JP2004033934A - Desulfurization method and equipment therefor - Google Patents

Desulfurization method and equipment therefor Download PDF

Info

Publication number
JP2004033934A
JP2004033934A JP2002195435A JP2002195435A JP2004033934A JP 2004033934 A JP2004033934 A JP 2004033934A JP 2002195435 A JP2002195435 A JP 2002195435A JP 2002195435 A JP2002195435 A JP 2002195435A JP 2004033934 A JP2004033934 A JP 2004033934A
Authority
JP
Japan
Prior art keywords
slurry
gas
hydrogen sulfide
iron oxide
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002195435A
Other languages
Japanese (ja)
Other versions
JP3880468B2 (en
Inventor
Norihiro Yaide
矢出 乃大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002195435A priority Critical patent/JP3880468B2/en
Publication of JP2004033934A publication Critical patent/JP2004033934A/en
Application granted granted Critical
Publication of JP3880468B2 publication Critical patent/JP3880468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desulfurization method capable of stably, safely and efficiently removing hydrogen sulfide in a bad odor gas or a digestion gas at a low cost, and an equipment therefor. <P>SOLUTION: The desulfurization method comprises a step for bringing a gas containing hydrogen sulfide into contact with a slurry of iron oxide or a metal oxide containing iron oxide; and a step for biologically regenerating a part or a whole of the slurry from the step. The desulfurization equipment is constituted of a hydrogen sulfide absorption equipment in which the gas containing hydrogen sulfide is brught into contact with the slurry of iron oxide or the metal oxide containing iron oxide; and a biological oxidation device in which the slurry absorbing the hydrogen sulfide from the absorption equipment is brought into contact with a microorganism and air. The desulfurization equipment may be provided with a membrane separation or centrifugal device for concentrating the regeneration slurry regenerated by the biological oxidation device. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、前記硫化水素を含むガスの脱硫に係り、特に、各種化学工場などから発生する硫化水素を含むガス、下水やし尿処理場の排水処理や汚泥等から発生する硫化水素を含む空気や悪臭ガスや、有機性廃棄物や汚泥などの嫌気性処理工程で発生する硫化水素を含む消化ガスから、硫化水素を除去する方法と装置に関する。
【0002】
【従来の技術】
下水、し尿、産業排水等の排水処理や汚泥処理における嫌気性処理で発生する消化ガスは、数百ppm以上の硫化水素が含まれ、消化ガスを酸化鉄系の脱硫剤を充填した脱硫塔に通し、硫化水素を除去してから、ボイラー用の燃料やガス発電用や近年の燃料電池の燃料に供される。
高濃度の硫化水素を含み、酸素を含まない消化ガスのような場合には、脱硫剤が使用される。また、比較的希薄な悪臭ガスなどの脱臭方法としては、水洗法、アルカリを用いる薬液洗浄法や活性炭吸着法や生物脱臭法が実用化されている。水洗法は、硫化水素を水に吸収させるために、多量の水が必要であること、その硫化水素を含んだ排水を処理する必要がある。薬液洗浄法は、アルカリを含む洗浄液と悪臭ガスを接触させて、悪臭ガス中の臭気成分を洗浄液に吸収させて、脱臭するものである。薬品洗浄法は、苛性ソーダのようなアルカリ剤で硫化水素を化学的に固定するものであるが、アルカリ剤は、硫化水素以外に消化ガスや悪臭ガス中の炭酸ガスとも反応して、高価なアルカリ剤を消費する。また、排水処理についても大きな課題である。硫化水素を含む悪臭ガスは、薬液洗浄脱臭装置などにより脱臭されるが、硫化水素濃度が数十ppm以上では、薬液洗浄装置の充填層が硫黄により閉塞し、脱臭性能が低下したり、薬品コストが多大になる。
【0003】
活性炭吸着法は、表面積が大きく、多数の細孔を有する活性炭に臭気成分を吸着させて、脱臭するものである。活性炭への硫化水素吸着量が大きく、効果的に除去できるが、水分に弱い。また、高濃度の硫化水素には、高価な活性炭の使用量が多くなる欠点がある。
活性炭吸着法は、低濃度のガスに対して適用されるのが一般的である。
生物脱臭法には、土壌脱臭法、充填塔式脱臭法などがあるが、運転管理費が安価である一方、臭気成分の濃度変化に弱いという欠点がある。
前記のような従来技術には、次のような問題点があった。
(1)高濃度の硫化水素は、薬液洗浄装置の充填層を硫黄スケールで閉塞させる。
(2)硫化水素濃度が変動すると、薬液洗浄装置の脱臭性能が安定しない。
(3)脱硫剤の再生が困難で、産業廃棄物になり、その処分場所が少なく、処分費が高い。
(4)消化ガスを脱硫する場合には、爆発防止のために空気や酸素の混入を防止しなければならず、酸素が必要な生物脱臭法は適用できない。
(5)消化ガスを薬液洗浄装置で脱硫しようとすると、消化ガスの高濃度の炭酸ガスによりアルカリが多量に消費されて、薬剤コストが高騰する。
