42, the plurality of heat transfer plate deformation prevention rods 42 are arranged in a horizontal direction such that the plurality of heat transfer plate deformation prevention rods 42 are arranged in a staggered manner. The arrangement is such that the rows of the heat transfer plate deformation preventing rods 42 are vertically arranged in a plurality of rows (three rows in the present embodiment).
The heat-transfer plate deformation preventing rod 42 is formed using a heat-resistant metal such as stainless steel (for example, SUS301S), and the cylindrical member 43 is made of a material having more excellent heat resistance than the heat-transfer plate deformation preventing rod 42. For example, it is formed using ceramic (for example, recrystallized alumina).
[0024]
That is, when the gas burner 4b burns, the heat transfer plate deformation preventing rod-like body 42 and the cylindrical body 43 thermally expand, and the ends on the heat transfer plate 40 side come into contact with the heat transfer plate 40. The combustion chamber of the heat transfer plate 40 is supported by the plate-shaped container forming member 41 forming the combustion chamber 4 with the portion facing the heat transfer plate 40 supported by the hot plate deformation preventing rod 42 and the cylindrical body 43. 4 is prevented from bulging and deforming.
[0025]
Next, a hydrogen-containing gas generator using the above-described reformer R will be described.
As shown in FIG. 8, the hydrogen-containing gas generator includes, in addition to the reformer R, a desulfurization unit that desulfurizes a hydrocarbon-based raw fuel gas such as natural gas to be reformed by the reformer R. 1, a steam generation unit S for generating steam for the reforming process in the reforming device R, and carbon monoxide gas in the reforming process gas supplied from the reforming device R to carbon dioxide gas using steam. A conversion unit 5 for performing a shift process by performing a shift process; and a selective oxidizing unit 6 for performing a selective oxidation process by selectively oxidizing a carbon monoxide gas in a shift process gas supplied from the shift unit 5. It is configured to generate a hydrogen-rich fuel gas having a low carbon gas concentration (for example, 10 ppm or less).
[0026]
The steam generating section S is provided with a steam generating heating flow section 11 through which the combustion gas discharged from the combustion chamber 4 of the reformer R flows, and heating the supplied raw water by the steam generating heating flow section 11. And an evaporating section 2 for evaporating.
[0027]
Further, a high-temperature reforming gas discharged from the reforming chamber 3 is passed through the hydrogen-containing gas generating apparatus, and a heat-retaining flow section 7 for keeping the reforming chamber 3 warm and a desulfurizing section 1 are provided. A desulfurization raw fuel gas heat exchanger Ep for exchanging heat between the desulfurization raw fuel gas and the high-temperature reforming processing gas from the reforming chamber 3 to preheat the desulfurization raw fuel gas supplied to the reforming chamber 3; The raw fuel gas heat exchanger Ea for preheating the raw fuel gas by exchanging heat between the high-temperature reforming processing gas from the reforming chamber 3 and the raw fuel gas supplied to the desulfurization unit 1 and cooling the shift unit 5 A cooling section flow passage 8 through which a cooling fluid flows, a cooling section cooling flow section 9 through which a cooling fluid flows to cool the conversion section 6, and a shift section 5. And a cooling fan 10 for cooling the selective oxidation unit 6.
[0028]
The desulfurization source fuel gas heat exchanger Ep includes an upstream reforming gas passage portion 12 through which the reforming gas discharged from the heat retaining passage portion 7 flows, and a desulfurization source gas supplied to the reforming chamber 3. The desulfurization raw fuel gas flow section 13 through which the fuel gas flows is provided so as to be capable of exchanging heat. The raw fuel gas heat exchanger Ea is provided with a heat exchanger Ea that is discharged from the upstream reforming processing gas flow section 12. And a raw fuel gas flow portion 16 through which the raw fuel gas supplied to the desulfurization unit 1 flows is provided with heat exchange freely. is there.
[0029]
The hydrogen-containing gas generator is provided with a plurality of flat plates B having a rectangular plate shape arranged in the thickness direction of the plate shape, and using each container B, the reformer R, the steam generator S, the desulfurizer 1 , A shift section 5, a selective oxidation section 6, and respective flow sections.
A part of the plurality of containers B is constituted by a single-chamber-equipped container Bm formed so as to have one chamber, and the rest is a double-chamber-equipped container similar to that constituting the above-described reforming apparatus R. Bd.
