JP2004034742A - Light emitting element driving circuit for vehicular luminaire - Google Patents

Light emitting element driving circuit for vehicular luminaire Download PDF

Info

Publication number
JP2004034742A
JP2004034742A JP2002190882A JP2002190882A JP2004034742A JP 2004034742 A JP2004034742 A JP 2004034742A JP 2002190882 A JP2002190882 A JP 2002190882A JP 2002190882 A JP2002190882 A JP 2002190882A JP 2004034742 A JP2004034742 A JP 2004034742A
Authority
JP
Japan
Prior art keywords
emitting element
light emitting
light
element block
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002190882A
Other languages
Japanese (ja)
Inventor
Takeyuki Wakamori
若森 猛幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ichikoh Industries Ltd
Original Assignee
Ichikoh Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ichikoh Industries Ltd filed Critical Ichikoh Industries Ltd
Priority to JP2002190882A priority Critical patent/JP2004034742A/en
Publication of JP2004034742A publication Critical patent/JP2004034742A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving circuit for a vehicular luminaire whereby influence of variation of electric characteristics of a light emitting element block can be restrained and suitable electric current can be supplied to respective light emitting elements of the light emitting element block. <P>SOLUTION: This light emitting element driving circuit 10 having the light emitting element block 18 formed by connecting a plurality of the light emitting elements 14 as an optical source 12 is provided with a direct current power source 11 for supplying driving electric current to the light emitting element block 18, and a connector 13 on which a plurality of connecting ends 20a to 20d, and 21a to 21d showing different electric resistance values. The light emitting element block 18 receives supply from the direct current power source 11 through the connecting ends 20a to 20c and 21a to 21c selected in accordance with the electric characteristics. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、車両用灯具の光源として、LED(発光ダイオード素子)のような発光素子を相互に接続して形成された発光素子ブロックが用いられた車両用灯具の駆動回路に関する。
【0002】
【従来の技術】
車両用灯具の光源として、電流消費の少ないLEDを用いたものがある。個々のLEDによる光量の不足を補うために、このような光源は、多数の順方向に直列接続されたLED列が相互に整列するように並列接続されて形成される発光素子ブロックで構成されている。この発光素子ブロックのためのLEDは、各ブロック毎にほぼ等しい順方向電圧特性Vfを示すものが選択され、この選択された各LED群により、各発光素子ブロックが構成されている。
【0003】
この順方向電圧特性Vfは、LEDに順方向へ定電流を供給したときに該LEDで生じる電圧降下値、すなわち該LEDに作用する電圧の値で示され、各LEDの順方向電圧に対する電気抵抗値に対応する。
【0004】
ほぼ等しい電気特性Vfを示す多数のLEDで構成された発光素子ブロックに直流電圧が印加されると、発光素子ブロックは、各ブロック毎に、ほぼ均等なVf特性すなわち順方向の電気抵抗値を示すLEDで構成されていることから、個々のLEDにほぼ均等な電流が流れ、これにより、各発光素子ブロック内のLEDが均等な明るさで発光する。
【0005】