【0004】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解消し、下水、し尿、産業排水等の排水処理や、汚泥処理で発生する悪臭ガスや、それらの嫌気性処理で発生する消化ガス中の硫化水素を除去する際に、安定して安価で、安全に効率よく硫化水素を除去できる脱硫方法と装置を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明では、硫化水素を含むガスと、酸化鉄又は酸化鉄を含む金属酸化物のスラリーを接触させる工程と、該工程からのスラリーの一部又は全部を生物学的に再生する工程からなることを特徴とする脱硫方法としたものである。
また、本発明では、硫化水素を含むガスと酸化鉄又は酸化鉄を含む金属酸化物のスラリーとを接触させる硫化水素吸収装置と、該吸収装置からの硫化水素を吸収したスラリーを微生物と空気に接触させる生物学的酸化装置とから構成されることを特徴とする脱硫装置としたものである。
前記本発明において、硫化水素を含むガスは、消化ガス又は悪臭ガスであり、また、生物学的に再生したスラリーは、膜分離又は遠心分離で濃縮することができる。
【0006】
【発明の実施の形態】
次に、本発明を詳細に説明する。
本発明は、硫化水素を含むガスと酸化鉄又は酸化鉄を含む金属酸化物のスラリーを接触させる工程と、該工程からのスラリーの一部又は全部を生物学的に再生する工程からなる脱硫方法である。
本発明の脱硫対象の被処理ガスである硫化水素を含むガスは、下水、し尿、各種産業排水やそれの排水処理に伴って発生する汚泥あるいは各種の有機性廃棄物を嫌気性処理し、嫌気性消化やUASBに代表される装置や埋め立て地最終処分地などその自然環境が嫌気性処理装置と同様な作用をする場所で、発生する消化ガスや硫化水素を含む悪臭ガスである。消化ガスと悪臭ガスの違いは、前者が炭酸ガス、メタンガス、硫化水素が主な成分で、後者は硫化水素以外にメチルメルカプタンなどの硫黄系化合物やアンモニアなど窒素系化合物を含むと共に、前者は酸素を含まないが、後者は空気など酸素を含む点にある。
【0007】
消化ガスは、炭酸ガスとメタンガスが主成分で、100ppmから数%の硫化水素を含み、酸素は含まないものである。悪臭ガスの硫化水素濃度は、10ppmから数1000ppmである。
本発明において除去できる臭気成分は、硫化水素だけである。
本発明は、消化ガスの脱硫や硫化水素を含む悪臭ガスの脱臭におけるの前処理に使用できる。硫化水素を含む悪臭ガスの脱臭方法である水洗法、アルカリを用いる薬液洗浄法、活性炭吸着法、生物脱臭法の前処理に適用できる。
まず、本発明のうち、硫化水素を含むガスと酸化鉄又は酸化鉄を含む金属酸化物のスラリーを接触させる工程について説明する。
この工程は、酸化鉄又は酸化鉄を含む金属酸化物を水中に分散させたスラリーと、消化ガス又は悪臭ガス(以下、被処理ガス)とを接触させて、被処理ガス中の硫化水素を酸化鉄又は酸化鉄を含む金属酸化物に固定させることにより、被処理ガスから硫化水素を除去する。
【0008】
本発明の酸化鉄又は酸化鉄を含む金属酸化物とは、従来からの酸化鉄が主成分の脱硫剤や従来の脱硫剤の廃棄物や亜鉛、マンガン、銅などの遷移金属の酸化物を含有し、その形状は粉末である。
酸化鉄は、磁鉄鉱などのマグネタイトFe、針鉄鉱などのα−FeOOH、赤金鉱などのβ−FeOOH,鱗鉄鉱などのγ−FeOOH、赤鉄鉱のα−Fe、磁赤鉄鉱のγ−Fe、自然界で発生する非結晶質の赤錆や緑錆やオキシ水酸化鉄などの鉄酸化物である。
酸化鉄又は酸化鉄を含む金属酸化物により、硫化水素を硫黄や安定な金属硫化物にして、その結晶構造の内部に固定化するものである。具体的には、市販の酸化鉄系脱硫剤や焼成金属酸化物ダスト、黄鉄鉱や鉄錆などの酸化鉄、及び前記脱硫剤に市販の酸化亜鉛や酸化マンガンなどの遷移金属の酸化物を混合したものである。
【0009】
酸化鉄又は酸化鉄を含む金属酸化物は、粉末状で、その粒径は、10μm〜1mmである。粒径が10μm未満では、製造コストが高い。1mmを超えると、スラリー化がしにくく、脱硫効果が低下する。
粒径は、1mm以下で、スラリー化がしやすいことや消化ガスなどとの接触効率を考慮すると、100μm以下が好適である。
酸化鉄又は酸化鉄を含む金属酸化物のスラリーにおける酸化鉄又は酸化鉄を含む金属酸化物の添加率は、重量割合で0.5〜20%、好ましくは、1〜5%である。
0.5%未満では、被処理ガスとの接触効率が低い。20%を超えると、スラリー化が困難であったり、スラリーの粘度が上昇して被処理ガスとの接触効率が低下する。
【0010】
スラリーと被処理ガスの接触方法は、充填塔、スプレー塔、スクラバー塔、気泡塔、流動媒体による流動床等であり、消化ガス又は悪臭ガスとスラリーが効率よく接触でき、閉塞など障害になるものでなければ、いずれのものでも使用できるが、なかでも充填塔とスプレー塔が実用的である。
特に、スプレー塔は、スラリーを微細な液滴にして被処理ガスと接触させるので、充填層を用いる際の閉塞がない。一方スプレー塔は、被処理ガスとスラリーとの接触効率が悪いので、被処理ガス1m当りのスラリー液量(リットル)の比率を液ガス比とすると、液ガス比を5〜50リットル/mにするのがよい。液ガス比5リットル/m未満では、被処理ガスとスラリーとの接触効率が悪い。また、液ガス比50リットル/mを超えると、スラリー循環の動力費が過大になる。また、なかでも、大風量の被処理ガスの脱硫に適した気液接触装置は、充填塔式ガス洗浄塔である。これは、その内部に充填材を充填し、充填材を介して被処理ガスとスラリーを接触させることにより、被処理ガス中の硫化水素を除去するものである。
【0011】
充填材の材質や形状には、制限はないが、被処理ガスとスラリーとが効率良く接触できるものであれば、いずれのものでも良い。
充填材には、薬液洗浄装置に使用されるプラスチック製充填材が好適である。プラスチック製充填材は、比表面積が50〜500m/m、1個の大きさは、30〜100mmである。
比表面積500m/mを超え、大きさが30mm未満では、スラリーが充填層を通過する際、充填層の閉塞や被処理ガスの通気抵抗が高くなると共に、被処理ガスの偏流れの原因になり、脱臭性能が低下する。比表面積が50m/m未満で、1個の大きさが100mmを超えると、充填材の表面積が少なくなり、被処理ガスと充填材が接触する機会が減るために脱硫効率が低下する。
充填塔における液ガス比は、2〜10リットル/mにする。液ガス比2リットル/m未満では、被処理ガスとスラリーとの接触効率が悪い。液ガス比10リットル/mを超えると、充填層での圧力損失が増大し、ガス処理の継続が困難になる。
【0012】
次に、本発明のうち、被処理ガスと接触させた後のスラリーの一部又は全部を生物学的に再生する工程について説明する。
この工程は、被処理ガスの硫化水素が固定化された酸化鉄又は酸化鉄を含む金属酸化物を、硫黄酸化菌などで生物学的に再生する。つまり、硫黄酸化菌などにより、固定化された硫黄や硫化物を水溶性の硫酸などに酸化して、酸化鉄又は酸化鉄を含む金属酸化物から硫黄や硫化物を除去する。生物学的に再生されたスラリーは、前述の工程に戻して再度、被処理ガスの硫化水素の固定を行う。
スラリーの一部又は全部を、好気的な微生物懸濁液又は固定化微生物と接触させて、酸化鉄又は酸化鉄を含む金属酸化物に固定化された硫化物や硫黄を、好気的条件の微生物により、硫酸塩、亜硫酸塩などの水溶性の硫黄化合物に酸化する。
【0013】