A fluid supply or fluid discharge nozzle 44 is attached to each of the twin chamber-equipped containers Bd and the single chamber-equipped container Bm, as necessary, so as to communicate with the internal chamber.
[0030]
In the present embodiment, nine double-chambered containers Bd and one single-chambered container Bm are laterally arranged in a state where the single-chambered container Bm is positioned third from the left end in a side view. It is provided compactly in the thickness direction. When arranging nine double-chambered containers Bd and one single-chambered container Bm, it is necessary to adjust the amount of heat transfer in a state in which those which need to be heat-transferred are in close contact with each other. They are arranged in a state where a heat insulating material 19 for adjusting the amount of heat transfer is interposed between the objects.
In order to make the distinction between the nine twin-chamber-equipped containers Bd clear, the symbols 1, 2, 3,... Attach.
[0031]
The portion having the left chamber of the double-chambered container Bd1 on the left end is used to constitute the heating flow section 11 for generating steam, and the portion having the right chamber is used to constitute the evaporation section 2. . That is, the steam generating section S is constituted by the double-chambered container Bd1 at the left end. The reformer R is configured as described above by using the second double-chambered container Bd2 from the left.
Using the single-chamber-provided container Bm, the heat-passing passage 7 is formed.
The upstream side reforming gas flow section 12 is constituted by using the portion provided with the left side chamber of the third double-chamber container Bd3 from the left, and the desulfurization source is formed using the portion provided with the right side chamber. The fuel gas flow section 13 is configured. In other words, the desulfurization raw fuel gas heat exchanger Ep is configured by using the third double-chambered container Bd3 from the left.
[0032]
The desulfurization unit 1 is configured by using the fourth double-chambered container Bd4 from the left, and the desulfurization unit 1 is configured by using the left chamber of the fifth double-compartmented container Bd5 from the left. The raw fuel gas passage 16 is formed by using the portion provided with the right chamber.
The downstream reforming gas flow section 15 is configured using the left chamber of the sixth double chamber-equipped container Bd6 from the left, and the metamorphic section is configured using the section including the right chamber. 5 is constituted. That is, the raw fuel gas is formed by using the portion including the right chamber of the fifth double-chamber container Bd5 from the left and the portion including the left chamber of the sixth double-chamber container Bd6 from the left. The heat exchanger Ea is configured.
The metamorphic unit 5 is configured by using the left chamber of the seventh double chamber-equipped container Bd7 from the left, and the metamorphic section cooling passage 8 is configured by using the right chamber. I have.
The metamorphic unit 5 is configured using the eighth double-chambered container Bd8 from the left, and the metamorphic unit using the left side chamber of the ninth (right end) double-compartmented container Bd9 from the left. A cooling flow section 9 is formed, and a selective oxidizing section 6 is formed by using a portion having a chamber on the right side.
[0033]
In the chamber of the twin chamber-equipped container Bd constituting the desulfurization unit 1, a large number of porous ceramic granules holding a desulfurization catalyst are charged in an air-permeable state, and the twin chamber-equipped container constituting the shift unit 5 is provided. In the chamber of Bd, a large number of ceramic porous granules holding a catalyst for a conversion reaction of iron oxide or copper zinc are charged in a gas-permeable state, and a twin chamber-equipped container Bd constituting a selective oxidation section 6 A large number of porous ceramic particles holding a catalyst for selective oxidation of ruthenium are charged into the chamber in such a manner as to allow ventilation.
[0034]
That is, the single chamber-equipped container Bm, the heat insulating material 19, the desulfurization source and the single chamber-equipped container B constituting the heat-insulating passage 7 are provided on one side of the twin-chamber-equipped container Bd2 constituting the reforming apparatus R from the side of the twin-chamber-equipped container Bd2. Twin chamber-equipped container Bd3 constituting the fuel gas heat exchanger Ep, a heat insulating material 19, a twin chamber-equipped vessel Bd4 constituting the desulfurization section 1, a double chamber-equipped vessel constituting the desulfurization section 1 and the raw fuel gas flow section 16 Bd5, a twin chamber-equipped container Bd6 constituting the downstream reforming gas flow section 15 and the shift section 5, a twin chamber-equipped vessel Bd7 forming the shift section 5 and the shift section cooling passage 8, and the shift section 5. The twin chamber-equipped container Bd8, the flow passage 9 for cooling the metamorphic section, and the twin chamber-equipped vessel Bd9 constituting the selective oxidizing section 6 are closely arranged to be arranged in the stated order, and the other side of the twin chamber-equipped vessel Bd2 From the side of the double chamber-equipped container Bd2, a heat insulating material 19, Is provided closely arranged side by side in the order described bi chamber comprises a container Bd1 constituting the steam generator S.