このように、発光素子ブロック毎にほぼ均等な電気特性Vfを有する同一ランク内にあるLEDを選択し、これらで発光素子ブロックを構成することにより、発光素子ブロック内の各LEDの明るさのばらつきが防止される。
【0006】
【発明が解決しようとする課題】
しかしながら、それぞれの発光素子ブロック毎に、発光素子ブロックを構成するLED群間でVf特性にランク差が生じると、発光素子ブロック毎のVf特性のばらつきとなる。例えば、Vf特性が2.0〜2.2VのランクのLEDで構成された発光素子ブロックと、Vf特性が2.2〜2.4VのランクのLEDで構成された発光素子ブロックとは、その間に、Vf特性のランク差が生じ、このランク差のある発光素子ブロックに所定の直流電圧が印加されると、このVf特性ランクに応じて、発光素子ブロック毎にそれぞれのLEDに流れる電流値が異なり、そのために発光素子ブロック毎にその明るさが異なることがある。
【0007】
また、発光素子ブロックのVf特性にランク差があると、Vf特性の小さな発光素子ブロックのLEDに過電流が流れることがある。この過電流はLEDの劣化を促進させる原因となる。
【0008】
従って、本発明の目的は、発光素子ブロック毎の電気特性のばらつきの影響を抑制して該発光素子ブロックに適正な電流を供給し得る車両用灯具の駆動回路を提供することにある。
【0009】
【課題を解決するための手段】
請求項1に記載の発明は、複数の発光素子が接続されて形成された発光素子ブロックを光源とする車両用灯具のための発光素子駆動回路であって、前記発光素子ブロックに駆動電流を供給する電源と、該電源に接続され互いに異なる電気抵抗値を示す複数の接続端が設けられたコネクタとを備え、前記発光素子ブロックは、その電気特性に応じて選択された前記接続端を経て前記電源の供給を受けることを特徴とする。
【0010】
請求項2に記載の発明は、前記コネクタは、前記電源に接続される前記複数の接続端が設けられた第1のコネクタ部材と、前記発光素子ブロックに接続可能な複数の接続端が設けられ、該接続端がこれに対応する第1のコネクタ部材の前記接続端に接続可能となるように該第1のコネクタ部材に取り外し可能に接続される第2のコネクタ部材とを備え、前記第1のコネクタ部材の前記各接続端と前記電源とは相互に異なる電気抵抗値を示す電路で接続されていることを特徴とする。
【0011】
請求項3に記載の発明は、前記発光素子ブロックは、一対の接続端子と、該両接続端子間で順方向を一致させるように整列して相互に直列接続され、電気特性のほぼ等しい複数の発光素子からなる発光素子列であって前記両接続端子間で相互に整列して並列接続された発光素子列とを備え、前記一対の接続端子間の順方向抵抗値に応じて該接続端子が前記第1のコネクタ部材の前記接続端に選択的に接続されることを特徴とする。
【0012】
請求項1、3に記載の発明によれば、発光素子ブロックを構成する各発光素子の例えば順方向電気抵抗特性で決まるVf特性のような電気特性に応じて、前記コネクタへの接続端を適切に選択することにより、各発光素子ブロックの電気特性のばらつきに拘わらず、各発光素子に適正な電流を供給することができる。
【0013】
請求項2に記載の発明によれば、コネクタが相互に取り外し可能の第1および第2のコネクタ部材で構成され、多数の発光素子ブロックをその電気特性のランク毎の接続形態で予め第2のコネクタ部材に接続しておくことにより、各発光素子ブロックと前記電源との適正な接続作業が単に両コネクタ部材の接続により行えることから、発光素子ブロックと電源との適正な接続作業を誤りなく迅速に行うことができる。
【0014】
【発明の実施の形態】
本発明に係る車両用灯具の駆動回路10は、図1に示すように、直流電源11と、直流電源11と該直流電源11から電力の供給を受ける光源12との間に設けられるコネクタ13とを備える。
【0015】
光源12は、自動車の例えばリアコンビネーションランプ、テールランプあるいはストップランプのような灯具の光源として用いられる。光源12は、多数の発光ダイオード素子(LED)のような発光素子14の群からなる。各発光素子14は、それぞれの順方向電圧特性Vfが例えば2.0〜2.2V、2.2〜2.4Vまたは2.4〜2.6Vのいずれかの1つのグループに属し、これらが両接続端子15、16間で、それぞれのアノードおよびカソードの配列方向が同一となるように順方向を一致させて相互に直列接続された発光素子列17を構成しかつ各発光素子列17がそれぞれの順方向を一致させるように整列されて並列接続されることにより、マトリクス状に配列されて発光素子ブロック18を構成している。
【0016】
順方向電圧特性Vfが例えば2.0〜2.2Vの発光素子14の群からなる発光素子ブロック18は、第1のランクの発光素子ブロック18を構成する。また、順方向電圧特性Vfが例えば2.2〜2.4Vの発光素子14の群からなる発光素子ブロック18は、第2のランクの発光素子ブロック18を構成する。この第2のランクの発光素子ブロック18は、第1のランクの発光素子ブロック18よりも高いVf特性を示す。また、順方向電圧特性Vfが例えば2.4〜2.6Vの発光素子14の群からなる発光素子ブロック18は、第2のランクの発光素子ブロック18よりもさらに高いVf特性を示す第3のランクの発光素子ブロック18を構成する。
【0017】
コネクタ13は、保護抵抗R1が設けられた導電路19を経て直流電源11に接続される例えばソケットからなる第1のコネクタ部材20と、該第1コネクタ部材20に取り外し可能に接続される例えばプラグからなる第2のコネクタ部材21とを有する。
【0018】
ソケット20には第1〜第4の接続端20a〜20dが設けられ、プラグ21にはソケット20の各接続端20a〜20dに対応して4つの接続端21a〜21dが設けられている。
【0019】
ソケット20の第4の接続端20dは接地され、この接続端20dに対応するプラグ21の接続端21dには、発光素子ブロック18のカソード側端子16が接続されている。
【0020】