スラリーの再生方法は、スラリーを水槽に受け入れ、微生物懸濁液とスラリーを溶存酸素濃度が1mg/リットル以上の好気性条件で混合する曝気方法や、微生物懸濁液とスラリーを流動媒体と共に空気で流動させる流動媒体方法や、充填塔で微生物懸濁液とスラリーと空気を接触させる方法や、スプレー塔、スクラバー塔などで微生物懸濁液とスラリーと空気を接触させる方法がある。スラリーと微生物懸濁液と空気が効率よく接触でき、閉塞など障害になるものでなければ、いずれのものでも使用できる。
曝気方法は、曝気やエジェクターにより微生物懸濁液とスラリーと空気を混合する方法がある。この曝気方法が装置的に簡単で、動力費も安価であるので好適である。
流動媒体方法は、装置的に複雑で運転管理が難しいので実用的でない。スプレー塔、スクラバー塔などで微生物懸濁液とスラリーと空気を接触させる方法も、スプレイノズルの閉塞や、微生物懸濁液とスラリーと空気の接触効率が悪いので実用的でない。
【0014】
充填塔で微生物懸濁液とスラリーと空気を接触させる方法は、充填材を充填した充填塔に、微生物懸濁液とスラリーの混合液を充填塔上部から供給し、その下部から空気を供給して、充填層にて微生物懸濁液とスラリーの混合液と空気を効率よく接触させる方法である。また、微生物を固定化させたり、付着させたりした充填層を介して、スラリーと空気を接触させることにより、スラリー中の酸化鉄又は酸化鉄を含む金属酸化物を再生するものである。
充填材としては、充填材の材質や形状には、制限はないが、微生物懸濁液とスラリーと空気とが効率良く接触できるものでであれば、いずれのものでも良い。市販のプラスチック製や、多孔質のセラミックスなどが使用できる。
曝気方法や流動媒体方法やスプレー塔などを使用する方法や、粗い充填材を用いる充填塔を使用する方法では、概ね、再生すべき再生スラリー循環液の微生物濃度は、500〜5000mg/リットルである。微生物濃度は強熱減量として求める。微生物濃度は、500mg/リットル未満では、再生が十分にできない。微生物濃度5000mg/リットルを超えると、再生スラリー中に微生物が残留し、再生スラリー中の酸化鉄又は酸化鉄を含む金属酸化物の比率が低下し、脱硫性能が低下したり、スライムの原因になる。
【0015】
また、充填材を使用する充填塔方式では、運転初期に微生物を充填層に固定化することにより、常時、微生物を含む活性汚泥や余剰汚泥を補給する必要はなくなる。
酸化鉄又は酸化鉄を含む金属酸化物に固定化された硫化物や硫黄を、固定化微生物や微生物懸濁液と接触させることにより、微生物により硫化物や硫黄を水溶性化合物に酸化させて、酸化鉄又は酸化鉄を含む金属酸化物から硫化物や硫黄を除去するものである。この酸化において、pHの低下があれば、アルカリ剤でpH調整することもできる。微生物の最適活動pHは8以下である。装置材質などを考慮して、pH5〜8にすることもできる。
微生物の増殖に必要な栄養塩として、りんや窒素を含むりん酸塩や尿素などの水溶性化合物を添加することができる。余剰汚泥などの補給によって、これら栄養塩が補給される。
【0016】
また、本発明は、硫化水素を含むガスと酸化鉄又は酸化鉄を含む金属酸化物のスラリーとを接触させる硫化水素吸収装置と、硫化水素を吸収したスラリーを微生物と空気に接触させる生物学的酸化装置から構成される脱硫装置である。
図1に、被処理ガスの脱硫方法に用いる装置の一例のフロー構成図を、図2に、充填塔式スラリー再生装置のフロー構成図を、図3に、曝気槽式スラリー再生装置のフロー構成図を示す。
図1の被処理ガスの脱硫方法は、被処理ガスを硫化水素吸収装置であるガス洗浄装置に導入し、スラリー循環液とガス洗浄装置内で接触させて、被処理ガスの硫化水素を除去する。ガス洗浄装置では、微細化したスラリー液と被処理ガスを接触させても、またガス洗浄装置内に充填層を設けて、充填層を介して被処理ガスとスラリー循環液を接触させてもよい。硫化水素を除去した脱硫ガスは、ボイラーや脱臭装置へ送られる。スラリー循環液は、ガス洗浄装置とスラリー循環槽を経由して、循環ポンプでスラリー循環液を循環させる。硫化水素で飽和した廃スラリーは、スラリー再生装置に送られて、再生された後にスラリー循環槽に供給される。
【0017】
図2の生物学的酸化装置である充填塔式スラリー再生装置は、廃スラリーを充填塔に導き再生する。スラリー再生装置では、微細化した廃スラリーと空気を接触させても、また装置内に充填層を設けて、充填層を介して空気と廃スラリーを接触させてもよい。循環槽に廃スラリーと共に、微生物懸濁液や活性汚泥や余剰汚泥を添加する。充填層を設けた充填塔を使用する場合には、充填層に微生物が固定化されるので、常時、微生物懸濁液や活性汚泥などを添加する必要はない。図3の生物学的酸化装置である曝気槽式スラリー再生装置は、その下部から空気を注入できるようにした曝気槽式スラリー再生装置に、廃スラリーと共に、微生物懸濁液や活性汚泥や余剰汚泥を添加する。曝気槽式スラリー再生装置内の液の溶存酸素濃度を、1mg/リットル以上になるように曝気する。再生されたスラリーは、ガス洗浄装置に送る。
【0018】
さらに、本発明は、再生スラリーを濃縮することができる。
図4に、再生スラリーの濃縮方法を用いる装置のフロー構成図を示す。スラリー再生装置からの再生スラリーを、膜分離又は遠心分離により濃縮する。濃縮された濃縮再生スラリーは、ガス洗浄装置に送られて、被処理ガスから硫化水素の除去に使用される。
再生スラリーは、UF膜やMF膜などの膜分離や、遠心分離機による遠心分離により濃縮される。濃縮濃度は、5〜10%である。5%より薄いとガス洗浄装置でのスラリー濃度調整ができず、10%を超えると、濃縮液のハンドリングが困難になる。
【0019】
本発明で用いる膜では、排水処理固液分離に多くの実績のあるMF膜が良い。分離条件である透過流束は0.5〜1.5m/0.5m日で、濃縮処理量により透過流束を任意に変更することができる。
固液分離することで、スラリーの再生時、硫黄や硫化物の酸化生成物が液側に溶けだした塩が除去できるので好都合である。この塩を含んだままスラリー循環液に使用すると、ガス洗浄装置で水分の揮散や蒸発により濃縮が起こり、スケールや腐食の問題が発生する。
酸化鉄又は、酸化鉄を含む金属酸化物の再利用により廃棄物量の削減ができる。
高濃度のスラリーがガス洗浄装置に供給でき、スラリー循環液濃度を任意に調整でき、被処理ガス濃度の変動に対応可能である。
【0020】
【実施例】
以下、本発明を実施例により具体的に説明する。
実施例1
図1に示す装置を用い、ガス洗浄装置として用いた充填塔式ガス洗浄装置には、内径150mm、高さ3000mmの塩化ビニル樹脂製の試験カラムを使用した。そのカラムに、プラスチック充填材(外径30mm)を2000mm充填した。市販の硫化水素標準ガスと窒素ガスで、硫化水素濃度200ppmに調製した模擬消化ガスを、原ガスとして試験に供した。
酸化鉄又は酸化鉄を含む金属酸化物には、酸化鉄系の脱硫剤〔(株)荏原製作所製、エバソープS〕を粒子径100〜300μmの粉末状にしたものを、硫化水素除去剤Aとし、硫化水素除去剤Aと市販の酸化亜鉛20%、酸化マンガン10%の混合物を、硫化水素除去剤Bとして、水道水に所定量添加したものをスラリー循環液とした。
試験条件は、原ガス流量1.1m/分、空塔速度SV 120〜360h−1、散水量(単位処理ガス量当りの散水量)3リットル/m、連続散水方式、ガス温度20〜25℃、スラリー循環液pH6.5〜7.5である。
表1に実施例1の結果を示す。模擬消化ガスから効果的に硫化水素が除去できた。
【0021】
【表1】