[0035]
In FIG. 8, the raw fuel gas supply path 21 is connected to the raw fuel gas flow section 16 of the raw fuel gas heat exchanger Ea, and Desulfurization unit 1, desulfurization raw fuel gas flow exchanger 13 of desulfurization raw fuel gas heat exchanger 13, reforming chamber 3, heat retaining flow passage 7, upstream reforming process of desulfurization raw fuel gas heat exchanger Ep The gas flow section 12, the downstream reforming gas flow section 15 of the raw fuel gas heat exchanger Ea, the shift section 5, and the selective oxidation section 6 form a gas processing path so as to form a gas processing path that flows in this order. Connection 22.
[0036]
The selective oxidizing unit 6 and the fuel cell G are connected through a fuel gas passage 23 so that the selective oxidizing gas discharged from the selective oxidizing unit 6 is supplied to the fuel cell G as a fuel gas. The fuel cell G and the gas ejection pipe tg of the gas burner 4b are connected via a fuel supply path 24 in order to supply the discharged exhaust gas as gas fuel to the gas burner 4b of the reformer R.
[0037]
In FIG. 8, as shown by the solid arrow, a raw water supply passage 25 to which raw water for generating steam is sent from the raw water pump 14 is connected to the evaporating section 2 of the steam generating section S. The steam path 26 for sending out the generated steam is connected to the gas processing channel 22 that connects the desulfurization unit 1 and the reformed gas flow unit 13, and flows through the gas processing channel 22. The steam for reforming is mixed with the desulfurization raw fuel gas.
[0038]
In FIG. 8, as indicated by the dashed arrows, the combustion gas discharged from the combustion chambers 4 flows in the order of the heating flow section 11 for steam generation and the flow section 8 for cooling the metamorphic section. The heating passage 11 for steam generation and the passage 8 for cooling the metamorphic section are connected by a combustion gas passage 27. In the heating passage 11 for steam generation, the evaporating section 2 is heated by the combustion gas. The metamorphic section cooling passage 8 is configured to cool the metamorphic section 5 where the metamorphic reaction, which is an exothermic reaction, is performed by the combustion gas.
[0039]
8, the blower 28 and the air ejection pipe ta of the gas burner 4b are connected to the combustion air passage 29 so that the air from the blower 28 is supplied to the gas burner 4b as combustion air, as indicated by a dashed line arrow. Connected. Although not shown, there is also provided a cooling section cooling air passage for supplying air from the blower 28 through the cooling section cooling flow section 9 and then supplying the gas to the gas burner 4b. When the temperature is insufficient, for example, when the temperature is high in the summer, it is possible to switch to supply the combustion air to the gas burner 4b through the cooling air passage of the shift portion.
[0040]
In the gas treatment flow path 22 connecting the last stage shift section 5 and the selective oxidation section 6, a feed water preheating heat exchanger for preheating feed water flowing through the feed water supply path 25 with the shift processing gas. 17 and a drain trap 30 for removing condensed water from the shift gas is provided downstream of the raw water preheating heat exchanger 17 to exchange heat between the shift gas and the raw water. In addition, the raw water is preheated and the shift gas is cooled.
Further, the combustion gas discharged from the cooling portion cooling passage 8 through the combustion gas passage 27, the combustion air supplied to the combustion chamber 4 through the combustion air passage 29, and the off-gas supplied to the gas burner 4 b through the fuel supply passage 24. And a heat exchanger 31 for exhaust heat recovery for preheating the combustion air and off-gas by exchanging heat with the heat exchanger 31.
[0041]
Hereinafter, the second to fifth embodiments of the present invention will be described. In each embodiment, a structure in which the heat transfer plate 40 is prevented from being deformed by the heat transfer plate deformation preventing rod 42, a heat transfer plate deformation prevention The configuration is the same as that of the first embodiment, except that the arrangement of the rods 42 or the configuration related to the heat transfer plate deformation preventing rods 42 such as the support structure is different. Elements and components having the same action are denoted by the same reference numerals to avoid redundant description, and the description thereof will be omitted. Mainly, the configuration related to the heat transfer plate deformation preventing rod 42 will be described.
Further, the reformer R according to each of the second to fifth embodiments can be used for the hydrogen-containing gas generator shown in FIG. 8 similarly to the reformer R according to the first embodiment. Description of the hydrogen-containing gas generator using the reformer R according to each of the fifth embodiments will be omitted.