導電路19には、直列に相互接続される抵抗体R1、R2およびR3が挿入されている。導電路19の一端19aは直流電源11に接続され、その他端は第3の接続端20cに接続されている。導電路19は、抵抗体R1と抵抗体R2との間で、分岐路19bを経て第1の接続端20aに接続されている。また、導電路19は、抵抗体R2と抵抗体R3との間で、分岐路19cを経て第2の接続端20bに接続されている。
【0021】
導電路19に設けられた抵抗体R1は、短絡時における直流電源11から過電流を防止する保護抵抗であり、直流電源11と第1の接続端20aとの間には、この保護抵抗R1の電気抵抗値(R1)が与えられる。直流電源11と第2の接続端20bとの間には、保護抵抗R1およびこれに直列的に接続される抵抗体R2との電気抵抗値(R1+R2)が与えられる。また、直流電源11と第3の接続端20cとの間には、直列接続された保護抵抗R1、抵抗体R2および抵抗体R3の電気抵抗値(R1+R2+R3)が与えられる。
【0022】
保護抵抗R1は、順方向電圧特性Vfが最も高い第3のランクの発光素子ブロック18が用いられたときに、該発光素子ブロック18の各発光素子14に適切な電流が供給されるように、その抵抗値が設定される。抵抗体R2は、順方向電圧特性Vfが中間の第2のランクの発光素子ブロック18が用いられたときに、該発光素子ブロック18の各発光素子14に適切な電流が供給されるように、抵抗体R1との関係で、その抵抗値が設定される。また、抵抗体R3は、順方向電圧特性Vfが最も低い第1のランクの発光素子ブロック18が用いられたときに、該発光素子ブロック18の各発光素子14に適切な電流が供給されるように、抵抗体R1およびR2との関係で、その抵抗値が設定される。
【0023】
本発明に係る駆動回路10では、駆動しようとする光源12の発光素子ブロック18の順方向電圧特性Vfのランクに応じて、その発光素子ブロック18のアノード側接続端子15が接続される第2のコネクタ部材21の接続端子21a〜21cが選択される。
【0024】
発光素子ブロック18が第1のランクの発光素子ブロック18の場合、そのアノード側接続端子15を接続するプラグ21の接続端として第3の接続端21cが選択され、第2のランクの発光素子ブロック18の場合、第2の接続端子21bが選択され、また第3のランクの発光素子ブロック18の場合、第1の接続端21aが選択される。発光素子ブロック18のアノード側接続端子15は、そのランクに応じて選択された接続端21a〜21cに接続される。
【0025】
他方、発光素子ブロック18のカソード端子は、ランクの如何に拘わらず第4の接続端21dに接続される。
【0026】
発光素子ブロック18が接続されたプラグである第2のコネクタ部材21がソケットである第1のコネクタ部材20に接続されると、アノード側接続端子15が接続されたプラグ21の接続端21a〜21cに対応したソケット20の接続端20a〜20cを経て、発光素子ブロック18の各発光素子14は直流電源11から駆動電流の供給を受けて発光する。
【0027】
このとき、発光素子ブロック18のランクに応じてプラグ21の接続端21a〜21cが接続されていることから、第1のランクの場合、抵抗体R1、R2、R3を経て発光素子ブロック18に電流が供給され、第2のランクの場合、抵抗体R1、R2を経て発光素子ブロック18に電流が供給され、第3のランクの場合、抵抗体R1を経て発光素子ブロック18に電流が供給される。
【0028】
各抵抗体は、それぞれのランクに応じて適正な駆動電流が発光素子ブロック18に供給されるように設定されていることから、発光素子ブロック18は、その選択された接続端21a〜21cを経て、発光素子ブロック18のランクにに拘わらず適正な駆動電流の供給を受ける。
【0029】
従って、使用される発光素子ブロック18のランク毎の明るさのばらつきを防止することができ、ほぼ均一な光量を得ることができる。また、発光素子ブロック18の各発光素子14に過電流が供給されることを防止することができ、過電流の供給による各発光素子14の劣化を防止することができる。
【0030】
発光素子ブロック18としてマトリクス状に配置された発光素子14の例について説明したが、発光素子ブロック18の発光素子14の配列として、各発光素子列17に代えて単一の発光素子14を互いに並列接続し、あるいは各発光素子列17の列数および各列の発光素子14の数を適宜選択することができる。
【0031】
また、実施の形態に沿って説明したとおり、相互に取り外し可能の第1のコネクタ部材20および第2のコネクタ部材21を用い、多数の発光素子ブロック18のアノード側接続端15を、予め発光素子ブロック18のVf特性のランク毎に所定の接続端21a〜21cに接続しておくことにより、各発光素子ブロック18と直流電源11との適正な接続作業が単に両コネクタ部材20、21の接続により行えることから、発光素子ブロック18と直流電源11との適正な接続作業を誤りなく迅速に行うことができる。
【0032】
また、コネクタ13として、ソケット20およびプラグ21を用いることなく、例えばソケット20の接続端20a〜20cを選択し、選択された接続端20a〜20cに発光素子ブロック18の接続端15を直接接続することができる。
【0033】
【発明の効果】
本発明によれば、発光素子ブロックの電気特性に応じてコネクタの接続端を選択することにより、発光素子ブロックにその電気特性のばらつきに拘わらず適正な電流を流すことができるので、発光素子ブロック毎の明るさのばらつきを防止し、各発光素子への過電流の供給による耐久性の低下を防止することができる。
【図面の簡単な説明】
【図1】本発明に係る駆動回路10を概略的に示す説明図である。
【符号の説明】
10 駆動回路
11 電源
12 光源
13 コネクタ
14 発光素子
15、16 一対の接続端子
18 発光素子ブロック
19 導電路
20 第1のコネクタ部材(ソケット)
21 第2のコネクタ部材(プラグ)
20a〜20d、21a〜21d 接続端