Figure 2004033934
【0022】
実施例2
図3の曝気槽式スラリー再生装置を試験装置として試験した。硫化水素除去剤Aを使用したスラリー濃度3.0%の廃スラリー1mと、MLSSが2500mg/リットルの下水処理場の余剰汚泥0.5mを混合したものを、表2の試験条件で空気酸化して再生した。その再生スラリーを使用してSV 240h−1で実施例1と同様に試験した。
表2に実施例2の結果を示す。
【0023】
【表2】
Figure 2004033934
【0024】
実施例3
実施例2で滞留時間1時間、溶存酸素濃度1mg/リットルで再生した再生スラリーを、孔径0.1μmのMF膜で、透過流束0.5m/0.5m日で硫化水素除去剤Aを約5%まで濃縮した。この濃縮スラリーを、水道水で所定の濃度に希釈して図1のガス洗浄装置に供給し、実施例1と同様に試験した。
表3に実施例3の結果を示す。再生スラリーを使用しても、模擬消化ガスから実施例1と同様に硫化水素が除去できた。
【0025】
【表3】
Figure 2004033934
【0026】
【発明の効果】
本発明の効果は、次の通りである。
(1)被処理ガスの硫化水素濃度が変動しても安定して硫化水素が除去できる。
(2)脱硫装置の運転管理が容易で、安全である。
(3)硫化水素除去剤の再使用ができ、廃棄物の削減が可能。
【図面の簡単な説明】
【図1】本発明の脱硫装置の一例を示すフロー構成図。
【図2】本発明に用いる充填塔式スラリー再生装置のフロー構成図。
【図3】本発明に用いる曝気槽式スラリー再生装置のフロー構成図。
【図4】本発明の再生スラリーの濃縮装置を用いた脱硫装置のフロー構成図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the desulfurization of a gas containing hydrogen sulfide, in particular, gas containing hydrogen sulfide generated from various chemical factories, air containing hydrogen sulfide generated from wastewater treatment or sludge, etc. of sewage and human waste treatment plants, The present invention relates to a method and an apparatus for removing hydrogen sulfide from digestive gas containing hydrogen sulfide generated in anaerobic treatment processes such as malodorous gases and organic waste and sludge.
[0002]
[Prior art]
Digestion gas generated by anaerobic treatment in sewage, human waste, industrial wastewater, and other wastewater treatment and sludge treatment contains hydrogen sulfide of several hundred ppm or more, and the digestion gas is put into a desulfurization tower filled with an iron oxide-based desulfurization agent. Through the removal of hydrogen sulfide, the fuel is used for boiler fuel, gas power generation, and fuel for recent fuel cells.
In the case of digestion gas containing a high concentration of hydrogen sulfide and no oxygen, a desulfurizing agent is used. Moreover, as a deodorizing method for a relatively dilute malodorous gas, a water washing method, a chemical solution washing method using an alkali, an activated carbon adsorption method, and a biological deodorization method have been put into practical use. In the water washing method, in order to absorb hydrogen sulfide in water, a large amount of water is required, and wastewater containing the hydrogen sulfide needs to be treated. In the chemical cleaning method, a cleaning liquid containing an alkali and a malodorous gas are brought into contact with each other, and an odorous component in the malodorous gas is absorbed by the cleaning liquid to deodorize it. The chemical cleaning method is a method in which hydrogen sulfide is chemically fixed with an alkaline agent such as caustic soda. However, the alkaline agent reacts with carbon dioxide gas in digestion gas and malodorous gas in addition to hydrogen sulfide, so that it is expensive alkali. Consumes the agent. Also, wastewater treatment is a major issue. Malodorous gas containing hydrogen sulfide is deodorized by chemical cleaning deodorizers, etc., but if the hydrogen sulfide concentration is several tens of ppm or more, the packed bed of the chemical cleaning device is clogged with sulfur, resulting in reduced deodorizing performance and chemical costs. Will be enormous.
[0003]
The activated carbon adsorption method deodorizes an activated carbon having a large surface area by adsorbing an odor component to activated carbon having a large number of pores. The amount of hydrogen sulfide adsorbed on activated carbon is large and can be removed effectively, but it is weak against moisture. In addition, high concentration hydrogen sulfide has a drawback that the amount of expensive activated carbon used is increased.
The activated carbon adsorption method is generally applied to a low concentration gas.
Biological deodorization methods include a soil deodorization method and a packed tower type deodorization method. However, the operation management cost is low, but there is a drawback that the concentration of odor components is weak.
The prior art as described above has the following problems.
(1) A high concentration of hydrogen sulfide clogs the packed bed of the chemical cleaning apparatus with a sulfur scale.
(2) When the hydrogen sulfide concentration fluctuates, the deodorizing performance of the chemical cleaning device is not stable.
(3) It is difficult to regenerate the desulfurizing agent, and it becomes industrial waste, its disposal place is small, and the disposal cost is high.
(4) When desulfurizing digestion gas, air and oxygen must be prevented from mixing in order to prevent explosion, and biological deodorization methods that require oxygen are not applicable.
(5) When the digestion gas is desulfurized by the chemical cleaning device, a large amount of alkali is consumed by the high-concentration carbon dioxide gas of the digestion gas, and the drug cost increases.
[0004]
[Problems to be solved by the invention]
The present invention eliminates the above-mentioned problems of the prior art, and treats sewage, human waste, industrial waste water and other wastewater treatment, sludge treatment, malodorous gas and hydrogen sulfide in digestion gas produced by such anaerobic treatment. It is an object of the present invention to provide a desulfurization method and apparatus that can remove hydrogen sulfide safely and efficiently, stably and inexpensively.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, a step of bringing a gas containing hydrogen sulfide into contact with a slurry of iron oxide or a metal oxide containing iron oxide, and a part or all of the slurry from the step are biologically treated. The desulfurization method is characterized by comprising a step of regenerating automatically.
Further, in the present invention, a hydrogen sulfide absorber that makes contact with a gas containing hydrogen sulfide and a slurry of iron oxide or a metal oxide containing iron oxide, and the slurry that has absorbed the hydrogen sulfide from the absorber into microorganisms and air. The desulfurization apparatus is characterized by comprising a biological oxidation apparatus to be brought into contact.
In the present invention, the gas containing hydrogen sulfide is digestion gas or malodorous gas, and the biologically regenerated slurry can be concentrated by membrane separation or centrifugation.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail.
The present invention relates to a desulfurization method comprising a step of bringing a gas containing hydrogen sulfide into contact with a slurry of iron oxide or a metal oxide containing iron oxide, and a step of biologically regenerating a part or all of the slurry from the step It is.
The gas containing hydrogen sulfide, which is the gas to be desulfurized according to the present invention, is anaerobically treated by treating sewage, human waste, various industrial effluents, sludge generated in the wastewater treatment thereof, or various organic wastes. It is a malodorous gas containing digestive gas and hydrogen sulfide generated in places where the natural environment acts in the same manner as anaerobic treatment equipment, such as sexual digestion and UASB-represented equipment and landfill final disposal sites. The difference between digestion gas and malodorous gas is that the former is mainly composed of carbon dioxide, methane gas, and hydrogen sulfide, and the latter contains sulfur compounds such as methyl mercaptan and nitrogen compounds such as ammonia in addition to hydrogen sulfide, while the former is oxygen. The latter is in the point of containing oxygen such as air.
[0007]
Digestion gas is mainly composed of carbon dioxide gas and methane gas, contains 100 ppm to several percent hydrogen sulfide, and does not contain oxygen. The hydrogen sulfide concentration of the malodorous gas is 10 ppm to several thousand ppm.
The only odorous component that can be removed in the present invention is hydrogen sulfide.
The present invention can be used for pretreatment in desulfurization of digestion gas and deodorization of malodorous gas containing hydrogen sulfide. It can be applied to pretreatment of water washing method, deodorizing method of malodorous gas containing hydrogen sulfide, chemical solution washing method using alkali, activated carbon adsorption method, and biological deodorization method.
First, the process of contacting the gas containing hydrogen sulfide and the slurry of iron oxide or metal oxide containing iron oxide in the present invention will be described.
In this step, iron oxide or a slurry in which a metal oxide containing iron oxide is dispersed in water is brought into contact with digestion gas or malodorous gas (hereinafter, gas to be treated) to oxidize hydrogen sulfide in the gas to be treated. Hydrogen sulfide is removed from the gas to be treated by fixing it to a metal oxide containing iron or iron oxide.
[0008]