[0042]
[Second embodiment]
Hereinafter, the second embodiment will be described with reference to FIG.
In the second embodiment, the structure in which the heat transfer plate 40 is prevented from being deformed by the heat transfer plate deformation preventing rods 42 and the arrangement of the heat transfer plate deformation prevention rods 42 are the same as those in the first embodiment. The difference from the first embodiment is that the support structure of the hot plate deformation preventing rod 42 is different from that of the first embodiment, and that the heat-resistant tubular body 43 is not provided.
[0043]
As a structure for preventing the heat transfer plate 40 from being deformed by the heat transfer plate deformation preventing rods 42, the heat transfer plate 40 faces the heat transfer plate 40 in the dish-shaped container forming member 41 forming the combustion chamber 4, similarly to the first embodiment. The structure is such that the heat transfer plate 40 is prevented from being deformed by strutting by supporting the portion. That is, the plurality of heat transfer plate deformation preventing rods 42 support the portion of the dish-shaped container forming member 41 forming the combustion chamber 4 facing the heat transfer plate 40, and deform the heat transfer plate 40 by stretching. It is provided in the combustion chamber 4 for prevention.
As in the first embodiment, the arrangement of the heat transfer plate deformation preventing rods 42 is such that the plurality of heat transfer plate deformation preventing rods 42 are shifted to the lower side of the vertically oriented heat transfer plate 40, as in the first embodiment. It is provided in a dispersed manner. The distributed arrangement of the plurality of heat transfer plate deformation preventing rods 42 is the same as in the first embodiment.
[0044]
The supporting structure of the heat-transfer plate deformation preventing rod-shaped body 42 will be further described. The heat-transfer plate deformation-preventing rod-shaped body 42 has one end in the longitudinal direction in which the longitudinal direction thereof is substantially orthogonal to the heat transfer plate 40. The other end is fixedly welded to the plate 40, and the other end is fixed to a portion of the dish-shaped container forming member 41 forming the combustion chamber 4 facing the heat transfer plate 40 by welding. Incidentally, the heat-transfer plate deformation preventing rod 42 is previously welded and attached to the dish-shaped container forming member 41, and the dish-shaped container forming member 41 to which the heat-transfer plate deformation preventing rod 42 is attached is heat-transferred. When welding to the plate 40, the end of the heat transfer plate deformation preventing rod 42 is pressed against the heat transfer plate 40 and welded.
[0045]
[Third embodiment]
Hereinafter, the third embodiment will be described with reference to FIG.
In the third embodiment, the arrangement of the heat transfer plate deformation preventing rods 42 is the same as that of the first embodiment, except that the heat transfer plate deformation preventing rods 42 prevent the heat transfer plate 40 from being deformed. The difference from the first embodiment is that the support structure of the heat transfer plate deformation preventing rod 42 is different from that of the first embodiment, and that the heat-resistant tubular body 43 is not provided.
[0046]
That is, as in the first embodiment, the arrangement of the heat transfer plate deformation preventing rods 42 is such that the plurality of heat transfer plate deformation preventing rods 42 are shifted downward in the vertical heat transfer plate 40. Are provided in a dispersed manner. The distributed arrangement of the plurality of heat transfer plate deformation preventing rods 42 is the same as in the first embodiment.
[0047]
As a structure in which the heat transfer plate 40 is prevented from being deformed by the heat transfer plate deformation preventing rod-shaped body 42, the portion facing the heat transfer plate 40 in the dish-shaped container forming member 41 forming the reforming chamber 3 is supported and pulled. The structure prevents deformation of the heat transfer plate 40. In other words, the plurality of heat transfer plate deformation preventing rods 42 are used to support the portion of the dish-shaped container forming member 41 forming the reforming chamber 3 that faces the heat transfer plate 40, and pull the deformation of the heat transfer plate 40 by pulling. It is provided in the reforming chamber 3 to prevent it.
[0048]
The supporting structure of the heat-transfer plate deformation preventing rod-shaped body 42 will be further described. The heat-transfer plate deformation-preventing rod-shaped body 42 has one end in the longitudinal direction in which the longitudinal direction thereof is substantially orthogonal to the heat transfer plate 40. The other end is fixedly welded to the plate 40, and the other end is fixed to the portion of the dish-shaped container forming member 41 forming the reforming chamber 3 which faces the heat transfer plate 40 by welding. Incidentally, the heat-transfer plate deformation preventing rod 42 is previously welded and attached to the dish-shaped container forming member 41, and the dish-shaped container forming member 41 to which the heat-transfer plate deformation preventing rod 42 is attached is heat-transferred. When welding to the plate 40, the end of the heat transfer plate deformation preventing rod 42 is pressed against the heat transfer plate 40 and welded.