R1、R2、R3 抵抗体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a driving circuit for a vehicle lamp using a light emitting element block formed by connecting light emitting elements such as LEDs (light emitting diode elements) to each other as a light source of the vehicle lamp.
[0002]
[Prior art]
As a light source of a vehicular lamp, there is a light source using an LED that consumes less current. In order to compensate for the shortage of light quantity by each LED, such a light source is configured by a light emitting element block formed by connecting a large number of forward-connected LED strings in parallel so as to be aligned with each other. I have. As the LED for the light emitting element block, an LED exhibiting substantially the same forward voltage characteristic Vf is selected for each block, and each light emitting element block is constituted by the selected LED group.
[0003]
The forward voltage characteristic Vf is represented by a voltage drop value generated in the LED when a constant current is supplied to the LED in the forward direction, that is, a voltage value acting on the LED. Corresponds to the value.
[0004]
When a DC voltage is applied to a light emitting element block composed of a large number of LEDs exhibiting substantially the same electric characteristics Vf, the light emitting element blocks exhibit substantially uniform Vf characteristics, that is, a forward electric resistance value for each block. Since the LEDs are constituted by LEDs, substantially uniform currents flow through the individual LEDs, whereby the LEDs in each light emitting element block emit light with uniform brightness.
[0005]
As described above, by selecting LEDs in the same rank having substantially equal electric characteristics Vf for each light emitting element block, and configuring the light emitting element blocks with these, the variation in brightness of each LED in the light emitting element block is obtained. Is prevented.
[0006]
[Problems to be solved by the invention]
However, if there is a rank difference in the Vf characteristic between the LED groups constituting the light-emitting element block for each light-emitting element block, the Vf characteristic varies among the light-emitting element blocks. For example, a light emitting element block composed of LEDs having a rank of 2.0 to 2.2 V having a Vf characteristic and a light emitting element block composed of LEDs having a rank of 2.2 to 2.4 V have a mean value between them. Then, when a predetermined DC voltage is applied to the light emitting element blocks having the rank difference, a current value flowing through each LED for each light emitting element block depends on the Vf characteristic rank. Therefore, the brightness may be different for each light emitting element block.