The iron oxide of the present invention or a metal oxide containing iron oxide includes a conventional desulfurizing agent mainly composed of iron oxide, a waste of a conventional desulfurizing agent, and oxides of transition metals such as zinc, manganese, and copper. However, its shape is powder.
Iron oxide includes magnetite Fe 3 O 4 such as magnetite, α-FeOOH such as goethite, β-FeOOH such as hematite, γ-FeOOH such as sphalerite, α-Fe 2 O 3 of hematite, magnetic hematite Γ-Fe 2 O 3 , which is an iron oxide such as amorphous red rust, green rust, and iron oxyhydroxide that occurs in nature.
By using iron oxide or a metal oxide containing iron oxide, hydrogen sulfide is converted into sulfur or a stable metal sulfide and fixed inside the crystal structure. Specifically, commercially available iron oxide desulfurization agent and calcined metal oxide dust, iron oxide such as pyrite and iron rust, and oxides of transition metals such as commercially available zinc oxide and manganese oxide were mixed with the desulfurization agent. Is.
[0009]
The iron oxide or the metal oxide containing iron oxide is in a powder form and has a particle size of 10 μm to 1 mm. When the particle size is less than 10 μm, the production cost is high. If it exceeds 1 mm, slurrying is difficult and the desulfurization effect is reduced.
The particle size is preferably 1 mm or less, and is preferably 100 μm or less in consideration of easy slurrying and contact efficiency with digestion gas and the like.
The addition rate of the iron oxide or the metal oxide containing iron oxide in the metal oxide slurry containing iron oxide or iron oxide is 0.5 to 20% by weight, preferably 1 to 5%.
If it is less than 0.5%, the contact efficiency with the gas to be treated is low. If it exceeds 20%, slurrying becomes difficult, or the viscosity of the slurry increases and the contact efficiency with the gas to be treated decreases.
[0010]
The contact method of the slurry and the gas to be treated is a packed tower, a spray tower, a scrubber tower, a bubble tower, a fluidized bed using a fluidized medium, etc., which can efficiently contact the digestion gas or malodorous gas and the slurry, causing obstruction such as clogging. Otherwise, any of them can be used, but a packed tower and a spray tower are practical.
In particular, since the spray tower makes the slurry into fine droplets and makes contact with the gas to be processed, there is no blockage when the packed bed is used. On the other hand, since the spray tower has poor contact efficiency between the gas to be treated and the slurry, the liquid gas ratio is 5 to 50 liters / m, where the ratio of the slurry liquid amount (liter) per 1 m 3 of the gas to be treated is the liquid gas ratio. 3 is good. When the liquid gas ratio is less than 5 liters / m 3 , the contact efficiency between the gas to be treated and the slurry is poor. On the other hand, if the liquid gas ratio exceeds 50 liters / m 3 , the power cost for slurry circulation becomes excessive. Among them, a gas-liquid contact device suitable for desulfurization of a large amount of gas to be treated is a packed tower type gas cleaning tower. This is to remove hydrogen sulfide in the gas to be processed by filling the inside with a filler and bringing the gas to be processed into contact with the slurry through the filler.
[0011]
The material and shape of the filler are not limited, but any material may be used as long as the gas to be treated and the slurry can be efficiently contacted.
As the filler, a plastic filler used in a chemical cleaning apparatus is suitable. The plastic filler has a specific surface area of 50 to 500 m 2 / m 3 , and one size is 30 to 100 mm.
When the specific surface area exceeds 500 m 2 / m 3 and the size is less than 30 mm, when the slurry passes through the packed bed, the packed bed is blocked and the gas flow resistance of the gas to be processed increases, and the cause of the drift of the gas to be processed is Deodorizing performance is reduced. When the specific surface area is less than 50 m 2 / m 3 and the size of one piece exceeds 100 mm, the surface area of the filler is reduced, and the chance of contact between the gas to be treated and the filler is reduced, so that the desulfurization efficiency is lowered.
The liquid gas ratio in the packed tower is 2 to 10 liters / m 3 . When the liquid gas ratio is less than 2 liters / m 3 , the contact efficiency between the gas to be treated and the slurry is poor. If the liquid / gas ratio exceeds 10 liters / m 3 , the pressure loss in the packed bed increases, making it difficult to continue the gas treatment.
[0012]
Next, the process of biologically regenerating a part or all of the slurry after contacting with the gas to be treated will be described.
In this step, iron oxide or metal oxide containing iron oxide in which hydrogen sulfide of the gas to be treated is fixed is biologically regenerated using sulfur-oxidizing bacteria. That is, the sulfur or sulfide immobilized by sulfur-oxidizing bacteria or the like is oxidized into water-soluble sulfuric acid or the like, and the sulfur or sulfide is removed from the metal oxide containing iron oxide or iron oxide. The biologically regenerated slurry is returned to the above-described process, and hydrogen sulfide as the gas to be treated is fixed again.
A part or all of the slurry is brought into contact with an aerobic microorganism suspension or immobilized microorganism, and the sulfide or sulfur immobilized on iron oxide or a metal oxide containing iron oxide is subjected to aerobic conditions. Oxidizes to water-soluble sulfur compounds such as sulfates and sulfites.
[0013]
The slurry is regenerated by receiving the slurry in a water tank and mixing the microorganism suspension and the slurry under aerobic conditions with a dissolved oxygen concentration of 1 mg / liter or more, or the microorganism suspension and the slurry together with a fluid medium with air. There are a fluid medium method for fluidization, a method in which the microbial suspension and slurry are brought into contact with air in a packed tower, and a method in which the microbial suspension and the slurry are brought into contact with air in a spray tower, a scrubber tower or the like. Any material can be used as long as it can efficiently contact the slurry, the microbial suspension, and the air, and does not become an obstacle such as clogging.
As an aeration method, there is a method of mixing a microorganism suspension, slurry, and air by aeration or an ejector. This aeration method is suitable because it is simple in terms of equipment and has low power costs.
The fluid medium method is not practical because it is complicated in equipment and difficult to manage. A method in which the microbial suspension, the slurry and the air are brought into contact with each other in a spray tower, a scrubber tower or the like is not practical because the spray nozzle is blocked or the contact efficiency between the microbial suspension, the slurry and the air is poor.
[0014]
In the method of bringing the microbial suspension, slurry and air into contact with each other in the packed tower, the mixed liquid of the microbial suspension and slurry is supplied from the upper part of the packed tower to the packed tower filled with the filler, and air is supplied from the lower part thereof. In this method, the mixed liquid of the microorganism suspension and the slurry and the air are efficiently contacted in the packed bed. In addition, iron oxide or metal oxide containing iron oxide in the slurry is regenerated by bringing the slurry into contact with air through a packed bed on which microorganisms are immobilized or adhered.
The filler is not limited in the material and shape of the filler, but any filler may be used as long as the microorganism suspension, slurry, and air can be efficiently contacted. Commercially available plastics or porous ceramics can be used.
In a method using an aeration method, a fluid medium method, a spray tower, or a method using a packed tower using a coarse filler, the microbial concentration of the regenerated slurry circulating liquid to be regenerated is generally 500 to 5000 mg / liter. . The microbial concentration is determined as a loss on ignition. If the microbial concentration is less than 500 mg / liter, regeneration is not sufficient. When the microorganism concentration exceeds 5000 mg / liter, microorganisms remain in the regenerated slurry, the ratio of iron oxide or metal oxide containing iron oxide in the regenerated slurry is decreased, desulfurization performance is decreased, and slime is caused. .
[0015]
Further, in the packed tower system using a packing material, it is not necessary to constantly replenish activated sludge and excess sludge containing microorganisms by immobilizing microorganisms in the packed bed in the initial stage of operation.