[0049]
In other words, in the reforming apparatus R of the third embodiment, the heat transfer plate deformation preventing rods 42 support the portion of the dish-shaped container forming member 41 forming the reforming chamber 3 that faces the heat transfer plate 40 and pulls the support. Thus, the swelling deformation of the heat transfer plate 40 toward the combustion chamber 4 is prevented.
Further, since the heat transfer plate deformation preventing rod 42 is buried in the reforming catalyst 3c, heat is conducted from the heat transfer plate 40 to the reforming catalyst 3c through the heat transfer plate deformation preventing rod 42. Therefore, the heating temperature distribution of the reforming catalyst 3c can be reduced.
[0050]
[Fourth embodiment]
Hereinafter, a fourth embodiment will be described with reference to FIG.
In the fourth embodiment, the arrangement of the heat transfer plate deformation preventing rods 42 is the same as that of the first embodiment, but a structure in which the heat transfer plate 40 is prevented from being deformed by the heat transfer plate deformation prevention rods 42, and The difference from the first embodiment is that the support structure of the heat transfer plate deformation preventing rod 42 is different from that of the first embodiment, and that the heat-resistant tubular body 43 is not provided.
[0051]
That is, as in the first embodiment, the arrangement of the heat transfer plate deformation preventing rods 42 is such that the plurality of heat transfer plate deformation preventing rods 42 are shifted downward in the vertical heat transfer plate 40. Are provided in a dispersed manner. The distributed arrangement of the plurality of heat transfer plate deformation preventing rods 42 is the same as in the first embodiment.
[0052]
As a structure in which the heat transfer plate 40 is prevented from being deformed by the heat transfer plate deformation preventing rod-shaped body 42, the portion facing the heat transfer plate 40 in the dish-shaped container forming member 41 forming the reforming chamber 3 is supported and pulled. The structure prevents deformation of the heat transfer plate 40. In other words, the plurality of heat transfer plate deformation preventing rods 42 are used to support the portion of the dish-shaped container forming member 41 forming the reforming chamber 3 that faces the heat transfer plate 40, and pull the deformation of the heat transfer plate 40 by pulling. It is provided in the reforming chamber 3 to prevent it.
[0053]
The supporting structure of the heat-transfer plate deformation preventing rod-shaped body 42 will be further described. The heat-transfer plate deformation-preventing rod-shaped body 42 has a flange portion projecting outward in the circumferential direction at an end of the heat transfer plate 40 in the longitudinal direction. 42f, and a flange 40f at one end in the longitudinal direction is fixed to the heat transfer plate 40 by welding, with the heat transfer plate deformation preventing rod 42 in a position in which the longitudinal direction is substantially perpendicular to the heat transfer plate 40. The other end is fixed to the portion facing the heat transfer plate 40 of the dish-shaped container forming member 41 forming the reforming chamber 3 by welding while being locked to the stop member 45. The flange 42f of the heat transfer plate deformation preventing rod 42 and the locking member 45 are locked so as to prevent the heat transfer plate 40 from bulging and deforming toward the combustion chamber 4 by contact with each other. It is.
Incidentally, the heat-transfer plate deformation preventing rod 42 is welded to the dish-shaped container forming member 41 in advance, and the dish-shaped container forming member 41 to which the heat-transfer plate deformation preventing rod 42 is attached is transferred in advance. The dish-shaped container forming member 41 is welded to the heat transfer plate 40 by arranging the flange portion 42f of the hot plate deformation preventing rod 42 so as to be locked by the locking member 45.
[0054]
[Fifth Embodiment]
Hereinafter, a fifth embodiment will be described with reference to FIG.
In the fifth embodiment, the arrangement of the heat transfer plate deformation preventing rods 42 is the same as that of the first embodiment, but a structure in which the heat transfer plate 40 is prevented from being deformed by the heat transfer plate deformation prevention rods 42, and The first embodiment differs from the first embodiment in that a part of the support structure of the heat transfer plate deformation preventing rod 42 is different from that of the first embodiment, and that a heat-resistant tubular body 43 is not provided.