[0007]
Further, if there is a rank difference in the Vf characteristics of the light-emitting element blocks, an overcurrent may flow through the LEDs of the light-emitting element blocks having small Vf characteristics. This overcurrent causes deterioration of the LED to be accelerated.
[0008]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a driving circuit for a vehicular lamp capable of suppressing the influence of variation in electrical characteristics of each light emitting element block and supplying an appropriate current to the light emitting element block.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 is a light emitting element driving circuit for a vehicle lamp using a light emitting element block formed by connecting a plurality of light emitting elements as a light source, and supplying a driving current to the light emitting element block. And a connector provided with a plurality of connection ends connected to the power supply and having different electric resistance values from each other, and the light-emitting element block passes through the connection end selected according to its electric characteristics. It is characterized by receiving power supply.
[0010]
The connector according to claim 2, wherein the connector includes a first connector member provided with the plurality of connection ends connected to the power supply, and a plurality of connection ends connectable to the light emitting element block. A second connector member detachably connected to the first connector member such that the connection end is connectable to the corresponding connection end of the first connector member. The connection ends of the connector member and the power supply are connected by electric paths having mutually different electric resistance values.
[0011]
According to a third aspect of the present invention, the light emitting element block includes a plurality of connection terminals and a plurality of connection terminals, which are aligned in series so as to match the forward direction between the two connection terminals, and are serially connected to each other, and have substantially the same electrical characteristics. A light-emitting element array composed of light-emitting elements, the light-emitting element rows being arranged in parallel with each other between the two connection terminals, and the connection terminals are arranged in accordance with a forward resistance value between the pair of connection terminals. It is selectively connected to the connection end of the first connector member.
[0012]
According to the first and third aspects of the present invention, the connection end to the connector is appropriately set according to the electric characteristics such as the Vf characteristic determined by the forward electric resistance characteristic of each light emitting element constituting the light emitting element block. In this case, an appropriate current can be supplied to each light emitting element regardless of the variation in the electrical characteristics of each light emitting element block.
[0013]
According to the second aspect of the present invention, the connector is composed of the first and second connector members which are detachable from each other, and a large number of light emitting element blocks are connected in advance to the second connection form in each electrical characteristic rank. By connecting to the connector members, the proper connection work between each light emitting element block and the power supply can be performed simply by connecting both connector members, so that the proper connection work between the light emitting element blocks and the power supply can be quickly performed without error. Can be done.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, a vehicle lamp drive circuit 10 according to the present invention includes a DC power supply 11, and a connector 13 provided between the DC power supply 11 and a light source 12 that is supplied with power from the DC power supply 11. Is provided.
[0015]
The light source 12 is used as a light source of a lamp such as a rear combination lamp, a tail lamp, or a stop lamp of an automobile. The light source 12 comprises a group of light emitting elements 14 such as a number of light emitting diode elements (LEDs). Each light emitting element 14 has a forward voltage characteristic Vf belonging to one group of, for example, 2.0 to 2.2 V, 2.2 to 2.4 V, or 2.4 to 2.6 V. Between the two connection terminals 15 and 16, the light emitting element rows 17 are connected in series with each other so as to have the same forward direction so that the arrangement directions of the respective anodes and cathodes are the same. The light emitting element blocks 18 are arranged in a matrix by being aligned and connected in parallel so that their forward directions coincide.
[0016]
The light emitting element block 18 composed of a group of light emitting elements 14 having a forward voltage characteristic Vf of, for example, 2.0 to 2.2 V constitutes a first rank light emitting element block 18. Further, the light emitting element block 18 composed of the group of the light emitting elements 14 having the forward voltage characteristic Vf of, for example, 2.2 to 2.4 V constitutes the light emitting element block 18 of the second rank. The light emitting element blocks 18 of the second rank exhibit higher Vf characteristics than the light emitting element blocks 18 of the first rank. Further, the light-emitting element block 18 composed of the group of the light-emitting elements 14 having the forward voltage characteristic Vf of, for example, 2.4 to 2.6 V has a third higher Vf characteristic than the light-emitting element block 18 of the second rank. The light emitting element blocks 18 of the rank are configured.