By contacting sulfide or sulfur immobilized on iron oxide or metal oxide containing iron oxide with immobilized microorganisms or microbial suspension, microorganisms oxidize sulfide or sulfur to water-soluble compounds, It removes sulfides and sulfur from iron oxide or metal oxide containing iron oxide. In this oxidation, if there is a decrease in pH, the pH can be adjusted with an alkaline agent. The optimum activity pH of microorganisms is 8 or less. In consideration of the material of the device, the pH can be adjusted to 5-8.
As nutrients necessary for the growth of microorganisms, water-soluble compounds such as phosphates and ureas containing phosphorus and nitrogen can be added. These nutrient salts are replenished by supplying excess sludge and the like.
[0016]
The present invention also provides a hydrogen sulfide absorbing device for bringing a gas containing hydrogen sulfide into contact with a slurry of iron oxide or a metal oxide containing iron oxide, and a biological device for bringing the slurry having absorbed hydrogen sulfide into contact with microorganisms and air. This is a desulfurization device composed of an oxidation device.
FIG. 1 is a flow configuration diagram of an example of an apparatus used in a desulfurization method for a gas to be treated, FIG. 2 is a flow configuration diagram of a packed tower type slurry regenerating apparatus, and FIG. 3 is a flow configuration of an aeration tank type slurry regenerating apparatus. The figure is shown.
The process gas desulfurization method of FIG. 1 introduces a process gas into a gas cleaning device which is a hydrogen sulfide absorption device, and contacts the slurry circulating liquid in the gas cleaning device to remove hydrogen sulfide from the process gas. . In the gas cleaning device, the refined slurry liquid and the gas to be processed may be brought into contact with each other, or the gas cleaning device may be provided with a filling layer, and the gas to be treated and the slurry circulating liquid may be brought into contact with each other through the filling layer. . The desulfurized gas from which hydrogen sulfide has been removed is sent to a boiler and a deodorizing device. The slurry circulating liquid is circulated by a circulation pump via a gas cleaning device and a slurry circulation tank. The waste slurry saturated with hydrogen sulfide is sent to a slurry regenerator and regenerated, and then supplied to the slurry circulation tank.
[0017]
The packed tower type slurry regenerator which is the biological oxidizer of FIG. 2 guides and recycles the waste slurry to the packed tower. In the slurry regenerating apparatus, the refined waste slurry may be brought into contact with air, or a packed bed may be provided in the apparatus, and the air and the waste slurry may be brought into contact with each other through the packed bed. Along with waste slurry, microbial suspension, activated sludge and surplus sludge are added to the circulation tank. When using a packed tower provided with a packed bed, microorganisms are immobilized in the packed bed, so there is no need to always add a microorganism suspension, activated sludge, or the like. The aeration tank type slurry regenerator, which is the biological oxidizer of FIG. 3, is an aeration tank type slurry regenerator that can inject air from the lower part thereof, together with waste slurry, microbial suspension, activated sludge and surplus sludge. Add. Aeration is performed so that the dissolved oxygen concentration of the liquid in the aeration tank type slurry regenerator is 1 mg / liter or more. The regenerated slurry is sent to a gas scrubber.
[0018]
Furthermore, the present invention can concentrate the regenerated slurry.
FIG. 4 shows a flow configuration diagram of an apparatus using the method for concentrating regenerated slurry. The regenerated slurry from the slurry regenerator is concentrated by membrane separation or centrifugation. The concentrated and regenerated slurry is sent to a gas cleaning device and used for removing hydrogen sulfide from the gas to be treated.
The regenerated slurry is concentrated by membrane separation such as UF membrane or MF membrane, or centrifugation by a centrifuge. The concentrated concentration is 5 to 10%. If the thickness is less than 5%, the slurry concentration cannot be adjusted by the gas scrubber, and if it exceeds 10%, handling of the concentrate becomes difficult.
[0019]
As the membrane used in the present invention, an MF membrane having many achievements in wastewater treatment solid-liquid separation is preferable. The permeation flux as a separation condition is 0.5 to 1.5 m 3 /0.5 m 3 days, and the permeation flux can be arbitrarily changed depending on the concentration treatment amount.
The solid-liquid separation is advantageous because when the slurry is regenerated, the salt in which the oxidation products of sulfur and sulfide are dissolved on the liquid side can be removed. When this salt is contained in the slurry circulating liquid, concentration occurs due to evaporation or evaporation of water in the gas cleaning device, which causes problems of scale and corrosion.
The amount of waste can be reduced by reusing iron oxide or metal oxide containing iron oxide.
A high-concentration slurry can be supplied to the gas cleaning device, the slurry circulating liquid concentration can be arbitrarily adjusted, and it is possible to cope with fluctuations in the gas concentration to be processed.
[0020]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
A test column made of a vinyl chloride resin having an inner diameter of 150 mm and a height of 3000 mm was used in the packed tower type gas cleaning apparatus used as a gas cleaning apparatus using the apparatus shown in FIG. The column was packed with 2000 mm of plastic filler (outer diameter 30 mm). A simulated digestion gas prepared with a commercially available hydrogen sulfide standard gas and nitrogen gas to a hydrogen sulfide concentration of 200 ppm was used as a raw gas for the test.
For the metal oxide containing iron oxide or iron oxide, a hydrogen sulfide removing agent A is a powdered iron oxide-based desulfurization agent (Eba Soap S manufactured by Ebara Corporation) with a particle size of 100 to 300 μm. A mixture of a hydrogen sulfide removing agent A, commercially available zinc oxide 20% and manganese oxide 10% was added as a hydrogen sulfide removing agent B in a predetermined amount to tap water to obtain a slurry circulating liquid.
Test conditions are: raw gas flow rate 1.1 m 3 / min, superficial velocity SV 120 to 360 h −1 , watering amount (watering amount per unit processing gas amount) 3 liter / m 3 , continuous watering method, gas temperature 20 to 20 It is 25 degreeC and slurry circulating liquid pH6.5-7.5.
Table 1 shows the results of Example 1. Hydrogen sulfide was effectively removed from the simulated digestion gas.
[0021]
[Table 1]
Figure 2004033934
[0022]
Example 2
The aeration tank type slurry regenerator of FIG. 3 was tested as a test apparatus. A mixture of 1 m 3 of waste slurry having a slurry concentration of 3.0% using hydrogen sulfide removing agent A and 0.5 m 3 of surplus sludge from a sewage treatment plant with an MLSS of 2500 mg / liter was tested under the test conditions shown in Table 2. Oxidized and regenerated. The regenerated slurry was used and tested in the same manner as in Example 1 at SV 240h- 1 .
Table 2 shows the results of Example 2.
[0023]
[Table 2]
Figure 2004033934
[0024]
Example 3
The regenerated slurry regenerated in Example 2 with a residence time of 1 hour and a dissolved oxygen concentration of 1 mg / liter was passed through a permeation flux of 0.5 m 3 /0.5 m 3 days with a MF membrane having a pore size of 0.1 μm and a hydrogen sulfide removing agent A. Was concentrated to about 5%. This concentrated slurry was diluted to a predetermined concentration with tap water and supplied to the gas cleaning device of FIG. 1 and tested in the same manner as in Example 1.
Table 3 shows the results of Example 3. Even when the regenerated slurry was used, hydrogen sulfide could be removed from the simulated digestion gas in the same manner as in Example 1.
[0025]
[Table 3]
Figure 2004033934
[0026]
【The invention's effect】
The effects of the present invention are as follows.
(1) Hydrogen sulfide can be stably removed even if the hydrogen sulfide concentration of the gas to be treated fluctuates.
(2) Operation management of desulfurization equipment is easy and safe.
(3) The hydrogen sulfide remover can be reused and waste can be reduced.
[Brief description of the drawings]
FIG. 1 is a flow configuration diagram showing an example of a desulfurization apparatus of the present invention.
FIG. 2 is a flow configuration diagram of a packed tower type slurry regenerating apparatus used in the present invention.
FIG. 3 is a flow configuration diagram of an aeration tank type slurry regenerating apparatus used in the present invention.
FIG. 4 is a flow configuration diagram of a desulfurization apparatus using the regenerated slurry concentration apparatus of the present invention.