[0055]
That is, as in the first embodiment, the arrangement of the heat transfer plate deformation preventing rods 42 is such that the plurality of heat transfer plate deformation preventing rods 42 are shifted downward in the vertical heat transfer plate 40. Are provided in a dispersed manner. The distributed arrangement of the plurality of heat transfer plate deformation preventing rods 42 is the same as in the first embodiment.
[0056]
As a structure for preventing the deformation of the heat transfer plate 40 by the heat transfer plate deformation preventing rod-shaped member 42, a structure in which the portion opposed to the heat transfer plate 40 in the dish-shaped container forming member 41 forming the reforming chamber 3 is supported by tension. The structure is such that the heat transfer plate 40 is prevented from being deformed by both the support supporting the portion facing the heat transfer plate 40 in the dish-shaped container forming member 41 forming the combustion chamber 4. In other words, the plurality of heat transfer plate deformation preventing rods 42 are used to support the portion of the dish-shaped container forming member 41 forming the reforming chamber 3 that faces the heat transfer plate 40, and pull the deformation of the heat transfer plate 40 by pulling. A plurality of heat transfer plate deformation preventing rods 42 are provided in the reforming chamber 3 so as to prevent the portion facing the heat transfer plate 40 of the dish-shaped container forming member 41 forming the combustion chamber 4. The heat transfer plate 40 is provided in the combustion chamber 4 so as to prevent the heat transfer plate 40 from being deformed by tension.
[0057]
The support structure of the heat transfer plate deformation preventing rods 42 provided in the combustion chamber 4 is the same as that of the first embodiment, and the heat transfer plate deformation prevention rods 42 provided in the reforming chamber 3 is supported in the fourth embodiment. Since this is the same as the embodiment, the description is omitted.
[0058]
[Another embodiment]
Next, another embodiment will be described.
The specific configuration of the heat transfer plate deformation preventing body 42 is not limited to the round bar-shaped heat transfer plate deformation preventing rod 42 illustrated in each of the above embodiments. For example, it can be constituted by a rod-like body having a square rod shape or an elliptical rod shape, or a corrugated plate-like body. Further, the heat transfer plate deformation preventing body 42 is supported by a portion of the reforming chamber forming member 41 facing the heat transfer plate 40, and the heat transfer plate 40 is prevented from being deformed by pulling. In this case, the heat transfer plate deformation preventing body 42 can be formed of a cord-like body such as a chain.
[0059]
In the first embodiment, the tubular body 43 can be omitted. In each of the second to fifth embodiments, the heat-resistant cylindrical body 43 may be provided so as to cover the heat-transfer plate deformation preventing rod 42.
[0060]
In each of the above embodiments, the case where the plurality of heat transfer plate deformation preventing members 42 are provided in a dispersive manner at positions deviated to the lower side of the vertically oriented heat transfer plate 40 has been described. The deformation preventing members 42 may be provided in a distributed manner over the entire surface of the vertically oriented heat transfer plate 40. In particular, when the plurality of heat transfer plate deformation preventing members 42 are provided in a distributed manner over the entire surface of the vertical heat transfer plate 40 in the reforming chamber 3, the heating temperature distribution of the reforming catalyst 3c can be further reduced. Is preferred.
[0061]
When a plurality of heat transfer plate deformation preventing members 42 are provided, the number thereof can be appropriately changed according to the size of the heat transfer plate 40 and the like. Further, one heat transfer plate deformation preventing member 42 may be provided.
[0062]
In each of the above embodiments, the gas burner 4b is provided inside the combustion chamber 4 serving as the heating chamber 4, and the combustion gas of the gas burner 4b is made to flow as a heating fluid. The combustion gas or the combustion exhaust gas from various combustion type motors may be supplied as a heating fluid from outside the heating chamber 4 to the heating chamber.
[0063]
The specific configuration for forming the reforming chamber 3 and the heating chamber 4 is not limited to the configuration illustrated in each of the above-described embodiments. For example, one opening edge of the cylindrical body is connected to the heat transfer plate 40. It may be configured to be fixed by welding or the like, and a plate-shaped lid may be fixed to the other opening edge by welding or the like.
[0064]
When the shape of the reforming chamber 3 and the heating chamber 4 is configured to be thin and flat in the thickness direction of the heat transfer plate 40, the shape is not limited to a rectangular plate as exemplified in the above embodiments. For example, a disk shape may be used. Further, the reforming chamber 3 and the heating chamber 4 are not limited to the case where they are configured to be thin and flat in the thickness direction of the heat transfer plate 40, and may be configured to have, for example, a rectangular parallelepiped shape or a cubic shape.