[0017]
The connector 13 includes a first connector member 20 composed of, for example, a socket connected to the DC power supply 11 via a conductive path 19 provided with a protection resistor R1 and a plug detachably connected to the first connector member 20, for example. And a second connector member 21 made of
[0018]
The socket 20 has first to fourth connection ends 20a to 20d, and the plug 21 has four connection ends 21a to 21d corresponding to the connection ends 20a to 20d of the socket 20, respectively.
[0019]
The fourth connection terminal 20d of the socket 20 is grounded, and the cathode terminal 16 of the light emitting element block 18 is connected to the connection terminal 21d of the plug 21 corresponding to the connection terminal 20d.
[0020]
In the conductive path 19, resistors R1, R2 and R3 interconnected in series are inserted. One end 19a of the conductive path 19 is connected to the DC power supply 11, and the other end is connected to the third connection end 20c. The conductive path 19 is connected to the first connection end 20a between the resistor R1 and the resistor R2 via the branch path 19b. Further, the conductive path 19 is connected to the second connection end 20b between the resistor R2 and the resistor R3 via the branch path 19c.
[0021]
The resistor R1 provided in the conductive path 19 is a protection resistor for preventing an overcurrent from the DC power supply 11 at the time of short circuit, and the protection resistor R1 is provided between the DC power supply 11 and the first connection end 20a. The electric resistance value (R1) is given. An electric resistance value (R1 + R2) of the protection resistor R1 and the resistor R2 connected in series to the protection resistor R1 is provided between the DC power supply 11 and the second connection terminal 20b. The electric resistance value (R1 + R2 + R3) of the protection resistor R1, the resistor R2, and the resistor R3 connected in series is provided between the DC power supply 11 and the third connection terminal 20c.
[0022]
The protection resistor R1 is designed to supply an appropriate current to each light emitting element 14 of the light emitting element block 18 when the third rank light emitting element block 18 having the highest forward voltage characteristic Vf is used. The resistance value is set. The resistor R2 is configured to supply an appropriate current to each light emitting element 14 of the light emitting element block 18 when the second rank light emitting element block 18 having the intermediate forward voltage characteristic Vf is used. The resistance value is set in relation to the resistor R1. Further, when the first rank light emitting element block 18 having the lowest forward voltage characteristic Vf is used, the resistor R3 supplies an appropriate current to each light emitting element 14 of the light emitting element block 18. The resistance value is set in relation to the resistors R1 and R2.
[0023]
In the drive circuit 10 according to the present invention, according to the rank of the forward voltage characteristic Vf of the light emitting element block 18 of the light source 12 to be driven, the second connection side of the anode side connection terminal 15 of the light emitting element block 18 is connected. The connection terminals 21a to 21c of the connector member 21 are selected.
[0024]
When the light emitting element block 18 is the first rank light emitting element block 18, the third connection end 21c is selected as the connection end of the plug 21 for connecting the anode side connection terminal 15, and the light emitting element block of the second rank is selected. In the case of 18, the second connection terminal 21b is selected, and in the case of the third rank light emitting element block 18, the first connection end 21a is selected. The anode-side connection terminal 15 of the light-emitting element block 18 is connected to connection ends 21a to 21c selected according to the rank.
[0025]
On the other hand, the cathode terminal of the light emitting element block 18 is connected to the fourth connection end 21d regardless of the rank.
[0026]
When the second connector member 21 as a plug to which the light emitting element block 18 is connected is connected to the first connector member 20 as a socket, the connection ends 21a to 21c of the plug 21 to which the anode-side connection terminal 15 is connected. Each of the light emitting elements 14 of the light emitting element block 18 receives a drive current from the DC power supply 11 and emits light through the connection ends 20a to 20c of the socket 20 corresponding to the above.
[0027]
At this time, since the connection ends 21a to 21c of the plug 21 are connected in accordance with the rank of the light emitting element block 18, in the case of the first rank, the current is supplied to the light emitting element block 18 via the resistors R1, R2, and R3. In the case of the second rank, current is supplied to the light emitting element block 18 via the resistors R1 and R2, and in the case of the third rank, current is supplied to the light emitting element block 18 via the resistor R1. .
[0028]
Since each resistor is set so that an appropriate drive current is supplied to the light emitting element block 18 according to each rank, the light emitting element block 18 passes through the selected connection ends 21a to 21c. , The appropriate drive current is supplied regardless of the rank of the light emitting element block 18.