Claims (4)

硫化水素を含むガスと、酸化鉄又は酸化鉄を含む金属酸化物のスラリーを接触させる工程と、該工程からのスラリーの一部又は全部を生物学的に再生する工程からなることを特徴とする脱硫方法。It comprises a step of bringing a gas containing hydrogen sulfide into contact with a slurry of iron oxide or a metal oxide containing iron oxide, and a step of biologically regenerating a part or all of the slurry from the step. Desulfurization method. 前記硫化水素を含むガスが、消化ガス又は悪臭ガスであることを特徴とする請求項1記載の脱硫方法。The desulfurization method according to claim 1, wherein the gas containing hydrogen sulfide is digestion gas or malodorous gas. 硫化水素を含むガスと酸化鉄又は酸化鉄を含む金属酸化物のスラリーとを接触させる硫化水素吸収装置と、該吸収装置からの硫化水素を吸収したスラリーを微生物と空気に接触させる生物学的酸化装置とから構成されることを特徴とする脱硫装置。A hydrogen sulfide absorber that makes contact with a gas containing hydrogen sulfide and a slurry of iron oxide or a metal oxide containing iron oxide, and a biological oxidation that makes the slurry that absorbed hydrogen sulfide from the absorber contact the microorganisms and air A desulfurization apparatus comprising the apparatus. 前記脱硫装置には、生物学的酸化装置で再生された再生スラリーを濃縮する、膜分離又は遠心分離装置を有することを特徴とする請求項3記載の脱硫装置。The desulfurization apparatus according to claim 3, wherein the desulfurization apparatus includes a membrane separation or a centrifugal separator that concentrates the regenerated slurry regenerated by the biological oxidizer.
JP2002195435A 2002-07-04 2002-07-04 Desulfurization method and apparatus Expired - Fee Related JP3880468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195435A JP3880468B2 (en) 2002-07-04 2002-07-04 Desulfurization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195435A JP3880468B2 (en) 2002-07-04 2002-07-04 Desulfurization method and apparatus