[0065]
In each of the above embodiments, the case where the reforming device R is provided in the standing posture in which the heat transfer plate 40 is vertically oriented has been described, but the heat transfer plate 40 serves as the bottom of the reforming chamber 3. It may be provided in the bottom posture.
[0066]
The specific configuration of the gas burner 4b is not limited to the configuration exemplified in the above embodiment, and various configurations are possible. For example, a premixed gas of gas fuel and combustion air is ejected and burned. A configuration may be used.
[0067]
The reformer R according to the present invention is not limited to the case where the reformer R is used by being incorporated in the hydrogen-containing gas generator as in each of the above embodiments, and can be used alone.
[Brief description of the drawings]
FIG. 1 is a perspective view of a reformer according to an embodiment.
FIG. 2 is an exploded perspective view of the reformer according to the first embodiment.
FIG. 3 is a longitudinal sectional side view of the reformer according to the first embodiment.
FIG. 4 is a longitudinal sectional side view of a reformer according to a second embodiment.
FIG. 5 is a longitudinal sectional side view of a reformer according to a third embodiment.
FIG. 6 is a longitudinal sectional side view of a reformer according to a fourth embodiment.
FIG. 7 is a longitudinal sectional side view of a reformer according to a fifth embodiment.
FIG. 8 is a vertical side view of a hydrogen-containing gas generator using the reformer according to the first embodiment.
FIG. 9 is a longitudinal sectional side view of a conventional reformer.
[Explanation of symbols]
3 Reforming chamber
3c Reforming catalyst
4 heating room
40 heat transfer plate
41 Reforming chamber forming member, heating chamber forming member
42 Heat transfer plate deformation prevention body
43 cylindrical body

Claims (5)

周縁部が固定された伝熱板の一側面側に、改質触媒が装入された改質室が設けられ、前記伝熱板の他側面側に、加熱用流体が通流して前記改質室を前記伝熱板を介して加熱する加熱室が設けられた改質装置であって、
前記伝熱板が前記加熱室側に膨出するように変形するのを突っ張り又は引張りにて防止する伝熱板変形防止体が設けられている改質装置。
A reforming chamber in which a reforming catalyst is inserted is provided on one side of the heat transfer plate having a fixed peripheral portion, and a heating fluid flows through the other side of the heat transfer plate to form the reforming chamber. A reforming apparatus provided with a heating chamber for heating the chamber via the heat transfer plate,
A reformer provided with a heat transfer plate deformation preventing member for preventing the heat transfer plate from being deformed so as to expand toward the heating chamber by tension or pulling.
前記改質室が、皿状の改質室形成部材の周縁部を前記伝熱板に固着して構成され、
前記伝熱板変形防止体が、前記改質室形成部材における前記伝熱板に対向する部分を支えにして、引張りにて前記伝熱板の変形を防止するように前記改質室内に設けられている請求項1記載の改質装置。
The reforming chamber is configured by fixing a peripheral portion of a dish-shaped reforming chamber forming member to the heat transfer plate,
The heat transfer plate deformation preventing body is provided in the reforming chamber so as to support a portion of the reforming chamber forming member facing the heat transfer plate and prevent deformation of the heat transfer plate by pulling. The reformer according to claim 1, wherein
前記加熱室が、皿状の加熱室形成部材の周縁部を前記伝熱板に固着して構成され、
前記伝熱板変形防止体が、前記加熱室形成部材における前記伝熱板に対向する部分を支えにして、突っ張りにて前記伝熱板の変形を防止するように前記加熱室内に設けられている請求項1記載の改質装置。
The heating chamber is configured by fixing a peripheral portion of a dish-shaped heating chamber forming member to the heat transfer plate,
The heat transfer plate deformation preventing body is provided in the heating chamber so as to support a portion of the heating chamber forming member facing the heat transfer plate and to prevent deformation of the heat transfer plate with a strut. The reforming device according to claim 1.
前記伝熱板変形防止体が、棒状に構成され、
耐熱性を有する筒状体が、棒状の前記伝熱板変形防止体を被覆するように設けられている請求項1〜3のいずれか1項に記載の改質装置。
The heat transfer plate deformation preventing body is configured in a rod shape,
The reformer according to any one of claims 1 to 3, wherein a cylindrical body having heat resistance is provided so as to cover the rod-shaped heat transfer plate deformation preventing body.
前記伝熱板が縦向きに設けられ、
前記改質室及び前記加熱室が、前記伝熱板の厚さ方向に薄い偏平状に構成され、
複数の前記伝熱板変形防止体が、縦向きの前記伝熱板における下方側に偏った位置に、分散状に設けられている請求項1〜4のいずれか1項に記載の改質装置。
The heat transfer plate is provided vertically,
The reforming chamber and the heating chamber are configured to be thin and flat in the thickness direction of the heat transfer plate,
The reformer according to any one of claims 1 to 4, wherein a plurality of the heat transfer plate deformation preventing members are dispersedly provided at positions deviated downward in the vertically oriented heat transfer plate. .
JP2002194940A 2002-07-03 2002-07-03 Reformer Expired - Lifetime JP4183448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194940A JP4183448B2 (en) 2002-07-03 2002-07-03 Reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194940A JP4183448B2 (en) 2002-07-03 2002-07-03 Reformer

Publications (2)

Publication Number Publication Date
JP2004035328A true JP2004035328A (en) 2004-02-05
JP4183448B2 JP4183448B2 (en) 2008-11-19

Family

ID=31703506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194940A Expired - Lifetime JP4183448B2 (en) 2002-07-03 2002-07-03 Reformer

Country Status (1)

Country Link
JP (1) JP4183448B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090321A (en) * 2005-09-01 2007-04-12 Osaka Gas Co Ltd Fluid treatment apparatus and manufacturing method thereof
JP2010044991A (en) * 2008-08-18 2010-02-25 Futaba Industrial Co Ltd Cabinet for fuel cell
JP2010083489A (en) * 2008-09-29 2010-04-15 Casio Computer Co Ltd Liquid storing container
JP2011132114A (en) * 2009-12-24 2011-07-07 Samsung Sdi Co Ltd Reformer with enhanced durability
JP2012206903A (en) * 2011-03-30 2012-10-25 Osaka Gas Co Ltd Reformer and fuel cell system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090321A (en) * 2005-09-01 2007-04-12 Osaka Gas Co Ltd Fluid treatment apparatus and manufacturing method thereof
JP2010044991A (en) * 2008-08-18 2010-02-25 Futaba Industrial Co Ltd Cabinet for fuel cell
JP2010083489A (en) * 2008-09-29 2010-04-15 Casio Computer Co Ltd Liquid storing container
JP2011132114A (en) * 2009-12-24 2011-07-07 Samsung Sdi Co Ltd Reformer with enhanced durability
US8591609B2 (en) 2009-12-24 2013-11-26 Samsung Sdi Co., Ltd. Reformer with high durability
JP2012206903A (en) * 2011-03-30 2012-10-25 Osaka Gas Co Ltd Reformer and fuel cell system

Also Published As

Publication number Publication date
JP4183448B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP4063430B2 (en) Fluid processing equipment
JP2001155756A (en) Vapor-reforming reactor for fuel cell
KR101870026B1 (en) Reactor reforming for liquid hydrocarbon fuel
JP4090234B2 (en) Hydrogen-containing gas generator
JP4183448B2 (en) Reformer
JP4614515B2 (en) Fuel cell reformer
JP4278416B2 (en) Steam generator for raw fuel reforming
JP6596856B2 (en) Reformed water evaporator and power generator
JP5324752B2 (en) Hydrogen-containing gas generator
JP4527130B2 (en) Reformer
JP5336696B2 (en) Fluid processing apparatus and manufacturing method thereof
JP4531320B2 (en) Operation control method for hydrogen-containing gas generator
US20090199475A1 (en) Reformer and Method of Startup
JP2003160305A (en) Reformer
JP4646527B2 (en) Reformer
JP4502468B2 (en) Fuel cell power generator
JP3966831B2 (en) Heating burner for reformer
JP2007314419A (en) Operation control method for hydrogen-containing gas production apparatus
JP3948885B2 (en) Hydrogen-containing gas generator for fuel cells
JP5643706B2 (en) Hydrogen-containing gas generator
JP2550716B2 (en) Fuel reformer
JP2007265946A (en) Burner for reformer for fuel cell
JP2002276909A (en) Burner
JP2004059359A (en) Catalyst putting system for reformer and method for using the same
JP2006256932A (en) Fuel reforming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4183448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140912

Year of fee payment: 6

EXPY Cancellation because of completion of term