[0029]
Therefore, it is possible to prevent a variation in brightness for each rank of the light emitting element blocks 18 used, and it is possible to obtain a substantially uniform light amount. Further, it is possible to prevent an overcurrent from being supplied to each of the light emitting elements 14 of the light emitting element block 18, and to prevent deterioration of each of the light emitting elements 14 due to the supply of the overcurrent.
[0030]
The example of the light-emitting elements 14 arranged in a matrix as the light-emitting element block 18 has been described. However, as the arrangement of the light-emitting elements 14 in the light-emitting element block 18, a single light-emitting element 14 is arranged in parallel instead of each light-emitting element row 17. The connection or the number of the light emitting element rows 17 and the number of the light emitting elements 14 in each row can be appropriately selected.
[0031]
Further, as described along with the embodiment, the first connector member 20 and the second connector member 21 which can be detached from each other are used, and the anode-side connection ends 15 of the large number of light emitting element blocks 18 are previously set to the light emitting element blocks. By connecting to the predetermined connection ends 21a to 21c for each rank of the Vf characteristic of the block 18, the proper connection work between each light emitting element block 18 and the DC power supply 11 can be performed simply by connecting the two connector members 20, 21. Since the connection can be performed, a proper connection operation between the light emitting element block 18 and the DC power supply 11 can be quickly performed without error.
[0032]
Also, for example, the connection ends 20a to 20c of the socket 20 are selected without using the socket 20 and the plug 21 as the connector 13, and the connection end 15 of the light emitting element block 18 is directly connected to the selected connection ends 20a to 20c. be able to.
[0033]
【The invention's effect】
According to the present invention, by selecting the connection end of the connector according to the electrical characteristics of the light emitting element block, an appropriate current can flow through the light emitting element block irrespective of the variation in the electrical properties. Variations in brightness for each light emitting element can be prevented, and a decrease in durability due to supply of an overcurrent to each light emitting element can be prevented.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram schematically showing a drive circuit 10 according to the present invention.
[Explanation of symbols]
Reference Signs List 10 drive circuit 11 power supply 12 light source 13 connector 14 light emitting element 15, 16 pair of connection terminals 18 light emitting element block 19 conductive path 20 first connector member (socket)
21 Second connector member (plug)
20a to 20d, 21a to 21d Connection ends R1, R2, R3 Resistor

Claims (3)

複数の発光素子が接続されて形成された発光素子ブロックを光源とする車両用灯具のための発光素子駆動回路であって、前記発光素子ブロックに駆動電流を供給する電源と、該電源に接続され互いに異なる電気抵抗値を示す複数の接続端が設けられたコネクタとを備え、前記発光素子ブロックは、その電気特性に応じて選択された前記接続端を経て前記電源の供給を受けることを特徴とする車両用灯具の発光素子駆動回路。A light emitting element driving circuit for a vehicle lamp using a light emitting element block formed by connecting a plurality of light emitting elements as a light source, comprising: a power supply for supplying a driving current to the light emitting element block; and a power supply connected to the power supply. A connector provided with a plurality of connection ends exhibiting different electric resistance values from each other, wherein the light-emitting element block receives the supply of the power through the connection end selected according to its electrical characteristics. Light emitting element drive circuit for vehicle lighting. 前記コネクタは、前記電源に接続される前記複数の接続端が設けられた第1のコネクタ部材と、前記発光素子ブロックに接続可能な複数の接続端が設けられ、該接続端がこれに対応する第1のコネクタ部材の前記接続端に接続可能となるように該第1のコネクタ部材に取り外し可能に接続される第2のコネクタ部材とを備え、前記第1のコネクタ部材の前記各接続端と前記電源とは相互に異なる電気抵抗値を示す電路で接続されている請求項1記載の発光素子駆動回路。The connector includes a first connector member provided with the plurality of connection ends connected to the power supply, and a plurality of connection ends connectable to the light emitting element block, and the connection ends correspond to the first connection member. A second connector member detachably connected to the first connector member so as to be connectable to the connection end of the first connector member, wherein each of the connection ends of the first connector member is The light emitting element drive circuit according to claim 1, wherein the light source drive circuit is connected to the power supply by an electric circuit having a different electric resistance value. 前記発光素子ブロックは、一対の接続端子と、該両接続端子間で順方向を一致させるように整列して相互に直列接続され、電気特性のほぼ等しい複数の発光素子からなる発光素子列であって前記両接続端子間で相互に整列して並列接続された発光素子列とを備え、前記一対の接続端子間の順方向抵抗値に応じて該接続端子が前記第1のコネクタ部材の前記接続端に選択的に接続される請求項2記載の発光素子駆動回路。The light-emitting element block is a light-emitting element array including a plurality of light-emitting elements having a pair of connection terminals and a plurality of light-emitting elements having substantially the same electrical characteristics, being connected in series so as to match the forward direction between the two connection terminals. A plurality of light emitting element rows aligned in parallel with each other between the two connection terminals, and the connection terminals are connected to the first connector member in accordance with a forward resistance value between the pair of connection terminals. 3. The light emitting element driving circuit according to claim 2, wherein the light emitting element driving circuit is selectively connected to an end.
JP2002190882A 2002-06-28 2002-06-28 Light emitting element driving circuit for vehicular luminaire Pending JP2004034742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190882A JP2004034742A (en) 2002-06-28 2002-06-28 Light emitting element driving circuit for vehicular luminaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190882A JP2004034742A (en) 2002-06-28 2002-06-28 Light emitting element driving circuit for vehicular luminaire

Publications (1)

Publication Number Publication Date
JP2004034742A true JP2004034742A (en) 2004-02-05

Family

ID=31700675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190882A Pending JP2004034742A (en) 2002-06-28 2002-06-28 Light emitting element driving circuit for vehicular luminaire

Country Status (1)

Country Link
JP (1) JP2004034742A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288231A (en) * 2007-05-15 2008-11-27 Citizen Electronics Co Ltd Light-emitting device
EP2355620A1 (en) 2010-01-27 2011-08-10 Ichikoh Industries, Ltd. A driving circuit of semiconductor-type light source for vehicle lighting device and a vehicle lighting device
JP2014522777A (en) * 2011-07-15 2014-09-08 ロインズ ステファン Speed indicator system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288231A (en) * 2007-05-15 2008-11-27 Citizen Electronics Co Ltd Light-emitting device
EP2355620A1 (en) 2010-01-27 2011-08-10 Ichikoh Industries, Ltd. A driving circuit of semiconductor-type light source for vehicle lighting device and a vehicle lighting device
US9265100B2 (en) 2010-01-27 2016-02-16 Ichikoh Industries, Ltd. Driving circuit of semiconductor-type light source for vehicle lighting device and a vehicle lighting device
JP2014522777A (en) * 2011-07-15 2014-09-08 ロインズ ステファン Speed indicator system

Similar Documents

Publication Publication Date Title
US6288497B1 (en) Matrix structure based LED array for illumination
US9204509B2 (en) System and apparatus for a dual LED light bar
US8378591B2 (en) Light output device
CA2459968A1 (en) Power efficient led driver quiescent current limiting circuit configuration
US6249088B1 (en) Three-dimensional lattice structure based led array for illumination
EP1142452B1 (en) A lattice structure based led array for illumination
EP2536254B1 (en) Light emitting device and illumination apparatus having same
EP2911479B1 (en) Light emitting device driving module
US20070030678A1 (en) Series wiring of highly reliable light sources
US10314127B2 (en) Parallel-type light string
JP2005197304A (en) Light emitting device
CN2715463Y (en) Multiple color varying shoe lamp apparatus
US8227994B2 (en) Vehicular lamp
JP2004034742A (en) Light emitting element driving circuit for vehicular luminaire
JP2008293861A (en) Light-emitting device array and lighting device
CZ2013300A3 (en) Pulse switched actuator for LED lighting of power supply module
EP1583399A2 (en) Array of light emitting diodes
JP3520777B2 (en) Light emitting diode composite circuit and lighting device using the same
US11490485B2 (en) Module and circuit arrangement for a light source
RU2670967C9 (en) Circuit arrangement and method for addressing leds in matrix configuration
CN218352768U (en) LED light-emitting module
JP7097049B2 (en) Light emitting diode drive circuit
CN218124984U (en) Super-long cascaded LED lamp strip
US20210388955A1 (en) Series connected parallel array of leds
CN211702455U (en) Lamp control circuit for computer accessories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408