Publications (2)

Publication Number Publication Date
JP2004033934A true JP2004033934A (en) 2004-02-05
JP3880468B2 JP3880468B2 (en) 2007-02-14

Family

ID=31703814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195435A Expired - Fee Related JP3880468B2 (en) 2002-07-04 2002-07-04 Desulfurization method and apparatus

Country Status (1)

Country Link
JP (1) JP3880468B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008131034A2 (en) * 2007-04-16 2008-10-30 Moser Mark A Hydrogen sulfide scrubber
JP2010029746A (en) * 2008-07-25 2010-02-12 Ihi Corp Biological desulfurization method and apparatus
JP2010116516A (en) * 2008-11-14 2010-05-27 Ihi Corp Method and apparatus for purifying energy gas
CN103585870A (en) * 2013-10-15 2014-02-19 天津理工大学 Method for biologically removing hydrogen sulfide and ammonia gas by steel sulfuric acid pickling waste liquor
CN111792694A (en) * 2020-05-25 2020-10-20 北京中航泰达环保科技股份有限公司 System and method for treating wastewater generated by recycling activated coke desulfurization and denitrification rich gas
CN112175684A (en) * 2019-07-01 2021-01-05 众升清源(天津)环保科技有限公司 Novel process technology for removing H2S from coal bed gas, natural gas and medical tail gas
CN112892202A (en) * 2021-01-22 2021-06-04 中国科学院过程工程研究所 Sulfur-containing gas desulfurization device system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008131034A2 (en) * 2007-04-16 2008-10-30 Moser Mark A Hydrogen sulfide scrubber
WO2008131034A3 (en) * 2007-04-16 2009-01-08 Mark A Moser Hydrogen sulfide scrubber
JP2010029746A (en) * 2008-07-25 2010-02-12 Ihi Corp Biological desulfurization method and apparatus
JP2010116516A (en) * 2008-11-14 2010-05-27 Ihi Corp Method and apparatus for purifying energy gas
CN103585870A (en) * 2013-10-15 2014-02-19 天津理工大学 Method for biologically removing hydrogen sulfide and ammonia gas by steel sulfuric acid pickling waste liquor
CN112175684A (en) * 2019-07-01 2021-01-05 众升清源(天津)环保科技有限公司 Novel process technology for removing H2S from coal bed gas, natural gas and medical tail gas
CN111792694A (en) * 2020-05-25 2020-10-20 北京中航泰达环保科技股份有限公司 System and method for treating wastewater generated by recycling activated coke desulfurization and denitrification rich gas
CN112892202A (en) * 2021-01-22 2021-06-04 中国科学院过程工程研究所 Sulfur-containing gas desulfurization device system and method

Also Published As

Publication number Publication date
JP3880468B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
CN110639358B (en) Resource process for synchronously removing VOCs, sulfides and ammonia sulfur in waste gas by chemical coupling and biology
KR101451598B1 (en) deodorizing apparatus and method including pretreatment and posttreatment device in the biofilter way
RU2144510C1 (en) Anaerobic removal of sulfur compounds from sewage
JP2010042327A (en) Water treatment system
JP2011189286A (en) Water treatment system for organic wastewater
JP2007038169A (en) Method and apparatus for removing acid gas
JP3880468B2 (en) Desulfurization method and apparatus
JPS5998717A (en) Deodorizing method and apparatus utilizing bacteria
TWI689470B (en) Integrated processing system and method for biogas desulfurization and bio-slurry denitrification
KR101344278B1 (en) Apparatus Equipped a Rotary Porous Desulfurization Disk and Method for Treatment of Gases Containing Hydrogen Sulfide
JP2002079034A (en) Biological desulfurization method and apparatus
JP2001179295A (en) Method and apparatus for treating sewage
JP3723994B2 (en) Anaerobic biological reaction gas desulfurization equipment
JP2004135579A (en) Biodesulfurization system for biogas
JP2010116516A (en) Method and apparatus for purifying energy gas
JP2002079051A (en) Method for deodorizing hydrogen sulfide containing gas
JPH0568849A (en) Method and device for desulfurizing digestion gas
JP2010029746A (en) Biological desulfurization method and apparatus
JP2007038044A (en) Bio-desulfurization method and bio-desulfurization apparatus
JP2002079036A (en) Method and apparatus for desulfurizing biogas, and desulfurizing agent
CA1104795A (en) Odorous gas purification
JPH11244884A (en) Method for cleaning sewage and device therefor
JP2000189995A (en) Method and device for removing nitrogen in waste water
JP2004002509A (en) Method for desulfurizing fermentation gas and apparatus therefor
JPS586299A (en) Purification of water containing organic pollutants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061107

R150 Certificate of patent or registration of utility model

Ref document number: 3880468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees